
ar
X

iv
:1

31
1.

00
72

v1
 [

st
at

.M
L

]
 1

 N
ov

 2
01

3

Bayesian inference as iterated random functions

with applications to sequential inference in graphical models∗

Arash A. Amini XuanLong Nguyen

August 7, 2018

Abstract

We propose a general formalism of iterated random functions with semigroup property,
under which exact and approximate Bayesian posterior updates can be viewed as specific
instances. A convergence theory for iterated random functions is presented. As an appli-
cation of the general theory we analyze convergence behaviors of exact and approximate
message-passing algorithms that arise in a sequential change point detection problem formu-
lated via a latent variable directed graphical model. The sequential inference algorithm and
its supporting theory are illustrated by simulated examples.

1 Introduction

The sequential posterior updates play a central role in many Bayesian inference procedures.
As an example, in Bayesian inference one is interested in the posterior probability of variables
of interest given the data observed sequentially up to a given time point. As a more specific
example which provides the motivation for this work, in a sequential change point detection
problem [1], the key quantity is the posterior probability that a change has occurred given the
data observed up to present time. When the underlying probability model is complex, e.g.,
a large-scale graphical model, the calculation of such quantities in a fast and online manner
is a formidable challenge. In such situations approximate inference methods are required – for
graphical models, message-passing variational inference algorithms present a viable option [2, 3].

In this paper we propose to treat Bayesian inference in a complex model as a specific instance
of an abstract system of iterated random functions (IRF), a concept that originally arises in
the study of Markov chains and stochastic systems [4]. The key technical property of the
proposed IRF formalism that enables the connection to Bayesian inference under conditionally
independent sampling is the semigroup property, which shall be defined shortly in the sequel.
It turns out that most exact and approximate Bayesian inference algorithms may be viewed as
specific instances of an IRF system. The goal of this paper is to present a general convergence
theory for the IRF with semigroup property. The theory is then applied to the analysis of exact
and approximate message-passing inference algorithms, which arise in the context of distributed
sequential change point problems using latent variable and directed graphical model as the
underlying modeling framework.

We wish to note a growing literature on message-passing and sequential inference based
on graphical modeling [5, 6, 7, 8]. On the other hand, convergence and error analysis of

∗Part of this work is presented at the NIPS 2013 conference.

1

http://arxiv.org/abs/1311.0072v1

message-passing algorithms in graphical models is quite rare and challenging, especially for
approximate algorithms, and they are typically confined to the specific form of belief propagation
(sum-product) algorithm [9, 10, 11]. To the best of our knowledge, there is no existing work
on the analysis of message-passing inference algorithms for calculating conditional (posterior)
probabilities for latent random variables present in a graphical model. While such an analysis
is a byproduct of this work, the viewpoint we put forward here that equates Bayesian posterior
updates to a system of iterated random functions with semigroup property seems to be new and
may be of general interest.

The paper is organized as follows. In Sections 2– 3, we introduce the general IRF system and
provide our main result on its convergence. The proof is deferred to Section 5. As an example of
the application of the result, we will provide a convergence analysis for an approximate sequential
inference algorithm for the problem of multiple change point detection using graphical models.
The problem setup and the results are discussed in Section 4. An auxiliary result needed for
the change point application is proved in Section 6 with some of the more technical aspects left
to the appendices.

2 Bayesian posterior updates as iterated random functions

In this paper we shall restrict ourselves to multivariate distributions of binary random variables.
To describe the general iteration, let Pd := P({0, 1}d) be the space of probability measures on
{0, 1}d. The iteration under consideration recursively produces a random sequence of elements

of Pd, starting from some initial value. We think of Pd as a subset of R2d equipped with the
ℓ1 norm (that is, the total variation norm for discrete probability measures). To simplify, let
m := 2d, and for x ∈ Pd, index its coordinates as x = (x0, . . . , xm−1). For θ ∈ R

m
+ , consider the

function qθ : Pd → Pd, defined by

qθ(x) :=
x⊙ θ

xTθ
(1)

where xTθ =
∑

i x
i
θ
i is the usual inner product on R

m and x ⊙ θ is pointwise multiplication
with coordinates [x ⊙ θ]i := xiθi, for i = 0, 1, . . . ,m − 1. This function models the prior-to-
posterior update according to the Bayes rule. One can think of θ as the likelihood and x as the
prior distribution (or the posterior in the previous stage) and qθ(x) as the (new) posterior based
on the two. The division by xTθ can be thought of as the division by the marginal to make a
valid probability vector. (See Example 1 below.)

We consider the following general iteration

Qn(x) = qθn(T (Qn−1(x)), n ≥ 1,

Q0(x) = x,
(2)

for some deterministic operator T : Pd → Pd and an i.i.d. random sequence {θn}n≥1 ⊂ R
m
+ . By

changing operator T , one obtains different iterative algorithms.
Our goal is to find sufficient conditions on T and {θn} for the convergence of the iteration

to an extreme point of Pd, which without loss of generality is taken to be e(0) := (1, 0, 0, . . . , 0).
Standard techniques for proving the convergence of iterated random functions are usually based
on showing some averaged-sense contraction property for the iteration function [4, 12, 13, 14],
which in our case is qθn(T (·)). See [15] for a recent survey. These techniques are not applicable

2

to our problem since qθn is not in general Lipschitz, in any suitable sense, precluding qθn(T (·))
from satisfying the aforementioned conditions.

Instead, the functions {qθn} have another property which can be exploited to prove conver-
gence; namely, they form a semi-group under pointwise multiplication,

qθ⊙θ′ = qθ ◦ qθ′ , θ,θ′ ∈ R
m
+ , (3)

where ◦ denotes the composition of functions. If T is the identity, this property allows us to
write Qn(x) = q⊙n

i=1θi
(x) — this is nothing but the Bayesian posterior update equation, un-

der conditionally independent sampling, while modifying T results in an approximate Bayesian
inference procedure. Since after suitable normalization, ⊙ n

i=1θi concentrates around a deter-
ministic quantity, by the i.i.d. assumption on {θi}, this representation helps in determining the
limit of {Qn(x)}. The main result of this paper, summarized in Theorem 1, is that the same
conclusions can be extended to general Lipschitz maps T having the desired fixed point.

3 General convergence theory

Consider a sequence {θn}n≥1 ⊂ R
m
+ of i.i.d. random elements, where m = 2d. Let θn =

(θ0
n,θ

1
n, . . . ,θ

m−1
n) with θ

0
n = 1 for all n, and

θ
∗
n := max

i=1,2,...,m−1
θ
i
n. (4)

The normalization θ
0
n = 1 is convenient for showing convergence to e

(0). This is without loss of
generality, since qθ is invariant to scaling of θ, that is qθ = qβθ for any β > 0.

Assume the sequence {log θ∗
n} to be i.i.d. sub-Gaussian with mean ≤ −I∗ < 0 and sub-

Gaussian norm ≤ σ∗ ∈ (0,∞). The sub-Gaussian norm can be taken to be the ψ2 Orlicz
norm (cf. [16, Section 2.2]), which we denote by ‖ · ‖ψ2 . By definition ‖Y ‖ψ2 := inf{C > 0 :

Eψ2(|Y |/C) ≤ 1} where ψ2(x) := ex
2
− 1.

Let ‖ · ‖ denote the ℓ1 norm on R
m. Consider the sequence {Qn(x)}n≥0 defined in (2) based

on {θn} as above, an initial point x = (x0, . . . , xm−1) ∈ Pd and a Lipschitz map T : Pd → Pd.
Let LipT denote the Lipschitz constant of T , that is LipT := supx 6=y ‖T (x)− T (y)‖/‖x − y‖.

Our main result regarding iteration (2) is the following.

Theorem 1. Assume that L := LipT ≤ 1 and that e
(0) is a fixed point of T . Then, for all

n ≥ 0, and ε > 0,

‖Qn(x)− e
(0)‖ ≤ 2

1− x0

x0
(
Le−I∗+ε

)n
(5)

with probability at least 1− exp(−c nε2/σ2∗), for some absolute constant c > 0.

The proof of Theorem 1 is outlined in Section 5. Our main application of the theorem will
be to the study of convergence of stopping rules for a distributed multiple change point problem
endowed with latent variable graphical models. Before stating that problem, let us consider
the classical (single) change point problem first, and show how the theorem can be applied to
analyze the convergence of the optimal Bayes rule.

3

Example 1. In the classical Bayesian change point problem [1], one observes a sequence
{X1,X2,X3 . . . } of independent data points whose distributions change at some random time λ.
More precisely, given λ = k, X1,X2, . . . ,Xk−1 are distributed according to g, and Xk+1,Xk+2, . . .
according to f . Here, f and g are densities with respect to some underlying measure. One also
assumes a prior π on λ, usually taken to be geometric. The goal is to find a stopping rule τ
which can predict λ based on the data points observed so far. It is well-known that a rule based on
thresholding the posterior probability of λ is optimal (in a Neyman-Pearson sense). To be more
specific, let Xn := (X1,X2, . . . ,Xn) collect the data up to time n and let γn[n] := P(λ ≤ n|Xn)
be the posterior probability of λ having occurred before (or at) time n. Then, the Shiryayev rule

τ := inf{n ∈ N : γn[n] ≥ 1− α} (6)

is known to asymptotically have the least expected delay, among all stopping rules with false
alarm probability bounded by α.

Theorem 1 provides a way to quantify how fast the posterior γn[n] approaches 1, once the
change point has occurred, hence providing an estimate of the detection delay, even for finite
number of samples. We should note that our approach here is somewhat independent of the
classical techniques normally used for analyzing stopping rule (6). To cast the problem in
the general framework of (2), let us introduce the binary variable Zn := 1{λ ≤ n}, where 1{·}
denotes the indicator of an event. Let Qn be the (random) distribution of Zn given Xn, in other
words,

Qn :=
(
P(Zn = 1|Xn), P(Zn = 0|Xn)

)
.

Since γn[n] = P(Z = 1|Xn), convergence of γn[n] to 1 is equivalent to the convergence of Qn to
e
(0) = (1, 0). We have

P (Zn|Xn) ∝Zn P (Zn,Xn|Xn−1) = P (Xn|Zn)P (Zn|Xn−1). (7)

Note that P (Xn|Zn = 1) = f(Xn) and P (Xn|Zn = 0) = g(Xn). Let θn :=
(
1, g(X

n)
f(Xn)

)
and

Rn−1 :=
(
P(Zn = 1|Xn−1), P(Zn = 0|Xn−1)).

Then, (7) implies that Qn can be obtained by pointwise multiplication of Rn−1 by f(Xn)θn
and normalization to make a probability vector. Alternatively, we can multiply by θn, since
the procedure is scale-invariant, that is, Qn = qθn(Rn−1) using definition (1). It remains to
express Rn−1 in terms of Qn−1. This can be done by using the Bayes rule and the fact that
P (Xn−1|λ = k) is the same for k ∈ {n, n + 1, . . . }. In particular, after some algebra (see
Appendix A), one arrives at

γn−1[n] =
π(n)

π[n− 1]c
+

π[n]c

π[n− 1]c
γn−1[n− 1], (8)

where γk[n] := P(λ ≤ n|Xk), π(n) is the prior on λ evaluated at time n, and π[k]c :=∑∞
i=k+1 π(i). For the geometric prior with parameter ρ ∈ [0, 1], we have π(n) := (1−ρ)n−1ρ and

π[k]c = ρk. The above recursion then simplifies to γn−1[n] = ρ+ (1− ρ)γn−1[n− 1]. Expressing
in terms of Rn−1 and Qn−1, the recursion reads

Rn−1 = T (Qn−1), where T
((x1
x0

))
= ρ

(1
0

)
+ (1− ρ)

(x1
x0

)
.

4

In other words, T (x) = ρe(0) + (1− ρ)x for x ∈ P2.
Thus, we have shown that an iterative algorithm for computing γn[n] (hence determining

rule (6)), can be expressed in the form of (2) for appropriate choices of {θn} and operator T .
Note that T in this case is Lipschitz with constant 1− ρ which is always guaranteed to be ≤ 1.

We can now use Theorem 1 to analyze the convergence of γn[n]. Let us condition on λ = k+1,
that is, we assume that the change point has occurred at time k + 1. Then, the sequence
{Xn}n≥k+1 is distributed according to f , and we have Eθ

∗
n =

∫
f log g

f = −I, where I is the KL

divergence between densities f and g. Noting that ‖Qn − e
(0)‖ = 2(1− γn[n]), we immediately

obtain the following corollary.

Corollary 1. Consider Example 1 and assume that log(g(X)/f(X)), where X ∼ f , is sub-
Gaussian with sub-Gaussian norm ≤ σ. Let I :=

∫
f log f

g . Then, conditioned on λ = k+1, we
have for n ≥ 1,

∣∣γn+k[n+ k]− 1
∣∣ ≤

[
(1− ρ)e−I+ε

]n(1

γk[k]
− 1

)

with probability at least 1− exp(−c nε2/σ2).

4 Multiple change point problem via latent variable graphical

models

We now turn to our main application for Theorem 1, in the context of a multiple change
point problem. In [17], graphical model formalism is used to extend the classical change point
problem (cf. Example 1) to cases where multiple distributed latent change points are present.
Throughout this section, we will use this setup which we now briefly sketch.

One starts with a network G = (V,E) of d sensors or nodes, each associated with a change
point λj . Each node j observes a private sequence of measurements Xj = (X1

j ,X
2
j , . . .) which

undergoes a change in distribution at time λj , that is,

X1
j ,X

2
j , . . . ,X

k−1
j | λj = k

iid
∼ gj , Xk

j ,X
k+1
j , · · · | λj = k

iid
∼ fj,

for densities gj and fj (w.r.t. some underlying measure). Each connected pair of nodes share
an additional sequence of measurements. For example, if nodes s1 and s2 are connected, that is,
e = (s1, s2) ∈ E, then they both observe Xe = (X1

e ,X
2
e , . . .). The shared sequence undergoes a

change in distribution at some point depending on λs1 and λs2 . More specifically, it is assumed
that the earlier of the two change points causes a change in the shared sequence, that is, the
distribution of Xe conditioned on (λs1 , λs2) only depends on λe := λs1 ∧ λs2 , the minimum of
the two, i.e.,

X1
e ,X

2
e , . . . ,X

k
e | λe = k

iid
∼ ge, Xk+1

e ,Xk+2
e , · · · | λe = k

iid
∼ fe.

Letting λ∗ := {λj}j∈V and Xn
∗ = {Xn

j ,X
n
e }j∈V,e∈E, we can write the joint density of all

random variables as

P (λ∗,X
n
∗) =

∏

j∈V

πj(λj)
∏

j∈V

P (Xn
j |λj)

∏

e∈E

P (Xn
e |λs1 , λs2). (9)

5

where πj is the prior on λj, which we assume to be geometric with parameter ρj. Network G
induces a graphical model [2] which encodes the factorization (9) of the joint density. (cf. Fig. 1)

Suppose now that each node j wants to detect its change point λj, with minimum expected
delay, while maintaining a false alarm probability at most α. Inspired by the classical change
point problem, one is interested in computing the posterior probability that the change point
has occurred up to now, that is,

γnj [n] := P(λj ≤ n | Xn
∗). (10)

The difference with the classical setting is the conditioning is done on all the data in the network
(up to time n). It is easy to verify that the natural stopping rule

τj = inf{n ∈ N : γnj [n] ≥ 1− α}

satisfy the false alarm constraint. It has also been shown that this rule is asymptotically optimal
in terms of expected detection delay. Moreover, an algorithm based on the well-known sum-
product [2] has been proposed, which allows the nodes to compute their posterior probabilities 10
by message-passing. The algorithm is exact when G is a tree, and scales linearly in the number
of nodes. More precisely, at time n, the computational complexity is O(nd). The drawback
is the linear dependence on n, which makes the algorithm practically infeasible if the change
points model rare events (where n could grow large before detecting the change.)

In the next section, we propose an approximate message passing algorithm which has com-
putational complexity O(d), at each time step. This circumvents the drawback of the exact
algorithm and allows for indefinite run times. We then show how the theory developed in Sec-
tion 3 can be used to provide convergence guarantees for this approximate algorithm, as well as
the exact one.

4.1 Fast approximate message-passing (MP)

We now turn to an approximate message-passing algorithm which, at each time step, has com-
putational complexity O(d). The derivation is similar to that used for the iterative algorithm
in Example 1. Let us define binary variables

Znj = 1{λj ≤ n}, Zn∗ = (Zn1 , . . . , Z
n
d). (11)

The idea is to compute P (Zn∗ |X
n
∗) recursively based on P (Zn−1

∗ |Xn−1
∗). By Bayes rule,

P (Zn∗ |X
n
∗) ∝Zn

∗
P (Zn∗ ,X

n
∗ |X

n−1
∗) = P (Xn

∗ |Z
n
∗)P (Z

n
∗ |X

n−1
∗)

=
[∏

j∈V

P (Xn
j |Z

n
j)

∏

{i,j}∈E

P (Xn
ij |Z

n
i , Z

n
j)
]
P (Zn∗ |X

n−1
∗),

(12)

where we have used the fact that given Zn∗ , X
n
∗ is independent of Xn−1

∗ . To simplify notation,
let us extend the edge set to Ẽ := E ∪ {{j} : j ∈ V }. This allows us to treat the private data
of node j, i.e., Xj , as shared data of a self-loop in the extended graph (V, Ẽ). Let ue(z; ξ) :=

[ge(ξ)]
1−z [fe(ξ])

z for e ∈ Ẽ, z ∈ {0, 1}. Then, for i 6= j,

P (Xn
j |Z

n
j) = uj(Z

n
j ;X

n
j), P (Xn

ij |Z
n
i , Z

n
j) = uij(Z

n
i ∨ Znj ;X

n
ij). (13)

6

Algorithm 1 Message passing algorithm to compute approximate posteriors γ̃nj [n] and γ̃
n
ij[n]

Initialize γ̃0j [0] = 0 for j ∈ V .
for all time n ≥ 1 do

1. Compute γ̃n−1
j [n] based on γ̃n−1

j [n− 1] using equation (15), for all j ∈ V .

2. Form the following joint distribution for Zn∗ = (Zn1 , . . . , Z
n
d),

P̃ (Zn∗ |X
n
∗) = C

∏

j∈V

uj(Z
n
j ;X

n
j)

∏

{i,j}∈E

uij(Z
n
i ∨ Znj ;X

n
ij)

∏

j∈V

ν(Znj ; γ̃
n−1
j [n]) (16)

where ue(z; ξ) := [ge(ξ)]
1−z [fe(ξ])

z for e ∈ Ẽ, and ν(z;β) := βz(1 − β)1−z . The normal-
izing constant C is left undetermined at this point.

3. Invoke a message-passing algorithm (sum-product) on the joint distribution (16) to obtain
marginal distributions P̃ (Znj |X

n
∗), j ∈ V and set γ̃nj [n] = P̃ (Znj = 1|Xn

∗).

(As a by-product of the message-passing, one also gets pair marginals P̃ (Zni , Z
n
j |X

n
∗) and

γ̃nij [n] := P̃ (Zni = 1 or Znj = 1|Xn
∗) which are useful for constructing stopping rules for

minimum of the two change points; see [17].)

end for

It remains to express P (Zn∗ |X
n−1
∗) in terms of P (Zn−1

∗ |Xn−1
∗). It is possible to do this, exactly,

at a cost of O(2|V |). For brevity, we omit the exact expression. (See Lemma 1 for some details.)
We term the algorithm that employs the exact relationship, the “exact algorithm”.

In practice, however, the exponential complexity makes the exact recursion of little use for
large networks. To obtain a fast algorithm (i.e., O(poly(d)), we instead take a mean-field type
approximation:

P (Zn∗ |X
n−1
∗) ≈

∏

j∈V

P (Znj |X
n−1
∗) =

∏

j∈V

ν(Znj ; γ
n−1
j [n]), (14)

where ν(z;β) := βz(1 − β)1−z. That is, we approximate a multivariate distribution by the
product of its marginals. By an argument similar to that used to derive (8), we can obtain a
recursion for the marginals,

γn−1
j [n] =

πj(n)

πj [n− 1]c
+

πj [n]
c

πj [n− 1]c
γn−1
j [n− 1], (15)

where we have used the notation introduced earlier in (8). Thus, at time n, the RHS of (14) is
known based on values computed at time n − 1 (with initial value γ0j [0] = 0, j ∈ V). Inserting

this RHS into (12) in place of P (Zn∗ |X
n−1
∗), we obtain a graphical model in variables Zn∗ (instead

of λ∗) which has the same form as (9) with ν(Znj ; γ
n−1
j [n]) playing the role of the prior π(λj).

In order to obtain the marginals γnj [n] = P (Znj = 1|Xn
∗) with respect to the approximate

version of the joint distribution P (Zn∗ ,X
n
∗ |X

n−1
∗), we need to marginalize out the latent variables

Znj ’s, for which a standard sum-product algorithm can be applied (see [2, 3, 17]). The message
update equations are similar to those in [17]; the difference is that the messages are now binary
and do not grow in size with n. The approximate algorithm is summarized in Algorithm 1.

7

4.2 Convergence of MP algorithms

We now turn to the analysis of the approximate algorithm introduced in Section 4.1. In particu-
lar, we will look at the evolution of {P̃ (Zn∗ |X

n
∗)}n∈N as a sequence of probability distribution on

{0, 1}d. Here, P̃ signifies that this sequence is an approximation. In order to make a meaningful
comparison, we also look at the algorithm which computes the exact sequence {P (Zn∗ |X

n
∗)}n∈N,

recursively. As mentioned before, this we will call the “exact algorithm”, the details of which
are not of concern to us at this point (cf. Proposition 1 for these details.)

Recall that we take P̃ (Zn∗ |X
n
∗) and P (Zn∗ |X

n
∗), as distributions for Zn∗ , to be elements of

Pd ⊂ R
m. To make this correspondence formal and the notation simplified, we use the symbol

:≡ as follows

ỹn :≡ P̃ (Zn∗ |X
n
∗), yn :≡ P (Zn∗ |X

n
∗) (17)

where now ỹn, yn ∈ Pd. Note that ỹn and yn are random elements of Pd, due the randomness of
Xn

∗ . We have the following description.

Proposition 1. The exact and approximate sequences, {yn} and {ỹn}, follow general itera-
tion (2) with the same random sequence {θn}, but with different deterministic operators T ,
denoted respectively with Tex and Tap. Tex is linear and given by a Markov transition kernel.
Tap is a polynomial map of degree d. Both maps are Lipschitz and we have

LipTex ≤ Lρ :=
(
1−

d∏

j=1

ρj

)
, LipTap ≤ Kρ :=

d∑

j=1

(1− ρj). (18)

Detailed descriptions of the sequence {θn} and the operators Tex and Tap, along with the
proof of Proposition 1, are given in Section 6. As suggested by Theorem 1, a key assumption
for the convergence of the approximate algorithm will be Kρ ≤ 1. In contrast, we always have
Lρ ≤ 1.

Recall that {λj} are the change points and their priors are geometric with parameters {ρj}.
We analyze the algorithms, once all the change points have happened. More precisely, we
condition on

Mn0 := {max
j
λj ≤ n0}

for some n0 ∈ N. Then, one expects the (joint) posterior of Zn∗ to contract to the point
Z∞
j = 1, for all j ∈ V . In the vectorial notation, we expect both {ỹn} and {yn} to converge to

e
(0). Theorem 2 below quantifies this convergence in ℓ1 norm (equivalently, total variation for

measures).
Recall pre-change and post-change densities ge and fe, and let Ie denote their KL divergence,

that is, Ie :=
∫
fe log(fe/ge). We will assume that

Ye := log(ge(X)/fe(X)) with X ∼ fe (19)

is sub-Gaussian, for all e ∈ Ẽ, where Ẽ is extended edge notation introduced in Section 4.1.
The choice X ∼ fe is in accordance with conditioning on Mn0 . Note that EYe = −Ie < 0. We
define

σmax := max
e∈Ẽ

‖Ye‖ψ2 , Imin := min
e∈Ẽ

Ie, I∗(κ) := Imin − κσmax

√
logD..

where D := |V | + |E|. The following is our main result regarding sequences (17) produced by
the exact and approximate algorithms.

8

Theorem 2. There exists an absolute constant κ > 0, such that if I∗(κ) > 0, the exact algorithm
converges at least geometrically w.h.p., that is, for all n ≥ 1,

‖yn+n0 − e
(0)‖ ≤ 2

1− yn0

yn0

(
Lρe

−I∗(κ)+ε
)n

(20)

with probability at least 1 − exp
[
−c nε2/(σ2maxD

2 logD)
]
, conditioned on Mn0. If in addition,

Kρ ≤ 1, the approximate algorithm also converges at least geometrically w.h.p., i.e., for all
n ≥ 1,

‖ỹn+n0 − e
(0)‖ ≤ 2

1 − ỹn0

ỹn0

(
Kρe

−I∗(κ)+ε
)n

(21)

with the same (conditional) probability as the exact algorithm.

Proof. Proposition 1 and Theorem 1 provide all the ingredients for the proof. It remains to show
that {θn}n≥n0 as given in (41) satisfies the conditions of Theorem 1; namely, that {log θ∗

n}n≥n0

is i.i.d. sub-Gaussian. We work conditioned on the event Mn0 := {maxj∈V λj ≤ n0}, that is,
we look at what happens to the iterations past all the change-points. Throughout this section,
E denotes conditional expectation given Mn0 . Then, the fact that the sequence is i.i.d. follows
immediately from the definition. Let us now focus on showing that log θ∗

n0
is sub-Gaussian with

negative expectation. We can write

log(θn0)ℓ =
∑

e∈Ẽ

νℓe Ye

where Ẽ is the extended edge notation introduced in Section 4.1, Ye := log[ge(X
n0
e)/fe(X

n0
e)],

and νℓe ∈ {0, 1}. Note that νℓe is equal to either 1 − bj(ℓ) or 1 − bi(ℓ) ∨ bj(ℓ). For ℓ 6= m − 1,

at least one of νℓe, e ∈ Ẽ is non-zero. From definition (4) and superscript to subscript index
translation of (37), we have

log θ∗
n0

= max
i=1,2,...,m−1

log θin0
= max

ℓ=0,1,...,m−2
log(θn0)ℓ.

Let V ⊂ {0, 1}|Ẽ | denote the set carved by (νℓe)e∈Ẽ as ℓ takes the values 0, 1, . . . ,m − 2. We
note that the all-zero vector does not belong to V. Let ν = (νe)e∈Ẽ denote a generic point of

{0, 1}|Ẽ |. Then, we have

log θ∗
n0

= max
ν∈V

∑

e∈Ẽ

νeYe. (22)

Note that EYe =
∫
fe log(ge/fe) = −Ie ≤ −Imin. We can write

E log θ∗
n0

≤ E

[
max
ν∈V

∑

e∈Ẽ

νe(Ye − EYe)
]
+max

ν∈V

∑

e∈Ẽ

νe(EYe)

≤ E

[
max
ν∈V

∑

e∈Ẽ

νe|Ye − EYe|
]
+max

ν∈V

∑

e∈Ẽ

νe(−Imin).

9

The second term above is equal to −Imin

(
minν∈V

∑
e∈Ẽ νe

)
= −Imin, due to the fact that at

least one element of every ν ∈ V is nonzero. Then, we have

E log θ∗
n0

≤ Emax
ν∈V

[(∑

e∈Ẽ

νe

)
max
e∈Ẽ

|Ye − EYe|
]
− Imin

≤ |Ẽ|E
(
max
e∈Ẽ

|Ye − EYe|
)
− Imin

We know that ‖Ye−EYe‖ψ2 ≤ c‖Ye‖ψ2 ≤ c σmax, for some numerical constant c > 0. In addition
by majorant characteristic of ψ2 space (cf. [16, 18]),

Emax
e∈Ẽ

|Ye − EYe| ≤ C

√
log(1 + |Ẽ|)max

e∈Ẽ
‖Ye − EYe‖ψ2

≤ C ′
√

log(1 + |Ẽ|) σmax.

Thus assuming |Ẽ| ≥ 2, we have

E log θ∗
n0

≤ κσmax

√
log |Ẽ| − Imin =: −I∗

for some absolute constant κ > 0, which is the desired bound on the expectation of log θ∗
n0
.

To verify that log θ∗
n0

is sub-Gaussian, we use |max ai| ≤ max |ai| to write

| log θ∗
n0
| ≤ max

ν∈V

∑

e∈Ẽ

νe|Ye| ≤ |Ẽ|max
e∈Ẽ

|Ye|.

Since ‖ · ‖ψ2 , as an Orlicz norm, is monotone (i.e., |X| ≤ |Y | implies ‖X‖ψ2 ≤ ‖Y ‖ψ2 for any
two random variables X and Y), we obtain

‖ log θ∗
n0
‖ψ2 ≤ |Ẽ| · ‖max

e∈Ẽ
|Ye|‖ψ2

≤ C|Ẽ|

√
log |Ẽ|max

e∈Ẽ
‖Ye‖ψ2 ≤ C ′σmax|Ẽ|

√
log |Ẽ|,

where the second inequality is again by the majorant character of ψ2. This completes the
proof.

4.3 Simulation results

We present some simulation results to verify the effectiveness of the proposed approximation
algorithm in estimating the posterior probabilities γnj [n]. We consider a star graph on d = 4
nodes. This is the subgraph on nodes {1, 2, 3, 4} in Fig. 1. Conditioned on the change points λ∗,
all data sequencesX∗ are assumed Gaussian with variance 1, pre-change mean 1 and post-change
mean zero. All priors are geometric with ρj = 0.1. We note that higher values of ρj yield even
faster convergence in the simulations, but we omit these figures due to space constraints. Fig. 1
illustrates typical examples of posterior paths n 7→ γnj [n], for both the exact and approximate
MP algorithms. One can observe that the approximate path often closely follows the exact one.
In some cases, they might deviate for a while, but as suggested by Theorem 2, they approach
one another quickly, once the change points have occurred.

From the theorem and triangle inequality, it follows that under I∗(κ) > 0 and Kρ ≤ 1,
‖yn−ỹn‖ converges to zero, at least geometrically w.h.p. This gives some theoretical explanation
for the good tracking behavior of approximate algorithm as observed in Fig. 1.

10

PSfrag replacements

λ1

λ2

λ3

λ4 λ5

X12

X23

X24

X45

mn
12

mn
24

mn
32

mn
45

PSfrag replacements

λ1

λ2

λ3

λ4 λ5
X12

X23

X24 X45
mn

12

mn
24

mn
32

mn
45

PSfrag replacements

λ1

λ2

λ3

λ4 λ5
X12

X23

X24 X45

mn
12

mn
24

mn
32

mn
45

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

MP
APPROX

PSfrag replacements

λ1
λ2
λ3
λ4
λ5

X12

X23

X24

X45

mn
12

mn
24

mn
32

mn
45 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

MP
APPROX

PSfrag replacements

λ1
λ2
λ3
λ4
λ5

X12

X23

X24

X45

mn
12

mn
24

mn
32

mn
45 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

MP
APPROX

PSfrag replacements

λ1
λ2
λ3
λ4
λ5

X12

X23

X24

X45

mn
12

mn
24

mn
32

mn
45 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

MP
APPROX

PSfrag replacements

λ1
λ2
λ3
λ4
λ5

X12

X23

X24

X45

mn
12

mn
24

mn
32

mn
45

Figure 1: Top row illustrates a network (left), which induces a graphical model (middle). Right panel
illustrates one stage of message-passing to compute posterior probabilities γnj [n]. Bottom row illustrates
typical examples of posterior paths, n 7→ γnj [n], obtained by EXACT and approximate (APPROX)
message passing, for the subgraph on nodes {1, 2, 3, 4}. The change points are designated with vertical
dashed lines.

5 Proof of Theorem 1

For x ∈ R
m (including Pd), we write x = (x0, x̃) where x̃ = (x1, . . . , xm−1). Recall that

e
(0) = (1, 0, . . . , 0) and ‖x‖ =

∑m−1
i=0 |xi|. For x ∈ Pd, we have 1− x0 = ‖x̃‖, and

‖x− e
(0)‖ = ‖(x0 − 1, x̃)‖ = 1− x0 + ‖x̃‖ = 2(1 − x0). (23)

For θ = (θ0, θ̃) ∈ R
m
+ , let

θ
∗ := ‖θ̃‖∞ = max

i=1,...,m−1
θ
i, θ

† :=
(
θ
0, (θ∗L)1m−1

)
∈ R

m
+ (24)

where 1m−1 is a vector in R
m−1 whose coordinates are all ones. We start by investigating how

‖qθ(x)− e
(0)‖ varies as a function of ‖x− e

(0)‖.

Lemma 1. For L ≤ 1, θ∗ > 0, and θ
0 = 1,

N := sup
x,y∈Pd,

‖x−e(0)‖≤L‖y−e(0)‖

‖qθ(x)− e
(0)‖

‖qθ†(y)− e(0)‖
= 1; (25)

We prove Lemma 1 shortly in Section 5.1. Given the lemma, let us proceed to the proof of
the theorem. Recall that T : Pd → Pd is an L-Lipschitz map, and that e

(0) is a fixed point of
T , that is, T (e(0)) = e

(0). It follows that for any x ∈ Pd, ‖T (x)− e
(0)‖ ≤ L‖x− e

(0)‖. Applying
Lemma 1, we get

‖qθ(T (x))− e
(0)‖ ≤ ‖qθ†(x)− e

(0)‖ (26)

for θ ∈ R
m
+ with θ

0 = 1, and x ∈ Pd. (This holds even if θ∗ = 0 where both sides are zero.)
Recall the sequence {θn}n≥1 used in defining functions {Qn} accroding to (2), and the as-

sumption that θ0
n = 1, for all n ≥ 1. Inequality (26) is key in allowing us to peel operator T , and

11

bring successive elements of {qθn} together. Then, we can exploit the semi-group property (3)
on adjacent elements of {qθn}.

To see this, for each θn, let θ
∗
n and θ

†
n be defined as in (24). Applying (26) with x replaced

with Qn−1(x), and θ with θn, we can write

‖Qn(x)− e
(0)‖ ≤ ‖q

θ
†
n
(Qn−1(x))− e

(0)‖ (by (26))

= ‖q
θ
†
n
(qθn−1(T (Qn−2(x)))) − e

(0)‖

= ‖q
θ
†
n⊙ θn−1

(T (Qn−2(x)))) − e
(0)‖ (by semi-group property (3))

We note that (θ†
n ⊙ θn−1)

∗ = Lθ∗
nθ

∗
n−1 and

(θ†
n ⊙ θn−1)

†
=

(
1, L(θ†

n ⊙ θn−1)
∗1m−1

)
=

(
1, L2

θ
∗
nθ

∗
n−11m−1

)
.

Here, ∗ and † act on a general vector in the sense of (24). Applying (26) once more, we get

‖Qn(x)− e
(0)‖ ≤ ‖q(1,L2θ∗

nθ
∗
n−11m−1)(Qn−2(x))− e

(0)‖.

The pattern is clear. Letting ηn := Ln
∏n
k=1 θ

∗
k, we obtain by induction

‖Qn(x)− e
(0)‖ ≤ ‖q(1,ηn1m−1)(Q0(x))− e

(0)‖. (27)

Recall that Q0(x) := x. Moreover,

‖q(1,ηn1m−1)(x)− e
(0)‖ = 2

(
1− [q(1,ηn1m−1)(x)]

0
)
= 2

(
1− gηn(x

0)
)

(28)

where the first inequality is by (23), and the second is easily verified by noting that all the
elements of (1, ηn1m−1), except the first, are equal. Putting (27) and (28) together with the

bound 1 − gθ(r) =
θ(1−r)
r+θ(1−r) ≤ θ 1−rr , which holds for θ > 0 and r ∈ (0, 1], we obtain ‖Qn(x) −

e
(0)‖ ≤ 2ηn

1−x0

x0
. By sub-Gaussianity assumption on {log θ∗

k}, we have

P

(1
n

n∑

k=1

log θ∗
k − E log θ∗

1 > ε
)
≤ exp(−c nε2/σ2∗), (29)

for some absolute constant c > 0. (Recall that σ∗ is an upper bound on the sub-Gaussian
norm ‖ log θ∗

1‖ψ2 .) On the complement of the event in 29, we have
∏n
k=1 θ

∗
k ≤ en(−I∗+ε), which

completes the proof.

5.1 Proof of Lemma 1

We consider the simplest case first, namely d = 2. For θ ∈ R+, let gθ : [0, 1] → [0, 1] be defined
by

gθ(r) :=
r

r + θ(1− r)
. (30)

This function completely describes qθ when d = 2. More precisely, with θ = (1, θ), one has
qθ(x) =

(
gθ(x

0), 1 − gθ(x
0)
)
. Note that qθ(x) is close to e

0 iff gθ(x
0) is close to 1. To simplify

notation, let r̄ := 1− r for r ∈ [0, 1]. Similarly, let

ḡθ(r) := 1− gθ(r) =
θr̄

1− r̄ + θr̄
. (31)

12

The next lemma allows us to quantify how |ḡθ(r)| varies in terms of |r̄|. Consider the following
quantity

ML(θ, γ) := sup
{ |ḡθ(r)|

|ḡγ(s)|
: r̄, s̄ ∈ (0, 1], r̄ ≤ Ls̄

}
. (32)

Lemma 2. Assume that L ≤ 1 and θ > 0. Let ε := 1− θ and γ := 1− δ. Then,

ML(θ, γ) =
θL

|γ|
max

{
1,
∣∣∣
1− δ

1− Lε

∣∣∣
}
. (33)

In particular, for γ = θL, we have ML(θ, γ) = 1.

Proof. We can write

ML(θ, γ) = sup
r,s̄

∣∣∣
θr

1− r + θr

1− s̄+ γs̄

γs̄

∣∣∣

=
θ

|γ|
sup
r,s̄

∣∣∣
r

s̄
·
(γ − 1)s̄ + 1

(θ − 1)r + 1

∣∣∣

=
θ

|γ|
sup
r,s̄

∣∣∣
(γ − 1) + 1/s̄

(θ − 1) + 1/r̄

∣∣∣

Let x = 1/r and z = r/s̄. Then, the set {(r̄, s̄) : r̄, s̄ ∈ (0, 1], r̄ ≤ Ls̄} corresponds to

{(x, z) : x ≥ 1, xz ≥ 1, z ≤ L} = {(x, z) : x ≥
1

L
,
1

x
≤ z ≤ L}

where in the second inequality, we used L ≤ 1 and that [1x , L] is empty unless x ≥ 1
L . Letting

m(x, z) := (xz − δ)/(x − ε), we obtain

ML(θ, γ) =
θ

|γ|
sup

x≥ 1
L
, z∈[1

x
,L]

|m(x, z)|

The function m(x, z) is well-defined over the specified region (that is, finite-valued) since θ > 0
implies ε < 1, hence x − ε > 0. For fixed x ≥ 1

L , the function z 7→ |m(x, z)| is convex, hence
achieving its maximum over the convex set [1x , L], at one of the extreme points,

ML(θ, γ) =
θ

|γ|
sup
x≥ 1

L

[
max

{
|m(x, 1x)|, |m(x,L)|

}]

Both x 7→ |m(x, 1x)| and x 7→ |m(x,L)| are quasi-convex, hence their suprema over [1L ,∞) are
obtained at one of the endpoints. Thus,

ML(θ, γ) =
θ

|γ|
max

{
sup
x≥ 1

L

∣∣∣
1− δ

x− ε

∣∣∣, sup
x≥ 1

L

∣∣∣
xL− δ

x− ε

∣∣∣
}

=
θ

|γ|
max

{∣∣∣
1− δ
1
L − ε

∣∣∣, 0,
∣∣∣
L 1
L − δ
1
L − ε

∣∣∣, L
}

which simplifies to (33).
For the special case, γ = θL, we first note that Lθ/γ = g1/θ(L). Then, we have ML(θ, γ) =

max{1, g1/θ(L)}. Since g1/θ(L) ∈ [0, 1], we get the desired result.

13

Let us now move to the case of general d. By (23), we have

N = sup
{ 1− [qθ(x)]

0

1− [qθ†(y)]0
: x0 ≤ Ly0, ‖x̃‖ = x0, ‖ỹ‖ = y0

}
. (34)

We are effectively optimizing over four variables x0, y0, x̃ and ỹ. Let us first optimize over x̃,
fixing the other three. By definition (1), we have

sup
x̃: ‖x̃‖=x0

{
1− [qθ(x)]

0} = sup
x̃: ‖x̃‖=x0

{
1−

θ
0x0

θ0x0 + θ̃T x̃

}

= 1−
θ
0x0

θ0x0 + sup
{
θ̃T x̃ : ‖x̃‖ = x0}

= 1−
θ
0x0

θ0x0 + ‖θ̃‖∞x0
,

by the duality of ℓ1 and ℓ∞ norms. Recalling the definition (30), and using θ
0 = 1 and ‖θ̃‖∞ =

θ
∗, we have

sup
x̃: ‖x̃‖=x0

{
1− [qθ(x)]

0} = 1− gθ∗(x0). (35)

Next, we optimize over ỹ. Let γ∗ := θ
∗L. We note for ‖ỹ‖ = y0,

[qθ†(y)]0 =
θ
0y0

θ0y0 + γ∗1Tm−1ỹ
=

θ
0y0

θ0y0 + γ∗y0
= gγ∗(y

0)

where we have used 1Tm−1ỹ = ‖ỹ‖ and θ
0 = 1. In other words, we have shown

sup
ỹ: ‖ỹ‖=y0

{
1− [qθ†(y)]0

}
= 1− gγ∗(y

0). (36)

Substituting (35) and (36) in (34), and recalling the notation (31) and definition (32), we get

N = sup
{ ḡθ∗(x0)

ḡγ∗(y0)
: x0 ≤ Ly0

}
=ML(θ

∗, γ∗).

Applying Lemma 2 in the special case γ∗ = θ
∗L, we get ML(θ

∗, γ∗) = 1 which gives the desired
result.

6 Proof of Proposition 1

We divide the proof into pieces with some of the more technical details deferred to the Appendix.
We will need some extra notations for the indexing of coordinates of probability vectors in
Pd = P({0, 1}d). So far we have used superscripts to index the coordinates from left to right. It
is sometimes convenient to use a complementary subscript indexing, by going from right to left.
More specifically, for x ∈ Pd, we write

x = (x0, x1, . . . , xm−1) = (xm−1, . . . , x1, x0) (37)

14

so that xi = xm−1−i. We also interpret xi as the value that x assigns to the binary representa-
tion1 of i. Furthermore, for any i = 0, . . . ,m− 1, let

bj(i) := jth bit from the left in binary expansion of i, j ∈ [d], (38)

so that the binary expansion of i is the string b1(i)b2(i) . . . bd(i).
Before starting the proof, let us give an explicit expression for the common sequence {θn}

used in the iterations of both the exact and approximate algorithms. Recall the notation yn :≡
P (Zn∗ |X

n
∗) introduced in (17), in which yn ∈ Pd is defined by looking at P (Zn∗ |X

n
∗) as a random

probability vector indexed by Zn∗ ∈ {0, 1}d. Similarly, in view of (12), let

hn :≡
∏

j∈V

P (Xn
j |Z

n
j)

∏

{i,j}∈E

P (Xn
ij |Z

n
i , Z

n
j) (39)

where the ingredients are given by (13). As before, in this expression, we are treating Zn∗ as
indexing a random vector in R

m
+ . For n ∈ N, let

θn :=
hn

(hn)m−1
, (40)

where (hn)i denotes the ith entry of hn, using subscript indexing according to (37). In other
words, to obtain θn, we normalize hn = ((hn)m−1, . . . , (hn)0) by dividing it by its first entry.
Using (13) and (38), we can write

(θn)ℓ =
∏

j∈V

[gj(Xn
j)

fj(Xn
j)

]1−bj(ℓ) ∏

{i,j}∈E

[gij(Xn
ij)

fij(Xn
ij)

]1−bj(ℓ)∨bj(ℓ)
, (41)

where ∨ denotes the maximum.
Recall that for ρ ∈ [0, 1], we use the notation ρ := 1− ρ.

6.1 The approximate algorithm follows general iteration (2)

In order to avoid confusion with exact quantities, we will use a tilde to denote the posterior
quantities produced by the approximate iteration. For example, (14) can be rewritten as an
exact equality in terms of approximate quantities,

P̃ (Zn∗ |X
n−1
∗) =

∏

j∈V

ν(Znj ; γ̃
n−1
j [n]) (42)

We first note that recursion (15) is simplified for a geometric prior. We have πj(n) = ρn−1
j ρj

and πj [n]
c = ρnj . Then, (15) for the approximate algorithm is

γ̃n−1
j [n] = ρj + ρj γ̃

n−1
j [n− 1]. (43)

Consider an operator Rρ on P1 := P({0, 1}) defined by

Rρ

((x1
x0

))
:= ρ

(1
0

)
+ (1− ρ)

(x1
x0

)
=

(1
0

)
+ (1− ρ)

(−x0
x0

)
(44)

1For example, for d = 2, x = (x3, x2, x1, x0) =
(

x({(1, 1)}), x({(1, 0)}), x({(0, 1)}), x({(0, 0)}
)

, where the
multitude of parentheses is because in the RHS, we are treating x as a measure (i.e., a set-valued function) on all
subsets of {0, 1}d.

15

for any vector x = (x1, x0) = (1−x0, x0) ∈ P1. (We are using the subscript indexing introduced
in (37).)

Recall that Pd := P({0, 1}d). Let Mj : Pd → P1 be the jth marginalization operator, that is,
an operator which produces the j-th marginal when applied to probability vector y ∈ Pd. More
explicitly,

[Mj(y)]1 :=
∑

i : bj(i)=1

yi. (45)

(On the LHS, we are again using the subscript indexing.) For z ∈ Pr and y ∈ Pd, let z⊗y ∈ Pr+d

be the probability vector corresponding to the product of z and y as measures. It is the usual
tensor product if we think of z and y as vectors.

Now, let

ỹn :≡ P̃ (Zn∗ |X
n
∗), and w̃n :≡ P̃ (Zn∗ |X

n−1
∗)

in the sense discussed in Section 4.2 leading to (17). In words, ỹn is a vector in Pd representing
the estimate of the joint posterior of Zn∗ given Xn

∗ , produced at the n-th step of the approximate
algorithm. Similar interpretation holds for w̃n.

Recall that γ̃nj [n] = P̃ (Znj = 1|Xn
∗) and γ̃n−1

j [n] = P̃ (Znj = 1|Xn−1
∗). In other words,

(γ̃nj [n], 1 − γ̃nj [n]) is the j-th marginal of ỹn, and (γ̃n−1
j [n], 1 − γ̃n−1

j [n]) is the j-th marginal of
w̃n. It follows from (43) and the definitions of Rρ and Mj that

Mj(w̃n) = Rρj(Mj(ỹn−1)).

On the other hand, (42) states that w̃n is a product measure,

w̃n = ⊗d
j=1Mj(w̃n).

Combining the two, we get

w̃n = ⊗d
j=1

[
Rρj(Mj(ỹn−1))

]
=: Tap(ỹn−1). (46)

It is easy to verify that each element of Tap(ỹn−1) as defined above is a polynomial of degree (at
most) d in elements of ỹn−1, with coefficients that depend only on {ρj}.

It remains to investigate how w̃n produces ỹn. Using (12), we observe that w̃n ≡ P̃ (Zn∗ |X
n−1
∗)

is mapped to P̃ (Zn∗ ,X
n
∗ |X

n−1
∗) by a pointwise multiplication with hn as defined in (39). Since,

ỹn ≡ P̃ (Zn∗ |X
n
∗) is obtained from P̃ (Zn∗ ,X

n
∗ |X

n−1
∗) by a normalization over Zn∗ , we obtain

ỹn =
w̃n ◦ hn
w̃Tnhn

=
w̃n ◦ θn
w̃Tnθn

= qθn(w̃n). (47)

This completes the proof.

6.2 The exact algorithm follows general iteration (2)

Let

yn :≡ P (Zn∗ |X
n
∗), and wn :≡ P (Zn∗ |X

n−1
∗)

be the posteriors produced by the exact algorithm. One observes that (47) holds with w̃n
replaced with wn and ỹn replaced with yn. That is, yn = qθn(wn). The difference with the
approximate algorithm is in updating wn based on yn−1. To derive this map, we need the
following lemma. Recall that πj is the prior on the j-th change point λj.

16

Lemma 3. Let I ⊂ [d] and consider collections of integers {kj}j∈I and {mj}j∈I in {n + 1, n +
2, . . . }. Then, we have

P (λj = kj , j ∈ I|Xn
∗)

P (λj = mj, j ∈ I|Xn
∗)

=
∏

j∈I

πj(kj)

πj(mj)

Proof. This follows from Lemma 6 which implies P (λj = kj , j ∈ I|Xn
∗) and P (λj = mj , j ∈ I|Xn

∗)
are equal for the collection of integers considered.

We note that both wn and yn−1 are based on conditional probabilities, given Xn−1
∗ , of events

in terms of {λj}. Updating wn based on yn−1 amounts to evaluating the values a fixed probability
measure assigns to a collection of sets, based on the values it assigns to a different collection of
sets. The particular nature of these sets and Lemma 3 allow this computation.

The formula has an algebraic structure. We work with polynomials of degree d, in indeter-
minate variables ω and ω. We assume the product of ω and ω to be noncomutative. (That
is, ωω 6= ωω.) Denote the space of such polynomials as Xd. We think of ω and ω as digits
1 and 0, respectively. Then, a string consisting of ω and ω represents a binary number. Let
B(·) be the map that produces this binary number given a string of ω and ω. For example,
B(ωωω) = 101 ≡ 5.

Let Lyn−1(·) be a “linear” map defined on Xd which maps a string s of ω and ω to (yn−1)B(s).
This implies, for example,

Lyn−1(2ωωω + 3ωωω) = 2(yn−1)5 + 3(yn−1)3.

Let

u
(i)
j (ω, ω) =

{
ρjω, bj(i) = 0

ω + ρjω bj(i) = 1.
(48)

The following lemma describes the rule mapping yn−1 to wn.

Lemma 4. For i = 0, . . . ,m− 1,

(wn)i = Lyn−1

(
u
(i)
1 (ω, ω)u

(i)
2 (ω, ω) · · · u

(i)
d (ω, ω)

)
. (49)

The sketch of the proof is given in Appendix B. To get a sense of what (49) means, consider
the case d = 2. Then, for example,

(wn)2 = Lyn−1

(
(ω + ρ1ω)(ρ2ω)

)
= Lyn−1

(
ρ2ωω + ρ1ρ2ωω

)

= ρ2(yn−1)2 + ρ1ρ2(yn−1)0.

As can be seen from this example, (49) is a compact way of expressing a linear relation wn =
Texyn−1, for some m×m matrix Tex. For example, for d = 2, the matrix is given by

Tex =




1 ρ2 ρ1 ρ1ρ2
0 ρ2 0 ρ1ρ2
0 0 ρ1 ρ1ρ2
0 0 0 ρ1ρ2


 . (50)

This completes the proof.

17

6.3 Bounding Lipschitz constant of Tex

Since Tex is a Markov transition matrix, we have 1TmTex = 0. Note that our convention leads to
the transpose of what is usually considered a Markov transition matrix. That is, columns of Tex
sum to 1 (not the rows). Based on Lemma 4, it is not hard to observe the following:

• The first column of Tex is equal to e
(0) := (1, 0, . . . , 0) ∈ R

m.

• The first row of Tex consists of elements of the form
∏
j∈S ρj, for S ⊂ [d]. In particular,

the first element of the first row is 1 (corresponding to S = ∅) while the last element is∏d
j=1 ρj (corresponding to S = [d]).

We will apply Lemma 5 of Appendix C to the linear map F̃ given by F̃ (x) = Texx for x ∈ R
m.

The Jacobian of Tex is constant and equal to Tex. Applying Lemma 5 with u(x) = (
∏d
j=1 ρj)e

(0)

(independent of x), we obtain

LipF̃ ≤ |||Tex − (

d∏

j=1

ρj)e
(0)1Tm

︸ ︷︷ ︸
=:A

|||1.

Note that e
(0)1Tm is an m × m matrix with the first row being all ones, and the rest being

all zeros. Thus, the matrix A coincides with Tex outside the first row. Moreover, on the
first row, where Tex has entry

∏
j∈S ρj, A has entry

∏
j∈S ρj −

∏d
j=1 ρj ≥ 0. That is, all the

entries of A are nonnegative. Hence, the absolute column sums for A, are the same as its
column sums. Furthermore, since all the columns of both Tex and e

(0)1Tm sum to one, we
have |||A|||1 =

∑
iAik = 1 −

∏d
j=1 ρj , for any k. This gives the desired bound on the Lipschitz

constant. (It is not hard to verify that bound is sharp, that is, the Lipschitz constant is in fact
equal to1 −

∏d
j=1 ρj .)

6.4 Bounding Lipschitz constant of Tap

Recall the expression for Tap given in (46). We will rewrite it as the composition of two functions.
Recall that m := 2d. Let H : Rd → R

m be defined as

H(u) := H(u1, . . . , ud) := ⊗d
j=1

(uj
1− uj

)

where ⊗ is the (tensor) product of two measures defined in Section 6.1. Here, we use our
convention (for embedding Pd in R

m) to treat the result of the tensor product as an element of
R
m. For example, for d = 2, H(u1, u2) =

(
u1u2, u1(1− u2), (1− u1)u2, (1− u1)(1 − u2)

)
.

Also, let K : Rm → R
d be defined as

K(y) :=
(
1− ρ1[M1(y)]0, . . . , 1− ρd[Md(y)]0

)

where [Mj(y)]0 is the value assigned to 0 by the jth marginal of y. (Note that each marginal
Mj(y) is a probability distribution on {0, 1}.) To simplify notation, we will also use

uj(y) := 1− ρj [Mj(y)]0

18

so that K(y) =
(
u1(y), . . . , ud(y)

)
. For example, for d = 2, with y = (y3, y2, y1, y0), we have

u1(y) = 1− ρ1(y1 + y0) and u2(y) = 1− ρ2(y2 + y0).
Recalling the definition (44) of Rρj , and (46), one observes that H ◦ K := H(K(·)) is an

extension of Tap to all of Rm. In other words,

Tap = H ◦K
∣∣
Pd
.

Thus, we can estimate the Lipschitz constant of Tap by computing the Jacobian of H ◦K and
applying Lemma 5 of Appendix C. By chain rule, the Jacobian of the composition is the product
of Jacobians. More precisely, JH◦K(y) = JH(u)JK(y) with u = K(y).

To compute JH(u) ∈ R
m×d, first note that we can write the ith component of H(u) as

[H(u)]i =
∏d
k=1 u

bk(i)
k (1−uk)

1−bk(i) where bk(i) is the bit notation introduced in (38). It follows
that

[JH(u)]ij = ∂uj [H(u)]i = (−1)1−bj (i)
∏

k 6=j

u
bk(i)
k (1− uk)

1−bk(i)

For y ∈ Pd, we have u = K(y) ∈ [0, 1]d, that is, both uk and 1 − uk are nonnegative for all
k ∈ [d]. It is not then hard to verify that

∑m
i=1

∣∣[JH(u)]ij
∣∣ = 2, for all j ∈ [d]. That is, all the

absolute column sums of JH are equal to 2, which implies |||JH(u)|||1 = 2 for u ∈ [0, 1]d.
Turning to JK(y) ∈ R

d×m, we note that this is in fact a constant matrix, as K is an affine
map. Using an expression similar to (45), we have

[JK]jℓ = ∂yℓuj = −ρj∂yℓ

(∑

i: bj(i)=0

yi

)
= −ρj(1− bj(ℓ)).

In other words, the j-th row of JK contains −ρj in columns ℓ with bj(ℓ) = 0, and is zero
otherwise. For example, for d = 3 (and m = 8), we obtain

JK = −



0 0 0 0 ρ1 ρ1 ρ1 ρ1
0 0 ρ2 ρ2 0 0 ρ2 ρ2
0 ρ3 0 ρ3 0 ρ3 0 ρ3




According to Lemma 5, it is possible to add a constant to each row of JK and still obtain an
upper bound on the Lipschitz constant of Tap. We will add ρj/2 to each column in the j-th row.
More precisely, let r := (ρ1, . . . , ρd) ∈ R

d. Then, we consider JK + 1
2r1

T
m. For example, in the

case of d = 3, we have

JK +
1

2
r1Tm =

1

2



ρ1 ρ1 ρ1 ρ1 −ρ1 −ρ1 −ρ1 −ρ1
ρ2 ρ2 −ρ2 −ρ2 ρ2 ρ2 −ρ2 −ρ2
ρ3 −ρ3 ρ3 −ρ3 ρ3 −ρ3 ρ3 −ρ3


 .

It is easy to verify that the absolute column sum for each column of this new matrix equal to
1
2

∑d
j=1 ρj. That is, |||JK + 1

2r1
T
m|||1 =

1
2

∑d
j=1 ρj.

We can now apply lemma 5 to obtain

LipTap ≤ sup
y∈Pd

|||JH◦K(y) +
(1
2
JH(u)r

)
1Tm|||1

= sup
y∈Pd

|||JH(u)
[
JK +

1

2
r1Tm

]
|||1

≤ sup
y∈Pd

{
|||JH(u)|||1 |||JK +

1

2
r1Tm|||1

}
=

d∑

j=1

ρj

19

where as before u = K(y), and the last inequality follows by the sub-multiplicative property of
||| · |||1. The proof is complete.

References

[1] A. N. Shiryayev. Optimal Stopping Rules. Springer-Verlag, 1978.

[2] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[3] M. I. Jordan. Graphical models. Statistical Science, 19:140–155, 2004.

[4] P. Diaconis and D. Freedman. Iterated random functions. SIAM Rev., 41(1):45–76, 1999.

[5] O. P. Kreidl and A. Willsky. Inference with minimum communication: a decision-theoretic
variational approach. In NIPS, 2007.

[6] M. Cetin, L. Chen, J. W. Fisher III, A. Ihler, R. Moses, M. Wainwright, and A. Will-
sky. Distributed fusion in sensor networks: A graphical models perspective. IEEE Signal
Processing Magazine, July:42–55, 2006.

[7] X. Nguyen, A. A. Amini, and R. Rajagopal. Message-passing sequential detection of mul-
tiple change points in networks. In ISIT, 2012.

[8] A. Frank, P. Smyth, and A. Ihler. A graphical model representation of the track-oriented
multiple hypothesis tracker. In Proceedings, IEEE Statistical Signal Processing (SSP).
August 2012.

[9] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Loopy belief propagation: Convergence
and effects of message errors. Journal of Machine Learning Research, 6:905–936, May 2005.

[10] Alexander Ihler. Accuracy bounds for belief propagation. In Proceedings of UAI 2007, July
2007.

[11] T. G. Roosta, M. Wainwright, and S. S. Sastry. Convergence analysis of reweighted sum-
product algorithms. IEEE Trans. Signal Processing, 56(9):4293–4305, 2008.

[12] D. Steinsaltz. Locally contractive iterated function systems. Ann. Probab., 27(4):1952–1979,
1999.

[13] W. B. Wu and M. Woodroofe. A central limit theorem for iterated random functions. J .
Appl. Probab., 37(3):748–755, 2000.

[14] W. B. Wu and X. Shao. Limit theorems for iterated random functions.. :. J. Appl. Probab.,
41(2):425–436, 2004.

[15] Ö. Stenflo. A survey of average contractive iterated function systems. J. Diff. Equa. and
Appl., 18(8):1355–1380, 2012.

[16] A. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes: With Ap-
plications to Statistics. Springer, 1996.

20

[17] A. A. Amini and X. Nguyen. Sequential detection of multiple change points in networks:
a graphical model approach. IEEE Transactions on Information Theory, 59(9):5824–5841,
2013.

[18] Yu. V. Kozachenko V. V. Buldygin. Metric characterization of random variables and ran-
dom processes. Amer. Math. Soc., 2000.

A Proof of (8)

Recall that π(k) := P(λ = k). Let [n] := {1, . . . , n} and [n − 1]c := {n, n + 1, . . . }. For
k, r ∈ [n− 1]c, we have

P(λ = k|Xn−1)

P(λ = r|Xn−1)
=
P (Xn−1|λ = k)π(k)

P (Xn−1|λ = r)π(r)
=
π(k)

π(r)
(51)

since the function k 7→ P (Xn−1|λ = k) is constant over [n − 1]c. In fact, P (Xn−1|λ = k) =∏n−1
t=1 g(X

t) for all k ≥ n. In (51), take r = n, and sum over k ∈ [n − 1]c to obtain (after
inversion)

P(λ = n|Xn−1)

P(λ ∈ [n− 1]c|Xn−1)
=

π(n)

π[n− 1]c
.

For any subset A ⊂ N := {1, 2, . . . }, let us use the notation γn−1A := P(λ ∈ A|Xn−1). Thus,

we have shown γn−1{n} = π(n)
π[n−1]cγ

n−1[n− 1]c.
From additivity of probability measures, we have

γn−1[n− 1]c = 1− γn−1[n− 1], γn−1{n} = γn−1[n]− γn−1[n− 1].

Substituting these in the earlier equation, we obtain

γn−1[n] =
π(n)

π[n− 1]c
+

(
1−

π(n)

π[n− 1]c

)
γn−1[n− 1]

which is the desired result.

B Proof of Lemma 4

Let N := {1, 2, . . . } denote the set of natural numbers. Let A := [n] := {1, . . . , n} and let Ac be
the complement of A in N, that is, Ac = {n + 1, n + 2, . . . }. Similarly, let B = [n + 1] and let
Bc = {n+ 2, n + 3, . . . }. We also let b := {n + 1}. (These notations are local to this proof.)

For an index set I = {i1, . . . , ir} ⊂ d, let γn
I
denote the joint posterior of λℓ, ℓ ∈ I given Xn

∗ .
More precisely, γn

I
(E1, . . . , Er) = P(

⋂r
j=1{λij ∈ Ej}|X

n
∗) for any collection E1, . . . , Er of subsets

of N. Let A◦ denote either A or Ac, and similarly for B◦. We would like to compute quantities
of the form γn

I
(B◦, . . . , B◦) in terms of known quantities γn

I
(A◦, . . . , A◦). For simplicity, we will

drop superscript n from now on.
We will use − and + to denote set difference and disjoint union, respectively. For example,

B = A+ b and Bc = Ac− b. We proceed in stages, by first finding probabilities of “sequences of
Ac and b”; we do this by an example. Consider γ1234(A

c, b, Ac, b). Applying Lemma 3, we have

γ1234(A
c, b, Ac, b)

γ1234(b, b, b, b)
=
π1(A

c)

π1(b)

π3(A
c)

π3(b)
=

1

ρ1ρ3
.

21

Similarly,

γ1234(A
c, Ac, Ac, Ac)

γ1234(b, b, b, b)
=

1

ρ1ρ2ρ3ρ4
.

It follows that

γ1234(A
c, b, Ac, b) = ρ2ρ4 γ1234(A

c, Ac, Ac, Ac),

which is the desired result, since the RHS is known. By induction, we have the following
rule: The probability of a sequence of Ac and b is the probability of the sequence of all-Ac

multiplied by “ρi”s associated with places of “b”s. We will later use a more compact notation:
AcbAcb = ρ2ρ4A

cAcAcAc, to express the same fact.
We turn to the case where we have a sequence of Ac and b an a single A. Consider, for

example,

γ1234(A
c, b, A, b) = γ1234(A

c, b,N, b)− γ1234(A
c, b, Ac, b)

= γ124(A
c, b, b) − γ1234(A

c, b, Ac, b)

= ρ2ρ4 γ124(A
c, Ac, Ac)− ρ2ρ4 γ1234(A

c, Ac, Ac, Ac)

= ρ2ρ4 γ1234(A
c, Ac, A,Ac).

where third equality follows by the rule regarding sequences of Ac and b. Thus, by induction,
we can revise our rule to include the sequences with a single A: We proceed by replacing “b”s
with Ac and multiplying by corresponding “ρi”s, leaving the A intact.

Now, consider a sequence with more than one A. For example,

γ1234(A
c, b, A,A) = γ1234(A

c, b, A,N) − γ1234(A
c, b, A,Ac)

= γ123(A
c, b, A) − γ1234(A

c, b, A,Ac)

where both terms involve sequences with single A. Applying our rule to each term and combining
the result as before, we get, in compact notation, AcbAA = ρ2A

cAcAA. Thus, by induction, our
rule extends to sequences of Ac, b, and arbitrary number of “A”s: Replace “b”s with “Ac”s and
scale appropriately, leaving “A”s intact.

We are now ready to obtain probabilities of a sequence of Bs and Bcs. Consider the following
example,

γ12(B
c, B) = γ12(A

c − b,A+ b)

= γ12(A
c − b,A) + γ12(A

c − b, b)

= γ12(A
c, A)− γ12(b,A) + γ12(A

c, b)− γ12(b, b),

by finite additivity of probability measures. We can represent this identity in a compact form.
BcB = (Ac − b)(A+ b) = AcA− bA+Acb− bb. Applying our rule, we obtain

BcB = AcA− ρ1A
cA+ ρ2A

cAc − ρ1ρ2A
cAc

= (1− ρ1)A
cA+ (1− ρ1)ρ2A

cAc.

This result can be obtained easier by replacing b in the first and the second sets of parentheses
with ρ1A

c and ρ2A
c, respectively, and following rules of a noncommutative associative algebra,

BcB = (Ac − b)(A+ b)

= (Ac − ρ1A
c)(A+ ρ2A

c) = (1− ρ1)A
c(A+ ρ2A

c) = ρ1A
cA+ ρ1ρ2A

cAc.

22

Using this procedure, we can express the probability of any sequence of B and Bc in terms of
sequences of A and Ac. As another example,

BcBBBc = (Ac − b)(A+ b)(A+ b)(Ac − b)

= (Ac − ρ1A
c)(A+ ρ2A

c)(A+ ρ3A
c)(Ac − ρ4A

c)

= (ρ1A
c)(A+ ρ2A

c)(A+ ρ3A
c)(ρ4A

c). (52)

As before, the final expression is obtained by expanding. The general pattern is now clear and
can be formally established by induction. The proof is complete. To link with the notation of
the theorem, replace Ac with ω and A with ω. The function u(i) defined in (48) replaces a set of
parantheses, in derivations above, with the correct expression in terms of ω and ω, depending
on whether the set of parantheses contains a + or a − sign.

C Bounding the Lipschitz constant of a probability map

This appendix is devoted to a lemma which allows us to estimate the Lipschitz constant of a
map F : P → P, on a probability space P, based on the Jacobian matrix of its extension. Here,
P := Pd := P({0, 1}d) is considered to be a subset of Rm where m = 2d. For a C1 function
F̃ : U → R

m defined on some open subset U of Rm, let J
F̃
denote its Jacobian matrix, i.e.,

J
F̃
:=

(
∂xj F̃i

)
∈ R

m×m

where ∂xj F̃i is the partial derivative of the i-th component of F̃ w.r.t. the its j-th variable.
For a square matrix A and p ∈ [1,∞], let |||A|||p denote its norm as an operator on ℓp, that

is, |||A|||p := sup‖x‖p≤1 ‖Ax‖p, where ‖ · ‖p is the vector ℓp norm. It is well-known that |||A|||1 (
|||A|||∞) is the maximum absolute column (row) sum of matrix A.

Recall that 1m ∈ R
m denotes the all-ones vector.

Lemma 5. Let U be an open subset of Rm, containing P. Let F̃ : U → R
m be a C1 extension

of F : P → P, that is, F̃ |P= F . Then, for any function u : U → R
m with components in L1(U),

LipF̃ ≤ sup
x∈P

|||JF̃ (x)− u(x)1Tm|||1. (53)

Proof. Fix some x, y ∈ P and let zt := x+ t(y − x) for t ∈ [0, 1]. For v ∈ R
m, we have

vT
(
F̃ (y)− F̃ (x)

)
=

∫ 1

0
vT

d

dt
F̃
(
x+ t(y − x)

)
dt

=

∫ 1

0
vTJF̃ (zt)(y − x) dt

=

∫ 1

0
vT

[
JF̃ (zt)− u(zt)1

T
m

]
︸ ︷︷ ︸

=:RT
t

(y − x) dt

23

where the last line follows since x, y ∈ P implies 1Tm(y − x) = 0. Using ℓ1–ℓ∞ duality, we have

‖F̃ (y)− F̃ (x)‖1 = sup
‖v‖∞≤1

∣∣vT
(
F̃ (y)− F̃ (x)

)∣∣ ≤
∫ 1

0
sup

‖v‖∞≤1

∣∣(Rtv)T (y − x)
∣∣ dt

≤ ‖y − x‖1

∫ 1

0
sup

‖v‖∞≤1
‖Rtv‖∞ dt

= ‖y − x‖1

∫ 1

0
|||Rt|||∞ dt.

Let us denote the RHS of (53) by L. Since zt ∈ P for all t ∈ [0, 1], we have |||Rt|||∞ = |||RTt |||1 ≤ L,
for all t ∈ [0, 1], which completes the proof.

D An auxiliary lemma

Here, we record the following “constancy” property of the likelihood for the graphical model (9).
See [17, Lemma 3] for the proof.

Lemma 6. Let {i1, i2, . . . , ir} ⊂ [d] be a distinct collection of indices. The function

(k1, k2, . . . , kr) 7→ P (Xn
∗ |λi1 = k1, λi2 = k2, . . . , λir = kr)

is constant over {n + 1, n+ 2, . . . }r.

24

	1 Introduction
	2 Bayesian posterior updates as iterated random functions
	3 General convergence theory
	4 Multiple change point problem via latent variable graphical models
	4.1 Fast approximate message-passing (MP)
	4.2 Convergence of MP algorithms
	4.3 Simulation results

	5 Proof of Theorem ??
	5.1 Proof of Lemma ??

	6 Proof of Proposition ??
	6.1 The approximate algorithm follows general iteration (??)
	6.2 The exact algorithm follows general iteration (??)
	6.3 Bounding Lipschitz constant of Tex
	6.4 Bounding Lipschitz constant of Tap

	A Proof of (??)
	B Proof of Lemma ??
	C Bounding the Lipschitz constant of a probability map
	D An auxiliary lemma

