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Abstract

In this paper we present some observations about the well-known Goldbach con-
jecture. In particular we list and interpret some numerical results which allow us
to formulate a relation between prime numbers and even integers. We can also
determine very thin and low diverging ranges in which the probability of finding a
prime is one.
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1 Introduction

In a letter dated 7 June 1742, the Prussian mathematician Christian Goldbach
suggested to Leonhard Euler that every integer which can be written as the sum of
two prime numbers, can also be written as the sum of as many primes as one wishes,
until all terms are units. In the margin of the same letter he also proposed a second
conjecture stating that every integer greater than 2 can be written as the sum of
three primes. Almost four weeks later, on 30 June 1742, Euler replied in a letter
and reminded of an earlier conversation they had, in which Goldbach remarked his
original (and not marginal) conjecture:

Every even integer greater than 2 can be written as the sum of two
primes.

In this letter Euler pointed out:

Every even integer is a sum of two primes. I regard this as a completely
certain theorem, although I cannot prove it.

It is the worth recalling that Goldbach considered 1 to be a prime number. Since
this fact is not accepted any more nowadays, Goldbach’s conjecture is formulated
as

Conjecture 1 (SGC). Every even integer greater than or equal to 4 can be written
as a sum of two (odd) prime integers.

This statement is called the strong Goldbach conjecture (SGC) in order to dis-
tinguish it from weaker corollaries. The SGC implies the conjecture that all odd
numbers greater than 7 are the sum of three odd primes, which is known today
as the weak or ternary Goldbach conjecture. If the strong Goldbach conjecture is
true, the weak Goldbach conjecture is true by implication.

Many progresses have been made in the last decade. In particular, in 1997 has
been shown that Goldbach conjecture is related to the generalized Riemann hypote-
sis in the sense that Riemann implies the Goldbach weak conjecture for all numbers
[1]. An extensive computational research has been also done on this direction [2].
In 2012 has been shown that every even number n ≥ 4 is in fact the sum of at most
six primes, from which it follows that every odd number n ≥ 5 is the sum of at
most seven primes, without using the Riemann Hypothesis [3] extending a previous
result [4]. However, the biggest contribution has been recently obtained by Harald
Helfgott who published a pair of papers claiming to improve major and minor arc
estimates sufficiently to unconditionally prove the weak Goldbach conjecture [5,6].

In this paper we take for granted the SGC and we conjecture something more.
A formal proof of our conjecture would immediately lead, by implication, to a proof
of the Strong Goldbach Conjecture. We than present here our idea with numerical
simulations which give an ”experimental” proof up to 8× 109.
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2 Considerations on the Goldbach conjecture

According to SGC, we suppose that every even integer number r ≥ 4 can be written
as the sum of two prime numbers p and p′, not necessarily distinct:

r = p+ p′. (SGC)

We introduce here our observations. Distribute the positive integers into three
infinite columns C1, C2 and C3 in such a way that C1 contains the numbers con-
gruent to 1 modulo 3, C2 the numbers congruent to 2 modulo 3 and C3 contains
the multiples of 3. Finally let α be the row index.

C1 C2 C3

1 2 3 α = 1
4 5 6 α = 2
7 8 9 α = 3
10 11 12 α = 4
...

...
...

(1)

In what follows we will indicate every element of N∗ expliciting its column and
row indexes. More precisely

tαn ∈ N∗

means the integer contained in the n-th Cn column and in the α-th row.
In the same manner as above, we distribute the positive prime numbers in

three columns in the following manner. Given the set of prime numbers P =
{2, 3, 5, 7, . . . }, we order naturally them obtaining p1 = 2, p2 = 3, p3 = 5, . . .
Then we put pk in the columns where k was in (1). We obtain:

C ′1 C ′2 C ′3

2 3 5 δ = 1
7 11 13 δ = 2
17 19 23 δ = 3
29 31 37 δ = 4
...

...
...

(2)

As we did for integers, we will indicate every element of P expliciting its column
and row indexes. More precisely

pδm ∈ P

means the integer contained in C ′m and in the δ-th row. Observe that every prime
number has in this way two pairs of indexes: the former if it is seen as an element
of N∗, the latter if an element of P. One must pay attention to not make confusion
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between them. When we work with integers we use the symbol tαn, otherwise we
use pδm.

Now we are ready for the formulation of our conjecture:

Conjecture 2. Let tαn ∈ N∗ be a positive even integer. Then there esist two prime

numbers p
δ(α)
n , pγm ∈ P such that:

tαn = pδ(α)n + pγm (3)

where the the column index of one of the two primes is the same as the even
number we decompose.
After a fitting procedure on a large set, we have observed that the index δ(α) follows
Euler distribution:

δ(α) =

[
B

α

log(α)

]
(4)

with B constant. From a pictorial point of view, for large numbers the row indexes
δ and α define a space in which Goldbace conjecture is true (see fig(1)). On the
other hand, our conjecture allows us to select two thin slices of this space and to

  Index α

In
d

e
x 

δ(
α

)

Goldbach conjecture is true

Fig. 1: Space in which the Goldbach conjecture is valid (red).

locate in there the prime numbers satisfying Goldbach (see fig.(2)). In particular,
δ define the prime closer to the integer we want to examine, while γ define the
corresponding farthest, i.e., a small prime.

Although we do not have a formal proof of this result, we have performed
numerical simulations in order to test our conjecture which has been satisfiet for
even integers up to 8433220000, whose closest prime is 8433219983 and the farthest
is 17, apart for even integers 6, 16 and 164. Being these only three exceptions very
small numbers, they must not be considered as a disproof of our conjecture. In fact,
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Effective subspaces in which the 
primes are located

Fig. 2: Slices in which our conjecture places the prime numbers satisfying
Goldbach conjecture (blue and green).

the distribution of δ(α) in eq.(4) involving row indexes follow the prime number
theorem apart for a multiplicative factor. This point can be seen as a heuristic
proof of our conjecture.

The multiplicative coefficient is B = 0.997602. By multiplying Euler distribu-
tion, it minimize the distance

[δ(α)]− pδ(α)n (5)

with a correlation coefficient of 1.0000 between the calculated value for δ(α) and
the fitted value.

3 Experimental results

In this section we present our numerical results which give an ”experimental” proof
of our conjecture. We also briefly present the program CONJECTURE and we ex-
plain the basic algorithm, but we do not go deep inside the computational perfor-
mances in order to do not distract the reader from the main message. The program
is freely available upon request to the author.
Numerical simulations has been performed on Princeton high-performance com-
puters with on a Red Hat 6, 1536 cores and a total RAM of 12 TB machine. The
multi-core platform processes theoretically on 16 Tflops with processor speed of
2.67 GHz Westmere.

3.1 Numerical results

We now present numerical results on our tests. In fig.(3) we have three plots. The
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Fig. 3: Upper panel: distribution of δ(α) as a function of index α. Middle
pane: continuous line represent the difference between δ(α) calcu-
lated by means of eq.(4) and its integer part; dashed line represent
the fitted curve with regression procedure up to the 10-th order.
Lower panel: distribution of γ index.

upper panel shows the distribusion δ(α) as a function of α. A fitting procedure of
this curve with the Euler function shown in eq.(4) gives a perfect agreement with a
correlation coefficient of 1.000000. In the middle panel the continuous curve shows
the difference between δ(α) calculated by means of eq.(4) and its integer part, and
the dashed line represent the fitted curve with a regression up to the 10-th order.
The fitting polynomial is:

y = 1184.9 + 2.251 ∗ 10−5x+ 5.68 ∗ 10−14x2 + ...

where higher powers gives less significant contributions. The lower panel shows the
distribution of γ. We can see that the variation range is very thin.
The upper panel of figure (4) shows again the the difference between δ(α) calculated
by means of eq.(4), and its integer part. The lower panel shows the difference
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Fig. 4: Upper panel: distribution of δ(α) as a function of index α. Lower
panel: difference between the experimental result and the fitted curve
with the 10-th order polynomial

between δ(α) and the fitted values. We can see that these flactuations are confined
in a very thin range, showing than that the simulated curve very well reproduce
the calculated values for δ(α).

3.2 The algorithm

The program CONJECTURE is a parallel program whose flow chart is reported in
fig. (5). In particular, of the first almost 9 billion integers we have split each billion
on different nodes in order to maximize the performances.

As input the program requires the number n representing the even natural up
to which we want to test our conjecture, and a list of primes which is stored in
the file primes.dat. The algorithm runs over n and, at each step, evaluates when
i = n( mod 3), being i the index over the naturals. When this relation is satisfied
the program determines α, δ(α) and [δ(α)], i.e., the index of the natural as defined
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in eq.(1), the real δ(α) function and its integer part as defined in eq.(4) and repre-
senting the numerical function.
In order to minimize the computing time we define two ranges in which the algo-
rithm looks for the primes. These two ranges are self-adjustable, dependent of two
parameters determined by fitting procedure:

upper range:[δ − sup, δ]

lower range:[β − inf, β + inf ]

being δ defined in eq.(4), β = and sup and inf initially posed as 10 and 80 re-
spectively. This two ranges correspond to the thin subspaces show pictorially on
figs.(1),(2).
If the our conjecture is not satisfied, then the ranges are increased by increasing sup
and inf . This step-adaptive characteristic increment enormously the performances
of the program compared with the non step-adaptive version.

4 Concluding remarks

In this paper we have presented a conjecture whose formal proof would give a proof
of the SGC. Numerical simulation performed up to 8× 109 do not show any excep-
tion apart for 6, 16 and 164.
Changing the number of columns on the natural and the prime number spaces
(eqs.(1),(2)) do not improve the results, suggesting that the chosen number of col-
umn is the ideal way.
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Fig. 5: Basic flow chart of the CONJECTURE program.
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