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HURWITZ COMPLETE SETS OF FACTORIZATIONS

IN THE MODULAR GROUP AND THE

CLASSIFICATION OF LEFSCHETZ ELLIPTC

FIBRATIONS OVER THE DISK

C. CADAVIDA, J. D. VÉLEZB, AND LUIS F. MORENOC

Abstract. Given any matrix B in SL(2,Z), we will describe an
algorithm that provides at least one elliptic fibration over the disk,
relatively minimal and Lefschetz, within each topological equiva-
lence class, whose total monodromy is the conjugacy class of B.

1. Introduction

Locally holomorphic fibrations have received a great deal of atten-
tion due to the close relationship that exists between a 4-dimensional
manifold M admitting a symplectic form and the existence of locally
holomorphic fibrations over M (see [1], [5]). Such fibrations have been
studied extensively by several authors: Over the sphere, by Moishe-
zon [9], and over closed surfaces of arbitrary genus by Matsumoto [8].
Their classification over the disk, for the case when the total space is
two dimensional, is carried out in [10], [6].
In [2], the authors studied distinguished factorizations in SL(2,Z)

in terms of conjugates of the matrix U =

[

1 1
0 1

]

, which naturally

arise as the monodromy around a singular fiber in an elliptic fibration.
In that article, it is proved that if M is one of the matrices in the
Kodaira’s list, and if M = G1 · · ·Gr where each Gi is a conjugate of
U in SL(2,Z), then after applying a finite sequence of Hurwitz moves,
the product G1 · · ·Gr can be transformed into another product of the
form H1 · · ·HnG

′
n+1 · · ·G

′
r where H1 · · ·Hn is some fixed shortest fac-

torization of M in terms of conjugates of U , and G′
n+1 · · ·G

′
r = Id2×2.

We used this result to obtain necessary and sufficient conditions under
which a relatively minimal elliptic fibration over the disk D without
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multiple fibers, φ : S → D, admits a weak deformation into another
such fibration having only one singular fiber.
In general, the problem of classification of elliptic fibrations over D

which are relatively minimal and Lefschetz strict (see definition 3), up
to topological equivalence, is equivalent to the problem of studying the
set

{(g1, . . . , gn) : n ≥ 0 and gi ∈ SL(2,Z) is a conjugate of U} ,

where two n-tuples are identified if one can be obtained from the other
by a finite sequence of Hurwitz moves followed by conjugation (see
[1], and Definition 6). A satisfactory answer to the problem would
comprise:

(1) A method by which given any B ∈ SL(2,Z), one could obtain a
subcollection of the set of all equivalent classes of factorization
of B in terms of conjugates of U , modulo Hurwitz moves, has
at least one representative in this subcollection.

(2) An algorithm to decide if two factorizations of B in conjugates
of U are Hurwitz equivalent.

In this article we construct an algorithm that completely solves the
first of these goals. Similar results were obtained in [8] and [9], for the
case where the base is a closed surface.
The second goal seems to be a very difficult problem. It is known

that some cases turned out to be undecidable (see [11]).
The article is organized as follows: in Section 2 we introduce the

basic notions concerning elliptic fibrations over the unit disk and their
classification. The central result is theorem 1 which relates the prob-
lem of classifying all of special elliptic fibrations over the disk to the
problem of classifying their monodromy representations, up to conju-
gation and Hurwitz equivalence, in the modular group. Section 3 is
devoted to the study of the relationship between special factorizations
in PSL(2,Z) and their liftings to SL(2,Z). The next section deals
with a combinatorial study of Hurwitz equivalence of special factoriza-
tion in the modular group. The last section presents an algorithm for
generating a relatively simple H-complete set of special factorizations
of any given element in the modular group.

2. Elliptic fibrations over the disk and Hurwitz
equivalence

Definition 1. Let Σ be a compact, connected and oriented smooth two
dimensional manifold (with or without boundary). A topological elliptic
fibration over Σ is a smooth function f : M → Σ such that
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(1) M is a compact, connected and oriented four dimensional smooth
manifold (with or without boundary).

(2) f is surjective.
(3) f(int(M)) = int(Σ) and f(∂M) = ∂(Σ).
(4) f has a finite number (possibly zero) of critical values q1, . . . , qn

all contained in int(Σ).
(5) f is locally holomorphic, that is, for each p ∈ int(M) there

exists orientation preserving charts from neighborhoods of p and
f(p), to open sets of C2 and C (endowed with their standard
orientations), respectively, relative to which f is holomorphic.

(6) The preimage of each regular value is a smooth two dimensional
manifold that is closed and connected, and of genus one.

Two topological elliptic fibrations are regarded equivalent according
to the following definition.

Definition 2. Two topological elliptic fibrations f1 : M1 → Σ1 and
f2 : M2 → Σ2 are topologically equivalent, written as f1 ∼Top f2, if
there exist orientation preserving diffeomorphisms H : M1 → M2 and
h : Σ1 → Σ2 , such that h ◦ f1 = f2 ◦H.

Definition 3. A topological elliptic fibration f : M → Σ will be called

(1) Relatively minimal if none of its fibers contains an embedded
sphere with selfintersection −1.

(2) Lefschetz strict if for each critical point p (necessarily contained
in int(M)) of f there exist charts as in condition 5 above relative
to which f takes the form (z1, z2) → z21 + z22, and f is injective
when restricted to the set of critical points.

If f : M → Σ satisfies both conditions, we will say that f is a special
fibration.
We notice that being special is preserved by topological equivalence.
In what follows we will only consider special elliptic fibrations over

the closed unit disk, D = {z ∈ C : |z| ≤ 1}, endowed with its standard
orientation.

Definition 4. Let G be a group. Any n-tuple of elements of G, α =
(g1, . . . , gn), n ≥ 0, will be called a factorization. The only 0-tuple (the
empty tuple) will be denoted by ( ). The element g1 · · · gn will be called
the product of the factorization, and will be denoted by prod(α). When
α is empty, we define its product as the identity element of G.
Given any g in G, we will say that α is a factorization of g if its

product is equal to g.
If A ⊂ G, F (A,G) will denote the set formed by all factorizations in

G whose entries are all in A.
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We will be interested in the case where G is SL(2,Z) and A = C(U)

is the set of all conjugates of the element U =

(

1 1
0 1

)

. (U represents

the monodromy around a critical point in any special fibration, as
explained below.)

Definition 5. We will say that a factorization in SL(2,Z) is special
if it belongs to F (C(U), SL(2,Z)). This set will be denoted simply by
F (U).

Definition 6. Let G be a group, and n ≥ 2. For any integer 1 ≤ i ≤
n−1, a Hurwitz right move, at position i, is the function Hi : G

n → Gn

defined as

Hi(g1, . . . , gi, gi+1, . . . , gn) = (g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, gi+2, . . . , gn) .

The inverse function is called a Hurwitz left move, at position i, which
is given by

H−1
i (g1, . . . , gi, gi+1, . . . , gn) = (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gn) .

WhenHi(g1, . . . , gn) = (g′1, . . . , g
′
n) (resp. H

−1
i (g1, . . . , gn) = (g′1, . . . , g

′
n)

) we will say that (g′1, . . . , g
′
n) is obtained from (g1, . . . , gn) by a Hurwitz

right move (respectively, by a Hurwitz left move) at position i.
If α′ = (g′1, . . . , g

′
m) is obtained from α = (g1, . . . , gn) by a successive

applications of finite Hurwitz moves, we will say that α and α′ are
H-equivalent, which we denote by α ∼H α′. In this case, it follows
immediately that n = m and g′1 · · · g

′
n = g1 · · · gn, and therefore their

product is the same. If, moreover, there exists an element h such that
α ∼H (h−1g1h, . . . , h

−1gnh), we will say that α and α′ are C + H-
equivalent. This will be denoted by α ∼C+H α′.

The set of classes F (U)/ ∼H , and F (U)/ ∼C+H will be denoted by
εH , and εC+H , respectively. It is clear that being C +H-equivalent is
weaker than being H-equivalent.

2.1. Hurwitz complete sets. As in definition 4, C(B) denotes the
conjugacy class in SL(2,Z) of the matrix B. Let us notice that if
α = (G1, . . . , Gr) in F (U) has product B , then any other element
α′ in the H-equivalence class of α also has product B. On the other
hand, if α′ is just C +H-equivalent to α, then its product belongs to
the conjugacy class of B.

Definition 7. For any matrix B in SL(2,Z), a subset of F (U) will be
called H-complete (respectively, H +C-complete) if it contains at least
one representative within each class of equivalence under the relation
∼H , (respectively, under ∼C+H).
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Let f : M → D be any special fibration over the disk. Let us denote
by q0 the point (1, 0), and by C the boundary of the disk with its
standard counterclockwise orientation. As usual,

ρ : π1(D − {q1, . . . , qn}, q0) → SL(2,Z)

will stand for the monodromy representation where we have identified
the mapping class group of T 2, a fixed model of the regular fiber, with
SL(2,Z). The mapping ρ is an anti-homomorphism determined by its
action on any basis of the rank n free group π1(D − {q1, . . . , qn}, q0).
We may take {[γ1], . . . , [γn]} the standard basis consisting of the classes
of clockwise oriented, pairwise disjoint arcs where each γi surrounds
exclusively the critical value qi, i = 1, . . . , n. We may choose the γi’s in
such a way that (for an appropriate numbering of the qi’s) the product
[γ1] · · · [γn] equals the class of C. The conjugacy class in SL(2,Z) of
ρ([C]) is called the total monodromy of the fibration. It can be readily
seen that this is a well defined notion.

Remark 1. If f : M → D is any special fibration over the disk, since
each singular fiber has a single ordinary double point (of type I1, in
Kodaira´s classification [7] ) the monodromy around any of these fibers

is in the conjugacy class of U =

(

1 1
0 1

)

in SL(2,Z).

Special fibrations over D can be classified up to conjugation and
Hurwitz moves. More precisely:

Theorem 1. Let f1 : M1 → D and f2 : M2 → D be two special fi-
brations. Let us fix monodromy representations ρ and ρ′, and basis
{[γ1], . . . , [γn]}, and {[γ′

1], . . . , [γ
′
n]}, for f1 and f2, respectively. Let

gi = ρ([γi]), and g′i = ρ′([γ′
i]). Then, f1 and f2 are topologically equiva-

lent if and only if α = (g1, . . . , gn) and α′ = (g′1, . . . , g
′
n) are equivalent

under the equivalence relation ∼C+H(Definition 6).

For a proof see [4].
Hence, the elements of εC+H are in bijective correspondence with

topological equivalency classes of special fibrations over the disk. There-
fore, in order to classify these fibrations, it suffices to describe the el-
ements of εC+H . In this article we present an algorithm that for any
given matrix B in SL(2, Z) produces an H-complete set of factoriza-
tions of B. In general, this set could be redundant in the sense that it
might contain more that one representative in some equivalence classes.
Since C +H-equivalence is weaker than H-equivalence, it is clear that
this set is also H + C-complete. Therefore, for any given B, this al-
gorithm will provide at least one special elliptic fibration over the disk
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within each topological equivalence class, whose total monodromy is the
conjugacy class of B.

3. Special factorizations in PSL(2,Z)

Even though it is well known that SL(2,Z) is generated by the ma-
trices

S =

(

0 −1
1 0

)

and U =

(

1 1
0 1

)

,

it is important for our purposes that a decomposition of any matrix in
SL(2,Z) as product of powers of S and U (or equivalently, as a product
of powers of S and R = SU) can be achieved algorithmically. This is
the content of the next proposition.

Proposition 1. Every matrix in SL(2,Z) can be written as a product
of powers of S and U . Moreover, there is an algorithm that given any
matrix B in SL(2,Z) yields one of such factorizations.

Proof. For any matrix A, UnA is the matrix obtained from A by per-
forming the row operation corresponding to adding n times the second
row to the first, while SA is the matrix obtained from A by performing
the row operation corresponding to interchanging the first and second
row, and multiplying the first row by −1.

For any matrix B =

(

a b
c d

)

, since det(B) = 1, the entries a and c

must be relatively prime. If |c| < |a| , by the euclidean algorithm, if
a = cn + r, then by premultiplying by U−n we obtain a matrix of the

form U−nB =

(

r b′

c d

)

with b′ = b − nd. In case where |a| < |c|, we may first multiply
by S to interchange the rows. Thus, in any case, premultiplying by

U−n, or by U−nS, has the effect of putting B in the form

(

r b′

c d

)

,

where lcd(a, c) = lcd(c, r) (lcd denotes the lest common divisor). By
successively premultiplying by S, and suitable powers of U, we may

transform B into a matrix of the form B′ =

(

±1 m
0 k

)

. That is, B′ =

PB, where P is a product of S and powers of U . Since B′is in SL(2,Z),
k must be equal to ±1. Therefore, B′ = ±I2U

±m. Since S2 = −I2, then
B = P−1(±I2)U

±m. �

The modular group, SL(2,Z)/{±I2}, will be denoted by PSL(2,Z).
For the sake of brevity, we will denote this group simply by M.The
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classes of S, U and R will be denoted by ω, u and b, respectively. Note
that b = ωu. It is a well known fact

M=
〈

ω, b
∣

∣ ω2 = b3 = 1
〉

.

The following corollary is an immediate consequence of the previous
proposition.

Corollary 1. There is an algorithm that expresses any element in M
as a product of positive powers of ω and b.

Let π : SL(2,Z) → M denote the canonical homomorphism to the
quotient.

Definition 8. A factorization α = (g1, . . . , gn) in M will be called
special if each gi is a conjugate of u.
A special factorization α = (A1, . . . , An) in SL(2,Z) will be called a

lift of α, if π(Ai) = gi for each i.

We observe that each special factorization α = (g1, . . . , gn) in M
has exactly one lift. Indeed, if gi = aiua

−1
i , then its preimages are

±AiUA−1
i , where Ai is any preimage of ai. But only AiUA−1

i is a con-
jugate of U , since the trace(−AiUA−1

i ) = −2, and every conjugate of
U has trace 2. The lift α will be denoted by lift(α).
Now, in M, if α′ is obtained from α by performing a Hurwitz move,

then lift(α′) can be obtained from lift(α) by the corresponding move.
Reciprocally, Hurwitz moves in SL(2,Z) can be transformed into Hur-
witz moves in M via π. Therefore, α ∼H α′ if and only if lift(α) ∼H

lift(α′). From this, it follows that H-complete sets for a matrix in
SL(2,Z) can be obtained from H-complete sets for π(B) in M. More
precisely:

Proposition 2. Let A be an element of SL(2,Z). If S is an H-
complete set for π(A) then the collection

R = {lift(α) : α ∈ S and prod(lift(α)) = A}

is an H-complete set for A.

Proof. The proposition follows from the obvious observation that if
α ∼H α′ in SL(2,Z) then prod(α) =prod(α′). �

4. H-complete sets in M

In this section, M will be identified with the free product

Z2 ∗ Z3 =
〈

ω, b
∣

∣ ω2 = b3 = 1
〉

.

There is a unique automorphism φ of M that sends ω into itself and
b into b2.Let us denote by cb : M → M conjugation by b, i.e., cb(z) =
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bzb−1, and by h the composition h = cb ◦ φ. The problem of finding
H-complete sets in M in terms of conjugates of u = ωb is equivalent,
via h, to the problem of finding H-complete sets of elements in terms
of conjugates of h(u) = bωb.
It is important to have a symbol for the empty word: We will denote

it by 1.
It is a standard fact that each element a in M can be written

uniquely as a product a = tk · · · t1, where each ti is either ω, b, or
b2 and no consecutive pair titi+1 is formed either by two powers of b or
two copies of ω. .We call the product tk · · · t1 the reduced expression
of a, and we call k the length of a, denoted by l(a). Let z = t′1 · · · t

′
l be

the reduced expression of z. If exactly the first m− 1 terms of z cancel
with those of a, i.e. t′i = t−1

i , for 1 ≤ i ≤ m− 1, and if m ≤ min(k, l),
then az = tk · · · tmt

′
m · · · t′l and tmt

′
m has to be equal to a non trivial

power of b. This is because if tm were not a power of b then it would
have to be ω and therefore tm−1 would be a first or second power of b,
and so would be t′m−1. Hence, t

′
m would also have to be ω but in this

case there would be m instead of m − 1 cancellations at the juncture
of a and z. Thus, tm and t′m are both powers of b and since there are
exactly m − 1 cancellations their product must be non trivial. Thus,
the reduced expression for az is of the form

(4.1) az = tk · · · tm+1b
rt′m+1 · · · t

′

l, r = 1 or 2, if m ≤ min(k, l).

Let s1 denote the element bωb. The shortest conjugates of s1 in
M are precisely s0 = b2(bωb)b = ωb2 and s2 = b(bωb)b2 = b2ω. The
element s1 is trivially a conjugate of itself of length 3. It can be easily
seen that if g is a conjugate of greater length, its reduced expression is
of the form Q−1s1Q, where Q is a reduced word that begins with ω (see
[3]), and l(g) = 2l(Q)+3. We will call a conjugate of s1 (conjugate will
always mean conjugate of s1 in M) short if g ∈ {s0, s1, s2}, otherwise
it will be called long.
The following notion is the key ingredient for understanding the re-

duced expression of a product of conjugates of s1.

Definition 9. We will say that two conjugates g and h of s1 join well
if l(gh) ≥ max(l(g), l(h)). Otherwise, we say they join badly.

The notion of being a special factorization will be used in the follow-
ing sense:

Definition 10. A factorization α = (g1, . . . , gn) in M is called special
if each gi is a conjugate of s1. We say α is well jointed if each pair of
elements gi, gi+1 join well. Otherwise, we say that α is badly jointed.
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The empty factorization will be regarded as being special, and well
jointed. Special factorizations with just one element will also be re-
garded as well jointed.

Remark 2. We notice that the following identities hold:
s2s2 = b2ωb2ω, s1s1 = bωb2ωb,
s0s0 = ωb2ωb2, s2s1 = b2ωbωb,
and, s1s0 = bωbωb2 and s0s2 = ωbω.
Hence, the corresponding factorizations in each case are well jointed.

On the other hand, since s0s1 = s1s2 = s2s0 = b, the corresponding
factorizations are badly joined.

The following propositions will be useful for the proof of one of the
main results used for the construction of H-complete sets.

Proposition 3. Let g1, g2 be conjugates of s1 such that g1, g2 do not
joint well. Then:

(1) g1, g2 are short conjugates or
(2) (g1, g2) may be transformed by a Hurwitz move into a new pair

(h1, h2) such that max{0, l(h1)−3}+max{0, l(h2)−3} < max{0, l(g1)−
3}+max{0, l(g2)− 3}.

Proof. It follows from the proof of Proposition 4.15, [3]. �

Proposition 4. Every spacial factorization α = (g1, . . . , gn) can be
trasformed by Hurwitz moves into a factorization β = (h1, . . . , hn)(necessarily
special, and with the same number of factors), satisfying:

i) Each hi is short, or
ii) β is well jointed and at least one of the h′

is is long.

Proof. (See [3]) �

Proposition 5. Every factorization (g1, g2, g3) in which each gi is
short, and where g1, g2 join badly, is H-equivalent to a factorization
(g′1, g

′
2, g

′
3), where each g′i is short, and g′2, g

′
3 join badly.

Proof. The only pairs of short conjugates that do not join well are
(s0, s1), (s1, s2),
(s2, s0). It follows that for each si there exists an sj such that (sj , si)

does not join well. We also notice that any two of these pairs are H-
equivalent. Hence, for g3, there is sj such that (sj, g3) does not join well.
Therefore, after a Hurwitz move performed on the pair (g1, g2), trans-
forming it into (g′1, g

′
2), with g′2 = sj , then, the factorization (g′1, g

′
2, g

′
3)

with g′3 = g3, is Hurwitz equivalent to (g1, g2, g3), and (g′2, g
′
3) does not

join well. �
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Proposition 6.

(1) Every factorization (g1, . . . , gn) where each gi is a short con-
jugate, and where not all pairs of elements gi, gi+1 join well,
is H-equivalent to a factorization (g′1, . . . , g

′
n), where (g′n−1, gn)

join badly.
(2) Every factorization (g1, . . . , gn) in short conjugates where not

all pairs of elements gi, gi+1 join well is H-equivalent to a fac-
torization (g′1, . . . , g

′
n) in which (g′n−1, gn) = (s0, s1).

Proof. For each factorization α = (g1, . . . , gn) (n ≥ 2) in short conju-
gates where not all pairs of elements gi, gi+1 join well we associate the
integer k(α) = n − max{r : (gr, gr+1) does not join well}. The proof
proceeds by induction on k. If k = 1, then (gn−1, gn) join badly, and
the result follows. For k0 ≥ 1, let us suppose that the result is true
for all α such that k(α) ≤ k0. Let β = (g1, . . . , gn) be a factorization
with k(β) = k0 + 1. This implies that (gn−k0−1, gn−k0) does not join
well. Applying Proposition 5 we infer that (gn−k0−1, gn−k0, gn−k0+1) is
H-equivalent to a factorization (g′n−k0−1, g

′
n−k0

, g′n−k0+1) in short con-
jugates, such that (g′n−k0

, g′n−k0+1) join badly. Summarizing, the orig-
inal factorization β is H-equivalent to a factorization in short conju-
gates β ′ = (g′1, . . . , g

′
n) in which (g′n−k0

, g′n−k0+1) join badly. Clearly
k(β′) < k(β), thus the proposition holds for β ′, i.e., β ′ is H-equivalent
to another factorization in short conjugates β ′′ = (g′′1 , . . . , g

′′
n) in which

(g′′n−1, g
′′
n) join badly. We conclude that the result also holds β, since β is

Hurwitz equivalent to β ′′. This proves the first statement. The second
assertion easily follows from the fact that all pairs of short conjugates
that join badly are H-equivalent to (s0, s1). �

Proposition 7. Every factorization (g1, . . . , gn) in short conjugates is
H-equivalent to another factorization in short conjugates, of the form
(g′1, . . . , g

′
m, s0, s1, . . . , s0, s1), 0 ≤ m ≤ n, where there are (n − m)/2

pairs of s0, s1, and (g′1, . . . , g
′
m) is well jointed.

Proof. Let α = (g1, . . . , gn) be a factorization in short conjugates. Each
factorization β = (h1, . . . , hn) in short conjugates that is H-equivalent
to α can be written uniquely as (h1, . . . , hm, s0, s1, . . . , s0, s1) where
there are r ≥ 0 pairs s0, s1, and where m ≥ 0 and (hm−1, hm) 6= (s0, s1),
if m ≥ 2. The integer r will be denoted by r(β) to indicate its de-
pendence on β. Let γ = (g′1, . . . , g

′
m, s0, s1, . . . , s0, s1) be a factoriza-

tion in short conjugates, H-equivalent to α, such that r(γ) ≥ r(β)
for any other factorization in short conjugates β, H-equivalent to α.
Let us verify that (g′1, . . . , g

′
m) is well jointed. If (g′1, . . . , g

′
m) is badly

jointed, and m ≥ 2, by the second part of Proposition 6 there would
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be another factorization in short conjugates (g′′1 , . . . , g
′′
m) H-equivalent

to (g′1, . . . , g
′
m), and such that (g′′m−1, g

′′
m) = (s0, s1). Hence, γ would

also be (and, therefore α), H-equivalent to a factorization in short
conjugates (g′′1 , . . . , g

′′
m−2, s0, s1, . . . , s0, s1) with r(γ) + 1 pairs s0, s1,

in contradiction with the maximality of γ. Thus, (g′1, . . . , g
′
m) is well

jointed. �

Proposition 8. Each special factorization (g1, . . . , gn) is H-equivalent
to a factorization of the form (g′1, . . . , g

′
m, s0, s1, . . . , s0, s1), where there

are r ≥ 0 pairs s0, s1, and where (g′1, . . . , g
′
m) is well jointed. Moreover,

(g′1, . . . , g
′
m) is a factorization in short conjugates, whenever r > 0.

Proof. By Proposition 4, (g1, . . . , gn) is H-equivalent to a factorization
β = (g′1, . . . , g

′
n) that either, is well jointed and at least one of the g′is is

a long conjugate, or it is badly jointed and all g′is are short conjugates.
In the first case, β already has the desired form, since the fact that
the factors join well implies that (g′n−1, g

′
n) 6= (s0, s1), and consequently

r = 0. Now, in case β consists of short conjugates that join well, then
it also has already the desired form for the same reason. Hence, let
us suppose that β is a factorization in short conjugates that is badly
joined. By Proposition 7, this factorization is H-equivalent to another
one in short conjugates, of the form (g′′1 , . . . , g

′′
m, s0, s1, . . . , s0, s1), with

(n−m)/2 pairs s0, s1, and where (g′′1 , . . . , g
′′
m) is well jointed. �

An immediate consequence is the following theorem.

Theorem 2. For each g ∈ M, the set of all special factorizations of g
having either of the following two forms is H-complete:

(1) (g1, . . . , gm, s0, s1, . . . , s0, s1), where there are r > 0 pairs s0, s1,
(g1, . . . , gm) is well jointed, and each gi is short.

(2) (g1, . . . , gp), where this factorization is well jointed.

5. An algorithm to produce H-complete sets

For h in the modular group, let us denote byWJ(h) the set formed by
all special factorizations of h that are well jointed, and by WJS(h) the
subset of factorizations in short conjugates. Remember that we regard
the empty factorization ( ) as a well jointed special factorization of the
identity 1, in short conjugates.
Since s0s1 = b and b3 = 1, we have that (s0s1)

3k+l equals 1 if l = 0,
b if l = 1 and b2 if l = 2. According to Theorem 2, for any fixed
element g, the union of the following four sets of factorizations of g is
H-complete:

(1) A = {α : α is a well jointed special factorization of g}.
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(2) B = {(g1, . . . , gm, s0, s1, . . . , s0, s1) : (g1, . . . , gm) is a well jointed
special factorization of g in short conjugates and the number of
pairs s0, s1 is of the form 3k, with k ≥ 1}.

(3) C = {(g1, . . . , gm, s0, s1, . . . , s0, s1) : (g1, . . . , gm) is a well jointed
special factorization of gb2 in short conjugates and the number
of pairs s0, s1 is of the form 3k + 1, with k ≥ 0}.

(4) D = {(g1, . . . , gm, s0, s1, . . . , s0, s1) : (g1, . . . , gm) is a well jointed
special factorization of gb in short conjugates and the number
of pairs s0, s1 is of the form 3k + 2, with k ≥ 0}.

In consequence:

Remark 3. In order to find an H-complete set of special factorizations
of an element g we need i) an algorithm that takes an element h in the
modular group, and produces the set WJ(h), and ii) an algorithm that
extracts the subset WJS(h).

This second task is trivial, but the first one is less so. The key
ingredient to formulate the algorithm in i) is discussed next.

Definition 11. We define the left part of short conjugates of bωb as
left(s0) = left(ωb2) = ω, left(s1) = left(bωb) = bω, left(s2) =
left(b2ω) = b2ω. For long conjugates, left(P−1bωbP ) = P−1bω, where
P is an element of the modular group that begins with ω.

The following result is Lemma 2.4 in [8].

Proposition 9. If (h1, . . . , hn) with n ≥ 1 is a special factorization
that is well jointed, its product h1 · · ·hn begins with left(h1).

Proof. See [8]. �

According to this result, if (h1, . . . , hn) is a well jointed special fac-
torization of an element h in the modular group, then h1 is either one
of the following:

(1) ωb2 if h begins with ω,
(2) bωb if h begins with bω,
(3) b2ω if h begins with b2ω,
(4) P−1bωbP if h begins with P−1bω for any P that begins with ω.

In particular, the element 1 has only one well jointed special factor-
ization, namely the empty factorization. Also, b and b2 admit no well
jointed special factorization.
Now we give an algorithm, that we will call FirstFactor, which takes

as input any element h in the modular group, with h not in the set
{1, b, b2}, and produces all possible candidates to be first factors in any
well jointed special factorization of h. This algorithm outputs a set
that contains:
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a: ωb2, if h begins with ω,
b: bωb, if h begins with bω,
c: b2ω, if h begins with b2ω
d: For each occurrence of bω that is not at the beginning of h, the
element P−1bωbP, where P−1 is the initial section of h ending
right before the occurrence of bω starts.

Then we define another algorithm that we will call Sibling. This algo-
rithm receives as input an ordered pair ((g1, . . . , gn), z), where (g1, . . . , gn)
is a special factorization and z is any element in the modular group.
Then, Sibling takes the following actions:

(1) If z = 1, then Sibling outputs the set {((g1, . . . , gn), z)}.
(2) If z is b or b2, then Sibling outputs the empty set { }.
(3) If z is different from 1, b and b2, and (g1, . . . , gn) is the empty

factorization, then Sibling computes the (necessarily nonempty)
set F = FirstFactor(z), and then outputs the set {((g), g−1z) :
g ∈ F}.

(4) If z is different from 1, b and b2, and (g1, . . . , gn) is not the empty
factorization, Sibling computes the (necessarily nonempty) set
F = FirstFactor(z) and then outputs the set {((g1, . . . , gn, g), g

−1z) :
g ∈ F and (gn, g) join well}.

We make the following elementary but important observations:

(1) For each pair ((h1, . . . , hn), z) formed by a factorization and any
element z in the modular group, we call h1 · · ·hnz the product
of the pair. Then Sibling preserves products, i.e., each pair
in Sibling(((g1, . . . , gn), z)) has the same product as the pair
((g1, . . . , gn), z). Notice that this statement is true even if z is
b or b2.

(2) If ((g1, . . . , gn), z), where (g1, . . . , gn) is a well jointed special
factorization with n ≥ 0, then the first component of each ele-
ment of Sibling(((g1, . . . , gn), z)) is a special factorization that
is also well jointed. Notice that this is true even if z is b or b2.

(3) (a) Sibling(((g1, . . . , gn), ω)) = {((g1, . . . , gn, ωb
2), b)} for any

special factorization (g1, . . . , gn) with n ≥ 0. Therefore

Sibling(Sibling(((g1, . . . , gn), ω))) = { }

for any special factorization (g1, . . . , gn) with n ≥ 0.
(b) Sibling(((g1, . . . , gn), z)) = { }, if z = b, b2 and (g1, . . . , gn)

is a special factorization with n ≥ 0.
(c) Sibling(((g1, . . . , gn), z)) = {((g1, . . . , gn), z)}, if z is 1 and

(g1, . . . , gn) is a special factorization with n ≥ 0.
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(d) Let z /∈ {1, ω, b, b2} and let g ∈ FirstFactor(z). Let us
see that l(g−1z) < l(z). Let z begin with ω and g = ωb2.
Then z will be of the form ωbδQ, where δ = 1, 2 and Q is
a reduced word that is 1 or begins with ω. We have

g−1z = (ωb2)−1(ωbδ Q) = (bω)(ωbδ)Q = bγQ,

where γ is 0 or 2, and clearly l(bγQ) < l(ωbδQ). Let z begin
with bω and g = bωb. In this case z is of the form bωQ,
where Q is a reduced word that is either 1 or begins with
b or b2. We have g−1z = (b2ωb2)(bωQ) = b2Q, and clearly
l(b2Q) < l(bωQ). Let z begin with b2ω and let g = b2ω. It
is clear that l(g−1z) < l(z) in this case. Let z begin with
P−1bω, where P is a reduced word that begins with ω, and
let g = P−1bωbP . Then z is of the form P−1bωQ, where
Q is a reduced word that is either 1 or begins with bδ with
δ = 1, 2. Then g−1z = (P−1b2ωb2P )(P−1bωQ) = P−1b2Q.
Clearly, l(P−1b2Q) < l(P−1bωQ).

Now we define another routine, that we will call SiblingSets that
takes as input a set S whose elements are ordered pairs of the form
((g1, . . . , gn), z), and outputs the set ∪s∈SSibling(s). Notice that Sib-
lingSets applied to the empty set gives the empty set. Finally, we
define a routine, that we call WellJointed that takes an element h
in the modular group as input, then calculates the result of apply-
ing l(h) + 1 times SiblingSets to the set {(( ), h)}, i.e. calculates

T = SiblingSets l(h)+1({(( ), h)}), and then outputs the set formed by
the first components of the ordered pairs in T .
By all the observations above, the algorithm WellJointed finds all

possible well jointed special factorizations of any element h. By Remark
3 this is all we needed in order to find an H-complete set of special
factorizations of an element g.
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Colombia

E-mail address : jdvelez14@gmail.com

c Lus Moreno l, EAFIT, Departamento de Ciencias Básicas, Bloque
38, Office 417 Medelĺın Colombia
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