
ar
X

iv
:1

31
0.

29
13

v2
  [

m
at

h.
N

A
]  

16
 O

ct
 2

01
3

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng2013;00:1–13
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

SHORT COMMUNICATION

Finite element computations on quadtree meshes: strain
smoothing and semi-analytical formulation

Sundararajan Natarajan∗, Ean Tat Ooi, Hou Man, Chongmin Song

School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

SUMMARY

This short communication discusses two alternate techniques to treat hanging nodes in a quadtree mesh.
Both the techniques share similarities, in that, they require only boundary information. Moreover, they do
not require an explicit form of the shape functions, unlike the conventional approaches, for example, as in
the work of Gupta [1] or Tabarraei and Sukumar [2]. Hence, no special numerical integration technique is
required. One of the techniques relies on the strain projection procedure, whilst the other is based on the
scaled boundary finite element method. Numerical examples are presented to demonstrate the accuracy and
the convergence properties of the two techniques. Copyright c© 2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: scaled boundary finite element method, strain smoothing, quadtree mesh, boundary
integration, partition of unity methods

1. INTRODUCTION

The finite element method (FEM) is widely used approach to solve the partial differential equations
(PDEs). The FEM requires the domain to be discretized into non-overlapping regions, called
elements. The individual elements are connected together by a topological map called a mesh. When
modeling problems involving localized deformation, steepgradients or discontinuous surfaces, a
very fine mesh is usually required for accurate results. To reduce the computational time, adaptive
refinement techniques are usually preferred over a uniform mesh refinement. Compared with the
conforming refinements, quadtree/octree meshes are particularly easy to implement. However,
special shape functions have to be constructed on elements with hanging nodes. The shape functions
has to be conforming and form a partition of unity.

1.1. Background

In literature, two approaches were proposed to treat the element with hanging nodes without sub-
triangulation. The first approach relied on deriving a set ofconforming shape functions for elements
with hanging nodes [1]. The other approach realised elements with hanging nodes as polygon
elements [2]. Here, we present a brief overview of the techniques. For more detailed discussion,
interested readers are referred to the literature [1, 2].
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Conforming shape functionsGupta [1] formulated transition elements with bilinear quadrilateral
elements. A conforming set of shape functions for the element with hanging nodes was derived
based on the shape functions of the bilinear quadrilateral elements. The shape functions of the
corner nodes were modified so that the displacement at the intermediate nodes is equal to the
total displacement. The derivatives of the derived shape functions are discontinuous within the
element and Gupta [1] presented a modified quadrature formula to numerically integrate the terms
in the stiffness matrix. The formulation presented was general and can be extended to higher order
elements and hexahedral elements as reported in [3, 4]. The reference shape functions associated
with the hanging nodes are given by:

N∗

5 (ξ, η) =
1

2
(1 − |ξ|)(1− η); N∗

6 (ξ, η) =
1

2
(1 + ξ)(1− |η|)

N∗

7 (ξ, η) =
1

2
(1 − |ξ|)(1 + η); N∗

8 (ξ, η) =
1

2
(1 − ξ)(1− |η|) (1)

whereN∗

i , (i = 5, 6, 7, 8) are the shape functions for the mid-side nodes (see Figure (1)) and are
active only if the corresponding hanging node is present along a particular edge. Frieset al., [5]
employed special elements to associate explicitly the degrees of freedom to the hanging nodes.
Though relatively easy to implement in 2D, its extension to 3D is not straightforward, as the hanging
nodes can be either on a face or an edge. One possible way to circumvent this difficulty is to restrict
the possibilities of various configurations that may arise when building a quad/octree meshes, but
this needs to be further investigated. Legrainet al., [6] treated the hanging nodes by first choosing
the right degree of freedoms and then constrain them to ensure continuity of the finite element field.

Gupta [1]
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Figure 1. Conventional method to handle hanging nodes in a quadtree mesh: conforming shape functions [1]
and polygonal FEM [2], where the ‘filled’ circle represents the node.
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Figure 2. Voronoı̈ diagram of a pointP .

Polygonal FEM Tabarraei and Sukumar [2] considered the elements containing hanging nodes as
polygonal elements which requires integration over arbitrary polygons. The numerical integration
can be performed by either splitting the elements into several simplices [7] or by employing a
complex mapping [8]. Tabarraei and Sukumar [2] employed Laplace interpolants over the polygons.
The Laplace interpolant is also called the natural neighborinterpolant [2]. It provides a natural
weighting function for irregularly spaced nodes. For a point P with n natural neighbors, the Laplace
shape functions for nodePI can be written as:

φI(x) =
αI(x)

n
∑

I=1

αJ(x)

, αJ (x) =
sJ(x)

hJ (x)
, x ∈ R

2 (2)

whereαI(x) is the Laplace weight function,sI(x) is the length of the Voronoı̈ edge associated with
P and nodePI , andhI(x) is the Euclidean distance betweenP andPI (see Figure (2)).

1.2. Approach

In this paper, we present two alternate approaches to treat hanging nodes in a quadtree mesh. The
spirit of the approaches proposed here shares some similarities with the work of Tabarraei and
Sukumar [2], but instead of using polygonal elements, the stiffness matrix of the elements with
hanging nodes are computed either by the strain smoothing technique or by the scaled boundary
formulation. The proposed method does not require special numerical integration techniques to
compute the stiffness matrix. Both the techniques require only boundary information. An explicit
form of shape functions is not required.

Compared with the standard error estimators [9, 10, 11], therefinement criteria employed in
this study is inquisitive. The mesh is refined where steep gradients are expected or near interfaces.
The main objective of this short communication is to disseminate the idea of using either the cell-
based smoothing technique or the scaled boundary polygon formulation for quadtree/octree meshes.
We restrict ourselves to quadtree meshes, although extension to octree meshes and coupling with
accurate error estimators [9, 10, 11] for adaptive refinement is feasible.

1.3. Outline

The paper is organised as follows. Section 2 presents the idea of the cell-based strain smoothing
method and the scaled boundary formulation as applied to quadtree meshes. The effectiveness and

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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4 S. NATARAJAN, E.T. OOI, H. MAN AND CH. SONG

the robustness of the approaches are demonstrated with a fewof benchmark problems in the context
of scalar fields and an application to the partition of unity method. Concluding remarks are presented
in the last section.

2. TREATING HANGING NODES BASED ON SMOOTHING AND SEMI-ANALYTICAL
METHOD

2.1. Cell-based strain smoothing

In this section, the gradient smoothing method, esp., the cell based smoothing method (CSFEM),
which is based on the work of Chen and Wang [12], is briefly discussed. In CSFEM, the elements
are divided into smoothing cells over which the standard strain field is smoothed (see Figure (3)).
This smoothing enables the volume integration of the stiffness matrix to be transformed into a
surface integral using the divergence theorem. One way to create subcell geometries is to decompose
directly the elements of an existing mesh, the simplest decomposition being realized where each
subcell coincides with an element. Other node, edge and face-based decomposition techniques were
proposed in a number of papers. For more detailed discussionand derivation for various smoothed
FEMs, interested readers are referred to the literature [13, 14] and the references therein. The strain

Scaling centre(ξ = 0).

1 subcell n subcells

ΩC

Smoothing cells

(or)

Line Element

η

η = 1

η = −1

ξ = 1

SBFEM

SFEM

ΓC

Figure 3. Proposed alternate method to handle hanging nodesin a quadtree mesh: Strain smoothing and the
scaled boundary polygon formulation, where the ‘filled’ circle represents the node.

field, ε̃hij , used to compute the stiffness matrix is computed by a weighted average of the standard
strain fieldεhij . At a pointxC in an elementΩh, the smoothed strain field is given by:

ε̃hij =

∫

Ωh

εhij(x)Φ(x − xC) dx (3)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
Prepared usingnmeauth.cls DOI: 10.1002/nme



STRAIN SMOOTHING AND SEMI-ANALYTICAL APPROACH IN A QUADTREE MESH 5

whereΦ is a smoothing function that generally satisfies the following properties:

Φ ≥ 0 and
∫

Ωh

Φ(x) dx = 1 (4)

One possible choice ofΦ is given by

Φ =







1
AC

xC ∈ ΩC

0 xC /∈ ΩC

whereAC is the area of the subcell. The CSFEM can be recast within a Hellinger-Reissner
variational principle, where the assumed strain is the (constant) smoothed strain over each subcell.
For stability, the approximation of the smoothed strain andof the displacement field must satisfy
the LBB condition [15]. The smoothed element stiffness matrix for an elemente is computed by the
sum of the contributions of the subcells

K̃e =

nC
∑

C=1

∫

ΩC

B̃T
CDB̃C dΩ (5)

wherenC is the number of smoothing cells of the element. In this study, for the elements with
hanging nodes, one subcell andn triangular subcells are considered. The element with hanging
nodes is triangulated solely for the purpose of the numerical integration and no additional degree of
freedom is introduced. For standard elements, 4 quadrilateral subcells are used, based on the work
of Nguyen-Xuanet al., [16].

2.2. Semi-analytical approach: scaled boundary polygon formulation

Figure (3) shows an element with hanging nodes modelled by the SBFEM. The SBFEM [17] is
a semi-analytical computational technique that reduces the governing partial differential equations
to a set of ordinary differential equations. In the SBFEM, a local coordinate system is introduced
((ξ, η), see Figure (3)), where, with reference to Figure (3),ξ is the radial coordinate that with
ξ = 0 at the scaling centre andξ = 1 at the cell boundary andη is the local coordinate of the one
dimensional finite elements discretizing the boundaries ofthe cells. A scaling centreO is selected
at a point from which the whole boundary of the domain is visible. The displacement field covered
by a line sector on the boundary of a quadtree cell is approximated by

u(ξ, η) =N(η)u(ξ) (6)

Using the standard strain-displacement relations, the scaled boundary transformation of geometry
and Equation (6), the strain fieldε(ξ, η) is approximated by

ε(ξ, η) =−B1(η)u(ξ),ξ +ξ−1B2(η)u(ξ) (7)

whereB1(η) andB2(η) are the scaled boundary strain displacement matrices. The equilibrium
condition for a polygon can be formulated from the principleof virtual work

∫

Ω

δεTσdΩ =

∫

Γ

δuTtdΓ +

∫

Ω

δuTbdΩ (8)

whereσ(ξ, η) is the stress field,δε(ξ, η) is the virtual strain field,δu(ξ, η) is the virtual displacement
field,b is the body force intensity andt is the surface traction.

The case with zero body forcesb = 0 is considered first. Substituting Equations (6) and (7), and
using the Hooke’s lawσ = Dε with D being the elastic constitutive matrix into Equation (8) results

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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6 S. NATARAJAN, E.T. OOI, H. MAN AND CH. SONG

in [18]:

δuT
b

(

E0u(ξ),ξ +ET
1 u(ξ)− p

)
∣

∣

ξ=1

−δu(ξ)T
∫ 1

0

(

E0ξu(ξ),ξξ +(E0 +ET
1 −E1)u(ξ),ξ −ξ−1E2u(ξ)

)

dξ =0 (9)

wherep is the equivalent nodal forces due to the distributed load onthe boundaryft andub is
the nodal displacement vector on the boundary(ξ = 1). E0, E1 andE2 are coefficient matrices that
depend only on the geometry and boundary conditions [18]. Equation (9) is satisfied if the following
conditions are met

δuT
b

(

E0u(ξ),ξ +ET
1 u(ξ)− p

)

=0 (10)

δu(ξ)T
∫ 1

0

(

E0ξu(ξ),ξξ +(E0 +ET
1 −E1)u(ξ),ξ −ξ−1E2u(ξ)

)

dξ =0 (11)

Invoking the arbitrariness of the virtual displacement functionsδu(ξ) in Equation (11) leads to the
scaled boundary finite element equation in displacement [18]

E0ξ
2u(ξ),ξξ + (E0 −E1 +ET

1 )ξu(ξ),ξ −E2u(ξ) =0 (12)

which can be solved to obtainu(ξ) as

u(ξ) =Φuξ
−Λncn (13)

whereΛn represent the eigenvalue matrix with real parts satisfyingRe(λ(Λn)) < 0 andΦu are
the eigenvectors corresponding to the modal displacementsin an element hat are obtained from an
eigenvalue decomposition of the Hamiltonian matrixZ

Z =

[

E−1
0 ET

1 −E−1
0

E1E
−1
0 ET

1 −E2 −E1E
−1
0

]

(14)

The integration constantscn are determined from the nodal displacementsub = u(ξ = 1) as

cn =Φ−1
u ub (15)

Substituting Equation (13) into Equation (10) and using Equation (15) results in

Kpub =p (16)

where

Kp =E0ΦuΛnΦ
−1
u +ET

1 (17)

In the case of non-zero body forcesb 6= 0, the equivalent nodal forces due to the body load can be
expressed in terms of the nodal displacementsub by substituting first, Equation (13) into Equation
(6) and then into the second term on the right-hand-side of Equation (8), resulting in

∫

Ω

δuTbdΩ =δuT
b

∫ 1

0

Φ−T
u ξ−Λn+I

∫ 1

−1

ΦT
uN(η)Tb|J(η)|dηdξ (18)

where |J(η)| is the determinant of the Jacobian on the boundary required for coordinate
transformation. For many problems, the body force intensity b can be expressed locally in each
quadtree cell as a power function inξ as

b(ξ, η) =ξkb(η) (19)

Substituting Equation (19) into Equation (18) and integrating analytically inξ results in

δuT
bpb =δuT

bΦ
−T
u (−Λn + (k + 2)I)

−1
ΦT

u

∫ 1

−1

N(η)Tb(η)|J(η)|dηdξ (20)

wherepb is the equivalent load vector due to the body forcesb(ξ, η). Equation (16) can therefore
be rewritten as

Kpub =p+ pb (21)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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STRAIN SMOOTHING AND SEMI-ANALYTICAL APPROACH IN A QUADTREE MESH 7

3. NUMERICAL EXAMPLES

In this section, we study the convergence and the accuracy ofthe strain smoothing and the SBFEM
over quadtree meshes by solving the Laplace and the Poisson’s equation over a square domain with
appropriate Dirichlet boundary conditions. The numericalresults are compared with the analytical
solution and with the conforming shape functions and Laplace interpolants. In the last part of the
section, the present approaches are combined with the partition of unity method, esp, the extended
finite element method (XFEM) to solve a problem involving weak discontinuity. We employ the
following convention when presenting the numerical results:

• FEM - conventional FEM with conforming shape functions [1].A modified Gaussian
quadrature is adopted as given in [1].

• PFEM - polygonal FEM with Laplace interpolants. For the purpose of numerical integration,
sub-triangulation with sixth order Dunavant quadrature rule over each sub-triangle is
employed.

• nSFEM -n-sided smoothed finite element method. Along each side of theelement, the shape
functions are assumed to be linear and hence, only one Gauss point is used to numerically
integrate the terms in the stiffness matrix.

• SBFEM - scaled boundary polygon formulation. Only the boundary of the element is
discretised with 1D linear shape functions and one point Gauss quadrature is adopted.

For the purpose of error estimation, the relative error inL2 norm is used and is given by:

||u− uh||L2(Ω) =

√

∫

Ω

[(u− uh) · (u− uh)] dΩ (22)

whereuh is the numerical solution andu is the analytical solution or a reference solution.

3.1. Patch test

Consider the Laplace equation:∇2u(x) = 0 in Ω =(0,1)2. In this case, we consider two essential
boundary condition: (a) Case A: Linear function,g(x) = x+ y and (b) Case B: Quadratic
function, g(x) = 1− x+ 5y − 2xy − 4x2 + 4y2, imposed on∂Ω. The exact solution is:u(x) =
g(x). Figures (4) - (5) show the quadtree mesh considered for thisstudy. Two-to-one rule is
maintained in Figure (4) in which the elements have utmost only one hanging node along an edge,
whilst in meshes shown in Figure (5), some elements have morethan one hanging node along
an edge. The patch test results for various meshes and different approaches in the case of linear
function is shown in Table I. It is seen that the FEM, the nSFEMand the SBFEM formulations
over quadtree meshes pass patch test to machine precision. In the case of strain smoothing, both
one subcell andn subcells (triangular subcells) are considered. The error in theL2 norm in the case
of Laplace interplants isO(10−8) when quadtree meshes with 2-to-1 rule is maintained and the
accuracy slightly decreases when the element has more than one hanging node along its edges. This
is consistent with the literature [2, 19] and this can be attributed to the rational form of the Laplace
shape functions. Moreover, the derivatives in the quadtreeelement are singular when using Laplace
interpolant [2]. Also care must be taken to numerically integrate the terms when using Laplace
interpolants.

3.2. Poisson problem

In this example, we consider Poisson’s equation over a square domain with Dirichlet boundary
conditions imposed on the boundary. The governing equationand the boundary condition are:

∇2u = f, in Ω = (0, 1)2

u = 0, on ∂Ω (23)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
Prepared usingnmeauth.cls DOI: 10.1002/nme
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Figure 4. Regularised quadtree meshes: 2-to-1 ratio is maintained.

Table I. Relative error in theL2 norm for the patch test: Linear function.

Ratio Mesh Conforming shape Laplace shape Strain SmoothingSBFEM

Figures (4) - (5) functions [1] functions 1 subcell n subcell

2-to-1
a 4.68e−16 7.75e−8 2.59e−16 2.47e−16 6.25e−16

b 1.65e−15 6.62e−8 2.22e−15 1.79e−15 1.05e−15

c 5.50e−15 4.26e−8 5.67e−15 8.16e−15 8.02e−15

no 2-to-1
e - 1.14e−8 5.65e−16 2.47e−16 7.43e−16

f - 2.47e−7 8.12e−16 5.32e−15 6.66e−16

g - 4.04e−5 4.62e−15 8.81e−15 3.82e−15

h - 7.64e−7 1.54e−14 1.69e−14 1.70e−14

Table II. Relative error in theL2 norm for the patch test: quadratic function.

Mesh Conforming shape Laplace shape Strain Smoothing SBFEM
Figure (4) functions [1] functions 1 subcell n subcell 1

a 3.39e−3 4.38e−3 1.46e−2 3.25e−3 4.75e−3

b 2.19e−3 2.63e−3 1.66e−2 2.25e−3 2.93e−3

c 9.18e−4 1.15e−3 8.10e−3 1.30e−3 1.37e−3

d 1.81e−4 2.11e−4 9.80e−4 1.88e−4 2.25e−4

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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Figure 5. Non-regularised quadtree meshes: 2-to-1 ratio is‘not’ maintained.

The source termf is chosen such that the exact solution of the problem is [2]:u(x) = x10y10(1−
x)(1 − y). The quadtree mesh considered for this study are shown in Figure (6). In this example,
for the CSFEM, triangular subcells are considered. The meshis refined where the steep gradient
is anticipated. Figure (7) shows the convergence of the relative error in theL2 norm for different
approaches. It is seen that the FEM and the SBFEM yield similar results. The error from the PFEM
formulation is higher when compared to other approaches. This could be attributed to the fact
that the derivatives are singular at the hanging nodes and also to the accuracy of the numerical
integration. All the approaches converge asymptotically with mesh refinement.

3.3. Application to partition of unity method - weak discontinuity problem

In this example, the elastio-static response of a circular material inhomogeneity under radially
symmetric loading as shown in Figure (8) is examined within the framework of the XFEM. One of
the salient feature of the XFEM is that, by augmenting the FE approximation basis with additional
functions, the local information of the problem can be retrieved without a need for a conforming
mesh. As the information is local, a quadtree mesh is better suited than a uniformly refined mesh.
Figure (8) shows a typical mesh used in this study. It is seen that the mesh is locally refined
in the close proximity of the interface. A 2-to-1 ratio is maintained in this study. The material
constants are constant within each domain,Ω1 andΩ2, but there is a material discontinuity across the
interface,Γ1(r = a). The Lamé constants inΩ1 andΩ2 are:λ1 = µ1 = 0.4 andλ2 = 5.7692, µ2 =
3.8461. These correspond toE1 = 1, ν1 = 0.25 andE2 = 10, ν2 = 0.3. A plane strain condition
is assumed. A linear displacement field:u1 = x1, u2 = x2 (ur = r, uθ = 0) on the boundary

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
Prepared usingnmeauth.cls DOI: 10.1002/nme
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Figure 6. Poisson problem: regularised quadtree meshes.
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cell-based smoothed FEM withn triangular subcells and SBFEM - scaled boundary FEM.
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Figure 8. Bimaterial circular inhomogeneity boundary value problem: geometry and quadtree mesh (where
‘solid’ black line represents the material interface). Note that the quadtree mesh does not conform to
the material interface. Appropriate nodes are enriched whose nodal support is intersected by the material

interface [20].

Γ2 (r = b) is imposed and the governing equations and corresponding exact displacement solution
is given in [20].

For the present numerical study, a square domain of sizeL× L with L =2 is considered, where
the outer radius is chosen to beb =2 and inner radiusa =0.4. The rate of convergence of the
relative error in the displacement(L2) norm is shown in Figure (9). In this example, for the
CSFEM, triangular subcells are considered. It is seen that both the proposed approaches yield
optimal convergence rate and with mesh refinement, both the approaches converge to analytical

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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Figure 9. Bi-material circular inhomogeneity: the rate of convergence. The error is measured in displacement
L
2 norm.m is the average slope.

solution. The main advantage of the strain smoothing and thescaled boundary formulation is that
sub-triangulation of the elements having hanging nodes is eliminated and explicit form of the
shape function is not required. In this study, the hanging nodes are not enriched for simplicity,
as hanging nodes with enrichment leads to additional computational difficulties. However, with the
strain smoothing technique, the hanging nodes could be enriched and an approach described in [5, 6]
can be adopted. For the sake of simplicity, this is not employed in this study.

4. CONCLUSIONS

In this paper, we presented two alternate approaches to treat hanging nodes in a quadtree mesh based
on the cell-based strain smoothing and the scaled boundary polygonal formulation. The convergence
and the accuracy of both approaches were demonstrated with numerical examples. It is seen that the
approaches pass patch test and yield accurate results when compared with the polygonal formulation
with Laplace interpolants. This may be attributed to the fact that the derivatives in a quadtree
element are singular when employing the polygonal formulation [2]. Also a very high number of
Gauss points (for example 25 points) are used in the polygonal formulation of an element having
hanging nodes [2]. The presented techniques do not suffer from such difficulties. Moreover, the
techniques do not require an explicit form of the shape function and no special numerical integration
is required. In the case of scaled boundary polygon formulation, higher order element can be easily
constructed along each edge. The application of the cell-based smoothing to three-dimensional
problems is available in the literature [21], whilst it is under investigation in the case of scaled
boundary formulation. Nevertheless, the presented approaches can be extended to octree meshes in
3D which will be topic for the future communication.
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