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Abstract 
We provide a statistical communication model for the phenomenon of quantum informa-
tion evaporation from black holes. A black hole behaves as a reflecting quantum channel 
in a very special regime, which allows for a receiver to perfectly recover the absorbed 
quantum information. The quantum channel of a perfectly reflecting (PR) black hole is 
the probabilistically weighted sum of infinitely many qubit cloning channels. In this work, 
we reveal the statistical communication background of the information evaporation proc-
ess of PR black holes. We show that the density of the cloned quantum particles in func-
tion of the PR black hole’s mass approximates a Chi-square distribution, while the stimu-
lated emission process is characterized by zero-mean, circular symmetric complex Gaus-
sian random variables. The results lead to the existence of Rayleigh random distributed 
coefficients in the probability density evolution, which confirms the presence of Rayleigh 
fading (a special type of random fluctuation) in the statistical communication model of 
black hole information evaporation.  
 
Keywords: black hole, quantum information, statistical communication, quantum Shan-
non theory. 
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1  Introduction 

The process of quantum information transmission through a perfectly reflecting (PR) black hole 
(BH) can be evaluated via a noisy quantum channel that clones the absorbed quantum system 
and evaporates the cloned particles [1]. The application of quantum Shannon theory [14] in black 
hole physics [2-10], [19], [21-30], reduced the description of the evaporation process into the use of 
the tools of this field and made the situation well tractable. The black hole evaporation is still 
actively studied, particularly the appropriate statistical model for the internal evolution processes 
is still missing. In this work, we focus on the special regime, called the PR-regime (perfectly re-
flecting), in which a black hole works as a perfectly reflecting quantum channel, and we study the 
processing and evaporation of quantum information. In the description of the transmission proc-
ess, we refer to a sender, Alice, who has fed in her quantum information into a PR black hole, 
and a receiver, Bob who wants to recover Alice’s inputted quantum information. After Alice has 
thrown her quantum information into a PR black hole, it starts to process the absorbed quantum 
system and then evaporates the lower fidelity cloned quantum particles to Bob. The characteriza-
tion of a PR black hole channel has been recently investigated in [1], and it has been found that 
the quantum channel of a PR black hole is the probabilistically weighted sum of infinitely many 
independent qubit cloning channels. However, there is no an appropriate statistical communica-
tion theory behind the flow of quantum-level communications of a PR black hole. Our aim is to 
give a statistical model for the information evaporation process of a PR black hole by exploiting 
the fundamental results of quantum Shannon theory and statistical communication theory.  

In statistical communication theory, the analytical work is made by probabilistic models and 
well characterized mathematical background [11-13]. An important result from this field is the 
appropriate statistical description of signal propagation effects. In a noisy communication sce-
nario, the transmit signal reaches to the receiver through a transmission medium, which causes 
attenuation and interference in the received signal. In the traditional statistical model, the input 
transmit signal is represented by an ideal Dirac pulse at time 0. The fading effect is a random 
variation (fluctuation) in the signal and it causes the degradation of the signal quality. In particu-
lar, under Rayleigh fading, the magnitudes of the signals that passed through a transmission me-
dium follow Rayleigh random distribution [13], which represents an appropriate description of 
signal spread in wireless environments [20]. It is also a reasonable and a well-applicable wave 
propagation model if many small scatters are present in the environment, such as in dense urban 
areas or in tropospheric, ionospheric signal propagation.  

Here, we show that the Rayleigh fading is also present in a PR black hole communication sce-
nario, and it exists in a perfect symbiosis with the fundamental laws of quantum mechanics; how-
ever, the meaning is completely different in comparison to the traditional meaning of this phe-
nomenon. What are the differences of the interpretation of fading effect in a traditional communi-
cation model and in the black hole communication scenario? Basically, while in traditional statis-
tical communications the fading occurs on physical signals, in the proposed statistical communi-
cation model of black hole evaporation the fading effect will bring up on the probability density 
coefficients of the independent qubit cloning channel instances in the PR black hole. These coeffi-
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cients are Rayleigh random distributed and characterize the probability distribution of the clon-
ing channels in the information evaporation process. This analogue between the traditional statis-
tical communication theory and the black hole communication can be exploited further to reveal 
the statistical background behind the information evaporation of PR black holes, besides the fact 
that the probability density function is not a physical signal. Particularly, if Alice feeds in her 
quantum information at , the noisy evolution of a PR black hole clones the input quantum 
particle via the phenomenon of stimulated emission, and then at  it evaporates the resulting 
cloned particles to Bob (Note: Any matter or radiation fed into a PR black hole by Alice stimu-
lates the emission of the cloned particles outside the event horizon [1], [10].). Since the cloning 
process at a PR black hole horizon cannot violate the no-cloning theorem, it follows that the fi-
delity of the evaporated clones will be lower than the fidelity of the absorbed input. The proper-
ties of a PR black hole channel are well characterized [1], as such, we do not include these results 
here. The details of the stimulated emission process are elaborated further in [10], [16-19].  

0t =
0t >

Yet, the statistical background of the information evaporation is still unclear, and we do not 
have an appropriate statistical communication model that provides an answer to the internal evo-
lution processes of a PR black hole. As a main purpose, we would like to reveal the statistical 
communication background of quantum information evaporation of black holes in the PR-regime.  

This paper is organized as follows. In Section 2 the properties of the black hole quantum 
channel are summarized. Section 3 provides the theorems and proofs. The results are concluded in 
Section 4. 
 

2  Quantum Channel of a PR Black Hole 

First, we give a brief summary of the black hole channel focusing on the PR-regime and on the 
transmission of quantum information.  
Assuming an input at , the PR black hole is initialized with a nonzero mass indicator 

, where z is normalized onto the range of 0 . The mass indicator parameter is re-
lated to the bare black hole mass m ; as  the bare mass converges to zero, , while 
for  the bare mass converges to infinity, m  (Note the utilization of parameter z is 
required by the closed formulas of the PR-BH hole quantum channel .). 

0t =
0z >

z

1

1

�

¥

z£ <

 ¥
0z  0m 

1


At  decreases the probability of the ideal (noiseless) 1  channel realization to 
, while the  probabilities of the noisy output realizations 1 , 

 (where N  stands for the number of output particles) monotonically increase with z.  

0t >

( ) (1
2, ,= 



)31p t z= -

N ¥
Np N

The black hole channel  in the PR-regime (PR-BH quantum channel) has the expression of  

1 N NN
p l

¥

=
= å ,                                               (1) 

where  is the  qubit cloning channel, while the  probability of the , 

 cloner is evaluated as 
Nl�

1, ,= 

1 N Np 1Nl N= �

N ( ) ( ) ( )3 11 2 1 1N + N
Np z N -= - .  

Feeding a quantum system  into  results in  y Nl�
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( ) ( ) 02
1
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l N ky

=
= + å� k k .                                 (2)  

Note that y  in (2) can be an arbitrary qubit input, because the qubit cloning channel is  

covariant [15-16]. At a normalized black hole mass indicator 0 , 
( )2SU

1z£ <   can be formulated as  

( ) ( )3 0
1 k

kk
zr

¥

=
= - å z x ,                                      (3) 

where ( )1
2

ˆI nr s= + ⋅
 , , and  are the Pauli matrices, ( , ,
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 ) , ,X Y Zs s s

( ) 21 2
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k n Jx
++ += + ⋅


 are defined in the ( -dimensional space, while 

 are generators of the -dimensional representation of  

[19]. For a maximally mixed input 
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   
) (k + ( )2SU
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and environment state s , where , 
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=
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2kS =  and 

( )1
2

2kS k= + .  

The PR black hole channel is conjugate degradable [1] and its quantum capacity is well tractable, 

( ) ( ) ( )( ) ( ) ((
3

1

2 202
1 2 log 2 log 1

z k
k

Q k k z k
- ¥

=
= + + + -å ))k +

¥

. For a detailed analysis see 

[1] and for further background material, we suggest [16-19]. 
 

3  Theorems and Proofs 

The main results are summarized in Theorems 1 and 2.  
 
Theorem 1 (Rayleigh random coefficients in the probability density evolution). Let  be the 

probability of 1 ,  in the PR black hole, and let 
Np

N 1, ,N =  ( ) ( )t t
1

N N
N ii=

= G Îc   

be an N-dimensional coefficient vector, where ( )1

N
i Ni
t pt

=
G =å , ( ) ( )i it wG = Î 

)
t  is 

a Rayleigh random variable,  is a zero-mean, circular symmetric complex 

Gaussian random variable with variance 

( )iw t ( 20,
iw

sÎ 
22

iw
s iw

é ù= ê úë û
t , while  is a normalization term. For 

,  has the extension of 1, ,N = ¥ Np ( ) ( )1

N
N N ii
p t t

=
= = G Îåc 

2

, where 

( ) ( ) 2i it wG = t Î   is exponentially distributed. 

 
Proof.  
At , the mass indicator of a black hole is  and vector  with magni-

tude 

0t = 0z = ( )1 0 Nt = Îc 

( )1 0t =c  identifies the 1  ideal map. At , as z , the probability of 1 1  

converges to zero, and the PR black hole evolutes the N-dimensional vector  of the 

1 0>t  ¥

( )N tc



NÎ 
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noisy ,  cloning channel instances. The  coefficient vectors have a dot 

product 

1 N 2, ,N = 

( )

¥ ( )N tc

( ) ( )2
N N Nt t t= ⋅ Îc c c 

( )t

( )20,
iw

s

 that completely characterizes the output probabilities of 

the stimulated emission process in a PR black hole channel, as follows. First of all, to reveal the 
statistical communication background of the information evaporation we define some variables in 
the mathematical model.  
Let  be a zero-mean, circular symmetric complex Gaussian random variable, 

, with variance 

iw

( ) Îiw t
22

iw
s iw

é ù= ê ú
ë û

 . Then, let  be a circular symmetric complex 

random phasor , with 

ja

ji
j ja r e f= Î  ( )Re ja Î 

ii
je aj é ù

ë û

,  i.i.d. random real and imagi-

nary parts, and , . For this complex random variable,  has the same dis-

tribution of ,  for any 

( ) Î 

0,2j

Im ja

i

0,2jf pé ùÎ ë û jr Î 

ja ii
j ja e ajé ùé ù = =ê úë û ë û 

ii
je aj

pé ùÎ ë û , by theory. A useful property 

of  that it can be used to model the squared magnitudes during the evaporation. This ran-

dom variable can be rewritten as the sum of j independent, circular symmetric complex random 
variables, for all 1 , and this connection is rooted in the following.  

(t )

N

iw

Let the sum of j  ¥  independent circular symmetric complex random phasors be denoted as 

ji
j j

j j

a r f=å å e

( )2
iw

s

.                                             (4) 

Then, from the Central Limit Theorem follows that (4), in fact, formulates a zero-mean, circular 

symmetric complex Gaussian random variable w  with variance 0,i Î  2 2

i
iw
ws é

ú= ù
ê
ë û

 , 

hence 
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å
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iw

,                               (5) 

where ,  are i.i.d. zero-mean Gaussian random real 

and imaginary parts of . From the complex circular symmetry property follows 

that e  has the same distribution of , 

( 20, 0.5
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)
iw

)

iwiij iiw e e jé ùé ù é ù= =ê úë û ë ûë û   , for any 0,2ij pé ùÎ ë û .  

The decomposition shown in (5) can be extended for all  components of the sum iw

( )1

N

i=å Niw t , . Taking the magnitude of  leads to precisely 1i =  ( )iw t
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Re

.

j

i j
j

i
j

j

i

w t a

r e

t

f

=

=

= +

= G

å

å                                   (6) 

2 2
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The variable ( )i tG Î   is a Rayleigh random variable with density 

( )( ) ( )( ) ( ) 2 222 ,i wi

i

w t

i i w
f w t w t e

s
s

-
= ( ) 0iw t ³ .               (7) 

The squared magnitude ( ) ( ) 2i it w tG = Î   is exponentially distributed with density  

( )( ) ( ) ( ) 2 22 21 , ( )i wi

i

w t

i w
f w t e

s
s

-
=  2

0iw t ³ .                   (8) 

Second, the black hole channel in the PR-regime has the special orthogonal convex sum structure 
(direct sum, see (1)), and the total output probability density equals to the direct sum of  

( )
1

2

1
,

tot NN

NN

p p

t

¥

=
¥

=

=

=

å
å c

                                         (9) 

where  is the probability of the realization of the 1  cloning channel in the orthogonal 

convex sum channel. The variables -s are zero-mean, circular symmetric complex 

Gaussian random variables for all , , and for all 1 , , it follows that 
the magnitudes of -s, 

Np N

)( 20,
i

i w
w sÎ 

1i N= i N 1, ,N =  ¥

iw ( ) ( )i t= Giw t  are Rayleigh random variables, by theory. It immedi-

ately indicates that the sum of the elements of  for , , in fact, can be 

expressed in terms of 

(N tc ) 1 N 1, ,N = ¥

iG  as ( )N ip t= G1
1

N

it =å . 

The cross-verification of these statements requires the detailed analysis of the output probability 
density that will be presented in the proof of Theorem 2, however these results already demon-
strate that the stimulated emission process of a PR black hole is related to Rayleigh fading by the 
Rayleigh random magnitude coefficients ( ) ( )i it w tG =  of the independent cloning channels 

, . Similarly, the squared magnitudes, 1 N 1, ,N =  ¥ ( ) ( ) 2i it w tG = , are exponentially 

distributed variables, see (8).  
The existence of zero-mean, circular symmetric complex Gaussian random variables  for all 
output realizations 1 , confirms the Rayleigh random distributed coefficients in the exten-
sion.  

iw

N

These results immediately prove the presence of Rayleigh fading in the statistical communication 
model of the information evaporation of a PR black hole.  

   ■ 
 

Corollary 1. The total probability  of the output realizations 1 ,  in the 
stimulated emission of a PR black hole is as follows 

totp N 1, ,N =  ¥
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where  

( )1

N
ii
t p

=
G =å N ,                                         (11)  

( )i j
j

t aG = å ,                                      (12) 

and  

( ) ( )
2

2
i i

j

t w t aG = = å j .                               (13) 

  
Proof.  
These results trivially follow from the proof of Theorem 1; hence, the proof is immediately con-
cluded here.  

   ■ 
 
Theorem 2 (The distribution of the cloned particles in the information evaporation of PR black 
holes). The  probability density of   is  Chi-square distributed with 
2N degrees of freedom. At a mass indicator z, it can be approximated by the density function 

Np 1 ,N 1, ,N = ¥ 2
2Nc

( ) ( ) ( ) 1 101
1 !-
10

N z
N N
f z z e

- -» .  

 
Proof.  
First, from Theorem 1 and Corollary 1, we express  as  totp

( ) 21 1
.

N
tot iN i
p

¥

= =
= å å w t                                       (14) 

Then we exploit that in the traditional statistical model of Rayleigh fading, the summand vari-
ables that characterize the magnitudes of the transmit signals are the magnitudes of zero-mean, 
circular symmetric complex Gaussian random variables (these complex variables are denoted by 

 in our scenario).  ( )iw t

As one can readily see, in the proposed statistical model these variables bring up in the next sum: 
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As follows,  is, in fact, the sum of N  independent squared Rayleigh random variables. In 
other words, 

Np

(15) is the sum of the squares of 2  independent, real, zero-mean Gaussian random 
variables.  

N

According to Theorem 1, term  precisely equals to , where 

, which clearly shows that the  distribution of the 1  

qubit cloner instances, in function of z of the PR black hole, can be characterized by a 

( )i tG

)
( ) ( ) ( )2 2

Re Imi it w wG = +

Np( )Re ,iw

(

( ) ( 2Im 0, 0.5
i

i w
w sÎ  N

) 2
2NcNf z Î  Chi-square distribution with 2  degrees of freedom.  N

In particular, the density function ( )Nf z  is an approximation of , where 2  arises from the 

fact that -s are circular symmetric complex Gaussian random variables, with i.i.d  

real and imaginary parts, respectively.  

2
2Nc N

iw ( )20, 0.5
iw

s

In function of z, the density of  of 1 , , can be evaluated by Np N 1, ,N =  ¥ ( )Nf z  as fol-

lows 

( ) ( ) ( ) 1 101
1 !
10

N z
N N
f z z e

- -
-

» .                                 (16) 

The ( )Nf z

1,2, 3, 4

 density of the realization of the 1  qubit cloner instances in function of z (for 

) in a PR black hole is depicted in Fig. 1. 

N

, 5N =

Note, that the density function picks up a value of ( )Nf z < y  with probability  

( ) ( )
11

1 ! !0
Pr

y
N

N N N
1 Nf z y x dx y-

-
é ù< » =ë û ò ,                          (17) 

where .  10x z=
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Figure 1. The density of  for different values of N  in function of the mass indicator z of a 

PR black hole. The function approximates a  Chi-square distribution with 2  degrees of 
freedom.  

Np

2
2Nc N

 
 
These results verify the statements of Theorem 1 and conclude the proof of Theorem 2. 

   ■ 
 

3.1  Brief overview 

The proposed statistical communication model for the information evaporation process of a PR 
black hole is briefly sketched as follows. The fed in quantum system  stimulates the emission of 
the lower fidelity clones at the event horizon, which is modeled by the 1  cloning channels. 
A PR black hole is characterized by its mass indicator z, which determines the probability of the 
realization of an 1  instance in the stimulated emission process.  

y

N

N

At a given z, the output realizations have density ( )Nf z

( )

 that can be approximated by a  

Chi-square distribution with 2  degrees of freedom. The channel output 1 ,  

has probability , and it equals to 

2
2Nc

,= ¥N N 1,N

Np ( ) 21

N

i
p t

=å 1

N
N i ii

w
=

= G = å t , while the total density 

is ( ) ( )
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w
1 1 1 1 1 1

N N N
tot i i jN i N i j
p t t

¥ ¥ ¥

= = = = = =
= G = =å å å å åN iå å a (iw t

( )
, where  is a 

zero-mean, circular symmetric complex Gaussian random variable .  

)

( ) 20,
i

i w
w t sÎ 

              

4  Conclusions 

In this work, we proposed a statistical communication model for the information evaporation 
process of perfectly reflecting black holes, focusing on the transmission of quantum information. 
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As we have found, the statistical communication model of the probability density evolution in a 
PR black hole is connected to the statistical model of Rayleigh fading. In particular, we revealed 
that in the PR-regime the density of the evaporated clone particles follows Chi-square distribu-
tion, and the probabilities of the independent cloning channels are the sum of the squared magni-
tudes of independent complex Gaussian random variables. We showed that the stimulated emis-
sion is characterized by Rayleigh random variables in the orthogonal convex sum structure of a 
PR black hole channel. 
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