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Using black-hole inequalities and the increase of the horizon’s areas, we show that
there are arbitrarily small electro-vacuum perturbationsof the standard initial data of
the extreme Reissner-Nordström black-hole that, (by contradiction), cannot decay in
time into any extreme Kerr-Newman black-hole. This proves the expectation that the
family of extreme Kerr-Newman black-holes is unstable. It remains of course to be seen
whether the whole family of charged black-holes, includingthose extremes, is stable or
not.

PACS: 02.40.Hw, 02.40.Ma, 04.20.-q.

1 Introduction

In this article it is proved that the family of the so called maximal Kerr-Newman black-holes is
unstable. To be concrete it is proved that that there are arbitrarily small electro-vacuum perturba-
tions of the standard initial data of the extreme Reissner-Nordström black-hole that cannot decay
in time into any extreme Kerr-Newman black-hole.

To bring more accuracy to this introduction let us start reviewing the mathematics and the
qualitative properties of the extreme black-holes. The Lorentzian metric of the extreme Kerr-
Newman (EKN) space-time of electric chargeQE, magnetic chargeQM , angular momentumJ
and massm2 = (Q2+√4J2+Q4)/2≠ 0, (Q2 =Q2

E+Q2
M), is given by

g=− ∆−a2sin2θ
Σ

dt2− 2asin2θ
Σ

(r2+a2−∆)dt dφ(1)

+ (r2+a2)2−∆a2sin2θ
Σ

sin2θ dφ2+ Σ
∆

dr2+Σdθ 2
,

wherea= J/m, Σ = r2+a2cos2θ , and∆ = r2+a2+Q2−2mr, (see for instance [5]). The coordinate
t ranges in(−∞,∞), r in (m,∞) and(θ ,ϕ) are the standard coordinates of the unit sphereS

2.
The space-timeM is therefore diffeomorphic toR×R×S2. The electromagnetic potentialA is
given explicitly by

A = −QE r

Σ
(dt−asin2θ dφ )+ QM cosθ

Σ
(adt−(r2+a2)dφ )

and recall that the electromagnetic tensor isFab = ∇aAb−∇bAa, [1] . The solution is rotational
symmetric and stationary. Of particular interest for this article are the EKN solutions withJ = 0,
QM = 0 butQE ≠ 0, which are called extreme Reissner-Nordström (ERN). When QE = 1 the ERN

[1]Note thatA is not smooth at{θ = 0}∪{θ = π}. In this article smooth meansC∞.
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1 Introduction

metric (from now on ERN1) takes the synthetic form

g= −(1−1/r)2dt2+ 1

(1−1/r)2 dr2+ r2dΩ2(2)

and the electromagnetic potential simplifies toA = −dt/r. Over the Cauchy hypersurface{t = 0}
the electric field isEa = Fabnb = ∂r/(r2∣∂r ∣) and the magnetic field is zero, i.e.Ba = ⋆Fabnb = 0.
Heren is the time-like unit normal to{t = 0}. The solution is time symmetric and therefore
the second fundamental formK of the slice{t = 0} is zero. Finally the solution is spherically
symmetric and static. For future reference the data set overΣ0 ∶= {t =0}will be called thestandard
initial data of theERN1 solutionand denoted by(Σ0;g0,K0;E0,B0).

Initial hypersurface

Future Cauchy
horizon

Null infinity

Cylindrical end

Future Penrose
diagram

AF end

Figure 1: Picture of the (half) Penrose diagram of the EKN black-holes. The picture shows also a visualiza-
tion of the geometry of the standard initial data and the future Cauchy horizon.

The EKN solutions form part of the larger family of Kerr-Newman (KN) space-times and
lie exactly between those KN space-times representing black-holes and those exhibiting naked
singularities. Due to their special properties, the EKN solutions have played a peculiar role in the
mathematical and physical analysis of black-holes. Some oftheir most noticeable features are the
following. The past and the future null infinity of the ERN space-time can be reached from any
of its space-time points. Yet the ERN space-time is geodesically incomplete and exhibits future
and past Cauchy horizons. Each Cauchy horizon is diffeomorphic to R×S2, has complete null
generators and the area of any spherical section is

A= 4π
√

4∣J∣+Q2

In particular, if an extreme solution hasQE = 1 then to be the one withQE = 1, QM = 0 and
J = 0 it is necessary and sufficient thatA= 4π . Moreover the “initial” Cauchy hypersurface{t =
0} is maximal and complete (as a Riemannian manifold), and possess no trapped region. This
hypersurface is diffeomorphic toR×S2 and has one cylindrical end and one asymptotically flat
(AF) end (see Figure 1). Of special interest to us is the cylindrical space-time of the ERN1
solution (Bertotti’s space-time). It is found by taking a sequencer i → 1, making then the change
of variables ¯x= ln((r −1)/(r i −1)), t̄ = (r i −1)t in (21), and finally taking the limit asr i → 1. This
gives the result

(3) ǧ= −e2x̄dt̄2+dx̄2+dΩ2
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1 Introduction

The three-metric over{t̄ = 0} is thenǧ0 = dx̄2+dΩ2, that is, that of the metric productR×S2,
hence cylindrical. For future reference, over this slice the electric field isĚ0 = ∂x̄ and the magnetic
field B̌0 and the second fundamental form̌K0 are zero. The data set(R×S2; ǧ0,Ǩ0;Ě0,B̌0) will be
called thestandard initial data of the extremeRN1 throat (ERNT1).

It is fundamentally the presence of these peculiar Cauchy horizons what makes extreme so-
lutions so special. Are extreme black-holes physically realistic solutions? Are they stable under
small perturbations of the initial data? What occurs to their horizons under such perturbations?

A revitalized interest in these old questions reappeared inthe last years as a part of new and
larger mathematical investigations on the stability of black-hole space-times, [1], [16], [10], [3],
[12] (to mention some). Most of these theoretical developments are characterized by the use of
linear techniques over the otherwise unperturbed ERN background. As a contribution to the on-
going discussion we prove here that there are arbitrarily small perturbations of the standard ERN1

initial data whose evolution cannot decay in any way into anyEKN solution. The proof is satisfac-
tory to us in that it is the result of combining black-hole inequalities [11], [13], and the ubiquitous
law of area increase of event horizons [7], and does not rely in any linear or linearization tech-
nique. In a sense, our argument belongs to a class of natural procedures to prove instabilities that
was used in the literature during the last years[2] and which consists in finding certain inequalities
at the level of the perturbed initial data that are shown to bepropagated along the evolution and
that are incompatible with the stationary states that one wants to rule out as the long time limit of
the evolution (see for instance [14] and references therein).

Cylindrical end

Bulk of the perturbation

Black−hole region Event horizon

MOTS

AF end

Figure 2: Diagram of the initial data used in this article.

Before we pass to explain the generalities behind the proof,let us explain in precise terms the
main statement to be proved. We first introduce the notion of “perturbation” of the standard initial
data(Σ0;g0,K0;E0,B0) of the ERN1 space-time.

Definition 1. Let (Σ;g,K;E,B) be a smooth an maximal electro-vacuum data set and let k be an
integer greater or equal than1. We say that the data set isε-close in Ck to the ERN1 standard
initial data iff there is a diffeomorphismϕ ∶ Σ0 → Σ such that for any(U,U0) equal to either(g,g0), (K,K0), (E,E0) or (B,B0) we have

∥ϕ∗U −U0∥Ck
g0
(Σ0)
≤ ε.

TheCk
g0

norm of a tensorW (no matter its valence) is defined as usual by

∥W∥2
Ck

g0
(Σ0)
= sup

p∈Σ0

[ j=k

∑
j=0
∣(∇( j)W)(p)∣2

g0
]

[2] I would like to thank Piotr Chrusciel for making this remark to me.
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1 Introduction

The Definition 1 is satisfactory but we need to make sure that the perturbation “falls off” along the
asymptotically cylindrical end and that the “cylindrical asymptotic” is preserved. To be concrete
we will work with perturbations that “fall off exponentially along the cylindrical end into the
ERN1 standard initial data”. Precisely, we say that a data set(Σ;g,K;E,B), ε-close inCk to(Σ0;g0,K0;E0,B0), falls off exponentially into(Σ0;g0,K0;E0,B0) along the cylindrical endiff
there isΛ > 0 such that for any(U,U0) equal to either(g,g0),(K,K0),(E,E0) or (B,B0) we have

lim
r(p)→1

eΛ ln(r −1) [ j=k

∑
j=0
∣(∇( j) (ϕ∗U −U0))(p)∣2g0

] = 0,

whereϕ∗ is the pull-back by the diffeomorphismϕ ∶ Σ0→ Σ (note thatr(p)→ 1 means that “p”
diverges along the cylindrical end).

With all these definitions at hand we can state our main resultas follows.

Theorem 1. For any ε̄ > 0 and integer k≥ 1 there is a smooth and maximal electro-vacuum data
set(Σ̄; ḡ,K̄;Ē,B̄), ε̄-close in Ck to the standard ERN1 initial data and falling into it exponential
along the cylindrical end, which cannot decay, towards the future or the past, into any EKN
solution.

Let us overview now the arguments behind the proof. Technical but important information
has to be found inside the text. The argument that follows canbe done in any time direction. The
idea is to construct (arbitrarily small) axisymmetric perturbations of the standard ERN1 initial
data and do so with sufficiently control to be able to prove that a Marginally Outer Trapped
Surface (MOTS) forms separating the two ends (see Figure 2).In addition, the perturbation is
done keepingQE = 1, QM = 0 andJ = 0. In particular, and because the electromagnetic charges
and the angular momentum are conserved, if the perturbationevolves into an EKN space-time in
the long-time, then it must be one withQE = 1, QM = 0 andJ = 0, that is, it has to be the ERN
that is being perturbed[3]. Moreover, due to presence of a MOTS which acts as a barrier, the
event horizon must intersect the initial Cauchy hypersurface somewhere between the MOTS and
the asymptotically flat end. In parallel to all this it is shown that every surfaceSembedded in the
initial hypersurface and separating the two ends has area strictly greater than 4π . In particular the
intersection of the event horizon and the initial hypersurface must have area strictly greater than
4π . As the areas of sections of the event horizon are non-decreasing in time, we conclude that
the initial data cannot evolve into the ERN1 solution because its horizon has area exactly 4π . The
perturbed data set is depicted in Figure 2 and the (presumed)evolution in Figure 3.

Like any argument by contradiction, the one before does not say what indeed occurs during
the time evolution. It just says something of what cannot happen. Nevertheless, the presence of
the mentioned MOTS in the perturbed initial data suggests that it must decay in the long-time
into a non-extremal KN black-hole. For this reason it is expected also that whatever occurs to
the “old” horizon of the ERN1, that part of the space-time stays hidden inside the new black-hole
region. Regardless of that, this work doesn’t yield any light about the fate of the ERN horizon
under perturbations. In this sense it doesn’t make previousinvestigations about the ERN horizon
less interesting.

In principle, with further work but following a similar argument, one should be able to prove
that there are arbitrarily small perturbations of any EKN that cannot decay in any way into an
EKN black-hole. What makes the use of the ERN and not of any other EKN solution more useful
is that the perturbations can be made time-symmetric and forthis reason proving the existence of a
MOTS reduces to proving the existence of a minimal surface which is technically more accessible

[3]To be certain here, the charges and the angular momentum are not only conserved at null infinity, they take also the
same values over any embedded sphere isotopic to a “sphere” at “spatial infinity”. This is explained in Section 2.
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2 Background material

[4] .
The organization of this article is the following. In Section 2 we recall the basic material to be

used about electro-vacuum space-times. In Section 3 we discuss black-hole inequalities on data
sets that we call of the ERN1 “type” and that are introduced in Definition 3. Roughly speaking,
such data sets are defined to share the topology and the asymptotic geometry of the standard initial
data of the ERN1 solution. Not surprisingly the perturbations of the standard initial data of the
ERN1 solution that we are going to use are of the ERN1 type. The main result of this section is to
prove that the area of any (compact, boundaryless and embedded) surface separating the two ends
of any data set of the ERN1 type is strictly greater than 4π . The analysis in this section shares
many elements with [18]. In Section 4 we construct the mentioned initial perturbations using the
conformal method. The existence of solutions of the conformal equations is proved following
standard barrier methods [8] which give good control on the solutions. In Section 5 we show the
rigidity of the ERNT1 initial data which will be necessary in Section 6 to show thatone can make
arbitrarily small perturbations containing MOTS. It is worth mentioning that the rigidity of the
ERNT1 initial data is of interest in interest. In particular the formation of extreme RN throats
along sequence of data sets can be studied in the same way as was done in [18] with the formation
of extreme Kerr-throats. The proof of the main result following the lines explained above is made
formally and finally in Section 7.

2 Background material

In this section we recall succinctly and with certain formality those notions, like that of electric
and magnetic charges, that will be necessary throughout thearticle. The formal treatment is
justified by the mathematical nature of the paper.

We will be working with smooth electro-vacuum space-times(M ;g;F), where(M ;g) an ori-
entable and time orientable Lorentzian manifold. We will assume that an orientation onM was
chosen and that a future direction was assigned. LetΣ be a space-like hyper-surface andn a fu-
ture unit normal toΣ. As usual, the orientation onM and the fieldn provide an orientation onΣ,
more precisely:{e1(p),e2(p),e3(p)} is a positive basis ofTpΣ iff {n(p),e1(p),e2(p),e3(p)} is
a positive basis ofTpM . Space-times tensors, like the Ricci curvatureRic of g, will be boldfaced.

(i) The Einstein-Maxwell system.

In coordinate-independent form the Einstein-Maxwell equations are

(4) Ric− 1
2

Rg= 8πT, dF = 0, and d⋆F = 0

where d is the exterior derivative and⋆ is the g-Hodge star, namely⋆Fab = εabcdFcd/2. The
electromagnetic energy-momentum tensorT appearing in (4) is

Tab = 1
4π
(FacF

c
b − 1

4
FcdFcdgab).

The 3+1 picture of (4) will be also used during the article. Werecall it in what follows [6]. Let
Σ0 be a space-like hyper-surface (possibly with boundary) andV a nowhere zero time-like vector
field defined on an open neighborhood ofΣ0. By movingΣ0 alongV one obtains a flow of space-
like hypersurfacesΣt (at least for a short time). Coordinates charts(x1

,x2
,x3) are propagated by

V to everyΣt and any twoΣt andΣt′ are naturally diffeomorphic. In this way one obtains a flow(gi j (t),Ki j (t)) of induced three-metrics and second fundamental forms on the fixed manifoldΣ0.
Writing V∣Σt = N(t)n+Xi(t)∂i , wheren is a future unit normal toΣt , one obtains also a flow of

[4] I would like to thank Sergio Dain for pointing this out.
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2 Background material

lapse functionsN(t) and shift vectorsX(t) = Xi∂i . In this 3+1 setup the Einstein equation (first
eq. in (4)) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ġi j = −2NKi j +LXgi j ,

K̇i j = −∇i∇ jN+N(Rici j −2Kil K
l
j)+LXKi j −8πN(T i j + 1

2(Tabgab)gi j ),
R= ∣K∣2−k2+16πT00,

∇iKi j −∇ jk= 8πT0i,

whereT00 = T(n,n) and T0i = T(n,∂i), ∇ is the g-covariant derivative,k = trgK is the mean
curvature andL is the Lie-derivative. The space-time metric is written in the form

g= −(N2−XiX
i)dt2+Xi(dt⊗dxi +dxi ⊗dt)+gi j dxidxj

At every sliceΣt , the electric and magnetic fieldsE andB, are defined byEi = Fi
ana andBi =⋆Fi

ana. In terms of them the electro-vacuum constraint equations are

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R= ∣K∣2−k2+2(∣E∣2+∣B∣2),
∇iKi j −∇ jk= 2(E×B) j ,

∇iEi = 0,

∇iBi = 0

where(E×B) j = εi jkE jBk. A set(g,K;E,B) satisfying the constraint equations (5) on a manifold
Σ is called anelectro-vacuum data set. The data is maximal ifk= trgK = 0.

(ii) The electric and magnetic charges.

Let [S] be an oriented, compact and boundaryless surfaceS embedded inM . The bracket[ ]
signifies that an orientation onShas been assigned. ThenQE([S]) andQM([S]) are defined by

QE([S]) = − 1
4π ∫[S]⋆F and QM([S]) ∶= − 1

4π ∫[S]F

As dF = 0 and d⋆F = 0 thenQE([S]) andQM([S]) depend only on the homology class of[S].
We will be referring this fact as theconservation of charge. If S is embedded in a space-like
hypersurfaceΣ thenQE([S]) andQM([S]) take the more familiar expressions

(6) QE([S]) ∶= 1
4π ∫S

<E,ζ > dA and QM([S]) ∶= 1
4π ∫S

<B,ζ > dA

where<E,ζ >=Eiζ jgi j and whereζ the unit normal field toS in Σ such that if{e2(p),e3(p)} is
a positive basis forTpS then{n(p),ζ(p),e2(p),e3(p)} is a positive basis forM . Observe that if[S] and[S′] are homologous inΣ (and therefore inM ) then the conservationsQE([S]) =QE([S′])
andQM([S]) =QM([S′]) can be seen also as a consequence of the laws divE = 0 and divB = 0
(divU =∇iUi).

In this context, the total chargesQE andQM that show up in the metric expression (1) of the
EKN solutions are of course the electric and magnetic charges of any sphere witht andr constant
and oriented using the outgoing normalζ = ∂r/∣∂r ∣ [5].

It is the case that the normalζ will be given from the context (or simply will not matter). For
this reason we will often writeQE(S) andQM(S).

[5]Assume{∂t ,∂r ,∂θ ,∂ϕ) is positive forM .
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3 Black-holes inequalities in maximal data sets

(iii) Angular momentum in electro-vacuum space-times.

Suppose now that the electro-vacuum space-time(M ;g;F) is axisymmetric and thatF = dA with
the potentialA axisymmetric[6] . Denote byξ the axisymmetric Killing field. Then the angular
momentum of an oriented and axisymmetric (compact and boundaryless) surface[S] is [5]

(7) J([S]) ∶= 1
8π ∫[S]⋆(∇aξb)+ 1

4π ∫[S](Aaξa)⋆F
The angular momentum is conserved too [5]. Namely if[Σ] is an oriented compact and axisym-
metric hypersurface ofM and∂ [Σ] = [S]− [S′] thenJ([S]) = J([S′]).

If Sis embedded in an axisymmetric Cauchy hypersurfaceΣ, then the first term in (7) (which is
the Komar angular momentum) reduces to the standard form(∫SK(ξ ,ζ)dA)/8π and is therefore
zero whenK = 0. If in additionB = 0 overΣ then the second term in (7) is also zero. To see this
use the axisymmetry ofA to getξ aFai = ∇iA(ξ) and to conclude thatA(ξ) must be a constant
overΣ. WhenS is in addition a sphere then the constant must be zero becauseA(ξ) must vanish
at the axes. This information shows that the perturbations constructed in Section 4, which have
K = 0 andB= 0, also have total angular momentumJ equal to zero.

(iv) The stability inequality of minimal surfaces embeddedin maximal data sets.

Let (Σ;g,K;E,B) be an electro-vacuum data set and suppose thatS is a (compact, boundary-less
and orientable) minimal surface embedded inΣ. Recall that a surfaceS is said minimal inside(Σ;g) if its mean curvature is identically zero. Letζ be a unit normal vector field toS in Σ and let
α ∶ S→R be a smooth function. The first variation of area whenS is deformed alongαζ is zero
by minimality. Instead, the second variation is [9]

(8) A′′α(S) ∶= ∫
S
[ ∣∇α ∣2−(∣Θ∣2+Ric(ζ ,ζ))α2]dA,

where hereΘ is the second fundamental form ofS. The surfaceS is said to be stable ifA′′α(S) ≥ 0
for all α. In dimension three the r.h.s of (8) is simplified due to the identity 2κ = (trhΘ)2−∣Θ∣2+R−2Ric(ς ,ς), whereκ is the Gaussian curvature ofS(with its induced metric). Using this
expression, the minimality ofS (i.e. trhΘ = 0) and the energy constraint we deduce that ifS is
stable then for anyα we have

(9) ∫
S
(∣∇α ∣2+κα2)dA≥ 1

2∫S
(2∣E∣2+2∣B∣2+ ∣K∣2+ ∣Θ∣2−k2)α2dA.

3 Black-holes inequalities in maximal data sets

Definition 2. We say that a sphere S embedded in a maximal electro-vacuum data set(Σ;g,K;E,B)
is a (normalized) extreme RN sphere if over S we have

(10) κ = 1, E = ζ , B= 0, Θ = 0, and K= 0,

whereκ is the Gaussian curvature,ζ is a unit normal to S inΣ andΘ is the second fundamental
form of S in(Σ;g).

Normalized extreme RN spheresSare totally geodesic and have∣QE(S)∣ = 1, QM(S) = 0 and
A(S) = 4π .

[6] If F is exact then an axisymmetric potentialA can always be found by averaging any potential by the rotational group
U(1). Observe too thatF is exact iff all the magnetic charges (i.e.QM([S]) = 0 for all S) are zero.
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3 Black-holes inequalities in maximal data sets

The following lemma discusses the equality case in the general inequalityA≥ 4πQ2
E and that

was not treated in [13].

Lemma 1. Let S be a stable (compact, boundaryless and orientable) minimal surface embed-
ded in a maximal electro-vacuum data set and having A(S) = 4π and ∣QE(S)∣ = 1. Then, S is a
(normalized) extreme RN sphere.

Proof. Recall from (9) that the stability inequality of the area implies

(11) ∫
S
(∣∇α ∣2+κα2)dA≥ ∫

S
(∣E∣2+ ∣B∣2+ ∣K∣2

2
+ ∣Θ∣2

2
)α2dA

for all α ∶S→R. As ∣QE(S)∣ = 1 we can select the unit normal fieldζ to Ssuch that 1
4π ∫S<E,ζ >

dA= ∣QE(S)∣ = 1. Choosingα = 1 in (11) and using then Gauss-Bonet and that

(12) 1= ∣QE(S)∣ = 1
4π
∣∫

S
<E,ζ > dA∣ ≤ 1

(4π)1/2(∫S
∣E∣2dA)

1/2

we obtain

4π ≥ 4π +∫
S
(∣B∣2+ ∣K∣2

2
+ ∣Θ∣2

2
)dA

This shows thatB= 0, K = 0 andΘ = 0 and that equality must hold. Therefore equality must hold
also in (12) which implies (by Cauchy-Schwarz) thatE = ζ . It remains to see thatκ = 1, i.e. that
Shas a round metric. Let us show this below.

UsingB= 0, K = 0, Θ = 0 andE = ζ in (11) we obtain

∫
S
(∣∇α ∣2+(κ −1)α2)dA≥ 0

for all functionsα. This implies that the first eigenvalueλ of the operatorα → −∆α +(κ −1)α
must be non-negative. Denote byαλ its eigenfunction (which is unique up to a constant and that
is well known to be nowhere zero). Then we have

(13) −∆αλ +(κ −1)αλ = λ αλ

Multiplying by 1/αλ and integrating overSwe obtain

−∫
S
∣∇ lnαλ ∣2dA= 4πλ ≥ 0

This implies thatλ = 0 and thatαλ is a constant. Using this information in (13) we obtainκ = 1
as wished. ∎
Definition 3. A maximal electro-vacuum data set(Σ;g,K;E,B) is said to be of the ERN1 type if
there is a (smooth) diffeomorphismϕ ∶ Σ0→ Σ such that

lim
p→End

∣(ϕ∗U)(p)−U0(p)∣g0
= 0

where(U,U0) is any of the pairs(g,g0), (K,K0), (E,E0), (B,B0) and p→ End means “as p
diverges along the cylindrical end or the asymptotically flat end”.

Observe that we require that(ϕ∗g,ϕ∗K;ϕ∗E,ϕ∗B) converges to(g0,K0;E0,B0) along the
ends only inC0. For this reason the ADM masses of both data sets are not necessarily equal.
However the total electric and magnetic charges must stay the same as they can be calculated

8



3 Black-holes inequalities in maximal data sets

from the formulas (6) along the divergent sequence of spheresSr i = {r = r i} on the cylindrical end.
That is, any data set of the ERN1 type has total charges∣QE∣ = 1 andQM = 0.

The next proposition is essentially a particular case of theresults in [13]. We include a proof
for a more convenient exposition.

Proposition 1. Let(Σ;g,K;E,B) be a maximal electro-vacuum data set of ERN1 type. Then every
(compact, boundaryless and orientable) embedded surface Swhich is non-contractible insideΣ
has

(14) ∣QE(S)∣ = 1 and A(S) ≥ 4π .

Proof. We prove first that∣QE(S)∣ = 1. Think Σ asR3∖{o} andS as a surface embedded in it.
Then recall that any compact, boundary-less and orientablesurface embedded inR3 dividesR3

into two connected components one of which is necessarily unbounded. AsS is non-contractible
insideR

3∖ {o} then the bounded component ofR3∖S must contain the origino. That is,S
separates the two ends ofΣ and the electric charge ofS(with an appropriate normal) must be that
of the asymptotically flat end, i.e.∣QE(S)∣ = 1.

We prove now thatA(S) ≥ 4π . Assume by contradiction the existence of anSwith A(S) < 4π .
Let A(S) = inf{A(S′),S′ isotopic toS}. Then obviously we have 4π > A. We claim that we also
haveA(S) > 0. In fact, if there is a sequenceS′j of surfaces isotopic toSsuch thatA(S′j)→ 0 then

1= ∣QE(S′j)∣ = 1
4π
∣∫

S′j
<E,ζ > dA∣ ≤ 1

4π
∥E∥L∞g A(S′j)→ 0

which would show a contradiction.
Now, following [15] (THEOREM 1’ [7]) there is a (non-empty) set of compact boundary-less

and non-contractible (insideΣ) minimal surfaces{S1, . . . ,Sl} embedded inΣ and a set of positive
integers{n1, . . . ,nl} such that

A(S) = i=l

∑
i=1

niA(Si)
As Σ is diffeomorphic toR3∖{o} then all theSi ’s must be orientable and therefore stable minimal
surfaces [15]. Consider nowS1 and note thatA(S1) ≤A(S) < 4π . We show now that in addition to
this it must also beA(S1) ≥ 4π , which is a contradiction. To showA(S1) ≥ 4π we recall (as was
shown before) that∣QE(S1)∣ = 1. Therefore pluggingα = 1 in (11) we have

4π ≥∫
S1

∣E∣2dA≥ 1
A(S1)(∫S1

∣ <E,ζ > ∣dA)
2 ≥ (4π ∣QE(S1)∣)2

A(S1) = (4π)2
A(S1)(15)

as wished. ∎
The following crucial refinement of Proposition 1 shows thatequality in the second equation

of (14) cannot be achieved. The proof is based in similar argument to those in [18].

Proposition 2. Let(Σ;g,K;E,B) be a maximal electro-vacuum data set of ERN1 type. Then every
(compact, boundary-less and orientable) embedded surfaceS which is non-contractible insideΣ

[7]There is a caveat here. Strictly speaking THEOREM 1’ applies to manifolds with convex boundary which is not the
case here (instead we have an AF end and a Cylindrical end∼R×S2). To apply THEOREM1’ one can work between two
spheres, one convex and far away in the AF end and another far away on the cylindrical end where in a neighborhood of
it one modifies slightly the metric to have also a convex boundary. Apply THEOREM1’ and then show that the minimizer
does not intersect the deformed region. The reader can see how this type of argument works when we use as similar one
in the proof of Aux-Proposition 3.
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3 Black-holes inequalities in maximal data sets

has
A(S) > 4π .

Proof. By Proposition 1 it is enough to show that equality in (14) cannot be achieved. Proceeding
by contradiction assume then that there isS0 with A(S0) = 4π . Then observe that ifSis isotopic to
S0 thenS is also non contractible insideΣ. Therefore, again by Proposition 1, we haveA(S) ≥ 4π
for any surfaceS isotopic toS0. This implies thatS0 is minimal and stable[8] . By Lemma 1S0 is
an extreme RN sphere.

Let S0 be a large and strictly convex sphere (w.r.t the outer normal) over the asymptotically
flat end. Denote byΩ0 the region enclosed by it and the cylindrical end and assume that S0 ⊂
Int(Ω0). In what follows we are going to use this regionΩ0 together with a positive solution
N =N0 of

(16) ∆N− ∣E∣2N = 0

over Ω0, asymptotically vanishing over the cylindrical end and not-identical to a constant over
S0. The existence of suchN0 is proved as follows. Take any two linearly independent smooth
positive functionsf1 and f2 overS0. For i = 1,2, let Ñi be the solution to (16) onΩ0 with the
boundary conditioñNi ∣S0 = fi and asymptotically vanishing over the cylindrical end ofΩ0. By
the maximum principle we havẽNi > 0 for i = 1,2. If both solutions are constant overS0 then one
can take a linear combinatioñN ∶= α1Ñ1+α2Ñ2 vanishing exactly overS0 but with α1 ≠ 0 and
α2 ≠ 0. As Ñ asymptotically vanishes over the cylindrical end ofΩ0 and is zero overS0 then, by
the uniqueness of solutions to (16), the combination has to be zero all over the set enclosed byS0

and the cylindrical end. Then, the unique continuation principle [2] tells thatÑ has to be zero all
overΩ0 which is not possible becausef1 and f2 were chosen to be linearly independent.

The reason why we take suchN0 is twofold and will be explained adequately during the
argumentation below.

In the space-time generated by the initial data consider thefuture-pointing congruence{γ(p,τ)}
of time-like geodesicsγ(p,τ) starting perpendicularly toΩ0 at p∈Ω0 and parametrized by proper
timeτ. We are going to moveΩ0 with the help of this congruence and obtain a foliation{Ωt} [9] .
The leavesΩt of the foliation are defined, for every givent, as the image of the map

Ft ∶ p ∈Ω0→ γ(p,N0(p)t) ∈Ωt

This map in turn induces Lapse and Shifts,Nt , Xt over eachΩt with the property thatNt=0 =N0

andX0 = 0. Of course the result of moving a pointp ∈ Ω0 through the space-time vector field
Nτnτ +Xτ and for a lapse of timet is the same asFt(p). The leavesΩt are naturally identified
to Ω0 and thus the space-time metric together with the electromagnetic tensor are described by a
flow (gt ,Kt ;Nt ,Xt ;Et ,Bt) overΩ0 (c.f. Section 2 item(i); note also that we are changing notation
from (g(t),K(t);N(t),X(t);E(t),B(t)) to (gt ,Kt ;Nt ,Xt ;Et ,Bt) which makes the writing clearer
in this part).

To simplify notation below, when we omit the subindext we meant = 0.
We can comment now on one of the reasons why we choseN0 satisfying (16). In general, the

time derivative of the mean curvaturekt of the leaves of a space-like foliation{Ωt} with LapseNt

and ShiftXt is given by

∂tkt = −∆gt Nt +(4π(T00+T i j g
i j
t )+ ∣Kt ∣2)Nt

[8] More explicitly, for any smoothF ∶ [−ε ,ε]×S0 → Σ with F(0,−) = Id(−) and ε small to haveF(x,−) ∶ S0 → Σ
a smooth embedding, the real functionλ → A(F(λ ,S0)), (which is greater or equal than 4π for all λ ), must have an
absolute minimum atλ = 0. It follows that the firstλ -derivative is zero and the second is non-negative. As this is valid for
all F then the surface is minimal and stable.

[9]Of course is a foliation of a piece of the space-time.
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3 Black-holes inequalities in maximal data sets

In our case we have, at timet equal zero,(4π(T00+T i j gi j )+ ∣K∣2) = ∣E∣2 (useT00 = T i j gi j and
8πT00= ∣E∣2+ ∣B∣2). Hence,∂tkt ∣t=0 = 0. As we also havekt ∣t=0 = 0 we obtainkt = (∂ 2

t kt ∣t=0)t2/2+
O(t3) in short times. Having this quadratic behavior ofkt in short times was one of the reasons
behind the choice ofN0 and will be crucial later.

DefineSt = Ft(S0) ⊂ Ωt , the translation ofS0 by Ft . Recall tat we are identifyingΩt to Ω0

throughFt . In this identification the surfaceSt is identified toS0. In this sense the area ofSt is the
same asAgt (S0), a notation that we keep using below.

We claim that

(17) Ägt(S0)∣
t=0

= −A′′N0
(S0)

where the double dot means twice thet-derivative ofAgt (S0) andA′′N0
(S0) is, following the nota-

tion introduced before, the second variation of area ofS0 alongN0ζ . We prove this claim in what
follows. As was calculated in Proposition 3 in [18] we have

Ägt (S0)∣
t=0

=∫
S0

[N0∇A∇BN0−N2
0(RicAB−2KAiK

i
B)]hABdA(18)

+∫
S0

8πN2
0[TAB− 1

2
(T i j g

i j −T00)gAB]hABdA

where we included here the term involvingT that was omitted in [18] as in there only vacuum
solutions were considered[10]. In the previous formulaRic is the Ricci curvature ofg= g0 and∇
its covariant derivative. We note then that:

1. The electromagnetic stress-energy is traceless and thereforeT i j gi j −T00 = 0,

2. RicABhAB=R−Ric(ζ ,ζ) = 2∣E∣2−Ric(ζ ,ζ),
3. And finally, becauseS0 has the geometry of an extreme RN-horizon the conditions (10)

hold and we have

8πTABhAB= 2∣E∣2, KAiK
i
BhAB= 0, and,

∫
S0

N0(∇A∇BN0)hABdA= −∫
S0

∣∇N0∣2dA

where in the last formula the gradient ofN0 is taken overS0.

Combining this information in (18) and after a crucial cancelation of the terms involving∣E∣2 we
obtain

Ägt (S0)∣
t=0

= −∫
S0

(∣∇N0∣2−Ric(ζ ,ζ)N2
0)dA= −A′′N0

(S0)
where to deduce the second equality we have used (8) and thatΘ = 0 overS0. We can comment
now on the second reason for our particular selection ofN0. If N0 is not exactly the constant
function one overS0, as we are assuming, thenA′′N0

(S0) > 0 and thereforëAgt(S0)∣t=0 < 0. This is
our second reason and will be also crucial below.

The space-time vector fieldV which movesΩ0 to Ωt and which generates the flowgt , is, at a

[10]More precisely, in the second formula of Proposition 3 useK̇i j = −∇i∇ j N +N(Rici j − 2Kil Kl
j) − 8πN(T i j +

1
2(T lmglm−T00)gi j ) instead of justK̇i j = −∇i∇ j N+N(Rici j −2Kil K

l
j) (recall that the data at the initial time is max-

imal, that isk = 0).
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3 Black-holes inequalities in maximal data sets

space-time pointq= γ(p,N0(p)t), given by

V(q) = dF(p,N0(p)t)
dt

=N0(p)dγ(p,τ)
dτ

∣
τ=N0(p)t

=N0(p)γ ′(q)
Recalling thatN0 tends to zero (indeed exponentially) over the asymptotically cylindrical end of(Ω0,g0) we conclude thatV tends to zero over the asymptotically cylindrical end and for this
reason the evolution ofgt over the end freezes up. Thus the metricsgt inherit exactly the same
cylindrical asymptotic for everyt, that is, that of the metric product of the unit two-sphere and the
half-real line.

Take (by continuity)t∗ > 0 small enough such that for allt ∈ [0,t∗], the boundary of(Ω0,gt)
is still strictly convex. Assume thatt∗ was chosen small enough thatAgt (S0) < 4π for every
t ∈ [0,t∗]. Then, again based on general results on minimal surfaces [15] we can guarantee, for
everyt ∈ [0,t∗], the existence of a stable minimal sphere[11] Ŝt in Ω0 of area less or equal than
Agt(S0), non contractible insideΩ0 and thus of electric charge one.

We proceed now to gather conveniently all the information obtained so far and use it thereafter
to reach a contradiction.

1. Fromkt = (∂ 2
t kt ∣t=0)t2/2+O(t3) we have, for allt ∈ [0,t∗] (choset∗ smaller if necessary),

(19) k2
t ≤ 2c2

1t
4 where c1 = sup{∣∂ 2

t kt(p)∣t=0

2
, p ∈Ω0},

2. FromAgt(S0) = 4π −A′′N0
(S0)t2/2+O(t3) we have, for allt ∈ [0,t∗] (choset∗ smaller if

necessary),

(20) Agt (S0) ≤ 4π − c2

2
t2 ≤ 4π where c2 = A′′N0

(S0)
2

> 0

3. For everyt ∈ [0,t∗] there is a stable minimal spherêSt with QE(Ŝt) = 1 andAgt (Ŝt) ≤
Agt (S0).

Now, the stability inequality at̂St with trial functionα = 1 gives

4π ≥ ∫
Ŝt

∣Et ∣2dAt −∫
Ŝt

k2
t

2
dAt

Use then (19) and that∫Ŝt
∣Et ∣2dAt ≥ (4π)2/A(Ŝt) (becauseQE(Ŝt) = 1) to transform this equation

into

4π ≥ (4π)2
A(Ŝt) −c2

1t
4A(Ŝt)

Multiply this equation byA(Ŝt)/4π and then use thatA(Ŝt) ≤ A(S0) and (20) to deduce 4π −
c2t2/2≥ 4π −4πc1

2t
4 or, the same, 8πc2

2t
4 ≥ c1t2, which is impossible for smallt. ∎

[11]That the limit is connected and is a sphere follows from the genus bounds (1.4) of THEOREM 1 in [15].
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4 A family of perturbations of the ERN1 initial data

4 A family of perturbations of the ERN1 initial data

Recall that the metric of the ERN1 space-time is

g= −(1−1/r)2dt2+ 1

(1−1/r)2 dr2+ r2dΩ2(21)

and that on the hypersurfaceΣ0 = {t = 0} we haveK0 = 0, B0 = 0 and that the electric field is radial
and takes the formE0 = ζ/r2 whereζ = ∂r/∣∂r ∣ is the unit normal to the radial spheresS̄r = {r = r̄}.
Now, the constraint equations (5) of an electro-vacuum dataset(g,K;E,B) with K = 0 andB= 0
reduce to

(22) { R= 2∣E ∣2,
divE = 0

Because of this the scalar curvatureR0 of the metricg0 of the ERN1 standard initial data is
R0 = 2/r4.

In the argumentation given below we will make use of an expression for the three-Laplacian
∆g0 acting on radial functionsφ = φ(r) of Σ0. A direct calculation using the general formula
∆φ = ∂r(√ggrr ∂rφ)/√g gives, whenφ = φ(r), the expression

∆g0 φ = r(r −1)
r4

d

dr
[r(r −1) d

dr
φ]

This formula is simplified if we use the harmonic radial coordinatex = ln(1−1/r) instead ofr
(harmonic means∆g0x= 0). With this definition the range ofx is (−∞,0). In this new coordinate
the Laplacian acting on radial functions reads

(23) ∆g0 φ = φ ′′

r4

where hereφ ′′ = d2φ/dx2. Note then that∆g0 φ = ∣E0∣2 φ ′′.
We proceed now to construct the bi-parametric family of axisymmetric “perturbations” of the

initial data onΣ0. The axisymmetric Killing field will be∂ϕ , which, note, is also axisymmetric
Killing for the background data set. The two parameters of the family will be ε̂ andx̂. Roughly
speaking the variablêε represents the “strength” of the perturbation while ˆx marks the sphere
around which the perturbation “concentrates”. This interpretation will be clear as the construction
progresses. To explain the construction let us recall in what follows theconformal methodto solve
the constraint equations but for the situation that is of interest here, namely when the data set to
be found is time symmetric and has no magnetic field. Let(Σ,g) be a Riemannian manifold of
scalar curvatureR. On it letÊ be ag-divergence-less vector field. If forφ > 0 we have

(24) ∆φ =Rφ −2∣Ê ∣2 φ−3
,

thenḡ = φ4g andĒ = φ−6Ê satisfy the constrain equations (22). We will use this method below
with (Σ,g) = (Σ0,g0) andÊ =Eε̂,x̂ suitably chosen.

In what follows we will identifyΣ0 to (−∞,0]×S2 where the factor(−∞,0] is the range of
the coordinatedx introduced before. From now on the parameter ˆx is set to vary in(−∞,−2] andε̂
in (0,1/16). Fix a smooth and non-zero axisymmetric two-formω supported on(−3,−1)×S2 ⊂(−∞,−1)× S2. This form is set to be fixed from now on and will not be adjustedanymore.
For every ˆx let χ∗x̂ ω be the pull-back ofω to [x̂− 1, x̂+ 1]× S2 under the transformationχx̂ ∶
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4 A family of perturbations of the ERN1 initial data

[x̂−1, x̂+1]×S2 → [−3,−1]×S2 given by(x,θ ,ϕ)→ (x− x̂−2,θ ,ϕ). Then, for every ˆx and ε̂
define

(25) Êx̂,ε̂ =E0+ λ̂ (⋆d⋆(χ∗x̂ ω))♯
whereλ̂ = λ̂x̂,ε̂ is a factor chosen to havêε = sup∣1− ∣Êx̂,ε̂ ∣2/∣E0∣2∣ (here∣ . . . ∣ = ∣ . . . ∣g0), the star⋆ in ⋆d⋆ is theg0-Hodge star and(⋆d⋆ (χ∗x̂ ω))♯ is theg0-dual vector field of the form⋆d⋆(χ∗x̂ ω). In this wayÊx̂,ε̂ comprises a bi parametric family of divergence-less axisymmetric vector
fields which are equal to the background fieldE0 outside[x̂−1, x̂+1]×S2 but otherwise not very
different from it.

In what follows and to simplify notation we keep using∣ . . . ∣ = ∣ . . . ∣g0 and make alsôE = Êx̂,ε̂ .
We pass now to show that for everyÊ we can find an axisymmetric solution to the the Lich-

nerowitz equation (24) (L-equation from now on) with good geometric properties. To this extent
we use the method of sub and super-solutions. Namely, if for axisymmetric functions (barriers)
φ+ > 0 andφ− > 0 with φ+ > φ− we have

⎧⎪⎪⎨⎪⎪⎩
∆g0φ+ ≤ 2∣E0∣2φ+−2∣Ê∣2φ−3

+ ,

∆g0φ− ≥ 2∣E0∣2φ−−2∣Ê∣2φ−3
−

(26)

(recallR0 = 2∣E0∣2) then there is an axisymmetric solutionφ > 0 to (24) withφ− ≤ φ ≤ φ+, (for a
proof of this fact in this context see [8][12]). We explain now how to findφ− which will be a radial
function, i.e. φ− = φ−(x). In (I) below we defineφ−(x) over(−∞,−1] and in (II) over[−1,0).
The global function defined by (I) and (II) will be smooth overthe separate domains(−∞,−1)
and(−1,0) but will be justC0 at x = −1. For this reason to check that such global function is a
barrier in the distributional sense [8] it will be necessaryto check that its left derivative atx= −1
is less than its right derivative[13]. This will be done after (I) and (II) below.

x −1 0

1

x̂

φ

φ−

+

Figure 3: Picture of the barriersφ− andφ+.

(I) Definingφ−(x) on (−∞,−1]. Makeψ− = φ− −1 and recall that∆ψ− = ∣E0∣2ψ ′′− . With this
information and after a simple manipulation the second equation in (26) can be displayed
in the form

(27) ψ ′′− ≥ 2[1+φ−1
− +φ−2

− +φ−3
− ]ψ−+2[1− ∣Ê∣2∣E0∣2 ]φ−3

−

Now, it can be easily checked that for any real numberγ such that∣γ −1∣ ≤ 1/8 we have

(28) 3≤ 1+γ−1+γ−2+γ−3 ≤ 5, and
1
2
≤ γ−3 ≤ 2

[12]To get an axisymmetric solution out of the method of barriersjust work inside the family of axisymmetric functions
all the time in [8].

[13]Alternatively, a smooth barrier can be easily found by rounding off the global function constructed by (I) and (II).
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4 A family of perturbations of the ERN1 initial data

Thus, if we can findψ−(x) with −1/8<ψ− < 0 and satisfying

(29) ψ ′′− ≥ 6ψ−+4ε̂ Î

whereÎ = Î(x) is the indicator functionon [x̂−1, x̂+1], (i.e. equal to one on[x̂−1, x̂+1]
and zero otherwise), thenφ− = 1+ψ− will verify (27) because, in this case, we would have

6ψ−+4ε̂ Î ≥ 2[1+φ−1
− +φ−2

− +φ−3
− ]ψ−+2[1− ∣Ê∣2∣E0∣2 ]φ−3

−

due to (28) (withγ =φ−) and because, by construction, we have 1− ∣Ê∣2/∣E0∣2 ≤ ε̂ point-wise.
The function

ψ−(x) = −4ε̂
cosh(x− x̂)

verifies−1/8<ψ−(x) < 0 becausêε <1/16. To see that it also satisfies (29) on(−∞,−1] we
argue as follows. First we computeψ ′′− = 4ε̂(1−2sinh2(x− x̂)/cosh2(x− x̂))/cosh(x− x̂)
and, after plugging this inside (29) and after a simple manipulation we conclude that to
verify (29) it is enough to verify the inequality 7−2sinh2(x− x̂)/cosh2(x− x̂) ≥ (cosh(x−
x̂)) Î(x) for all x ∈ (−∞,−1]. This is easily seen because the l.h.s of this expression is
greater than five and the r.h.s is less or equal than cosh1 which is less thane. Summarizing,
φ− =ψ−+1 is a sub-solution on this range ofx. Note that asψ− < 0 then it isφ− < 1.

(II) Definingφ−(x) on [−1,0). On[−1,0) defineφ−(x) by φ−(x) = 1+ψ−(x) where

ψ−(x) = 4ε̂x

cosh(−1− x̂)
To see thatφ− is a sub-solution it is necessary to check (27). Firstly, asφ−(x) is linear inx
the l.h.s of (27) is zero. Secondly, the second term on the r.h.s of (27) is zero because when
x ∈ [−1,0) it is ∣E0∣2 = ∣Ê∣2. The inequality (27) then follows becauseψ− < 0 and so is the
first term on the r.h.s of (27).

So far we have definedφ− and proved that it is a sub-solution when restricted to the intervals(−∞,−1) and(−1,0). It remains to prove that it is also a sub-solution in the neighborhood of
x= −1. As said, to see this it is enough to check that the left-sided derivative ofφ− atx= −1 is less
than its right-sided derivative. The left-sided derivative atx= −1 is 4ε̂ sinh(−1− x̂)/cosh2(−1− x̂)
while the right-sided is 4̂ε/cosh(−1− x̂) and the desired inequality follows.

Summarizing, the sub-solution is

(30) φ−(x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− 4ε̂
cosh(x− x̂) if x ∈ (−∞,−1],

1+ 4ε̂x

cosh(−1− x̂) if x ∈ [−1,0)
A graph ofφ− is presented in Figure 3. Reproducing the argument that leadto φ−, it is found that
φ+(x), defined by

(31) φ+(x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1+ 4ε̂
cosh(x− x̂) if x ∈ (−∞,−1],

1− 4ε̂x

cosh(−1− x̂) if x ∈ [−1,0)

15



5 Rigidity of the ERNT1 initial data

is a super-solution. We conclude that there isφ > 0, solution of (24), and satisfyingφ− ≤ φ ≤ φ+.
The metric ¯g= φ2g0 and the electric field̄E = Êφ−6 satisfy the constraint equations (22).

Summarizing, from the explicit form of the sub and super-solutions we observe thatφ −1
“concentrates“ around ˆx and decays exponentially to zero in both directions ofx starting from ˆx.
In the direction of increasingx the exponential decay however stops atx = −1 and after that it
is linear inx, namely of the order 1/r in the r-coordinate. Observe, to be recalled later, that the
exponential decay ofφ in the asymptotically cylindrical end implies by standard elliptic estimates
that the perturbed data sets(ḡ,K̄;Ē,B̄) decay exponentially as defined in the introduction.

5 Rigidity of the ERNT1 initial data

The next lemma shows the rigidity of the ERNT space-time and has interest in itself. It will be
used in the proof of Proposition 4.

Lemma 2. Let(Σ;g,K;E,B) be a smooth complete and maximal electro-vacuum data set where Σ
is diffeomorphic toR×S2. Let S0 ∶= 0×S2 and suppose that∣QE(S0)∣ = 1. Suppose too that for any
(compact, boundaryless and embedded) surface S non-contractible insideΣ we have A(S) ≥ 4π ,
and that there is at least one such S with A(S) = 4π . Then the data set is the standard ERNT1

initial data.

For expository reasons it is better to divide the proof into three Auxiliary Propositions. In every
one of them we letF be the set of (compact, boundaryless and embedded) surfacesof area4π
and which are non-contractible insideΣ.

Aux-Proposition 1. Assume the hypothesis of Lemma 2. Then, each S∈F is a (normalized) ERN
sphere and every two different spheres inF are disjoint. Moreover the set⋃S∈F{S} is closed as
a set inΣ.

Aux-Proposition 2. Assume the hypothesis of Lemma 2. If⋃S∈F{S} = Σ then the data set is the
standard ERNT1 initial data (Σ̌; ǧ0,Ǩ0;Ě0,B̌0).
Aux-Proposition 3. Assume the hypothesis of Lemma 2. Then,⋃S∈F{S} = Σ.

The proofs of the three propositions are presented consecutively.

Proof of Aux-Proposition 1. By the hypothesis of Lemma 2 every non-contractible surfacehas
area greater or equal than 4π . Therefore the surfaces inF , which have area equal to 4π , must
be minimal and stable (see footnote [8]). By Lemma 1 they are (normalized) ERN spheres. We
show next that two different spheresS1 andS2 in F (in caseF has more than one element) must
be disjoint. IfS1∩S2 ≠ ∅ then, being minimal surfaces, they must intersect transversely. We will
think the surfacesSi, i = 1,2 as embedded in(R3∖{o})∼Σ. As theSi , i = 1,2 are non-contractible
insideR3∖{o} then there are open ballsB1 andB2 in R

3 containing the origino and such that
∂Bi =Si for i = 1,2. Define the manifolds

V1 ∶=S1∩ Int(Bc
2), V2 ∶=S2∩ Int(Bc

1) and W1 ∶=S1∩B2, W2 ∶=S2∩B1

where Int(Bc
i ) is the interior of the complement ofBi (see Figure 4). The manifoldsV1,V2,W1

andW2 are pairwise disjoint and their closures have the same boundary. We will denote such
boundary (a union of embedded circles indeed) byB. We haveS1 = V1∪W1 andS2 = V2∪W2

and for this reason it is

(32) 4π =A(V1)+A(W1) and 4π =A(V2)+A(W2).
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5 Rigidity of the ERNT1 initial data

The manifolds
V ∶= V1∪V2 and W ∶=W1∪W2,

are embedded and smooth except atB, where they have necessarily corners. Note thatV and
W are not necessarily connected (see Figure 4). Moreover we have V = ∂(B1∪B2) andW =
∂(B1∩B2). Therefore, aso∈B1∪B2 ando∈B1∩B2, then at least one of the connected component
of V and at least one ofW divideR3∖{o} into two connected components and are consequently
non-contractible insideΣ. By (32) if A(V2) ≤ A(W1) thenA(V) ≤ 4π , while if A(V2) ≥ A(W1)
thenA(W) ≤ 4π . In any case we can round off the corners atB of either the manifoldV or the
manifoldW to obtain one of area less than 4π and having at least one connected component non-
contractible insideΣ. This is against hypothesis and therefore the surfacesS1 andS2 have to be
disjoint.

B1

o

V1
V2
W1
W2B2

Figure 4: Representation of the manifoldsV1, V2,W1 andW2.

It remains to be proved that the set⋃S∈F{S} is closed inΣ. But if pi(∈ Si ∈F) is a sequence
of points in⋃S∈F{S} with limit point p∞, then the sequenceSi of (normalized) ERN spheres,
and therefore of stable and area minimizing minimal surfaces, has a subsequence converging (in
Ck for everyk ≥ 1) to a limit stable minimal sphereS∞ ∋ p∞, [17][14]. The sphereS∞ cannot
be contractible insideΣ otherwise theSi ’s would be contractible for sufficiently bigi. We have
4π = lim A(Si) =A(S∞), thusS∞ ∈F and thereforep∞ ∈⋃S∈F{S}. ∎
Proof of Aux-Proposition 2. Assume at the moment that the foliationF is smooth (see the defi-
nition of smooth foliation in [4]). We will be proving this later. Fix a sphereS∗ in F and denote
by Σ∗L andΣ∗R the connected components ofΣ∖S∗. For anyp ∈ Σ let S(p) be the sphere inF
containingp and denote byΩ(p) the region enclosed byS∗ andS(p). Then define the (smooth)
functionx̃ ∶ Σ→R as

x̃(p) = ⎧⎪⎪⎨⎪⎪⎩
Vol(Ω(p)) if p ∈ Σ∗R,

−Vol(Ω(p)) if p ∈ Σ∗L

This function is constant over every leaf and has nowhere zero gradient[15]. Let Y = ∇x̃/∣∇x̃∣2
and note that asY(x̃) = 1 the flow induced byY carries leaves (ofF ) into leaves (ofF ). Fix an
isometryψ ∶ S2→ S∗ and define the diffeomorphismΦ ∶R×S2→ Σ by sending a pair(t,s) into
the translation ofψ(s) through the flow induced byY and by a parametric timet. Of course we
haveΦ∗∂ t =Y. On the other hand if we denote byhx̃ the induced metric on the leaves, then we

[14]Precisely there are embeddingsfi ∶ S2
→Si converging inCk to a covering immersionf∞ ∶ S2

→ S∞. But in our case
Σ ∼R3∖{o} and thereforeS∞ must be orientable, hence a sphere andf∞ an embedding.

[15]This can be easily seen from the the fact thatF is assumed smooth.
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5 Rigidity of the ERNT1 initial data

haveLYhx̃ = 0 because each leaf is totally geodesic (hereL is the Lie-derivative). Therefore we
can write

Φ∗g= ∣∇x̃∣2dx̃2+dΩ2

We show now that∣∇x̃∣ is constant over every leaf. Indeed, as the areas of the spheres ofF is
4π then the second variation of area of any sphere inF alongY is zero, i.e. A′′Y(S) = 0. This
implies that∣Y∣ = 1/∣∇x̄∣ is constant over every sphere (see the proof of Lemma 1). The metric
(3) is recovered by making a simple change of variables ¯x= x̄(x̃), with ∣∇x̃∣ = dx̄/dx̃. Finally by
Lemma 1 we haveB= 0, K = 0 andE = ζ with ζ a normal field to the leaves ofF (i.e. either∂x̄ or−∂x̄). Hence we have(g,K;E,B) = (ǧ,Ǩ;Ě,B̌) as claimed.

It remains to prove that the foliationF is smooth. We will show that the 1-distribution of lines
perpendicular to the leaves ofF is smooth. This implies that the distribution of the tangentplanes
to the leaves ofF is smooth and the smoothness ofF is then direct from Frobenius’s theorem [4].
Let Sbe a sphere ofF , let ζ be a normal field to it and leth be the induced two-metric. We will
show that the Ricci curvatureRic of g overShas the following form:Ric(ζ ,ζ) = 0 and for any
v,w ∈ TSwe haveRic(ζ ,v) = 0 andRic(v,w) = h(v,w). The 1-distribution of normal directions to
F is then uniquely characterized by the null space ofRic (i.e. {v∈TS,Ric(v,v)= 0}), and is easily
seen to be smooth becauseRic is smooth.

Again let S be a surface inF andζ a unit normal field to it. Let{γq(τ),q ∈ S,0 ≤ τ ≤ τ0}
be the congruence of geodesics inΣ starting atτ = 0 perpendicularly toS in the direction ofζ
and parametrized by the arc-lengthτ. We will moveSby the vector fieldV = ∂τ γq(τ) and obtain
a smooth one-parametric family of surfacesS(τ). We assume thatτ0 is small enough that the
surfacesS(τ) are embedded (and smooth).

In the forthcoming equations, but inside this proof, we willdenote the mean curvature trhΘ by
µ . Recall from Lemma 1 that overSwe haveκ = 1, R= 2 andΘ = 0. Therefore from the general
identity

(33) 2κ − ∣Θ∣2+µ2 =R−2Ric(ζ ,ζ)
we obtainRic(ζ ,ζ) = 0. Also from divΘ−dµ =Ric(ζ ,−) we obtainRic(ζ ,v) = 0 for anyv ∈ TS.
To show that for anyv,w ∈ TSwe haveRic(v,w) = h(v,w) it is enough to prove thatLVΘ = Θ̇ = 0
because of the general identity (onTS)

Θ̇ = −µΘ+2Θ○Θ+κh−Ric

which givesΘ̇(0) = h−Ricat τ = 0. Now, at any timeτ ∈ (0,τ0) we have

Ä(S(τ)) =∫
S(τ)
(µ̇ +µ2)dA(34)

=∫
S
(− ∣Θ∣2

2
+ µ2

2
+κ − ∣E∣2)dA

=∫
S(τ)
(− ∣Θ∣2

2
+ µ2

2
)dA+[4π −∫

S(τ)
∣E∣2dA]

≤∫
S(τ)
(− ∣Θ∣2

2
+ µ2

2
)dA

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U(τ)

where: (i) to obtain the first inequality we usedȦ= µ dA, (ii) to pass from the second to the third
line we use the focussing (Riccati) equationµ̇ = −∣Θ∣2−Ric(ζ ,ζ) in conjunction with (33) and
R≥ 2∣E∣2, (iii) to pass from the second to the third line we use Gauss-Bonnet and (iv) from the
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5 Rigidity of the ERNT1 initial data

third to the fourth we use (12). On the other hand we can expressA(S(τ)) as

A(S(τ)) = 4π +∫ τ

0
dτ̃∫

τ̃

0
Ä(S( ˜̃τ))d ˜̃τ

and we havëA(S(τ)) ≤U(τ) =U(0)+U ′(0)τ +U ′′(0)τ2/2+O(τ3) with U(0) = 0, U ′(0) = 0
and

U ′′(0) = −1
2∫S(0)

∣Θ̇(0)∣2dA

as can be easily seen usingµ(0) =0, µ̇(0) =0,Θ(0) =0 andΘ̇(0) =h−Ric. Therefore, ifΘ̇(0) ≠0
then we would haveA(S(τ)) < 4π for smallτ which is against the hypothesis. This finishes the
proof. ∎
Proof of Aux-Proposition 3. We will proceed by contradiction and assume that⋃S∈F{S}≠Σ. As
by Aux-Proposition 1 the set⋃S∈F{S} is closed, then every connected component ofΣ∖⋃S∈F{S}
is either an open region enclosed by two spheres inF or an open region enclosed by a sphere in
F and one of the two ends ofΣ. Thus, if there is only one connected component ofΣ∖⋃S∈F{S}
then⋃S∈F{S} must at least contain a closed region enclosed by a sphere inF and one end ofΣ.
As in Aux-Proposition 2 the data set over such region must beERNT1. Because of this one can
cut off such region and “double” the remaining one to construct a new data set(Σ′;g′,K′;E′,B′)
in the hypothesis of Lemma 2 but with two connected components of Σ′∖⋃S∈F{S}.

Assume then without loss of generality that there are at least two connected components of
Σ∖⋃S∈F{S}. We want to prove that such data set cannot exist. This will bedone exactly as in
Proposition 2. For this reason the paragraphs below are firstdedicated to construct a setup similar
to the one in the proof of Proposition 2.

For the discussion that follows the Figure 5 could be of greathelp. Denote two of the con-
nected components of⋃S∈F{S} by ΩL andΩR (L for “Left” and R for “Right”). Let SL andSR

be any two spheres embedded inΩL andΩR respectively and non contractible insideΣ. Denote
by ΩLR the region enclosed by them and including them, and byΣ−L (resp. Σ+R) the connected
component ofΣ∖SL (resp.Σ∖SR) not containingSR (resp.SL). Also letD∗ > 0 be small enough
such that

1. if p ∈ Σ−L (resp. p ∈ Σ+R) and dist(p,SL) ≤ D∗ (resp. dist(p,SR) ≤ D∗) then p ∈ ΩL (resp.
p ∈ΩR), and

2. for any 0< D ≤ D∗ the set{p ∈ Σ−L ,dist(p,SL) = D} (resp. {p ∈ Σ+R,dist(p,SR) = D}) is a
smooth and embedded sphere.

In this context define the sphereS∗L (resp. S∗R) asS∗L ∶= {p ∈ Σ−L ,dist(p,SL) = D∗} (resp. S∗R ∶={p ∈ Σ+R,dist(p,SR) =D∗}) and letΩ∗LR be the set enclosed byS∗L andS∗R including them. As the
componentsΩL andΩR are different there is at least one sphereS0 ∈ F embedded inΩLR and
therefore inΩ∗LR. Now, onΩ∗LR consider a positive solutionN =N0 of the maximal lapse equation

∆N−(4π(T00+T i j g
i j )+ ∣K∣2)N = ∆N−(∣E∣2+ ∣B∣2+ ∣K∣2)N = 0

and that is not identically to a constant overS0. The existence of suchN0 is shown in the same
way as was done in Proposition 2 and is left to the reader. Alsoin the same way as in Proposition
2 construct fromN0 a time-like vector fieldV and from it a flow(gt ,Kt ;Et ,Bt) overΩ∗LR, with
0 ≤ t ≤ t∗ and for somet∗ small. As in Proposition 2 now we havėAgt (S0) = 0 andÄgt (S0) < 0.
ThereforeAgt (S0) < 4π in short timest.

Instead ofgt we are going to consider a modified flow of metrics ˜gt conformally related to
gt . This will help to guarantee the existence of certain stableminimal spheres. To the purpose of
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6 Perturbations containing MOTS

definingg̃t consider the following function ofz∈ [0,D∗],
Ψδ (z) = 1+e−1/z+1/(D∗+δ −z)

whereδ is a constant to be fixed soon below. Observe thatΨδ (0) = 1 and that all the right-sided
derivatives ofΨδ are zero atz= 0. Observe too thatΨδ ≥ 1. We then define ˜gt by

g̃t(p) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gt(p) if p ∈ΩLR,

Ψδ (d(p,SL))gt(p) if p ∈Ω∗LR∩Σ−L ,

Ψδ (d(p,SR))gt(p) if p ∈Ω∗LR∩Σ+R

Now choset∗ andδ >0 small enough that the boundaries of(Ω∗LR, g̃t) are strictly mean convex (in
the outgoing directions) for any 0≤ t ≤ t∗. Once this is granted we can consider for everyt ≤ t∗ a
sphereS̃t minimizing theg̃t -area among all the spheres embedded inΩ∗LR and isotopic toS0 [15].

S S* S S*

Ω Ω

S

Σ Ω

Ω *

ΣL RL

RL

R

RL

L L R R0

− +

Figure 5: Representation of the construction in the proof ofAux-Proposition 3.

Until now we have not done any particular progress in the proof. The key point of the proof
lies in showing that one choset∗ smaller if necessary in such a way that the area minimizing
spheres̃St are embedded in Int(ΩLR) and therefore do not intersect the regions where the metric
gt was conformally modified. Once this is shown a contradictionis proved following exactly the
same argument as in Proposition 2 and will not be repeated here.

Suppose then that there is a sequence of timesti ↓ 0 such that for eachti the minimal and
stables spherẽSti is not strictly embedded in Int(ΩLR). Take then a subsequence (indexed again
by “i”) such that S̃ti converges to a stable minimal sphereS̃0 intersectingΩ∗LR∖ Int(ΩLR). As
theS̃ti are non contractible insideΣ then neither is̃S0. Moreover asAg̃ti

(S̃ti) ≤ Ag̃t (S0) < 4π then

Ag̃t(S̃0) ≤ 4π . But Ag̃0(S̃0) ≥ Ag(S̃0) because the conformal factor is greater or equal than one.
Then, the spherẽS0 ⊂ Σ hasA(S̃0) ≤ 4π . So it must beA(S̃0) = 4π by the hypothesis of Lemma 2
and by Lemma 1 it must be a (normalized) ERN sphere. ThusS̃0 ∈F . But this is a contradiction
as the setΩ∗LR∖ Int(ΩLR) does not contain any point of⋃S∈F{S}. ∎
6 Perturbations containing MOTS

The following proposition is direct from standard ellipticestimates and is left to the reader (use
ϕ = id and recall that ¯g= φ2g0, K̄ = 0, Ē = Ê0φ−6 andB̄= 0). It says that the data sets constructed
in Section 4 are small in the sense of Definition 1.

Proposition 3. Given0 < ε̂ < 1/16 and integer k≥ 1 there isε = ε(ε̂ ,k) > 0 such that for any
x̂ ∈ (−∞,−1] the data set(ḡ,K̄;Ē,B̄) constructed in Section 4 out ofε̂ andx̂, is ε-close in Ck to
the standard ERN1 initial data. Moreoverε → 0 if we fix k and let̂ε → 0.
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6 Perturbations containing MOTS

In what follows we explain apointed convergencethat will be useful inside the proof of
Proposition 4. We keep identifyingΣ0 to (−∞,0)×S2 as we did before, in particular the factor(−∞,0) is the range ofx. Let x̂i be a sequence diverging to minus infinity, i.e lim ˆxi = −∞ and let
s0 be a fixed point inS2. If we “follow” the ERN1 metricg0 around the sequence of points ˆxi ×s0

then, as we know, it converges to the metric ˇg0 of the standard ERNT1 initial data. The standard
mathematical way of saying this is that the pointed sequence(Σ0;g0; x̂i ×s0) converges smoothly
to (R×S2; ǧ0,0×s0). We write this convergence by saying that for any integersn≥ 1 andk≥ 1 we
have

(35) lim
i↑∞
∥ϕ∗n,i g0− ǧ0∥Ck

ǧ0
([−n,n]×S2)

= 0,

whereϕn,i ∶ [−n,n]×S2 → [−n+ x̂i ,n+ x̂i]×S2(⊂ Σ0) is the mapϕn,i(x,s) = (x+ x̂i ,s) (note that
ϕn,i(0×s0) = x̂i ×s0 for all i). More generally, the pointed sequence of initial data(Σ0;g0;E0; x̂i ×
s0) converges smoothly to(R×S2; ǧ0;Ě0;0×s0) because in addition to (35) we have

(36) lim
i↑∞
∥ϕ∗n,i E0− Ě0∥Ck

ǧ0
([−n,n]×S2)

= 0,

for anyn≥ 1 andk≥ 1. Fix now 0< ε̂ < 1/16 and consider the sequence of vector fieldsÊi ∶= Êx̂i ,ε̂
given in (25) out of ˆx= x̂i , ε̂ andω . In the same way as before, this sequence converges smoothly
to Ê∞ ∶= Ě0+ λ̂∞(⋆d ⋆ ω∞)♯ whereω∞ is the pull-back ofω by the map(x,s)→ (x−2,s) from[−1,1]×S2 into [−3,−1]×S2 andλ̂∞ is a constant such that

(37) sup∣1− ∣Ê∞∣2ǧ0∣Ě0∣2ǧ0

∣ = ε̂

As before this convergence is expressed by the limit

(38) lim
i↑∞
∥ϕ∗n,i Êi − Ê∞ ∥Ck

ǧ0
([−n,n]×S2)

= 0,

for anyn≥ 1 andk≥ 1. Note that asω∞ has support in[−1,1]×S2 thenÊ∞ = Ě0 outside[−1,1]×
S

2. In particular∣Ê∞∣ǧ0 = 1 outside[−1,1]×S2 because∣Ě0∣ǧ0 = 1.
Now, let φi be the sequence of conformal factors constructed in Section4 out of x̂i and the

fixed ε̂. Using standard elliptic estimates and the barrier bounds (30)-(31) one easily shows that
the sequenceφi has a subsequence (indexed again by “i”) converging smoothly to a limit smooth
conformal factorφ∞ > 0. Namely,

(39) lim
i↑∞
∥ϕ∗n,i φi −φ∞ ∥Ck

ǧ0
([−n,n]×S2)

= 0,

for anyn ≥ 1 andk ≥ 1. Moreover because of (35), (36) and (38) the limit conformal factor φ∞
satisfies the limit L-equation

(40) ∆ǧ0φ∞ = 2∣Ě0∣2ǧ0
φ∞−2∣Ê∞∣2ǧ0

φ−3
∞ .

The convergences (35), (36), (38) and (39) also show that thepointed subsequence(ḡi = φ4
i g0;Ēi =

Êi = φ−6Êi ; x̂i ×s0) converges smoothly to(ḡ∞ ∶= φ4
∞ǧ0;Ē∞ ∶= φ−6

∞ Ê∞,0×s0).
It is an important fact that the limit data set(R×S2; ḡ∞;Ē∞) is never the ERNT1 initial data.

If this were the case then we would have∣Ē∞∣2ḡ∞ = 1 and therefore∣Ê∞∣2ǧ0
φ−8
∞ = 1. Plugging this
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6 Perturbations containing MOTS

in (40) and recalling that∣Ě0∣ǧ0 = 1 we would obtain

∆ǧ0φ∞ = 2φ∞−2φ5
∞.

Then observe that as∣Ê∞∣ǧ0 =1 outside[−1,1]×S2 we would haveφ∞ =1 also outside[−1,1]×S2.
Then, as the constant function one is a solution of (40) we must haveφ∞ = 1 everywhere by the
unique continuation principle. Thus, it would be∣Ê∞∣ǧ0 = 1 everywhere, contradicting (37).

Observe that any non-contractible surfaceS embedded in(R×S2; ḡ∞) must have ¯g∞-area
greater or equal than 4π . To see this use Proposition 1 to haveAḡ∞(S) = lim Aḡi(ϕn,i(S)) ≥ 4π .
Similarly we have∣QE(S)∣ = lim ∣QE(ϕn,i(S))∣ = 1. We can now use this information together with
Lemma 2 and the fact that the limits(ḡ∞;Ē∞) are not the ERNT1 initial data, to conclude that
for any non-contractible embeddedS we haveAḡ∞(S) > 4π . This will be crucially used in the
following proposition.

Proposition 4. Let 0 < ε̂ < 1/16. Then there iŝx0 = x̂0(ε̂) such that for anŷx ≤ x̂0 the data set(ḡ,K̄;Ē,B̄) constructed in Section 4 out ofε̂ and x̂ possess an embedded minimal and stable
sphere M separating the two ends. BecauseK̄ = 0 such sphere is also a MOTS (to the past and to
the future).

Proof. We will proceed by contradiction. Assume therefore that there is 0< ε̂ < 1/16 and a
sequence ˆxi → −∞ such that, if we denote by((−∞,0)×S2; ḡi ;Ēi) the data sets constructed out
of ε̂ and x̂i , then none of the manifolds((−∞,0)×S2; ḡi) possess a stable minimal sphereM
separating the two ends. We will see that this leads to a contradiction.

Firstly, as commented before, one can take a subsequence of the pointed sequence((−∞,0)×
S

2; ḡi ;Ēi ; x̂i ×s0) converging (in the pointed sense) to a smooth data set((−∞,∞)×S2; ḡ∞,Ē∞).
Moreover and as commented above, for any embedded sphereS isotopic toS0 ∶= 0×S2 we have
Aḡ∞(S) > 4π .

Secondly, letψδ (z) be the smooth real function of the one variablez∈ [−1,∞] defined as

ψδ (z) = { 1+e1/z+1/(z+1+δ) if z∈ [−1,0],
1 if z∈ [0,∞)

With this function define the metric ˜gi = [ψδ (x− x̂i)] ḡi on the manifold[−1+ x̂i,0)×S2 and set
δ > 0 small enough that the boundary(−1+ x̂i)×S2 of [−1+ x̂i ,0)×S2 is strictly mean convex (in
the direction of decreasingx) for all i. Of course the pointed sequence([−1+ x̂i,0)×S2; g̃i ; x̂i ×
s0) converges to([−1,∞)×S2; g̃∞) whereg̃∞ = ψδ ḡ∞ and becauseψδ ≥ 1 we haveAg̃∞(S) ≥
Aḡ∞(S) > 4π for any embedded sphere isotopic toS0.

Thirdly, recall that ¯gi = φ2
i g0 whereφi is a solution to the L-equation enjoying the upper and

lower boundsφi,− ≤ φi ≤ φi,+ whereφi,± are given by (30)-(31) with ˆx= x̂i . In particular the confor-
mal factorφi restricted to the spheresSx̂i/2 ∶= {x= x̂i/2} is bounded below by 1−4ε̂/cosh(x̂i/2) and
above by 1+4ε̂/cosh(x̂/2). This implies thatAḡi(Sx̂i/2)→ 4π and therefore thatAg̃i(Sx̂i/2)→ 4π .
Let S̃i ⊂ [−1+ x̂i,0)×S2 be the embedded sphere minimizing the ˜gi-area among all spheres embed-
ded in[−1+ x̂i ,0)×S2 and isotopic toS0. Such sphere always exists because([−1+ x̂i ,0)×S2

, g̃i)
has strictly mean convex boundary and is asymptotically flat[15]. Moreover, asAg̃i(Sx̂i/2)→ 4π
and asAg̃i(S̃i) ≥ 4π for all i then we must haveAg̃i(S̃i)→ 4π .

On the other hand every surfaceS̃i must intersect[−1+ x̂i, x̂i]×S2, which is the domain where
g̃i differs from ḡi, otherwiseS̃i would beḡi-minimal and stable which is against the assumption.
Now, take another subsequence if necessary in such a way thatS̃i converges to a ˜g∞-minimal
and stable sphere intersecting[−1,0]×S2 (inside the limit space) and isotopic toS0 ∶= 0×S2. As
discussed before we must haveAg̃∞(S̃∞) > 4π and at the same timeAg̃∞(S̃∞) = lim Ag̃i(S̃i) = 4π
which is a contradiction. ∎
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7 Proof of the main result

We are ready to prove the main result of this article. For the convenience of the reader we restate
it below.

MOTS

Initial hypersurface

Null infinity

AF end
Σ

Σ

Future Penrose
diagram

Event horizon H

Event horizon at Σ

Cylindrical end

Figure 6: Picture of the geometric construction in the argument by contradiction of the proof of Theorem 1.

Theorem 1. For any ε̄ > 0 and integer k≥ 1 there is a smooth and maximal electro-vacuum data
set(Σ̄; ḡ,K̄;Ē,B̄), ε̄-close in Ck to the standard ERN initial data and falling into it exponential
along the cylindrical end, which cannot decay, towards the future or the past, into any EKN
solution.

Proof. Setε̂ be small enough in such a way that theε(ε̂ ,k) provided by Proposition 3 is less or
equal than̄ε. Let then ˆx be any number less or equal than the ˆx(ε̂) provided by Proposition 4 and
let (ḡ,K̄ = 0;Ē,B̄= 0) be the axisymmetric and time symmetric data set constructedin Section 4
out of ε̂ andx̂. By Proposition 3 such data set is̄ε-close inCk to the standard ERN initial data.
Its total electromagnetic charges areQE = 1, QM = 0 and the total angular momentum isJ = 0.
Moreover the data set falls off exponentially towards the background data set(g0,K0;E0,B0)
along the cylindrical end as explained at the end of Section 4. Also, by Proposition 4, such data
set possess a stable minimal surfaceM separating the two ends, which is therefore a future and
past MOTS. For this reason the following argument applies equally to the future and to the past.
Here we will argue only to the future. The future globally hyperbolic development of the initial
data will be denoted by(M+;g).

Suppose now that the future evolution of the initial data set(ḡ,K̄;Ē,B̄) decays into a EKN
space-time. In such caseM acts as a barrier preventing the event horizonH to enter the region in
Σ̄ enclosed betweenM and the cylindrical end[16] (see Figure 6). In particular the intersection̄H
betweenH and the initial hypersurfacēΣ is a compact set in̄Σ separating its two ends.

As proved in [7] (Proposition 3.4) the intersectionH =H ∩Σ between the event horizonH
and a Cauchy hypersurfaceΣ is a two-rectifiable set of well defined area (H2-Hausdorff measure).
Moreover for any two Cauchy hypersurfacesΣ1 andΣ2, with Σ2 strictly to the future ofΣ1, we
haveA(H2) ≥A(H1) (Hi =H ∩Σi , i = 1,2) and if equality holds then the part ofH betweenΣ1

andΣ2 is smooth (Theorem 6.1in [7]). This monotonicity allows us to define the “future limit
of the areas of the horizon’s sections”, denoted here by limΣ↑A(H∩Σ), in the following simple
manner. Take any sequence of Cauchy hypersurfacesΣi such that, (i)Σi′ lies strictly to the future

[16]Because of the presence ofM the space-timeM+ must have a horizon, namely∂(J−(S +)∩ (M+ ∖ Σ̄)) ≠ ∅. Of
course we assume the existence of a Scri as in [7] to ensure themonotonicity of the horizon’s areas.
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of Σi wheni′ > i, and (ii) for anyp ∈M+ there isi(p) such that for alli ≥ i(p) the pointp does not
lie in the future ofΣi . Then, define

lim
Σ↑

A(H∩Σ) ∶= lim
i↑∞

A(H∩Σi).
It is easily checked that this definition does not dependent on the sequenceΣi .

Now, if the future evolution of the initial data decay into anextreme EKN solution, then,
as the electromagnetic charges and the angular momentum areconserved, the EKN limit must
necessarily be ERN1 and we must have limΣ↑ A(H∩Σ) = 4π . HenceA(H̄) ≤ limΣ↑A(H∩Σ) = 4π .
If A(H̄) = 4π then 4π = A(H∩Σ) for all Σ stricly in the future ofΣ̄ and the wholeH must
be smooth. This implies that̄H =H∩ Σ̄ is also smooth becauseH and Σ̄ intersect transversely
[17]. Proposition 2 then tells us thatA(H̄) > 4π and we reach a contradiction. Hence it must be
A(H̄) < 4π . On the other hand the initial hypersurface(Σ̄, ḡ) has one asymptotically flat end and
one cylindrical end asymptotic to the metric product ofR and the unit two-sphereS2 (which has
area 4π). On these grounds and based on general results of geometricmeasure theory [19], (see
also [15]), we can guarantee the existence of a smooth area-minimizer in the class of compact
two-rectifiable sets separating the two ends. Such minimizer must have area less than 4π because
A(H̄) < 4π and becausēH is rectifiable and separating. By Proposition 2 the area of the smooth
minimizer must be greater than 4π and we reach again a contradiction. It follows that the future
evolution of the initial data cannot decay into a EKN solution. ∎
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