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SHORT COMMUNICATION

Finite element computations on quadtree meshes: strain
smoothing and semi-analytical formulation

Sundararajan NatarajgrEan Tat Ooi, Hou Man, Chongmin Song

School of Civil and Environmental Engineering, The Uniitgref New South Wales, Sydney, NSW 2052, Australia.

SUMMARY

This short communication discusses two alternate teclksidgo treat hanging nodes in a quadtree mesh.
Both the techniques share similarities, in that, they meqanly boundary information. Moreover, they do
not require an explicit form of the shape functions, unlike tonventional approaches, for example, as in
the work of Guptal[l] or Tabarraei and Sukumar [2]. Hence,pecE&l numerical integration technique is
required. One of the techniques relies on the strain priojegirocedure, whilst the other is based on the
scaled boundary finite element method. Numerical exampéeprasented to demonstrate the accuracy and
the convergence properties of the two techniques. Copy@yR013 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: scaled boundary finite element method, strain athing, quadtree mesh, boundary
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1. INTRODUCTION

The finite element method (FEM) is widely used approach teesthle partial differential equations
(PDEs). The FEM requires the domain to be discretized into-ox@rlapping regions, called
elements. The individual elements are connected togeyteetdpological map called a mesh. When
modeling problems involving localized deformation, stegpadients or discontinuous surfaces, a
very fine mesh is usually required for accurate results. @ace the computational time, adaptive
refinement techniques are usually preferred over a unifoeshmefinement. Compared with the
conforming refinements, quadtree/octree meshes are ydartic easy to implement. However,
special shape functions have to be constructed on eleméhtsanging nodes. The shape functions
has to be conforming and form a partition of unity.

1.1. Background

In literature, two approaches were proposed to treat thmexte with hanging nodes without sub-
triangulation. The first approach relied on deriving a setasfforming shape functions for elements
with hanging nodes [1]. The other approach realised elesneith hanging nodes as polygon
elements([2]. Here, we present a brief overview of the tepis. For more detailed discussion,
interested readers are referred to the literaturel[1, 2].
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Conforming shape functionGupta [1] formulated transition elements with bilinear drikateral
elements. A conforming set of shape functions for the elémath hanging nodes was derived
based on the shape functions of the bilinear quadrilatdemhents. The shape functions of the
corner nodes were modified so that the displacement at tkeriptliate nodes is equal to the
total displacement. The derivatives of the derived shapetfons are discontinuous within the
element and Gupta|[1] presented a modified quadrature fartoutumerically integrate the terms
in the stiffness matrix. The formulation presented was gdrand can be extended to higher order
elements and hexahedral elements as reported in [3, 4].efbeence shape functions associated
with the hanging nodes are given by:

N(€m) = £(1— €)1 —n); Ni(Em) = (141~ o)

N (€m) = £ (1~ €)1 +n); NE(Em) = 51— &)1~ o) )

where N}, (i = 5,6,7,8) are the shape functions for the mid-side nodes (see Fig)yeutl are
active only if the corresponding hanging node is presenig particular edge. Friest al., [5]
employed special elements to associate explicitly the edegof freedom to the hanging nodes.
Though relatively easy to implementin 2D, its extension@dag8not straightforward, as the hanging
nodes can be either on a face or an edge. One possible waguoeient this difficulty is to restrict
the possibilities of various configurations that may ariseewbuilding a quad/octree meshes, but
this needs to be further investigated. Legrairal., [6] treated the hanging nodes by first choosing
the right degree of freedoms and then constrain them to ersutinuity of the finite element field.

Conforming shape functions
FEM Gupta [1]

8@ ®0

v

Poly FEM

Laplace interpolants
Tabarraei and Sukuméir [2]

Figure 1. Conventional method to handle hanging nodes iradtgee mesh: conforming shape functidns [1]
and polygonal FEM_[2], where the ‘filled’ circle represertts node.

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
Prepared usingmeauth.cls DOI: 10.1002/nme



STRAIN SMOOTHING AND SEMI-ANALYTICAL APPROACH IN A QUADTREE MESH 3

Figure 2. Voronoi diagram of a poir.

Polygonal FEM Tabarraei and Sukumair![2] considered the elements contgiranging nodes as
polygonal elements which requires integration over aabjtpolygons. The numerical integration
can be performed by either splitting the elements into sgv@mplices [[Y] or by employing a
complex mappind [8]. Tabarraei and Sukunar [2] employedd@pinterpolants over the polygons.
The Laplace interpolant is also called the natural neighbtrpolant [2]. It provides a natural
weighting function for irregularly spaced nodes. For a péinvith n natural neighbors, the Laplace
shape functions for nodg; can be written as:
o1 = =210 = ) R @)
[Z: ay(x)
=1

whereq; (x) is the Laplace weight function, (x) is the length of the Voronoi edge associated with
P and node”;, andh;(x) is the Euclidean distance betweBrand P; (see Figurel(2)).

1.2. Approach

In this paper, we present two alternate approaches to teggfilng nodes in a quadtree mesh. The
spirit of the approaches proposed here shares some straganith the work of Tabarraei and
Sukumar([2], but instead of using polygonal elements, tifness matrix of the elements with
hanging nodes are computed either by the strain smoothahgigue or by the scaled boundary
formulation. The proposed method does not require spedciadenical integration techniques to
compute the stiffness matrix. Both the techniques requitg boundary information. An explicit
form of shape functions is not required.

Compared with the standard error estimatoris [9,/10, 11]réfieement criteria employed in
this study is inquisitive. The mesh is refined where steefigris are expected or near interfaces.
The main objective of this short communication is to disgeate the idea of using either the cell-
based smoothing technique or the scaled boundary polygonfation for quadtree/octree meshes.
We restrict ourselves to quadtree meshes, although egtetsioctree meshes and coupling with
accurate error estimators [9,/10] 11] for adaptive refinansdieasible.

1.3. Outline
The paper is organised as follows. Secfidn 2 presents tlzeaflthe cell-based strain smoothing
method and the scaled boundary formulation as applied tdttpeameshes. The effectiveness and
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the robustness of the approaches are demonstrated withad Emchmark problems in the context
of scalar fields and an application to the partition of unigthod. Concluding remarks are presented
in the last section.

2. TREATING HANGING NODES BASED ON SMOOTHING AND SEMI-ANALYICAL
METHOD

2.1. Cell-based strain smoothing

In this section, the gradient smoothing method, esp., thébased smoothing method (CSFEM),
which is based on the work of Chen and Wang [12], is brieflyuised. In CSFEM, the elements
are divided into smoothing cells over which the standarairstiield is smoothed (see Figuig (3)).
This smoothing enables the volume integration of the s#ffnmatrix to be transformed into a
surface integral using the divergence theorem. One watiesubcell geometries is to decompose
directly the elements of an existing mesh, the simplest niposition being realized where each
subcell coincides with an element. Other node, edge aneblfased decomposition techniques were
proposed in a number of papers. For more detailed discuasidmerivation for various smoothed
FEMSs, interested readers are referred to the literaturelldlzand the references therein. The strain
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Figure 3. Proposed alternate method to handle hanging mo@deguadtree mesh: Strain smoothing and the
scaled boundary polygon formulation, where the ‘filledcéérrepresents the node.

field, éf] used to compute the stiffness matrix is computed by a weibhverage of the standard

strain fielde?j. At a pointx¢ in an elemenf2”, the smoothed strain field is given by:
gh = / el (%) (x — x¢) dx 3
Qh
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where® is a smoothing function that generally satisfies the foltayyproperties:

>0 and /@(x)dx=1 4)

One possible choice @f is given by

o — t Xo € Q¢

0 X0¢QC

where Aq is the area of the subcell. The CSFEM can be recast within &ingef-Reissner
variational principle, where the assumed strain is thegtant) smoothed strain over each subcell.
For stability, the approximation of the smoothed strain ahthe displacement field must satisfy
the LBB condition[15]. The smoothed element stiffness irdtr an element is computed by the
sum of the contributions of the subcells

nC
Ke =) / BLDB( df (5)
c=1"%c

wherenC' is the number of smoothing cells of the element. In this stdiolythe elements with
hanging nodes, one subcell andriangular subcells are considered. The element with mangi
nodes is triangulated solely for the purpose of the numintegration and no additional degree of
freedom is introduced. For standard elements, 4 quadaladabcells are used, based on the work
of Nguyen-Xuaret al.,[16].

2.2. Semi-analytical approach: scaled boundary polygemidation

Figure [3) shows an element with hanging nodes modelled &SBFEM. The SBFEM [17] is
a semi-analytical computational technique that reducegtiverning partial differential equations
to a set of ordinary differential equations. In the SBFEMpeal coordinate system is introduced
((¢,m), see Figurel[(3)), where, with reference to Figlre €3Js the radial coordinate that with
¢ = 0 at the scaling centre arfd= 1 at the cell boundary andglis the local coordinate of the one
dimensional finite elements discretizing the boundarighefcells. A scaling centr@ is selected
at a point from which the whole boundary of the domain is Vesifhe displacement field covered
by a line sector on the boundary of a quadtree cell is appratachby

u(,n) =N(n)u(s) (6)

Using the standard strain-displacement relations, thie@dsundary transformation of geometry
and Equation{), the strain fiekd¢, n) is approximated by

e(&,m) = = Bi(nu(€),e +¢ "Ba(n)u(é) @)

whereB;(n) and Bz (n) are the scaled boundary strain displacement matrices. dhiibgium
condition for a polygon can be formulated from the principleirtual work

/ detod = / sultdl + / sutbdQ (8)
Q T Q

whereo (£, 1) is the stress fieldie(&, n) is the virtual strain fieldju(¢, ) is the virtual displacement
field, b is the body force intensity andis the surface traction.

The case with zero body forcés= 0 is considered first. Substituting Equationk (6) ddd (7), and
using the Hooke’s lawr = De with D being the elastic constitutive matrix into Equatibh (8)ules
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in [18]:
sul (Eou(€).e +Efu(¢) - p)|,_,

5‘1(5)T/0 (Eofu(é),e¢ +(Eo + Ef — Ep)u(é),e —¢ "Equ(€)) d€ =0 ()]

wherep is the equivalent nodal forces due to the distributed loadhenboundanf; andu, is
the nodal displacement vector on the bounddry: 1). Eg, E; andE, are coefficient matrices that
depend only on the geometry and boundary conditions [18]akon [9) is satisfied if the following
conditions are met

sup (Eou(é),e +Efu(¢) — p) =0 (10)

5U(§)T/O (Eo&u(§).¢¢ +(Eo + Ef —Ep)u(é). —¢ 'Eau(€)) d =0 (11)

Invoking the arbitrariness of the virtual displacementdiimnsdu(¢) in Equation[(I1) leads to the
scaled boundary finite element equation in displacemeijt [18

Eo*u(é) ¢ + (Eo — E1 + Ej)éu(é) ¢ — Eou(é) =0 (12)
which can be solved to obtain&) as
u(f) :¢11€7A11C11 (13)

where A, represent the eigenvalue matrix with real parts satisfiReg\(A,)) < 0 and ®,, are
the eigenvectors corresponding to the modal displacenieats element hat are obtained from an
eigenvalue decomposition of the Hamiltonian ma#ix

E,'Ef -E;!

Z= E.\E;'ET - E, —EE;’ (14)
The integration constants, are determined from the nodal displacemanjs= u(¢ = 1) as
co =P 'uy, (15)
Substituting Equatio (13) into Equatidn{10) and using&iun [15) results in
Kpu, =p (16)
where
K, =E¢®.A, &' + E] (17)

In the case of non-zero body forcbs# 0, the equivalent nodal forces due to the body load can be
expressed in terms of the nodal displacementby substituting first, Equatio (1.3) into Equation
(6) and then into the second term on the right-hand-side afion [8), resulting in

1 1
/ suTbdQ =sui / o T Antt / & 'N(n)Tb|I(n)|dnde (18)
Q 0 —1

where |J(n)| is the determinant of the Jacobian on the boundary requicgdcbordinate
transformation. For many problems, the body force intgnisican be expressed locally in each
guadtree cell as a power functiongras

b(¢,1) =¢"b(n) (19)
Substituting Equatiori {19) into Equatidn {18) and inteigpgaanalytically in¢ results in
1
Sty —Suf @, (<A, + (6+2)D " @) [ NG00 (20)
—1

wherep,, is the equivalent load vector due to the body forbés, ). Equation[(Ib) can therefore
be rewritten as
Kpu, =p + py (21)
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STRAIN SMOOTHING AND SEMI-ANALYTICAL APPROACH IN A QUADTREE MESH 7

3. NUMERICAL EXAMPLES

In this section, we study the convergence and the accuratyedftrain smoothing and the SBFEM
over quadtree meshes by solving the Laplace and the Paéssgunation over a square domain with
appropriate Dirichlet boundary conditions. The numerieallts are compared with the analytical
solution and with the conforming shape functions and Lapiaterpolants. In the last part of the
section, the present approaches are combined with théigauxaf unity method, esp, the extended
finite element method (XFEM) to solve a problem involving wehscontinuity. We employ the
following convention when presenting the numerical ressult

e FEM - conventional FEM with conforming shape functions [B. modified Gaussian
guadrature is adopted as givenlin [1].

e PFEM - polygonal FEM with Laplace interpolants. For the e of numerical integration,
sub-triangulation with sixth order Dunavant quadraturée raver each sub-triangle is
employed.

¢ NSFEM -n-sided smoothed finite element method. Along each side céldmaent, the shape
functions are assumed to be linear and hence, only one Gaugsipused to numerically
integrate the terms in the stiffness matrix.

e SBFEM - scaled boundary polygon formulation. Only the bamdof the element is
discretised with 1D linear shape functions and one pointsSauadrature is adopted.

For the purpose of error estimation, the relative erratimorm is used and is given by:

u—u"|| 20 = u—uh) (u—uh
= w2y \//Q[( ) (u— ub)] dO (22)

whereu” is the numerical solution andis the analytical solution or a reference solution.

3.1. Patch test

Consider the Laplace equatioW?u(x) = 0 in 2 =(0,1). In this case, we consider two essential
boundary condition: (a) Case A: Linear functiof(x) =z +y and (b) Case B: Quadratic
function, g(x) = 1 — x + by — 2zy — 42? + 4y?, imposed o). The exact solution isu(x) =
g(x). Figures [(4) - [(b) show the quadtree mesh considered forsthidy. Two-to-one rule is
maintained in Figurd_{4) in which the elements have utmobt one hanging node along an edge,
whilst in meshes shown in Figurgl(5), some elements have thare one hanging node along
an edge. The patch test results for various meshes andediffapproaches in the case of linear
function is shown in Tablg I. It is seen that the FEM, the nSF&hd the SBFEM formulations
over quadtree meshes pass patch test to machine precisitite tase of strain smoothing, both
one subcell ana subcells (triangular subcells) are considered. The emrtivd L2 norm in the case
of Laplace interplants i€ (10-%) when quadtree meshes with 2-to-1 rule is maintained and the
accuracy slightly decreases when the element has more tigdmemging node along its edges. This
is consistent with the literaturgl[2,119] and this can bétlaited to the rational form of the Laplace
shape functions. Moreover, the derivatives in the quadtlement are singular when using Laplace
interpolant [2]. Also care must be taken to numerically gméte the terms when using Laplace
interpolants.

3.2. Poisson problem
In this example, we consider Poisson’s equation over a sqd@amain with Dirichlet boundary
conditions imposed on the boundary. The governing equatiorthe boundary condition are:
Viu=f, in Q=(0,1)?
u =20, on 909 (23)

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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(a) 85 nodes, 64 elements (b) 122 nodes, 97 elements
2 2
15 1 15¢
1 1
0.5 1 0.5
0 0
0 0.5 1 15 2 0 0.5 1 15 2
(c) 291 nodes, 250 elements (d) 949 nodes, 874 elements
2 2
1 5 1 5 IENEEEN]
1 1 H
HH
f H
0.5 4 0.5 L
0 0
0 0.5 1 15 2 0 0.5 1 15 2

Figure 4. Regularised quadtree meshes: 2-to-1 ratio isteiagd.

Table I. Relative error in th&? norm for the patch test: Linear function.

Ratio Mesh Conforming shape Laplace shape Strain SmoothingBFEM
Figures[(#) -[(b) functions [1] functions 1 subcell n subcell
a 4.68e 16 7.75¢® 259el6 24716 6.25e16
2-to-1 b 1.65e 15 6.62e® 2.22e¢'5 1.79e¢!5 1.05e'°
c 5.50e 15 4.26e® 5.67e!® 8.16e1° 8.02e715
e - 1.14e® 5656 247e16 7.43e'6
no 2-to-1 f - 247¢7 8.12e'6 532e!® 6.66616
g - 4.04e® 4.62¢'5 8.81e!® 3.82e 15
h - 7.64e7 154e'* 1.69e'* 1.70e'
Table Il. Relative error in th&? norm for the patch test: quadratic function.
Mesh Conforming shape Laplace shape Strain Smoothing SBFEM
Figure [3) functions]1] functions 1 subcell n subcell 1
a 3.39¢? 4.38e% 1l.46e? 3.25e3 4.75e3
b 2.19¢3 2.63e? 166e? 2253 2.93e3
c 9.18¢e4 1.15e3 8.10e® 1.30e® 1.37¢3
d 1.81e* 2.11e* 9.80e* 1.88e* 2.25e+*
Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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(e) 94 nodes, 73 elements (f) 97 nodes, 76 elements
2 2
15 15
1 1
0.5 0.5
0 0
0 0.5 1 15 2 0 0.5 1 15 2
(9) 377 nodes, 328 elements (h) 1109 nodes, 1024 elements
2 2
15 HHH 15
1 1
1 f f 1
1 1
0.5 HHH 0.5
0 0
0 0.5 1 15 2 0 0.5 1 15 2

Figure 5. Non-regularised quadtree meshes: 2-to-1 ratimtsmaintained.

The source ternf is chosen such that the exact solution of the probleml isyf@&) = 2*%y*°(1 —
z)(1 — y). The quadtree mesh considered for this study are shown irrd-{@). In this example,
for the CSFEM, triangular subcells are considered. The nestfined where the steep gradient
is anticipated. Figurd{7) shows the convergence of theivelarror in theL, norm for different
approaches. It is seen that the FEM and the SBFEM yield simgtults. The error from the PFEM
formulation is higher when compared to other approacheis @buld be attributed to the fact
that the derivatives are singular at the hanging nodes asultalthe accuracy of the numerical
integration. All the approaches converge asymptoticaitir wesh refinement.

3.3. Application to partition of unity method - weak disdonity problem

In this example, the elastio-static response of a circulatenal inhomogeneity under radially
symmetric loading as shown in Figufé (8) is examined withimframework of the XFEM. One of
the salient feature of the XFEM is that, by augmenting the pir@ximation basis with additional
functions, the local information of the problem can be ested without a need for a conforming
mesh. As the information is local, a quadtree mesh is betitedsthan a uniformly refined mesh.
Figure [8) shows a typical mesh used in this study. It is s&amn the mesh is locally refined
in the close proximity of the interface. A 2-to-1 ratio is migined in this study. The material
constants are constant within each dom@inand(,, but there is a material discontinuity across the
interfaceI'; (r = a). The Lamé constants i2; andQ, are:\; = u; = 0.4 andXs = 5.7692, uy =
3.8461. These correspond tB; = 1, 11 = 0.25 and E; = 10, v5 = 0.3. A plane strain condition
is assumed. A linear displacement field: = 1, us = 22 (u, =r, ug = 0) on the boundary

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2013)
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Figure 7. Poisson problem: convergence in the relativer émr¢he L, norm, where FEM - conventional
FEM with conforming shape functions|[1], PFEM - polygonal\#&ith Laplace interpolant[2], nNSFEM -
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(d) 9249 nodes

Figure 6. Poisson problem: regularised quadtree meshes.
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(a) Geometry
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(b) Typical quadtree mesh

Figure 8. Bimaterial circular inhomogeneity boundary eaproblem: geometry and quadtree mesh (where

‘solid’ black line represents the material interface). &dhat the quadtree mesh does not conform to

the material interface. Appropriate nodes are enrichedsemwdal support is intersected by the material
interface [20].

Iy (r = b) is imposed and the governing equations and corresponding displacement solution
is given in [20].

For the present numerical study, a square domain ofsizel, with I =2 is considered, where
the outer radius is chosen to be=2 and inner radius =0.4. The rate of convergence of the
relative error in the displacemeiiL?) norm is shown in Figure[{9). In this example, for the
CSFEM, triangular subcells are considered. It is seen th#t the proposed approaches yield
optimal convergence rate and with mesh refinement, both pheoaches converge to analytical

Copyright© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2013)
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Figure 9. Bi-material circular inhomogeneity: the rate oficergence. The error is measured in displacement
L? norm.m is the average slope.

solution. The main advantage of the strain smoothing andd¢héed boundary formulation is that
sub-triangulation of the elements having hanging nodedinsireated and explicit form of the
shape function is not required. In this study, the hangindescare not enriched for simplicity,
as hanging nodes with enrichment leads to additional coatiputal difficulties. However, with the
strain smoothing technique, the hanging nodes could betediand an approach described in [5, 6]
can be adopted. For the sake of simplicity, this is not enmgaddy this study.

4. CONCLUSIONS

In this paper, we presented two alternate approaches tdvaeging nodes in a quadtree mesh based
on the cell-based strain smoothing and the scaled boundérggnal formulation. The convergence
and the accuracy of both approaches were demonstratedwvitnical examples. It is seen that the
approaches pass patch test and yield accurate results wimgraced with the polygonal formulation
with Laplace interpolants. This may be attributed to thet that the derivatives in a quadtree
element are singular when employing the polygonal formaaf2]. Also a very high number of
Gauss points (for example 25 points) are used in the polydomaulation of an element having
hanging noded [2]. The presented techniques do not sufier fuch difficulties. Moreover, the
techniques do not require an explicit form of the shape fonand no special numerical integration
is required. In the case of scaled boundary polygon forriariahigher order element can be easily
constructed along each edge. The application of the celtidbamoothing to three-dimensional
problems is available in the literature [21], whilst it isder investigation in the case of scaled
boundary formulation. Nevertheless, the presented appesecan be extended to octree meshes in
3D which will be topic for the future communication.
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