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Using black-hole inequalities and the increase of the bofizareas, we show that
there are arbitrarily small electro-vacuum perturbatioh¢he standard initial data of

the extreme Reissner-Nordstrom black-hole that, (byrealittion), cannot decay in

time into any extreme Kerr-Newman black-hole. This proves éxpectation that the

family of extreme Kerr-Newman black-holes is unstableethains of course to be seen
whether the whole family of charged black-holes, includimgse extremes, is stable or
not.
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1 Introduction

In this article it is proved that the family of the so calledximal Kerr-Newman black-holes is
unstable. To be concrete it is proved that that there arérarity small electro-vacuum perturba-
tions of the standard initial data of the extreme Reissnadbtrom black-hole that cannot decay
in time into any extreme Kerr-Newman black-hole.

To bring more accuracy to this introduction let us start @eing the mathematics and the
qualitative properties of the extreme black-holes. Theebtzian metric of the extreme Kerr-
Newman (EKN) space-time of electric char@e, magnetic charg€y,, angular momentund

and massi? = (Q%+1/432+Q4)/2+ 0, (Q*= Q2 +QZ,), is given by

_a2sinf 6 2asin” 6 — d
" A-acsi 12 : (r2+a2 A)dtde
2 2\2 2 nze z
(r°+a’)"-Aa’si sin26d402+—dr2+2d62,

wherea=J/m, = =r?+a?cos 6, andA = r? +a + Q> - 2mr, (see for instancé[5]). The coordinate
t ranges in(—oo0,00), r in (M,c0) and (0, ¢) are the standard coordinates of the unit spi$ére
The space-tim# is therefore diffeomorphic t&® x R x S°. The electromagnetic potentilis
given explicitly by

r . cosf
A= —Q?E(dt—asmzedqo) + Q'\"T(adt— (r?+a?)de)
and recall that the electromagnetic tensoFig = VaAp — VbAa, . The solution is rotational
symmetric and stationary. Of particular interest for thigcée are the EKN solutions wit = 0,
Qm = 0 butQg # 0, which are called extreme Reissner-Nordstrom (ERN). Whe= 1 the ERN

[IINote thatA is not smooth a{8 = 0} U {8 = 71}. In this article smooth mear@™.
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metric (from now on ERR) takes the synthetic form

@) 9= —(1-1/r)’d2+ — = dr?+r2d0?
(1-1/r)

and the electromagnetic potential simplifieste —dt/r. Over the Cauchy hypersurfa¢e= 0}
the electric field isE, = Fapn® = 9r/(r?|0r|) and the magnetic field is zero, i.Bq = «Fapn° = 0.
Heren is the time-like unit normal tdt = 0}. The solution is time symmetric and therefore
the second fundamental forkh of the slice{t = 0} is zero. Finally the solution is spherically
symmetric and static. For future reference the data setqver{t = 0} will be called thestandard
initial data of theERN; solutionand denoted by ; go, Ko; Eo, Bo).
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Figure 1: Picture of the (half) Penrose diagram of the EKNtlblaoles. The picture shows also a visualiza-
tion of the geometry of the standard initial data and therit@auchy horizon.

The EKN solutions form part of the larger family of Kerr-Newam (KN) space-times and
lie exactly between those KN space-times representingcdiates and those exhibiting naked
singularities. Due to their special properties, the EKNiohs have played a peculiar role in the
mathematical and physical analysis of black-holes. Sontieedf most noticeable features are the
following. The past and the future null infinity of the ERN spatime can be reached from any
of its space-time points. Yet the ERN space-time is geod#gimcomplete and exhibits future
and past Cauchy horizons. Each Cauchy horizon is diffeohioip R x S?, has complete null
generators and the area of any spherical section is

A=4m/4])+ Q2

In particular, if an extreme solution h&3 = 1 then to be the one witg = 1, Qu = 0 and
J=0tis necessary and sufficient that 4. Moreover the “initial” Cauchy hypersurfade =

0} is maximal and complete (as a Riemannian manifold), andgsssso trapped region. This
hypersurface is diffeomorphic f& x S? and has one cylindrical end and one asymptotically flat
(AF) end (see FigurEl1). Of special interest to us is the dyloal space-time of the ERN
solution (Bertotti’'s space-time). It is found by taking ajsencer; — 1, making then the change
of variables<=In ((r-1)/(ri-1)), t = (ri— 1)t in (1), and finally taking the limit ag — 1. This
gives the result

(3) §=—edt? + dx® + dQ?
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The three-metric oveft = 0} is thengp = dx® + dQ?, that is, that of the metric produfitx S?,
hence cylindrical. For future reference, over this sliaeetectric field i€y = g and the magnetic
field By and the second fundamental fokp are zero. The data sER x S?; §o, Ko; Eo, Bo) will be
called thestandard initial data of the extreni@N; throat (ERNTy).

It is fundamentally the presence of these peculiar Cauchizdrms what makes extreme so-
lutions so special. Are extreme black-holes physicallyisga solutions? Are they stable under
small perturbations of the initial data? What occurs tortherizons under such perturbations?

A revitalized interest in these old questions reappeardkdrast years as a part of new and
larger mathematical investigations on the stability otkkaole space-time<, [1], [16], [101.1[3],
[12] (to mention some). Most of these theoretical developimare characterized by the use of
linear techniques over the otherwise unperturbed ERN backgl. As a contribution to the on-
going discussion we prove here that there are arbitraribligmerturbations of the standard ERN
initial data whose evolution cannot decay in any way intoBK solution. The proofis satisfac-
tory to us in that it is the result of combining black-holeguoalities [11], [18], and the ubiquitous
law of area increase of event horizohs [7], and does not rebny linear or linearization tech-
nigue. In a sense, our argument belongs to a class of nate@dgures to prove instabilities that
was used in the literature during the last y@and which consists in finding certain inequalities
at the level of the perturbed initial data that are shown tpiopagated along the evolution and
that are incompatible with the stationary states that ongsv@ rule out as the long time limit of
the evolution (see for instande |14] and references thgrein
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Figure 2: Diagram of the initial data used in this article.

Before we pass to explain the generalities behind the pletafis explain in precise terms the
main statement to be proved. We first introduce the notiopefturbation” of the standard initial
data(Zo; go, Ko; Eo, Bp) of the ERN space-time.

Definition 1. Let(Z;g,K;E,B) be a smooth an maximal electro-vacuum data set and let k be an
integer greater or equal thaf. We say that the data set ésclose in ¢ to the ERN standard
initial data iff there is a diffeomorphisnp : 2o — Z such that for any(U,Up) equal to either
(9,90), (K,Kp), (E,Ep) or (B,Bp) we have

[ 67U -Uo ||c'g<0(zo) <&

Thecg0 norm of a tensoW (no matter its valence) is defined as usual by

2wl S 2
”W“cgo(zo) ‘SG%E JZ:;)KV W)(p)|go

121 would like to thank Piotr Chrusciel for making this remacdkme.
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The Definitior1 is satisfactory but we need to make sure Heperturbation “falls off” along the
asymptotically cylindrical end and that the “cylindricalyanptotic” is preserved. To be concrete
we will work with perturbations that “fall off exponentigllalong the cylindrical end into the
ERN; standard initial data”. Precisely, we say that a data(Zeg,K;E,B), e-close inC* to
(Z0;90,Ko; Eo,Bp), falls off exponentially intd Zo; go, Ko; Eo,Bp) along the cylindrical endff
there isA > 0 such that for anyU,Up) equal to eithefg,do), (K,Ko), (E, Ep) or (B,Bg) we have

lim NN(r=1) §(|(V(j)(¢*U—Uo))(p)|;O -0,
i=0

r(p)—1

where¢* is the pull-back by the diffeomorphisgh: o — Z (note thatr(p) — 1 means that "
diverges along the cylindrical end).
With all these definitions at hand we can state our main resufidllows.

Theorem(d. For anye > 0 and integer k> 1 there is a smooth and maximal electro-vacuum data
set(Z;0,K;E,B), e-close in X to the standard ERNinitial data and falling into it exponential
along the cylindrical end, which cannot decay, towards ti@ire or the past, into any EKN

solution.

Let us overview now the arguments behind the proof. Techibiggimportant information
has to be found inside the text. The argument that followsbeagione in any time direction. The
idea is to construct (arbitrarily small) axisymmetric pebtations of the standard ERNhitial
data and do so with sufficiently control to be able to prove tadarginally Outer Trapped
Surface (MOTS) forms separating the two ends (see Figurén2addition, the perturbation is
done keepin@e = 1, Qu = 0 andJ = 0. In particular, and because the electromagnetic charges
and the angular momentum are conserved, if the perturbatiolves into an EKN space-time in
the long-time, then it must be one wi@e = 1, Qy = 0 andJ = 0, that is, it has to be the ERN
that is being perturbe@l Moreover, due to presence of a MOTS which acts as a barhier, t
event horizon must intersect the initial Cauchy hypera@fomewhere between the MOTS and
the asymptotically flat end. In parallel to all this it is shothat every surfac8 embedded in the
initial hypersurface and separating the two ends has atietlysgreater than #. In particular the
intersection of the event horizon and the initial hyperacefmust have area strictly greater than
47t. As the areas of sections of the event horizon are non-dgagean time, we conclude that
the initial data cannot evolve into the ERNolution because its horizon has area exactty#he
perturbed data set is depicted in Figure 2 and the (presueweti)tion in FiguréB.

Like any argument by contradiction, the one before does aptrhat indeed occurs during
the time evolution. It just says something of what cannofpeap Nevertheless, the presence of
the mentioned MOTS in the perturbed initial data suggessithmust decay in the long-time
into a non-extremal KN black-hole. For this reason it is etpd also that whatever occurs to
the “old” horizon of the ERN, that part of the space-time stays hidden inside the nevkilate
region. Regardless of that, this work doesn't yield anytligbout the fate of the ERN horizon
under perturbations. In this sense it doesn’'t make previnestigations about the ERN horizon
less interesting.

In principle, with further work but following a similar argoent, one should be able to prove
that there are arbitrarily small perturbations of any EKIdttbannot decay in any way into an
EKN black-hole. What makes the use of the ERN and not of angrdEiKN solution more useful
is that the perturbations can be made time-symmetric arttiiforeason proving the existence of a
MOTS reduces to proving the existence of a minimal surfadelwis technically more accessible

8170 be certain here, the charges and the angular momentunoioaly conserved at null infinity, they take also the
same values over any embedded sphere isotopic to a “sphésgagial infinity”. This is explained in Sectidd 2.



2 Background material

@],

The organization of this article is the following. In Sectid we recall the basic material to be
used about electro-vacuum space-times. In SeElion 3 wasdiddack-hole inequalities on data
sets that we call of the ERN'type” and that are introduced in Definitih 3. Roughly spieak
such data sets are defined to share the topology and the agioggiometry of the standard initial
data of the ERN solution. Not surprisingly the perturbations of the staddaitial data of the
ERN; solution that we are going to use are of the ERype. The main result of this section is to
prove that the area of any (compact, boundaryless and eratiesidrface separating the two ends
of any data set of the ERNype is strictly greater than/d The analysis in this section shares
many elements withi [18]. In Secti@h 4 we construct the meetibinitial perturbations using the
conformal method. The existence of solutions of the con&raguations is proved following
standard barrier methods [8] which give good control on tiet®ns. In Sectiofil5 we show the
rigidity of the ERNT; initial data which will be necessary in Sectioh 6 to show thag can make
arbitrarily small perturbations containing MOTS. It is wWomentioning that the rigidity of the
ERNT; initial data is of interest in interest. In particular therftation of extreme RN throats
along sequence of data sets can be studied in the same wag dsmein([[18] with the formation
of extreme Kerr-throats. The proof of the main result follogvthe lines explained above is made
formally and finally in Sectiohl7.

2 Background material

In this section we recall succinctly and with certain forityathose notions, like that of electric
and magnetic charges, that will be necessary throughouarticde. The formal treatment is
justified by the mathematical nature of the paper.

We will be working with smooth electro-vacuum space-tinils g; F), where(M;g) an ori-
entable and time orientable Lorentzian manifold. We wiliiage that an orientation dvi was
chosen and that a future direction was assigned .zl a space-like hyper-surface ama fu-
ture unit normal t&. As usual, the orientation dd and the fielch provide an orientation oB,

more precisely{ei(p),&(p),e3(p)} is a positive basis ofp2 iff {n(p),e(p),e(p),e3(p)} is
a positive basis ofpM. Space-times tensors, like the Ricci curvatgie of g, will be boldfaced.

(i) The Einstein-Maxwell system.

In coordinate-independent form the Einstein-Maxwell dapnes are
1
(4) R|c—§Rg:8nT, dF=0, and dxF=0

where d is the exterior derivative andis the g-Hodge star, namelyFg, = eabchCd/Z. The
electromagnetic energy-momentum tengappearing in[(#) is

Tap= %T(FachC - %chFCdgab)-
The 3+1 picture of {4) will be also used during the article. M¥eall it in what follows[[6]. Let

> be a space-like hyper-surface (possibly with boundary)\aachowhere zero time-like vector
field defined on an open neighborhoo®gf By movingZy alongV one obtains a flow of space-
like hypersurfaceg; (at least for a short time). Coordinates chars x,x%) are propagated by
V to everyZ; and any twax; andZ;, are naturally diffeomorphic. In this way one obtains a flow
(gij (t),K;j (t)) of induced three-metrics and second fundamental formsefixttd manifold,.
Writing V|5, = N(t)n+ X' (t)d, wheren is a future unit normal t&;, one obtains also a flow of

1] would like to thank Sergio Dain for pointing this out.
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lapse functiond\(t) and shift vector(t) = X'd;. In this 3+ 1 setup the Einstein equation (first
eq. in[4)) is
gij = —2NKij + Lxij,
Kij = =VivjN+N(Rigj - 2K K'; ) + LxKi; ~87IN(Tij + 3(Tapg®)gij),
R=|K|? - k2 + 167T g,
ViKij -Vik=8nTy;,
whereTgg = T(n,n) and T = T(n,4;), V is the g-covariant derivativek = trgK is the mean
curvature andC is the Lie-derivative. The space-time metric is writtenhe form
g=—(N?-XX"dt?+ X (dtedX +dx @ dt) + gjjdXdx

At every sliceZ;, the electric and magnetic fieldsandB, are defined b’ = F';n? andB' =
«F',n@. In terms of them the electro-vacuum constraint equatiogs a

R=|K[>-Kk?+2(|E[*+|B),
V'Kij —Vjk=2(ExB)j,
V'Ei =0,

V'Bi=0

(5)

where(ExB); = eijkEj BX. A set(g,K; E,B) satisfying the constraint equatiofi (5) on a manifold
2 is called arelectro-vacuum data sethe data is maximal i = trgK = 0.

(ii) The electric and magnetic charges.

Let [S] be an oriented, compact and boundaryless surdembedded ifM. The brackef ]
signifies that an orientation d®has been assigned. Th@ga([S]) andQwm ([S]) are defined by

QE([S]):_i/[S]*F and Qu([S]) = 1f[S]F

am Cam
As dF =0 and d-F = 0 thenQg([S]) andQwm ([S]) depend only on the homology class [&].
We will be referring this fact as theonservation of chargelf Sis embedded in a space-like
hypersurfac& thenQg([S]) andQu ([S]) take the more familiar expressions

(6) Qe([S) = 4 [<E.C>dA and Qu([S])= - [ <B.Z>da

where< E, >= E'¢g;j and wherg] the unit normal field t&in = such that if{ex(p),es(p) } is
a positive basis fof,Sthen{n(p),{(p).e(p),e3(p)} is a positive basis foM. Observe that if
[S] and[S] are homologous i (and therefore i) then the conservatio@e([S]) = Qe([S])
andQu([S]) = Qu([S]) can be seen also as a consequence of the lavis-d¥ and divB =0
(divU = V'U)).

In this context, the total charg€3 andQy that show up in the metric expressibn (1) of the
EKN solutions are of course the electric and magnetic clsaafiany sphere withandr constant
and oriented using the outgoing norngat d; /|| .

It is the case that the normélwill be given from the context (or simply will not matter). Fo
this reason we will often writ®g(S) andQu (S).

BlAssume{d, dr,dg, 4 ) is positive forM.
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(iif) Angular momentum in electro-vacuum space-times.

Suppose now that the electro-vacuum space-{ikhgg; F) is axisymmetric and thdt = dA with
the potentialA axisymmetri. Denote byé the axisymmetric Killing field. Then the angular
momentum of an oriented and axisymmetric (compact and benytess) surfacgS] is [5]

@) J([S])::%Tf[s]*(VaEbH%Tf[S](AaEa)*F

The angular momentum is conserved tob [5]. Name[{Zifis an oriented compact and axisym-
metric hypersurface dfl andd[Z] = [S]-[S] thenJ([S]) =J([S]).

If Sis embedded in an axisymmetric Cauchy hypersurfatieen the first term irf{7) (which is
the Komar angular momentum) reduces to the standard (ggi(&,{)dA)/8mand is therefore
zero wherK = 0. If in additionB = 0 overZ then the second term ifl(7) is also zero. To see this
use the axisymmetry ok to geté?F, = ViA(&) and to conclude thak (&) must be a constant
overZ. WhenSis in addition a sphere then the constant must be zero beédq§gemust vanish
at the axes. This information shows that the perturbatiomsitucted in Sectionl 4, which have
K =0 andB =0, also have total angular momentdraqual to zero.

(iv) The stability inequality of minimal surfaces embeddedin maximal data sets.

Let (Z;0,K;E,B) be an electro-vacuum data set and supposelttsaa (compact, boundary-less
and orientable) minimal surface embedde&inRecall that a surfac8is said minimal inside
(Z;g) if its mean curvature is identically zero. Léte a unit normal vector field t8in X and let

o : S— R be a smooth function. The first variation of area wisaa deformed alon@  is zero
by minimality. Instead, the second variation[i5 [9]

©) AY(9):= [ [Ival (1o +Ric(Z. ) a?]dA

where here® is the second fundamental form 8f The surfac&is said to be stable il (S) >0
for all a. In dimension three the r.h.s dfl(8) is simplified due to theniity 2k = (tr,©)? -
|02+ R-2Ric(¢, ¢), wherek is the Gaussian curvature 8{with its induced metric). Using this
expression, the minimality d& (i.e. t,© =0) and the energy constraint we deduce th& i$
stable then for ang we have

1
© [(IvaP+ka?)da> 5 [ (2EF+2BfR + [KP+[OF k) a’dA

3 Black-holes inequalities in maximal data sets

Definition 2. We say that a sphere S embedded in a maximal electro-vacuarseté> ; g, K; E, B)
is a (normalized) extreme RN sphere if over S we have

(10) k=1, E=¢, B=0, ©=0, and K=0,

wherek is the Gaussian curvaturé, is a unit normal to S irk and© is the second fundamental
form of Sin(Z;g).

Normalized extreme RN spher8sare totally geodesic and ha{@:(S)| =1, Qu(S) =0 and
A(S) = 4.

el F is exact then an axisymmetric potentftan always be found by averaging any potential by the ratatigroup
U (1). Observe too thef is exact iff all the magnetic charges (i@m ([S]) = 0 for all S) are zero.
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The following lemma discusses the equality case in the gémequalityA > 4nQ§ and that
was not treated i [13].

Lemma 1. Let S be a stable (compact, boundaryless and orientablemalrsurface embed-
ded in a maximal electro-vacuum data set and havig§)A 4mand |Qg(S)|=1. Then, Sis a
(normalized) extreme RN sphere.

Proof. Recall from[[9) that the stability inequality of the area liep

2 2 2 2. KP [OF)
(11) fs(|Va| P Ka )dAsz(|E| +[BP+ -+ S ) a?dA

forall a : S—R. As|Qg(S)| = 1 we can select the unit normal fiefdto Ssuch that%T[S< E,(>
dA=|Qe(9)| =1. Choosingx = 1 in (I1) and using then Gauss-Bonet and that

1/2
_ 1 1 2
we obtain

2 2

This shows thaB = 0, K = 0 and® = 0 and that equality must hold. Therefore equality must hold
also in [12) which implies (by Cauchy-Schwarz) tkat {. It remains to see that =1, i.e. that
Shas a round metric. Let us show this below.

UsingB=0,K =0,0 =0 andE = { in (7)) we obtain

K|? e
4nz4n+fs(|B|2+u+u)dA

fs( Ival?+(k-1)a®)dA>0

for all functionsa. This implies that the first eigenvaldeof the operatoor — -Aa + (k - 1)a
must be non-negative. Denote by its eigenfunction (which is unique up to a constant and that
is well known to be nowhere zero). Then we have

(13) -Aay +(K-1)ay =Aaq,
Multiplying by 1/a, and integrating ove®we obtain
—fs|vlna}\ 2dA=4mA >0
This implies thatA = 0 and thato, is a constant. Using this information {n{13) we obtair 1

as wished. ]

Definition 3. A maximal electro-vacuum data 9&; g,K; E,B) is said to be of the ERNype if
there is a (smooth) diffeomorphigin >y — % such that

Jlim [(@7U)(p) - Uo(p)|g, =0
where (U,Up) is any of the pair9g,do), (K,Kp), (E,Ep), (B,Bp) and p— £nd means “as p
diverges along the cylindrical end or the asymptotically @ad”.

Observe that we require thap*g, ¢ *K; ¢ *E, ¢ *B) converges td go, Ko; Eo, Bp) along the
ends only inC°. For this reason the ADM masses of both data sets are notssitgequal.
However the total electric and magnetic charges must s&@sdime as they can be calculated
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from the formulas((6) along the divergent sequence of spt&re {r =r;} on the cylindrical end.
That is, any data set of the ERM/pe has total charge®g| = 1 andQy = 0.

The next proposition is essentially a particular case oféiselts in[[13]. We include a proof
for a more convenient exposition.

Proposition 1. Let(Z;g,K;E,B) be a maximal electro-vacuum data set of ERj\be. Then every
(compact, boundaryless and orientable) embedded surfackei@® is non-contractible inside
has

(14) |IQe(S)|=1 and A(S)>4m

Proof. We prove first thatQg(S)| = 1. ThinkZ asR3\ {0} andSas a surface embedded in it.
Then recall that any compact, boundary-less and orientabface embedded iR® dividesR®
into two connected components one of which is necessarlipunded. ASis non-contractible
inside R3\ {0} then the bounded component &f \ S must contain the origim. That is,S
separates the two endsDfnd the electric charge &(with an appropriate normal) must be that
of the asymptotically flat end, i.¢Qg(S)| = 1.

We prove now thaf\(S) > 47. Assume by contradiction the existence ofSamith A(S) < 47t
Let A(S) =inf{A(S),S isotopic toS}. Then obviously we haverd> A. We claim that we also
haveA(S) > 0. In fact, if there is a sequen&; of surfaces isotopic t8 such thaA(S;j) - 0 then

1 1
1=IQE(S,-)I:ETUg <E,l> dA‘ SEHEHL?A(Sg)eO
]

which would show a contradiction.

Now, following [15] (THEOREM 1’ ) there is a (non-empty) set of compact boundary-less
and non-contractible (insidg) minimal surfacegS;,...,S} embedded ifx and a set of positive
integers{ny,...,n;} such that

il
A(S) = ;niA(S)

As X is diffeomorphic taR3\ {0} then all theS’s must be orientable and therefore stable minimal
surfaces[[15]. Consider no@ and note tha®A(S;) < A(S) < 41. We show now that in addition to
this it must also bé\(S;) > 4, which is a contradiction. To show(S;) > 41T we recall (as was
shown before) thdQg(S;)| = 1. Therefore plugging = 1 in (I1) we have

1 2 (4mQe(S)])?  (4m)?
(15) 4n2fsl|E|2dA2@(/sl|<E’Z>|dA) > AS) = AS)

as wished. [

The following crucial refinement of Propositibh 1 shows tequality in the second equation
of (I4) cannot be achieved. The proof is based in similarrmaent to those in [18].

Proposition 2. Let(Z;g,K;E,B) be a maximal electro-vacuum data set of ERj\be. Then every
(compact, boundary-less and orientable) embedded suBaghich is non-contractible inside

[IThere is a caveat here. Strictly speakingEDREM 1’ applies to manifolds with convex boundary which is not the
case here (instead we have an AF end and a CylindricakéhdS?). To apply THEOREM 1’ one can work between two
spheres, one convex and far away in the AF end and anothen#r@n the cylindrical end where in a neighborhood of
it one modifies slightly the metric to have also a convex bamdApply THEOREM 1’ and then show that the minimizer
does not intersect the deformed region. The reader can se¢histype of argument works when we use as similar one
in the proof of Aux-Propositiof]3.
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has
A(S) > 4m.

Proof. By Propositiof 1 it is enough to show that equalitylinl(14)matrbe achieved. Proceeding
by contradiction assume then that ther&jsvith A(S) = 41. Then observe that Bis isotopic to
S thenSis also non contractible inside Therefore, again by Propositibh 1, we ha\gs) > 47
for any surfaceSisotopic t0S. This implies thats, is minimal and stablBl, By Lemmd1S is
an extreme RN sphere.

Let .75 be a large and strictly convex sphere (w.r.t the outer ngronadr the asymptotically
flat end. Denote bydg the region enclosed by it and the cylindrical end and assinaeSs c
Int(Qo). In what follows we are going to use this regi@g together with a positive solution
N =Np of

(16) AN-|E°N=0

over Qgp, asymptotically vanishing over the cylindrical end and-m@ntical to a constant over
S. The existence of sucNy is proved as follows. Take any two linearly independent sitmoo
positive functionsf; and f, over #. Fori=1,2, let N; be the solution td (16) o®q with the
boundary conditiorﬁlﬂyO = f; and asymptotically vanishing over the cylindrical endf. By
the maximum principle we havg > 0 fori = 1,2. If both solutions are constant ov&then one
can take a linear combinatid := a;N; + aoN, vanishing exactly ove® but with a; # 0 and
az + 0. AsN asymptotically vanishes over the cylindrical endf and is zero ove§ then, by
the uniqueness of solutions {0 {16), the combination has tzeo all over the set enclosed &y
and the cylindrical end. Then, the unique continuationgpite [2] tells thatN has to be zero all
overQp which is not possible becausgand f, were chosen to be linearly independent.

The reason why we take sudy is twofold and will be explained adequately during the
argumentation below.

In the space-time generated by the initial data considdutiee-pointing congruendg/(p, 1) }
of time-like geodesicg( p, T) starting perpendicularly t8q at pe Qo and parametrized by proper
time 1. We are going to mov@g with the help of this congruence and obtain a foliat{@ } @)
The leave%); of the foliation are defined, for every givénas the image of the map

R peQo—y(p,No(p)t) € O

This map in turn induces Lapse and Shiftk, X; over each; with the property thalN:.—g = Ny
andXp = 0. Of course the result of moving a poipte Qg through the space-time vector field
N:n; + X; and for a lapse of timeis the same aB;(p). The leaveL; are naturally identified
to Qp and thus the space-time metric together with the electroeiagtensor are described by a
flow (g, Ki;Ne, X; Er,By) overQo (c.f. Sectiori R itengi); note also that we are changing notation
from (g(t),K(t);N(t),X(t);E(t),B(t)) to (g, Ki; Nt, %; Et, Br) which makes the writing clearer
in this part).

To simplify notation below, when we omit the subindexe meart = 0.

We can comment now on one of the reasons why we cNgsatisfying [16). In general, the
time derivative of the mean curvatukeof the leaves of a space-like foliatigf; } with LapseN;
and ShiftX; is given by

dtle = ~Dg N+ (471(Too+ Tijat)) + [Ke )\

18 More explicitly, for any smootlF : [-£,£] x § — Z with F(0,-) = Id(-) ande small to haveF (x,-) : S — <
a smooth embedding, the real functian— A(F(A,S)), (which is greater or equal tharror all A), must have an
absolute minimum ak = 0. It follows that the firsi -derivative is zero and the second is non-negative. Asshialid for
all F then the surface is minimal and stable.

910f course is a foliation of a piece of the space-time.
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3 Black-holes inequalities in maximal data sets

In our case we have, at timeequal zero(47m(Too+ Tijg") +[K[?) = |E|* (useTqo = Tijg) and
81T oo = |E|? +|B[?). Hence dik|i-0 = 0. As we also havi |i—o = 0 we obtairk; = (92k;|i=0)t?/2+
O(t3) in short times. Having this quadratic behaviorkpin short times was one of the reasons
behind the choice dfly and will be crucial later.

Define§ = R(S) c &, the translation ofyy by R. Recall tat we are identifyin@; to Qg
throughR. In this identification the surfac® is identified t0S. In this sense the area §fis the
same ag\y (S), a notation that we keep using below.

We claim that

(17) Ag (S0)

= A(S)

t=

where the double dot means twice theerivative ofAg (S) andAy, (So) is, following the nota-
tion introduced before, the second variation of are§yailongNy{. We prove this claim in what
follows. As was calculated in Proposition 3 in[18] we have

(18) Ag (S0)

= fso [NOVAVBNO - NS(RicAB— ZKAiKiB)] WBdA
t=0

1 .
+ fso 87NG[ Tas— E(Tij g - Too)gas] "°dA

where we included here the term involvifigthat was omitted in([18] as in there only vacuum
solutions were consider&?®l. In the previous formul&icis the Ricci curvature of = go andv
its covariant derivative. We note then that:

1. The electromagnetic stress-energy is traceless anefoheT; g/ -Too=0,
2. Ricagh*®=R-Ric(Z,{) = 2E*-Ric({, ),

3. And finally, becaus&, has the geometry of an extreme RN-horizon the conditions (10
hold and we have

8rTagh™®= 2E[2, KaiK'gh*=0, and,
/SO No(VAVENo) HBdA= - /SO TNo[2dA

where in the last formula the gradientid§ is taken ove&,.

Combining this information if{18) and after a crucial cdatien of the terms involvingg|? we
obtain

ho(s)| - [50(|vwo|2—Ric<z,5)N§)dA:—A'N’0<so>
where to deduce the second equality we have uded (8) an@®thatoverS. We can comment
now on the second reason for our particular selectioNf If Ny is not exactly the constant
function one ovef,, as we are assuming, théﬂo(&)) >0 and thereforeﬂﬁlgt (S)|i=0 < 0. Thisis
our second reason and will be also crucial below.

The space-time vector fieM which movedLg to Q; and which generates the flayy, is, at a

[lMore precisely, in the second formula of Proposition 3 Wsg= —v;V;N + N(Rigj — 2K; K'j) — 87N(Tij +
£(Timg™ - Too)gij ) instead of jusKi; = —v;V;N + N(Rig; - 2K; K'j) (recall that the data at the initial time is max-
imal, that isk = 0).

11



3 Black-holes inequalities in maximal data sets

space-time poing = y(p,No(p)t), given by

V@=TREPI @R Ny @
T=Ng(p)t

Recalling that\g tends to zero (indeed exponentially) over the asymptdyicglindrical end of
(Qo,90) we conclude thaV tends to zero over the asymptotically cylindrical end anditthis
reason the evolution ajf; over the end freezes up. Thus the metgcinherit exactly the same
cylindrical asymptotic for every, that is, that of the metric product of the unit two-sphere toe
half-real line.

Take (by continuity}* > 0 small enough such that for alk [0,t*], the boundary ofQo,a:)
is still strictly convex. Assume thdt was chosen small enough thag (S) < 4 for every
t € [0,t*]. Then, again based on general results on minimal surfa&syd can guarantee, for
everyt € [0,t*], the existence of a stable minimal spk@ § in Qo of area less or equal than
Ag (S), non contractible insid®q and thus of electric charge one.

We proceed now to gather conveniently all the informatiotawted so far and use it thereafter
to reach a contradiction.

1. Fromk = (9k|i=0)t?/2+O(t%) we have, for alt € [0,t*] (choset* smaller if necessary),

072k
(19) k?<2cit*  where = sup{%, pe Qo},
2. FromAg (S) = 41— A (S)t?/2+O(t%) we have, for allt € [0,t*] (choset* smaller if
necessary),
144
(20) Ag (S) < 4m- C_22t2 <4m  where Co= AN‘J;SD) >0

3. For everyt ¢ [0,t*] there is a stable minimal sphege with Qz(S) = 1 andAg (§) <
Ag (S0)-

Now, the stability inequality a& with trial functiona = 1 gives

4nz/§t|Et|2dA—fsk‘;dA

Use then[(IV) and thg(g IE¢PdA > (41)2/A(S) (becaus®e(§) = 1) to transform this equation
into

2
ams BT 2ap(4)
AS)
Multiply this equation byA(§)/4m and then use thaA(§) < A(S) and [20) to deduce -
Cot?/2 > 4mt— 4mcit? or, the same, Bct? > ¢1t?, which is impossible for smalll =

(111 That the limit is connected and is a sphere follows from theugebounds (1.4) of #EorReM 1 in [15].
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4 A family of perturbations of the ERNitial data

4 A family of perturbations of the ERN initial data

Recall that the metric of the ERNspace-time is

(21) 9= -(1-1/r)dt?s — 5dr? +12dQ?
(1-1r)

and that on the hypersurfakg = {t = 0} we haveKy = 0, By = 0 and that the electric field is radial
and takes the forry = {/r? where = d;/|0;| is the unit normal to the radial spher@s= {r =r7}.
Now, the constraint equatiors (5) of an electro-vacuum slettég, K; E,B) with K =0 andB = 0
reduce to

{ R=2[EP,
(22)

divE=0

Because of this the scalar curvatlRg of the metricgy of the ERN standard initial data is
Ro=2/r%.

In the argumentation given below we will make use of an exgoesfor the three-Laplacian
Ay, acting on radial functiong = ¢(r) of Zo. A direct calculation using the general formula

Ag=0:(\/9d" 9 9)/,/g gives, wherp = ¢(r), the expression

r(r-1) d d
Doy 9= = a[r(r—ma(p]

This formula is simplified if we use the harmonic radial cdoedex = In(1-1/r) instead ofr
(harmonic meanAg,x = 0). With this definition the range ofis (-o0,0). In this new coordinate
the Laplacian acting on radial functions reads

/!
(23) Doy 0= 57

where herep” = d?@/dx?. Note then thaf\g, ¢ = |Eo|* ¢

We proceed now to construct the bi-parametric family of axisetric “perturbations” of the
initial data onZp. The axisymmetric Killing field will bedy, which, note, is also axisymmetric
Killing for the background data set. The two parameters effémily will be € andxX. Roughly
speaking the variablé represents the “strength” of the perturbation whilenarks the sphere
around which the perturbation “concentrates”. This intetation will be clear as the construction
progresses. To explain the construction let us recall intfdil@ws theconformal methotb solve
the constraint equations but for the situation that is afriest here, namely when the data set to
be found is time symmetric and has no magnetic field. (>efy) be a Riemannian manifold of
scalar curvatur®. On it letE be ag-divergence-less vector field. If fgr> 0 we have

(24) Ap=Rp-2Efp3,

theng= ¢*g andE = ¢ SE satisfy the constrain equatiofis122). We will use this methelow
with (Z,g) = (Zo,00) andE = E; 4 suitably chosen.

In what follows we will identifyZg to (—oo,0] x S? where the factof—oo,0] is the range of
the coordinated introduced before. From now on the parametisrset to vary in—co, -2] andé
in (0,1/16). Fix a smooth and non-zero axisymmetric two-fomrsupported or{-3,-1) xS? c
(—00,—-1) x S?. This form is set to be fixed from now on and will not be adjusteymore.
For everyx'let x; w be the pull-back ofw to [X—1,%+1] x S? under the transformatiops :
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4 A family of perturbations of the ERNitial data

[R-1,%+1]x S - [-3,-1] xS given by (x,0,¢) - (x—%-2,0,¢). Then, for everyxand &
define

(25) 2 =Eo+A (+dx (x5 )’

whereA = Ay is a factor chosen to have= sup|1- |Eq[?/|Eo?| (here|...| =|...|g,), the star
* in «=d* is thego-Hodge star and~d « (x4 w))* is the go-dual vector field of the formed
(X3 w). Inthis wayE;(’;E comprises a bi parametric family of divergence-less axiggtnic vector
fields which are equal to the background figlgloutside[% - 1, + 1] x S? but otherwise not very
different from it.

In what follows and to simplify notation we keep using.| =|...|q, and make als& = Eg’g.

We pass now to show that for evelfywe can find an axisymmetric solution to the the Lich-
nerowitz equatior(24) (L-equation from now on) with gooaneetric properties. To this extent
we use the method of sub and super-solutions. Namely, ifXisiymmetric functions (barriers)
@, >0 andg- > 0 with @. > @ we have

Dgo@: < 2B, - 2/E[2¢;3,
(26)

Dg,@- > 2|EoPq - 2|E[¢3

(recall Ry = 2|Eo|?) then there is an axisymmetric solutign> 0 to (Z2) with@_ < ¢ < @, (for a
proof of this fact in this context seEI). We explain now how to fing- which will be a radial
function, i.e. @ = @_(x). In (I) below we definep_(x) over (-oo0,-1] and in (Il) over[-1,0).
The global function defined by (1) and (1) will be smooth ovbe separate domairfs-co,—1)
and(-1,0) but will be justC® atx = —1. For this reason to check that such global function is a
barrier in the distributional sen<e [8] it will be necesstargheck that its left derivative at= -1

is less than its right derivati&®]. This will be done after () and (I1) below.

X R -1 0

Figure 3: Picture of the barrierg. and ;..

(I) Definingg_(x) on (-oo,~1]. Make y_ = @ —1 and recall thab_ = |Eo|?¢"”. With this
information and after a simple manipulation the second touian (28) can be displayed
in the form

=12
(27) W21+ @t + @+l l,U_+2[ ——||EE ||2]<p:3
0

Now, it can be easily checked that for any real numbsuch thaty- 1| < 1/8 we have

(28) 3<1l+yt+y2+y <5 and %sy‘332

(22170 get an axisymmetric solution out of the method of barrjess work inside the family of axisymmetric functions
all the time in [8].
(I3l Alternatively, a smooth barrier can be easily found by rongaff the global function constructed by (1) and (11).
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4 A family of perturbations of the ERNitial data

Thus, if we can findp_ (x) with -1/8 < ()_ < 0 and satisfying
(29) W > 6y + 481

wherel = [(x) is theindicator functionon [£- 1,%+ 1], (i.e. equal to one ofik—1,%+ 1]
and zero otherwise), them = 1+ (_ will verify (E7) because, in this case, we would have

=12
6. +4El > 2[1+<p:1+qo:2+qo:3]w_+2[ —%](p_‘s
0

due to [ZB) (withy = ¢_) and because, by construction, we havef|?/|Eq|? < & point-wise.
The function .

B -4

v-09= cosh(x—X)

verifies—1/8< _(x) < 0 becausé < 1/16. To see that it also satisfigs29) @ro,-1] we
argue as follows. First we compute’ = 4&(1 - 2sintf(x—X)/cost(x—X))/cosh{(x—X)
and, after plugging this insidé (29) and after a simple malaiion we conclude that to
verify (29) it is enough to verify the inequality-72sintf (x-X)/cosif (x-X) > (cosr(x—
2))f(x) for all xe (—o0,-1]. This is easily seen because the |.h.s of this expression is
greater than five and the r.h.s is less or equal than cosh hughliess thae. Summarizing,
@ = -+ 1is a sub-solution on this rangexfNote that agy_ < 0 then it isg_ < 1.

(I) Definingg(x) on[-1,0). On[-1,0) define@ (x) by @_(x) = 1+ ¢_(x) where
4Ex

-0 = Cosin)

To see thatp_ is a sub-solution it is necessary to check (27). Firstlypa) is linear inx
the I.h.s of [2F) is zero. Secondly, the second term on the af{27) is zero because when
x e [-1,0) it is |Eg|? = |E|?. The inequality[(2l7) then follows becauge < 0 and so is the
first term on the r.h.s of (27).

So far we have definegl. and proved that it is a sub-solution when restricted to theruals
(-o0,-1) and(-1,0). It remains to prove that it is also a sub-solution in the hbarhood of
x=-1. As said, to see this it is enough to check that the leftesttbrivative ofp- atx=-1is less
than its right-sided derivative. The left-sided derivatatx = -1 is 4€ sinh(-1-X)/cosif (-1-X)
while the right-sided is 8/ cos{—-1-X) and the desired inequality follows.

Summarizing, the sub-solution is

48 .
—m if Xe€ (—OO,—].],
(30) ¢-(x) = Aix
if xe[-1,0)

! cosH-1-X)

A graph ofq_ is presented in Figufd 3. Reproducing the argument thatttead, it is found that
@ (x), defined by

4¢ .
1+m if XG(—OO,— ]7
- m if Xe [-1,0)
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5 Rigidity of the ERNT initial data

is a super-solution. We conclude that thereis 0, solution of [2#), and satisfying. < ¢ < ¢,.

The metricg= ¢?go and the electric fieldE = E@° satisfy the constraint equatiois[22).
Summarizing, from the explicit form of the sub and supertohs we observe thap- 1

“concentrates” aroung &nd decays exponentially to zero in both directionz sfarting fromx®

In the direction of increasing the exponential decay however stopxat-1 and after that it

is linear inx, namely of the order /t in ther-coordinate. Observe, to be recalled later, that the

exponential decay ap in the asymptotically cylindrical end implies by standaltibéc estimates

that the perturbed data s€tg K;E,B) decay exponentially as defined in the introduction.

5 Rigidity of the ERNT 1 initial data

The next lemma shows the rigidity of the ERNT space-time amlihterest in itself. It will be
used in the proof of Propositidm 4.

Lemma 2. Let(%;0,K; E,B) be a smooth complete and maximal electro-vacuum data se¢&he
is diffeomorphic tdR x S2. Let $:= 0x S? and suppose tha®g(Sy)| = 1. Suppose too that for any
(compact, boundaryless and embedded) surface S non-ctibtesinsideZ we have AS) > 4,
and that there is at least one such S witfiSA= 4. Then the data set is the standard ERNT
initial data.

For expository reasons it is better to divide the proof ifi@e Auxiliary Propositions. In every
one of them we letF be the set of (compact, boundaryless and embedded) sudhegsasn
and which are non-contractible inside

Aux-Proposition 1. Assume the hypothesis of Lenitha 2. Then, each i8 a (normalized) ERN
sphere and every two different spheresFirare disjoint. Moreover the sés. ={S} is closed as
asetinZ.

Aux-Proposition 2. Assume the hypothesis of Lendtha 2Jdf = {S} = Z then the data set is the
standard ERNT initial data (Z; §o, Ko; Eo, Bo)-

Aux-Proposition 3. Assume the hypothesis of Lenitha 2. Thepz{S} =Z.
The proofs of the three propositions are presented corigelyut

Proof of Aux-Proposition[Il. By the hypothesis of Lemnid 2 every non-contractible surfese
area greater or equal tham4 Therefore the surfaces ifi, which have area equal ta® must
be minimal and stable (see footnpig][8]). By Lenima 1 they acenjalized) ERN spheres. We
show next that two different spher8sandS; in F (in caseF has more than one element) must
be disjoint. IfS; NS, + @ then, being minimal surfaces, they must intersect traseherWe will
think the surface§, i = 1,2 as embedded iﬁR3 N {0}) ~ 2. AstheS,i=1,2 are non-contractible
insideR3\ {0} then there are open bal andB; in R* containing the origiro and such that
0B = S fori =1,2. Define the manifolds

Vi=SnInt(BS), V2:=SnInt(Bf) and Wi:=SnB;, W,:=SnB;

where In{Bf) is the interior of the complement & (see Figur€l4). The manifoldg;, V>, Wy
and W, are pairwise disjoint and their closures have the same yndVe will denote such
boundary (a union of embedded circles indeedBoyWe haveS; = Vi uWi andS, = VouWs
and for this reasonitis

(32) 4r=A(V1)+AW1) and 41=AV,) +AWV,).
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5 Rigidity of the ERNT initial data

The manifolds L _
V:i=ViuV, and W:i=WiuWy,

are embedded and smooth excepBatwhere they have necessarily corners. Note thand

W are not necessarily connected (see Fidire 4). Moreover we a d(ByuB;) andW =
d(B1nBy). Therefore, as € B; uB, ando e B; n By, then at least one of the connected component
of V and at least one d# divide R® {0} into two connected components and are consequently
non-contractible insid&. By (33) if A(V2) < A(Wi) thenA(V) < 4m, while if A(V2) > AOWy)
thenA(W) < 4m. In any case we can round off the cornerdsanf either the manifold’ or the
manifoldWV to obtain one of area less tharrdnd having at least one connected component non-
contractible inside. This is against hypothesis and therefore the surf&cesmdS, have to be
disjoint.

Figure 4: Representation of the manifoldg Vo, W1 andWs.

It remains to be proved that the $¢& ~{S} is closed inZ. But if pj(¢ S € F) is a sequence
of points inUs. #{S} with limit point p., then the sequencg of (normalized) ERN spheres,
and therefore of stable and area minimizing minimal susabas a subsequence converging (in
CX for everyk > 1) to a limit stable minimal spherB. > Poo, . The spheres,, cannot
be contractible insid& otherwise the§’s would be contractible for sufficiently big We have
4r=IimA(S) = A(Sx), thusS., € F and therefor@.. € Us.={S}. |

Proof of Aux-Proposition[2. Assume at the moment that the foliati@his smooth (see the defi-
nition of smooth foliation in[[4]). We will be proving this tar. Fix a spher&* in F and denote
by 2} and X% the connected components Bk S*. For anyp € X let S(p) be the sphere ifF
containingp and denote by2(p) the region enclosed b§* andS(p). Then define the (smooth)

functionX: ~ — R as
3 Vol(Q(p)) if peZg,
X(p) = .
-Vol(Q(p)) if peX

This function is constant over every leaf and has nowhere gﬂldien. LetY = V&/|V&?
and note that a¥(X) = 1 the flow induced by carries leaves (af) into leaves (ofF). Fix an
isometryy : S? - S* and define the diffeomorphisd: R x S? - X by sending a paift,s) into
the translation ofy(s) through the flow induced by and by a parametric time Of course we
haved, dt =Y. On the other hand if we denote by the induced metric on the leaves, then we

[M]precisely there are embeddinfys S2 — § converging inCX to a covering immersioffies : S2 — Seo. But in our case
> ~R3\ {0} and thereforés,., must be orientable, hence a sphere &adan embedding.
[15]This can be easily seen from the the fact tiais assumed smooth.
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5 Rigidity of the ERNT initial data

haveLyhg = 0 because each leaf is totally geodesic (h2iis the Lie-derivative). Therefore we
can write
®*g=|vK2d%e +dQ?

We show now tha}vX| is constant over every leaf. Indeed, as the areas of the spbé&f is
41 then the second variation of area of any spher&ialongY is zero, i.e. AY(S) =0. This
implies that|Y| = 1/|vx] is constant over every sphere (see the proof of Lefima 1). Tétdan
@) is recovered by making a simple change of variaklex(X), with |vX| = dx/dX. Finally by
Lemmdl we have& =0, K =0 andE = ¢ with  a normal field to the leaves & (i.e. eitherdsor
~d3). Hence we havég,K;E,B) = (§,K; E,B) as claimed.

It remains to prove that the foliatiof is smooth. We will show that the 1-distribution of lines
perpendicular to the leaves #fis smooth. This implies that the distribution of the tangaahes
to the leaves ofF is smooth and the smoothnessfs then direct from Frobenius’s theoren [4].
Let Sbe a sphere aof, let { be a normal field to it and lét be the induced two-metric. We will
show that the Ricci curvaturRic of g over Shas the following formRic({,{) = 0 and for any
v,we T Swe haveRic(Z,v) = 0 andRic(v,w) = h(v,w). The 1-distribution of normal directions to
F is then uniquely characterized by the null spacRief(i.e. {ve TSRic(v,v) = 0}), and is easily
seen to be smooth becalRe is smooth.

Again letS be a surface ifF and{ a unit normal field to it. Lef{y;(7),qe S0<T< 1o}
be the congruence of geodesicsirstarting att = 0 perpendicularly t& in the direction of{
and parametrized by the arc-lengthWe will moveSby the vector field/ = J; y4(7) and obtain
a smooth one-parametric family of surfac&g). We assume that is small enough that the
surfacesS(1) are embedded (and smooth).

In the forthcoming equations, but inside this proof, we déhote the mean curvaturg@® by
u. Recall from Lemm@&]l that ov&we havek = 1, R=2 and® = 0. Therefore from the general
identity

(33) 2% - O + p? = R-2Ric({, )

we obtainRic({, {) = 0. Also from div®@ - du = Ric({, ) we obtainRic({,v) =0 foranyve TS
To show that for any,w e T Swe haveRic(v,w) = h(v,w) it is enough to prove thaty®=0=0
because of the general identity (019

©=-u0+2000+kh-Ric

which gives®(0) = h—Ricatt = 0. Now, at any timer ¢ (0, 7o) we have

(34) A= [ G- i) o

||2 2

(e e
_f( >ty K |E|)dA
|®|2 p? 2
( B+ 5 Jaas|an- /T)|E| dA
L
2

“Jse
[T)(—@ )dA

U ()
where: (i) to obtain the first inequality we udé = pdA, (ii) to pass from the second to the third
line we use the focussing (Riccati) equatipr: —|©[? - Ric(Z, ) in conjunction with [3B) and
R> 2E[?, (iii) to pass from the second to the third line we use Gaussrt and (iv) from the
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5 Rigidity of the ERNT initial data

third to the fourth we usé(12). On the other hand we can ezpgX(1)) as

A(S(r)):4n+[ordfforA(S(?))d?

and we haved(S(1)) < U (1) = U(0) +U’(0)T + U”(0)72/2+ O(13) with U (0) = 0, U’(0) = 0

and
u”0)=-= @ 0 2dA
( ) 2 S(O)| ( )l

as can be easily seen usin0) =0, 1(0) = 0,©(0) = 0 and®(0) = h-Ric. Therefore, if©(0) + 0
then we would havé\(S(1)) < 4m for small T which is against the hypothesis. This finishes the
proof. [ ]

Proof of Aux-Proposition[3. We will proceed by contradiction and assume tHat={S} #%. As

by Aux-Propositioft]L the s&fs. = {S} is closed, then every connected componeitofJs. »{ S}

is either an open region enclosed by two sphereB or an open region enclosed by a sphere in
F and one of the two ends & Thus, if there is only one connected componerf ef Js. {S}
thenUs. #{S} must at least contain a closed region enclosed by a sphéfeimd one end oE.

As in Aux-Propositiofi 2 the data set over such region musE B&l'§. Because of this one can
cut off such region and “double” the remaining one to cortaunew data sett’;g’,K’;E’,B')

in the hypothesis of Lemnid 2 but with two connected companef®’ \ Us. 7 {S}.

Assume then without loss of generality that there are at k#as connected components of
I\ Us#{S}. We want to prove that such data set cannot exist. This witldree exactly as in
Propositio 2. For this reason the paragraphs below areléditated to construct a setup similar
to the one in the proof of Propositih 2.

For the discussion that follows the Figulide 5 could be of ghedpp. Denote two of the con-
nected components ¢fs. #{S} by Q_ andQg (L for “Left” and R for “Right”). Let § andSg
be any two spheres embeddedip and Qg respectively and non contractible insitle Denote
by Qr the region enclosed by them and including them, an&pyresp. ) the connected
componentof \§ (resp.Z\ SR) not containingss (resp.S.). Also letD* > 0 be small enough
such that

1. if pe X[ (resp. pe Z%) and dis{p,S.) < D* (resp. distp,Sr) <D*) thenpe Q_ (resp.
pe Qr), and

2. for any 0<D < D* the set{pe 2, ,dist(p,S. ) =D} (resp. {pe 2%, dist(p,SR) =D}) is a
smooth and embedded sphere.

In this context define the sphe& (resp. S) asS' := {pe 2 .dist(p,S. ) = D*} (resp. S :=
{pe k. dist(p,Sr) =D*}) and letQ/' be the set enclosed I andS; including them. As the
component€); andQg are different there is at least one sph&e 7 embedded irQ; g and
therefore inQ;'z. Now, onQ['k consider a positive solutidd = Ng of the maximal lapse equation

AN - (411(Too+ Tijg'!) +|K[2)N = AN - ([E[+|B[> + [K|))N =0

and that is not identically to a constant ot The existence of sudiy is shown in the same
way as was done in Propositibh 2 and is left to the reader. idltioe same way as in Proposition
[2 construct fromN\g a time-like vector fieldv and from it a flow(g,K:; E;,Bt) over Q;'r, with
0<t<t* and for some* small. As in Propositiof]2 now we havg, (S) = 0 andAq (S) < 0.
ThereforeAy (S) < 4min short timed.

Instead ofg; we are going to consider a modified flow of metrggsconformally related to
ot- This will help to guarantee the existence of certain statitémal spheres. To the purpose of
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6 Perturbations containing MOTS

defininggd; consider the following function afe [0,D*],
Lpé(z) — 1+e—l/Z+ 1/(D* +6—Z)

whered is a constant to be fixed soon below. Observe ¥gt0) = 1 and that all the right-sided
derivatives of¥5 are zero az= 0. Observe too tha¥s > 1. We then defing; by
a(p) if peQr,
Gi(p)=1 Ws(d(p.S))a(p) if peQipnZy,
Ws(d(p.SR))a(p) if peQirnZy
Now chosé* andd >0 small enough that the boundarie 6f g, §; ) are strictly mean convex (in

the outgoing directions) for any<0t <t*. Once this is granted we can consider for every* a
sphere§ minimizing theg;-area among all the spheres embeddedig and isotopic td [15].

QL QR
o T T T
- +
zL QR IR
Qlr

Figure 5: Representation of the construction in the prodwf-Propositior B.

Until now we have not done any particular progress in the fordbe key point of the proof
lies in showing that one cho4é& smaller if necessary in such a way that the area minimizing
sphere£ are embedded in 1(®, r) and therefore do not intersect the regions where the metric
g was conformally modified. Once this is shown a contradicisoproved following exactly the
same argument as in Propositidn 2 and will not be repeated her

Suppose then that there is a sequence of tilng® such that for each the minimal and
stables spheré is not strictly embedded in 168 r). Take then a subsequence (indexed again

“ ”) such thatS converges to a stable minimal sphétemtersectmgfz FRNINK(QLR). As
theS are non contractible inside then neither i5y. Moreover ag, (S) <A (S) <4mthen
A5 (S) <41 ButAg(S) > Ag( ) because the conformal factor is greater or equal than one.
Then, the spher§ c ¥ hasA(S) < 47t. So it must beA(S) = 47T by the hypothesis of Lemnfa 2
and by Lemmall it must be a (normalized) ERN sphere. FyusF. But this is a contradiction
as the sef)s \ Int(Q_Rr) does not contain any point @fs. »{S}. |

6 Perturbations containing MOTS

The following proposition is direct from standard ellipéstimates and is left to the reader (use
¢ = id and recall thag = ¢?go, K = 0, E = Exp® andB = 0). It says that the data sets constructed
in Sectior# are small in the sense of Definitidn 1.

Proposition 3. Given0 < £ < 1/16 and integer k> 1 there is¢ = £(&,k) > 0 such that for any

% € (—o0,-1] the data se(g,K; E,B) constructed in Sectidd 4 out éfand, is e-close in ¢ to
the standard ERNinitial data. Moreovers — 0 if we fix k and le€ — O.
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6 Perturbations containing MOTS

In what follows we explain gointed convergencthat will be useful inside the proof of
Propositiori #. We keep identifyingy to (-o0,0) x S? as we did before, in particular the factor
(—0,0) is the range ok. Let X be a sequence diverging to minus infinity, i.e km ~co and let
S be a fixed point irS2. If we “follow” the ERN; metricgo around the sequence of points &
then, as we know, it converges to the metgoof the standard ERNfTinitial data. The standard
mathematical way of saying this is that the pointed sequébg@o; X x So) converges smoothly
to (R x S%;§o,0x S). We write this convergence by saying that for any integerg andk > 1 we
have

(35) HQ ” ¢r’1:igo_gOHC'g§O([—n,n]xSZ) =0

where@n; : [-n,n] x S? [-n+%X,n+X%]x S?(c 3p) is the mapgni(X,s) = (X+%;,s) (note that
®n,i(0x50) =X x 5o for all i). More generally, the pointed sequence of initial d&g; go; Eo; % x
o) converges smoothly tR x S?; §o; Eo; 0x 5) because in addition t6 (B5) we have

(36) im |97 Eo~Eo ||cgo([—n,n]x52) =0

for anyn>1 andk > 1. Fix now O< £ < 1/16 and consider the sequence of vector fields E

glven in m) out ok=X;, £ andw. In the same way as before, this sequence converges smoothly
t0 Eoo := Eg+ Aco (+d * we )" wherew. is the pull-back ofw by the map(x,s) - (x-2,s) from

[-1, 1] x S? into [-3,-1] x S? andA., is a constant such that

Bl
(37) sugl- —=2

As before this convergence is expressed by the limit

=0

)

(38) ilT'LD [l =p = ”cgo([_n,n]xSZ)
foranyn>1andk>1. Note that asu.. has supportirf-1, 1] x S? thenE,, = Eg outside[-1,1] x
S2. In particularE.|g, = 1 outside[-1,1] x S =1

Now, let @ be the sequence of conformal factors constructed in Sedtiout of X and the
fixed €. Using standard elliptic estimates and the barrier boUB@5{31) one easily shows that
the sequence has a subsequence (indexed againibyconverging smoothly to a limit smooth
conformal factorp., > 0. Namely,

(39) ilm ” ¢riiqq_¢°°||cgo([_n,n]x82) =0,

for anyn>1 andk > 1. Moreover because df (85], (36) afd](38) the limit confdrfaetor ¢@..
satisfies the limit L-equation

(40) DgoPoo = 2/Eol3,

The convergencels (B5], (36),(38) ahd|(39) also show thepidlmed subsequen¢gi = ¢'go; Ei =
Ei = ¢ °Ei; % x5) converges smoothly t60o. := ¢ §o; Eeo := 0Ee,0x ).

Itis an important fact that the limit data 6k x S%; Joo; Eoo ) is Never the ERNT initial data.
If this were the case then we would haEgo%w =1and theref0r£:x,|2 =1. Plugging this
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6 Perturbations containing MOTS

in (@0) and recalling thdEo|g, = 1 we would obtain
Ago Poo = 200 -2¢3,.

Then observe that #. |y, = 1 outsidg -1, 1] xS? we would havep.. = 1 also outsidg-1,1] x S?.
Then, as the constant function one is a solutiori_of (40) wet imaxe ., = 1 everywhere by the
unigue continuation principle. Thus, it would kéx,|go =1 everywhere, contradicting (B7).

Observe that any non-contractible surf&&embedded in(R x S%;§..) must havey.-area
greater or equal thanrd To see this use Propositibh 1 to hag_ (S) = lim Ag (¢ni(S)) > 4m.
Similarly we havdQg(S)| =1im |Qe(¢n, (S))| = 1. We can now use this information together with
Lemma2 and the fact that the limit§..;E..) are not the ERNT initial data, to conclude that
for any non-contractible embedd&dve haveAg, (S) > 4m. This will be crucially used in the
following proposition.

Proposition 4. Let 0 < £ < 1/16. Then there i = Xo(&) such that for anyk < % the data set
(9.K;E,B) constructed in Sectiof 4 out &fand X possess an embedded minimal and stable
sphere M separating the two ends. Becalise0 such sphere is also a MOTS (to the past and to

the future).

Proof. We will proceed by contradiction. Assume therefore thatehis 0< £ < 1/16 and a
sequence; > —oo such that, if we denote bf(—o0,0) x % g;; ;) the data sets constructed out
of & and;, then none of the manifoldg—oo,0) x S?;g;) possess a stable minimal sphéfe
separating the two ends. We will see that this leads to aadiction.

Firstly, as commented before, one can take a subsequertepdinted sequengé—oo,0) x
S% G Eir % x S) converging (in the pointed sense) to a smooth daté(seb, o) x S%; Joo , E_oo).
Moreover and as commented above, for any embedded sphgstopic t0S := 0x S? we have
Ag..(S) >4rm.

Secondly, letys(z) be the smooth real function of the one variabég -1, o] defined as

vs(2) :{ 1+el/2+1/(z+1+0) it ,¢ [-1,0].
1 if ze[0,00)

With this function define the metrig, = [Ws(x—%)]@ on the manifold -1+ %,0) x S? and set
& > 0 small enough that the boundaryl + %) x S? of [-1+%,0) x S? is strictly mean convex (in
the direction of decreasing) for all i. Of course the pointed sequende-1+ Xi,0) x S%;§i; i x
So) converges td[-1,00) x S% §o ) Wheregs, = Y5 Jo and becauses > 1 we haveAg,_ (S) >
Ag.. (S) > 4mfor any embedded sphere isotopic3p

Thirdly, recall thatg; = qngo whereq is a solution to the L-equation enjoying the upper and
lower boundsp - < @ < @ + whereq .. are given by[(30)E(31) witl = %;. In particular the confor-
mal factorq restricted to the spheré&g , := {x=%i/2} is bounded below by 14¢/ cosh(%i/2) and
above by 1-4£/cosh(%/2). This implies tha#\; (S; ») — 41 and therefore thalg (S; 2) — 4Tt
Let§c [-1+%i,0) xS? be the embedded sphere minimizing th@rea among all spheres embed-
ded in[-1+%,0) xS? and isotopic td%. Such sphere always exists beca({sel + %;,0) x S?,§;)
has strictly mean convex boundary and is asymptoticall;{lE;t Moreover, ad\g (S, /2) — 41T
and ash (S) > 4rrfor all i then we must havag (S) — 4.

On the other hand every surfaSemust intersecf-1+%;,% ] x S2, which is the domain where
g differs fromg;, otherwise§ would begi-minimal and stable which is against the assumption.
Now, take another subsequence if necessary in such a wagthahverges to @.:-minimal
and stable sphere intersectipgl, 0] x S? (inside the limit space) and isotopic 8 := 0x S%. As
discussed before we must hatg_ (S ) > 4rmand at the same timag,_ (S0 ) = lim Ag (S) = 41
which is a contradiction. ]
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7 Proof of the main result

7 Proof of the main result

We are ready to prove the main result of this article. For tthevenience of the reader we restate
it below.

Event horizon# AN
> Null infinity

Future Penrose ®
diagram

>

AF end‘
MOTS

Event horizon aIJ
Q= D
Cylindrical end Initial hypersurfaﬁ/

Figure 6: Picture of the geometric construction in the arguniy contradiction of the proof of Theordh 1.

Theorem 1. For anyE> 0 and integer k> 1 there is a smooth and maximal electro-vacuum data
set(Z;0,K;E,B), e-close in (X to the standard ERN initial data and falling into it exponiaht
along the cylindrical end, which cannot decay, towards tieire or the past, into any EKN

solution.

Proof. Seté be small enough in such a way that #, k) provided by Propositionl 3 is less or
equal thare. Let thenxbe any number less or equal than #i€)“provided by Propositionl4 and
let (g, K =0;E,B= 0) be the axisymmetric and time symmetric data set constricteectior 4
out of £ andX. By Propositio B such data setdsclose inC to the standard ERN initial data.
Its total electromagnetic charges &g = 1, Qy = 0 and the total angular momentumds- O.
Moreover the data set falls off exponentially towards thekigaound data setgo, Ko; Eo, Bo)
along the cylindrical end as explained at the end of Se€liofldo, by Propositioi}4, such data
set possess a stable minimal surfteseparating the two ends, which is therefore a future and
past MOTS. For this reason the following argument applieg#y to the future and to the past.
Here we will argue only to the future. The future globally leypolic development of the initial
data will be denoted byM *;g).

Suppose now that the future evolution of the initial data(seK;E,B) decays into a EKN
space-time. In such casé acts as a barrier preventing the event horizbto enter the region in
Z enclosed betweeM and the cylindrical ent® (see Figuréle). In particular the intersectidn
betweer?{ and the initial hypersurfacgis a compact set i separating its two ends.

As proved in[[7] Proposition 3.4) the intersectiom = 27 n X between the event horizo#”
and a Cauchy hypersurfaEes a two-rectifiable set of well defined argfd{-Hausdorff measure).
Moreover for any two Cauchy hypersurfacesand>,, with 2, strictly to the future ofx;, we
haveA(H2) > A(H1) (Hi = 2# nZ;, i =1,2) and if equality holds then the part g# betweer®;
andZ, is smooth Theorem 6.1in [[7]). This monotonicity allows us to define the “future fm
of the areas of the horizon’s sections”, denoted here by ki nX), in the following simple
manner. Take any sequence of Cauchy hypersurtgcasch that, (i) lies strictly to the future

[6]Because of the presence Mf the space-timévi* must have a horizon, nameB(J~(.7*)n (M*\ %)) = @. Of
course we assume the existence of a Scri &sin [7] to ensuredhetonicity of the horizon’s areas.
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of Zj wheni’ > i, and (ii) for anype M* there isi(p) such that for all >i(p) the pointp does not
lie in the future ofZ;. Then, define

Ilzrp A(HNI):= !ITTo A(HNZ).
Itis easily checked that this definition does not dependerthe sequencg;.

Now, if the future evolution of the initial data decay into artreme EKN solution, then,
as the electromagnetic charges and the angular momentuoomaserved, the EKN limit must
necessarily be ERNand we must have lig A(HNZX) = 47t. HenceA(_I—T) <limgt A(HNZ) =4m.

If A(H) =4mthen 41= A(HnZ) for all Z stricly in the future of> and the whole’#” must
be smooth. This implies that = 7N < is also smooth becaus¢ and intersect transversely
._Propositiod]Z then tells us thA(H) > 477 and we reach a contradiction. Hence it must be
A(H) < 4m. On the other hand the initial hypersurfa@ g) has one asymptotically flat end and
one cylindrical end asymptotic to the metric producRo&nd the unit two-spher® (which has
area 41). On these grounds and based on general results of geometaisure theory [19], (see
also [15]), we can guarantee the existence of a smooth aietizer in the class of compact
two-rectifiable sets separating the two ends. Such minimizest have area less thamrbecause
A(I—T) < 4T and becausk is rectifiable and separating. By Propositidn 2 the area®$thooth
minimizer must be greater thamdand we reach again a contradiction. It follows that the feitur
evolution of the initial data cannot decay into a EKN solatio ]
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