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Abstract

The mathematical model describing the stationary natural pH-gradient arising under the action

of an electric field in an aqueous solution of ampholytes (amino acids) is constructed and investi-

gated. The model is a part of a more general model of the isoelectrofocusing process. Investigation

is based on the approximation of a weak solution by the piecewise continuous non-smooth func-

tions. The method can be used for solving classes of problems for ODEs with a small parameter

at higher derivatives and the turning points.
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I. INTRODUCTION

This paper starts a series of papers on the mathematical modeling of the isoelectrofocus-

ing (IEF). These papers are linked by a common theme: the study of the natural pH-gradient

creation in aqueous solution of an amphoteric substances. We expect to investigate the fol-

lowing problems. 1. Onset of a piecewise constant pH-gradients at large values of voltage

or electric current density, so called anomalous regimes. 2. Numerical study of the sta-

tionary IEF problem on the pH-gradient creation. 3. Numerical and analytical study of

the non-stationary IEF problem on the pH-gradient creation. 4. The general mathemati-

cal IEF model and the specificities its construction. Each paper contains all the necessary

information about the problem being solved and can be read independently.

Isoelectrofocusing (IEF) is a method of fractionation of multicomponent mixtures (pro-

teins, peptides, amino acids) into individual components with the help of the electric field

in a medium with non-uniform pH distribution. The heart of the IEF method is an am-

photeric properties of substances. Other words, amino acid, proteins, and peptides have

both acid and the base properties. At pH = pI, where pI is so-called isoelectric point,

the electrophoretic mobility of substance equals zero. Isoelectric point pI is the individual

characteristic of amphoteric substance. In particular, almost all amino acids and peptides

have various isoelectric points. This allows to identify them on values pI. In the presence of

pH-gradient in electrophoretic chamber, components of the mixture move under the action

of the external electric field until their electrophoretic mobility is equal to zero. As a result

the spatial distribution of individual components exists on their values of pI.

The IEF method, along with the chromatography, the isotachophoresis, the zone elec-

trophoresis, is one of the most demanded methods of mixture fractionation in biology, chem-

istry, medicine. It is enough to tell that this method was widely used for Human Genome

Project. Resolution of the IEF method, that is possibility of identification of the large

quantity of the mixture component, depends on completeness of the information about pH-

gradient.

There are various ways of creation pH-gradient in solution: creation of the artificial

gradients with the help of the special, so-called, buffer solution; creation of the immobilized

gradients with the help of the organization of rigid chemical structures; creation of the

natural gradients arising in solution as a result of a mixture components self-organization
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(for more details see [1–6]).

The natural pH-gradients are the most attractive from the point of view of simplicity

using. These gradients were discovered by [7–10] the first time theoretically and then ex-

perimentally. Long time it was assumed that the natural pH-gradients, more exact spatial

distribution of pH, are linear or, at least, are close to the linear. Distribution of substances

in solution is close to Gaussian distribution. However, in 2004–2006 in [11, 12] with the

help of numerical integration of the non-stationary problem was revealed that the natural

pH-gradients at large intensity of the external electric field in the stationary mode have step

function profile and the distribution of concentration closely to rectangular profiles. These

results were partially confirmed by experiments. The theoretical explanation of the observed

phenomenon was presented in [13, 17], where the rough asymptotic formulas describing step

function pH were obtained. Further, more exact relations were given, in particular, in

[18, 19].

From the mathematical point of view, the modeling of stationary natural pH-gradients

problem is reduced to the solution of the ODE’s equations for distribution of concentration,

some algebraic constrain and integral conditions. At large intensity of the electric field (or

large density of an electric current) the system of the equations is stiff: ODE’s have the small

parameter at the highest derivatives and have the turning points. Numerical integration of

this problem becomes complicated also that solutions for separate concentration are focused

in some regions of the integration interval and quickly exponential decrease out of these

regions.

In this paper the approximate method based on approximation of the weak solution by

piecewise continuous functions is developed. The various approximations of solution are

presented and the error estimates are given. Such method can be used for the solution of

classes of problem with small parameter at the highest derivatives and a large number of

turning points.

The paper is organized as follows. In Sec. II the general equations of electrophoresis are

described. In Sec. III the basic stationary equations governing the IEF process and pH-

gradient are included. In Sec. IV the weak formulation of the origin problem is given. In

Secs. V–X the piecewise-smooth approximation of weak solutions, the choice of the approx-

imating functions, the algorithm for the approximation of weak solutions, and examples of

approximation are presented. In Sec. XI other way of the approximating functions selecting
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is given. In Sec. XII the weak solutions approximation at moderate parameter is demon-

strated. Appendix A contains the method of the integral asymptotic evaluation. Appendix B

contains the generalized solution of the problem for limiting case.

II. GENERAL EQUATIONS

The general non-stationary equations (in dimensionless variables) describing process of

creation natural pH- gradient in multicomponent chemically active media have the following

form (see, [1–3, 17, 20]):

∂tak + div ik = 0, ik = −εµk∇ak + µkek(ψ)akE, k = 1, . . . , n, (1)

n∑

k=1

ek(ψ)ak = 0, (2)

j =

n∑

k=1

(−εµk∇(ek(ψ)ak) + µkσk(ψ)akE) , div j = 0, (3)

where ak, ik are the analytical concentration and the flux density of the components, E is

the intensity of external electric field, j is the density of the electric current, ψ is the acidity

function of the mixture, µkek(ψ), µkσk(ψ), µk > 0, εµk are the electrophoretic mobility,

partial conductivity, characteristic mobility and diffusion coefficient of the components.

Used in chemistry function pH is connected with concentration of hydrogen ions and

acidity function ψ by relations:

pH = − lg[H+], [H+] = Kwe
ψ, pH = − lgKw − ψ lg e,

where [H+] is the concentration of hydrogen ions (mol/l), Kw = 10−7mol/l is the autodis-

sociation constant of water.

The equations (1) are the usual diffusion equations with transport under action of the

electric field. The algebraic equation (2) is the electroneutrality condition. The equation

(3) is the general Ohm law.

To close the equations system (1)–(3) we define the dependence of electrophoretic mobility

and partial conductivity on ψ, i.e. functions ek = ek(ψ), σk = σk(ψ).

In case of the mixture of amphoteric substances the dissociation reactions have the fol-

lowing form (see, for example, [1, 2, 17]):

H+R
Bi

⇋ R0
i +H+, R0

i

Ai

⇋ R−
i +H+.
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Here, R0
i is zwitterion (‘neutral’ ion), Ai and Bi are the dissociation constants for acid (R−

i )

and base (H+Ri) groups, H
+ is the hydrogen ion.

For example, for amino acid NH+
3 RCOO−, where NH+

3 is the amino group, R is amino acid

residue, COO− is the carboxyl group, we have: H+R ≡ NH+
3 RCOOH, R−

i ≡ NH2RCOO−,

R0
i ≡ NH+

3 RCOO−.

The specified reactions proceed almost instantly and balance conditions of this reactions

allow to determine dependence of electrophoretic mobility and partial conductivity on acidity

function ψ [1, 2, 20]:

ei(ψ) =
[H+Ri]− [R−

i ]

ai
, σi(ψ) =

[H+Ri] + [R−
i ]

ai
, ai = [H+Ri] + [R0

i ] + [R−
i ], (4)

ei(ψ) =
sinh(ψ − ψi)

cosh(ψ − ψi) + δi
, σi(ψ) =

cosh(ψ − ψi)

cosh(ψ − ψi) + δi
, ψi =

1

2
ln
AiBi

K2
w

, δi =
1

2

√
Bi

Ai
,

where δi > 0 is the dimensionless parameter, ψi is the isoelectric point (electrophoretic

mobility µiei is equal to zero at ψ = ψi, i.e. µiei(ψi) = 0).

Note the important role of the electroneutrality condition for the description of transport

process in chemically active media. The algebraic equation (2) defines the function ψ. Ac-

tually, it is the instant regulator of process. Permutations of the component concentrations

ak lead to change of acidity function ψ. In turn, the kinetic coefficients of ek(ψ), σk(ψ)

influence on transport of the component ak.

Finally, we specify connection between dimensional and dimensionless variables:

x̃ = xL∗, t̃ = tt∗, ãk = akC∗, Ẽ = EE∗, j̃ = jF∗C∗E∗µ∗,

ε =
R∗T∗
F∗E∗L∗

, t∗ =
L∗

E∗µ∗

.

Here, L∗, t∗, E∗, C∗ are the characteristic length, time, intensity of the electric field and

analytical concentration; µ∗ is the characteristic mobility; F∗ ≈ 96485.34 C · mol−1 is the

Faraday’s number, R∗ ≈ 8.314462 J · mol−1 · K−1 is the universal gas constant, T∗ is the

absolute temperature of the mixture.

In practice of IEF the voltage E∗L∗ changes usually from 1 kV to 10 kV and temperature

is T∗ ≈ 293 K. In this case parameter ε changes from 2.5 · 10−5 to 2.5 · 10−6.
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III. STATIONARY PROBLEM

We formulate the problem for definition of the stationary natural pH-gradient in the one-

dimensional case. The one-dimensional case is the most demanded because usually for IEF

the cylindrical electrophoretic chamber is used. In other cases, for IEF the flat thin plates

are used for which the characteristic size in the direction of an electric field action much more

then other plate sizes [4, 5]. Information about stationary pH-gradient is most important for

interpretation of an experimental results. Of course, for obtaining the stationary solution of

the equations (1)–(4) the numerical integration of the non-stationary problem can be used

(see, [11, 12]). Such method is good because it allows to trace dynamics of process. However,

for large numbers of mixture components the numerical integration of the non-stationary

problem requires a long times. It is obvious that instead of use the numerical integration of

the non-stationary problem it is rather directly to solve the stationary problem.

We require the impermeability condition on the boundary of the electrophoretic chamber

(0 6 x 6 L):

ik
∣∣
x=0,L

= 0, k = 1, . . . , n. (5)

For the one-dimensional case the solution of the electric current continuity equation (3)

is j = j(t). For a stationary problem it is naturally to consider

j(t) = j0, (6)

where j0 is the constant electric current density.

Strictly speaking, in dimensionless variables length of the electrophoretic chamber is

L = 1 and the electric current density is j0 = 1. However, for interpretation of results using

L and j0 is more convenient.

The problem (1)–(5) for definition of the functions ak(x), k = 1, . . . , n, ψ(x) has the

following form:

1

λ

dak
dx

=

akθk(ψ)
n∑
i=1

aiθ
′
i(ψ)

σ
n∑
i=1

ai (θ2i (ψ) + θ′i(ψ))
, k = 1, ..., n, 0 6 x 6 L, λ =

j0
ε
, (7)

n∑

k=1

akθk(ψ) = 0, (8)
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L∫

0

ak(x) dx =Mk, (9)

σ =

n∑

i=1

µiaiθ
′
i(ψ), θi(ψ) =

ϕ′
i(ψ)

ϕi(ψ)
, ϕi(ψ) = cosh(ψ − ψi) + δi, (10)

where Mk is the quantity of ak on the interval [0, L].

The additional conditions (9) are implication of mass conserve law. We add these condi-

tions because conditions (5) are not enough to solve the stationary problem.

The detailed description of transition from the equations (1)–(5) to the equations (7)–(10)

contains in [17–19]. Here, we only specify that for such transition it is enough to present

the equation (3) in the form j = σ(E− εψ′) and then exclude (E− εψ′) from the equations.

The system (7)–(10) has integral which one can get by the summation of all equations

(7) and taking into account (8):

n∑

i=1

ai = a0 ≡ L−1

n∑

i=1

Mi, (11)

where the constant a0 is defined by (9).

We note that ψ(x) is a monotone decreasing function. This property is easy to get by

differentiating the electroneutrality equation (8) at the assumption of a sufficient smoothness:

dψ

dx
= −

λ
n∑
i=1

aiθ
2
i (ψ)

σ
n∑
i=1

ai (θ2i (ψ) + θ′i(ψ))
< 0. (12)

The negativity of the derivative follows from the relations (10). In fact, it is easy to show

that (θ2i (ψ) + θ′i(ψ) > 0 and the functions ak(x) not equal to zero simultaneously.

As already mentioned, the solution of (7)–(11) for large values of the parameter λ in-

volves difficulties due to the presence of a small parameter at highest derivatives and the

turning points at ψ = ψi. Preliminary numerical analysis shows that for large values of λ the

concentrations are localized in some segment of the interval [0, L] (each in the own segment)

and exponentially decreasing outside these segments. It means that the using for numerical

integration, for example, the shooting method (the transform the boundary problem to the

Cauchy problem) in combination with the Newton’s is complicated. In fact, the initial con-

ditions at one of the ends of the segment are the order of O(e−λ) and for their determination

a very detailed initial approximation is required (see [17–19]). However, for example, in [17]
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it is shown that the asymptotic solutions tend to some generalized functions: the profile of

the concentrations ak(x) has almost rectangular shape. Such behavior of the solutions, as

will be shown below, allows to construct a continuous piecewise-smooth approximation of

solutions, refusing from the function smoothness and going to the weak formulation of the

problem.

The main goal of this paper is the construction of the piecewise continuous approximation

of a weak solution of the problem (7)–(11) for given parameters µk, δk, Mk, k = 1, . . . , n,

which have order O(1), and the large parameter λ≫ 1.

IV. THE WEAK FORMULATION OF THE PROBLEM (7)–(11)

As usual, we call the weak solution of the problem (7)–(11) the functions ak(x), k =

1, . . . , n, ψ(x) satisfying the equations:

Ik ≡

L∫

0


ak

dVk
dx

+

λakθk(ψ)
n∑
i=1

aiθ
′
i(ψ)

σ
n∑
i=1

ai (θ2i (ψ) + θ′i(ψ))
Vk


 dx = 0, (13)

Vk(0) = 0, Vk(L) = 0,

n∑

k=1

akθk(ψ) = 0, (14)

L∫

0

ak(x) dx =Mk, (15)

n∑

i=1

ai = a0 ≡ L−1
n∑

i=1

Mi, (16)

σ =

n∑

i=1

µiaiθ
′
i(ψ), θi(ψ) =

ϕ′
i(ψ)

ϕi(ψ)
, ϕi(ψ) = cosh(ψ − ψi) + δi.

Here, Vk(x) are arbitrary sufficiently smooth functions satisfying the natural boundary con-

ditions.

Note that the relations (8) and (9), i.e. the electroneutrality condition and conditions

of the mass conservation, remain the same. The relation (16), i.e. the integral (11) of

the system (7), is not implementation of the system (13). For the weak formulation of the

problem the relation (16), in principle, can be discarded. The most reasonable, of course,
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to assume that the condition (16) holds, thus preserving some additional properties of the

original problem (7)–(11).

Naturally, in the case when the functions ak(x), k = 1, . . . , n, ψ(x) are sufficient smooth-

ness the weak solution of (13)–(16) will be the strong solution of the original problem

(7)–(11).

V. PIECEWISE-SMOOTH APPROXIMATION OF WEAK SOLUTIONS

We define the partition of interval [0, L] by the set of points (see Fig. 1)

0 = x1 < y1 < x2 < y2 < · · · < yk−1 < xk < yk < xk+1 < · · · < yn−1 < xn < yn = L.

The method of selection of the points xk, yk is specified in section IX.

a0

ak

xk ykxk − hk yk + hk+1x1 y1 x2 ynxnyn−1

akak−1 ak+1

t = 0 t = 1

a0a0

yk−1 xk yk xk+1

ψk
ψ(k)

xk ykxk − hk yk + hk+1x1 y1 x2 ynxnyn−1

ψ(k+1)

ψk−1

ψk+1

t = 0 t = 1
yk−1 xk yk xk+1

FIG. 1: Scheme of approximation

We choose the functions ak satisfying the following properties:

supp ak = [xk − hk, yk + hk+1] ⊂ [0, L], k = 1, . . . , n,

h1 = 0, hk = xk − yk−1, k = 2, . . . , n, hn+1 = 0.
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It is obvious that

supp ak−1 ∩ supp ak = [xk − hk, xk], (17)

ai = 0, (i 6= k − 1, k, x ∈ [xk − hk, yk + hk+1].

To solve problem (13)–(16) we use approximation (see Fig. 1)

ak(x) =






0, x 6 xk − hk,

ak(x), xk − hk 6 x 6 xk,

a0, xk 6 x 6 yk,

ak(x), yk 6 x 6 yk + hk+1,

0, yk + hk+1 6 x,

k = 1, . . . , n, (18)

ψ(x) =






ψ(k)(x), xk − hk 6 x 6 xk,

ψk, xk 6 x 6 yk,

ψ(k+1)(x), yk 6 x 6 yk + hk+1.

k = 2, . . . , n. (19)

Here, ak(x), ak(x), ψ
(k)(x), ψ(k+1)(x) are the enough smooth function (at appropriate inter-

vals) satisfying to continuity conditions:

ak(xk − hk) = 0, ak(xk) = a0, ak(yk) = a0, ak(yk + hk+1) = 0, (20)

ψ(k)(xk − hk) = ψk−1, ψ(k)(xk) = ψk, (21)

ψ(k+1)(yk) = ψk, ψ(k+1)(yk + hk+1) = ψk+1.

VI. THE REDUCTION OF THE INTEGRALS Ik

We introduce notations for integrand functions:

Gk(a;ψ) ≡ ak
dVk
dx

+

λakθk(ψ)
n∑
i=1

aiθ
′
i(ψ)

σ(a;ψ)
n∑
i=1

ai (θ
2
i (ψ) + θ′i(ψ))

Vk, (22)

Fk(a;ψ) ≡ −
dak
dx

+

λakθk(ψ)
n∑
i=1

aiθ
′
i(ψ)

σ(a;ψ)
n∑
i=1

ai (θ
2
i (ψ) + θ′i(ψ))

, (23)

σ(a;ψ) ≡
n∑

i=1

µiaiθ
′
i(ψ, a = (a1, a2, . . . , an). (24)
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The choice of ak(x), ψ(x) in the form (18), (19) allows to write integrals (13) in the form:

Ik =

xk∫

xk−hk

Gk(a;ψ
(k)) dx+

yk∫

xk

a0
dVk
dx

+

yk+hk+1∫

yk

Gk(a;ψ
(k+1)) dx.

Here, we take into account the relations θk(ψk) = 0.

The smoothness of the functions ak, ak, ψ
(k)
k , ψ

(k+1)
k allows to use integration by parts.

Taking into account (20) we omit all integrated term and Ik take the form:

Ik =

xk∫

xk−hk

Fk(a;ψ
(k))Vk dx+

yk+hk+1∫

yk

Fk(a;ψ
(k+1))Vk dx. (25)

VII. THE CHOICE OF THE APPROXIMATING FUNCTIONS

The functions ak(x), k = 1, . . . , n, ψ(x) are defined by the relations (18), (19) will be the

solution of the problem (13)–(16) if Ik → 0 at λ→ ∞.

Using the special selection of functions ψ(k)(x), ak(x), ak(x) we show that Ik → 0 at

λ→ ∞.

We focus only on the first integral of (25), i.e. the integral over the interval [xk − hk, xk].

For the second integral all of the arguments remain valid.

It is convenient to change variables:

x = xk − h+ thk, 0 6 t 6 1, dx = hkdt. (26)

Then the first integral (25) has the form

I0k =

1∫

0

Fk(t)Vk(xk − hk + thk)hk dt, (27)

where (see (23))

Fk(t) = Fk(a(t);ψ
(k)(t)) = −

dak
dt

1

hk
+

λakθk(ψ
(k))

k∑
i=k−1

aiθ
′
i(ψ

(k))

σ(a(t);ψ(k))
k∑

i=k−1

ai (θ
2
i (ψ

(k)) + θ′i(ψ
(k)))

. (28)

We omitted the ‘overline’ symbol, i.e. ak = ak, ak−1 = ak−1. For functions am(xk−h+th),

m = k − 1, k, ψ(k)(xk − h+ th) after substitution (26) we use previous notation

am(t) = am(xk − hk + thk), ψ(k)(t) = ψ(k)(xk − hk + thk).

11



Note, conditions (17) means that only the functions ak−1 and ak are not equal zero on

the interval [xk − hk, xk]. We use this fact writing the formula (28).

Again, taking into account conditions (17) we get (14), (16) on the interval [xk − hk, xk]

as:

ak−1 + ak = a0, θk−1ak−1 + θkak = 0. (29)

The linear system of equations (29) allows to easily determine the dependence of the

ak−1, ak on ψ(k):

ak−1(t) =
a0θk(ψ

(k)(t))

θk(ψ(k)(t))− θk−1(ψ(k)(t))
, ak(t) = −

a0θk−1(ψ
(k)(t))

θk(ψ(k)(t))− θk−1(ψ(k)(t))
. (30)

Substitution (29) into (28) and substitution Fk into (27) shows that the integral I0k is a

nonlinear functional I0k = I0k [ψ
(k)]. It means that to obtain the required result: I0k [ψ

(k)] → 0

at λ→ ∞, it is enough to choose only function ψ(k)(t).

The function ψ(k)(t) must be a monotonically decreasing function satisfying to the con-

ditions (21):

ψ(k)(t)
∣∣
t=0

= ψk−1, ψ(k)(t)
∣∣
t=1

= ψk, ψ′(t) < 0. (31)

The requirement of monotonic decreasing functions ψ(k)(t) is dictated by the monotonicity

condition of the respective function for the original problem (see (12)).

Note that condition (31) automatic imply the conditions corresponding to (20):

ak−1(t)
∣∣
t=0

= a0, ak−1(t)
∣∣
t=1

= 0, ak(t)
∣∣
t=0

= 0, ak(t)
∣∣
t=1

= a0. (32)

The natural constraints on the choice of the function ψ(k)(t) is imposed by the condition

of the existence of integral I0k and the integrals in (16).

Unfortunately, we cannot choose a function ψ(k)(t) so that the condition Fk(t) = 0 will

be valid. Analysis shows that the requirement of Fk(t) = 0 is equivalent to the equation

(12). In this case the integrals in (16) have the singularities.

VIII. EVALUATION OF INTEGRALS I0k

We show that the appropriate choice of ψ(k)(t) allows to obtain the estimate hk = O(λ−1)

and I0k = O(λ−1) at λ→ ∞ .
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Using infinite differentiability of functions Vk and the Taylor series expansion in a neigh-

borhood of some point t = t0 (or for old variables x = xk − hk + t0hk) for the integral (27)

we have:

I0k = hkVk(x)

1∫

0

Fk(t) dt+ h2k
dVk(x)

dx

1∫

0

Fk(t)(t− t0) dt+ · · · . (33)

The rough estimate of the function Fk(t) is Fk(t) = O(λ). This means that the first term

in (33) has the order O(hkλ) and is not small when λ→ 0 even if hk = O(λ−1).

To destroy the first term in (33) we require

1∫

0

Fk(t)dt = 0. (34)

Then

I0k = h2k
dVk(x)

dx

1∫

0

Fk(t)(t− t0)dt+ ... (35)

Using the requirements (34) and (28) we get

1

hk

1∫

0

dak(t)

dt
dt = λ

1∫

0

Φk(t) dt, (36)

where

Φk(t) =

ak(t)θk(ψ
(k)(t))

k∑
i=k−1

ai(t)θ
′
i(ψ

(k)(t))

σ(a(t);ψ(k)(t))
k∑

i=k−1

ai(t) (θ2i (ψ
(k)(t)) + θ′i(ψ

(k)(t)))

. (37)

Finally, taking into account (32) we rewrite (36) as:

hk =
a0

λ
∫ 1

0
Φk(t) dt

. (38)

Thus, the special choice of the monotonically decreasing function ψ(k)(x) satisfying to

(31) implies the relations:

1∫

0

Φk(t) dt = O(1), hk

1∫

0

ak(t)dt = O(1) (39)

and

hk = O(λ−1), I0k = O(λ−1). (40)

The last estimates mean that the approximation (18), (19) is a weak solution of (13)–(16)

at λ→ ∞.
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IX. THE ALGORITHM FOR THE APPROXIMATION OF WEAK SOLUTIONS

Here, we present a simple algorithm for constructing an approximation (18), (19). We

assume that the parameters ψk, δk, µk, Mk, k = 1, . . . , n, L are given, a0 is defined by (11),

and the parameter λ is large enough.

1. On each, while unknown, interval [xk−hk, xk], k = 2, . . . , n we choose some monotoni-

cally decreasing function ψ(k)(t) satisfying to the conditions (31). According to the formulae

(30) we define the function ak−1(t), ak(t), k = 2, . . . , n on each interval [xk − hk, xk]. Using

equation (37), (38) we calculate the lengths of segments hk, k = 2, . . . , n.

2. On each interval [xk − hk, xk] we calculate the m
(k)
k−1, m

(k)
k :

m
(k)
k−1 = hk

1∫

0

ak−1(t) dt, m
(k)
k = hk

1∫

0

ak(t) dt, k = 2, . . . , n. (41)

3. Taking into account the conditions (15) we determine:

yk−1 = xk−1 + a−1
0 (mk−1 −m

(k−1)
k−1 −m

(k)
k−1), xk = yk−1 + hk, k = 2, . . . , n, (42)

m
(1)
1 ≡ 0, x1 = 0, yn = L.

Note that failure inequalities

mk−1 −m
(k−1)
k−1 −m

(k)
k−1 > 0, k = 2, . . . , n,

means that the parameter λ is not chosen large enough.

X. EXAMPLES OF APPROXIMATION

We restrict the consideration by the case when

µk = µ, δk = δ, k = 1, ..., n. (43)

It is easy to get:

1∫

0

Φk(t) dt = −
1

µ

1∫

0

ϕ′
k−1ϕ

′
k

ϕ′
kϕ

′′
k−1 − ϕ′

k−1ϕ
′′
k

∣∣∣∣
ψ=ψ(k)(t)

dt (44)

14



or
1∫

0

Φk(t) dt = −
1

µ

ψk∫

ψk−1

ϕ′
k−1(ψ)ϕ

′
k(ψ)

ϕ′
k(ψ)ϕ

′′
k−1(ψ)− ϕ′

k−1(ψ)ϕ
′′
k(ψ)

·
1

dψ(k)(t)

dt

∣∣∣∣∣∣∣∣
t=t(ψ(k))

dψ, (45)

where the t = t(ψ) is inverse function of the function ψ = ψ(k)(t). The inverse function

exists because ψ(k)(t) is monotonic function.

A. The linear function

The simplest choice of ψ(k)(t) and, perhaps, not the best, is the linear function:

ψ(k)(t) = (1− t)ψk−1 + tψk = ψk−1 − t∆ψk, ∆ψk = ψk−1 − ψk > 0. (46)

In this case the integral in (45) calculates easily. Using (38) we obtain:

hk =
2a0µ∆ψk sinh∆ψk

λ(∆ψk cosh∆ψk − sinh∆ψk)
. (47)

In the case of (43) for integrals in (41) we get:

m
(k)
k−1 = m

(k)
k =

1

2
hka0, k = 2, . . . , n. (48)

Note that the formula (48) will be valid always, if ψ(k)(t) be odd respect to t = 1/2.

The disadvantage of the choice ψ(k)(t) as the linear function, in particular, is the presence

of large magnitude discontinuities of the derivative at the points xk, yk. In the case of (46)

gap derivatives, for example, at the point x = xk is:

ψ′(xk + 0)− ψ′(xk − 0) = h−1
k ∆ψk = O(λ), ∆ψk = O(1). (49)

B. The nonlinear function

Other choice of ψ(k)(t) is a nonlinear function, for example,

ψ(k)(t) =
ψk + ψk−1

2
+
ψk − ψk−1

2

tanh βk
(
t− 1

2

)

tanh βk/2
, (50)

ψ(k)(t)
∣∣
t=0

= ψk−1, ψ(k)(t)
∣∣
t=1

= ψk,

dψ(k)

dt
= −

∆ψk
2

βk

cosh2 βk(t− 1/2) tanhβk/2
,
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where βk > 0 are some parameters.

In this case, the gap derivatives (compare with (49)):

ψ′(xk + 0)− ψ′(xk − 0) =
∆ψkβk
hk sinh βk

<
∆ψk
hk

, ∆ψk = ψk−1 − ψk > 0. (51)

The value of hk is determined by the formula (38)

hk =
a0

λ
∫ 1

0
Φk(t) dt

, (52)

where
1∫

0

Φk(t) dt =
2 tanh βk

2

µβk∆ψk sinh∆ψk

ψk∫

ψk−1

sinh(ψ − ψk) sinh(ψ − ψk−1)dψ

1−
[
2ψ−ψk−1−ψk

∆ψk

]2
tanh2 βk

2

.

Value of m
(k)
k−1, m

(k)
k are again determined by the formula (48).

Note that the result is weakly depends on the type of function ψ(k). We mean that

hk → 0 at λ → ∞ for almost all monotonic decreasing function ψ(k) is satisfying to (21).

Calculating the limit as λ tending to infinity we get hk = 0 and

ak(x) =






0, x 6 xk,

a0, xk 6 x 6 yk,

0, yk 6 x,

ψ(x) = ψk, xk 6 x 6 yk, k = 1, . . . , n, (53)

Although, almost all approximation constructed in accordance with the algorithm give (53),

the results for moderate values of λ can be used to construct approximate weak solutions.

XI. OTHER WAY OF THE APPROXIMATING FUNCTIONS SELECTING

Here, we specify the approximation other than (18), (19). For simplicity we restrict the

consideration by the case when the parameters satisfy to (18), (43).

We define the partition of interval [0, L] by the set of points (see Fig. 2)

0 = X1 < X2 < · · · < Xk−1 < Xk < Xk+1 < · · · < Xn−1 < Xn = L.

To construct the solution of problem (13)–(16) we use the approximation (see, Fig. 2).

ak(x) =





0, x 6 Xk−1,

ak(x), Xk−1 6 x 6 Xk,

ak(x), Xk 6 x 6 Xk+1,

0, Xk+1 6 x,

k = 1, . . . , n, (54)
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ψ(x) = ψ(k)(x), Xk−1 6 x 6 Xk, k = 2, . . . , n. (55)

Here, as before, ak(x), ak(x), ψ
(k)(x), ψ(k+1)(x) are functions which smooth at appropriate

intervals and satisfying to continuity conditions:

ak(Xk−1) = 0, ak(Xk) = a0, ak(Xk) = a0, ak(Xk+1) = 0, (56)

ψ(k)(Xk−1) = ψk−1, ψ(k)(Xk) = ψk, (57)

ψ(k+1)(Xk) = ψk, ψ(k+1)(Xk+1) = ψk+1.

a0

ak

XkXk−1 Xk+1X1 X2 XnXn−1

ak+1ak−1 ak

a0 a0

XkXk−1 Xk+1X1 X2 XnXn−1

ψ(k) ψ(k+1)

ψk+1

ψk−1

ψk

FIG. 2: Scheme of approximation

Further, we repeat almost verbatim the reasoning of the sections VI–VIII. We consider

the integrals on the interval [Xk−1, Xk] (symbols ‘overline’ is omitted)

Qk =

Xk∫

Xk−1

Fk(a;ψ
(k))Vk dx, (58)

where Fk(a;ψ
(k)) is defined by (23) and has the form (see (28))

Fk(a;ψ
(k)) = −

dak
dx

+

λakθk(ψ
(k))

k∑
i=k−1

aiθ
′
i(ψ

(k))

σ(a;ψ(k))
k∑

i=k−1

ai (θ2i (ψ
(k)) + θ′i(ψ

(k)))

. (59)
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As before, the concentration ak on the interval [Xk−1, Xk] is determined by the relations

(30):

ak−1 =
a0θk(ψ

k)

θk(ψk)− θk−1(ψk)
, ak(t) = −

a0θk−1(ψ
k)

θk(ψk)− θk−1(ψk)
. (60)

We assume that ψ(k)(x) is defined by the differential equation

dψ(k)

dx
= −

λ
k∑

i=k−1

aiθ
2
i (ψ

(k))

σ(a;ψ(k))
k∑

i=k−1

ai (θ2i (ψ
(k)) + θ′i(ψ

(k)))

− ω2
k < 0, (61)

where ω2
k > 0 is some parameter.

At small ω2 the equation (61) is some perturbation of the equation (12) for the original

problem (7)–(11). Choice of ω2
k = 0, unfortunately, is impossible. It is easy to check that if

the approximation of (54)–(57), (60) is chosen then integrals in (15) are singularity, as

k∑

i=k−1

aiθ
2
i (ψ

(k)) = 0, ψ(k) = ψk−1, ψk. (62)

We add the condition (57) to the equation (61). One of these conditions is required for

Cauchy problem and other condition is determined the difference (Xk −Xk−1).

Taking into account that functions ak−1 and ak depend only on the ψk we rewrite (59) in

the form

Fk(a;ψ
(k)) = −

dak
dψ(k)

dψ(k)

dx
+

λakθk(ψ
(k))

k∑
i=k−1

aiθ
′
i(ψ

(k))

σ(a;ψ(k))
k∑

i=k−1

ai (θ
2
i (ψ

(k)) + θ′i(ψ
(k)))

. (63)

We obtain the derivative dak/dψ
(k) taking into account (60) and differentiating the system

(29) with respect to ψ. Substituting dψ(k)/dx from (61) to (63) after simple transformations

we have

Fk(a;ψ
(k)) = −ω2

k∑
i=k−1

aiθ
′
i(ψ

(k))

θk(ψ(k))− θk−1(ψ(k))
. (64)

A. The choice of the parameter ω2
k

It is possible to choose the parameter ω2
k → 0 at λ → ∞. In this case the estimation

Fk(a;ψ
(k)) = O(ω2

k) means that the approximation (54)–(57), (60) and the solution ψ(k) of

the differential equation (61) are the weak solution of (13)–(16).
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We restrict the consideration by the case when

ψk−1 − ψk = ∆ψ, k = 2, . . . , n, M1 =Mn =
M

2
, Mk =M, k = 2, . . . , n− 1, (65)

µk = µ, δk = δ, k = 1, ..., n.

We introduce the notation for the right side of the differential equation (61)

Rk(ψ
(k)) =

k∑
i=k−1

aiθ
2
i (ψ

(k))

σ(a;ψ(k))
k∑

i=k−1

ai (θ2i (ψ
(k)) + θ′i(ψ

(k)))

. (66)

Then, the length of the interval [Xk−1 −Xk] has the form

Hk = Xk −Xk−1 =

Xk∫

Xk−1

dx =

ψk∫

ψk−1

dψ

ψ′(x)
= −

ψk∫

ψk−1

dψ

λRk(ψ) + ω2
k

. (67)

It is easy to show that in the case (65) all the parameters ω2
k = ω2 and the distribution

of the concentrations of ak(x), ψ
(k)(x), and Rk(ψ

(k)) are symmetric functions with respect

to bisecting point of a segment [Xk−1 −Xk].

The values Xk are defined by relations:

X2 −X1 =
1

2
H, Xk −Xk−1 = H, k = 3, . . . , n− 1, Xn −Xn−1 =

1

2
H, (68)

where

H =

ψk−1∫

ψk

dψ

λRk(ψ) + ω2
.

Using the symmetric properties of function Rk(ψ) one can get the asymptotic relation at

ω2/λ→ 0 (see detail in Appendix A):

1

2
λH = −

1

R′
k(ψk)

ln
ω2
0

Rk(ψ∗)
+

lnW

R′
k(ψk)

+O(ω2
0 lnω

2
0), (69)

ψ∗ =
1

2
(ψk−1 + ψk), ω2

0 =
ω2

λ
,

where W is constant that does not depend on λ and ω2
0.

Then, we have

ω2 = λWRk(ψ∗) exp

(
−
1

2
λHR′

k(ψk)

)
→ 0, |Qk| = O(ω2), λ→ ∞. (70)
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This estimate means that the approximation (54)–(57), (60), (61) is a weak solution of the

problem.

Note, the derivative dψ/dx is continuous at the points Xk when the parameters satisfy

(65). In the general case the gap derivatives, obviously, would be equal (ω2
k − ω2

k−1).

For practical accurate calculations we should solve equation (67) relative to ω2 at given

value Hk, which for the case (65) is defined by the conditions (see (15))

Xk∫

Xk−1

ak dx =
1

2
a0Hk =

1

2
Mk. (71)

XII. WEAK SOLUTIONS APPROXIMATION AT MODERATE PARAMETER

Despite the fact that the main result for the weak solution of the problem is obtained for

λ → ∞ it can be efficiently used at moderate values of the parameter λ. In Appendix A

the comparison of the numerical solution of the equation (67) and asymptotic formula (70)

is presented.

To demonstrate the method of the weak solution construction we choose the following

parameters:

ψ1 = 5, ∆ψ = 1, n = 11, µ = 1, δ = 3, M = 0.1, L = 1, λ = 200, (72)

µ1 = · · · = µ11 = µ, δ1 = · · · = δ11 = δ,

M1 =
1

2
M, M2 = · · · =M10 =M, M11 =

1

2
M.

Using (65), (68), (11) we have

H1 = · · · = H10 = H = 0.1, a0 = 1. (73)

At λ = 200 we get (see Appendix A, Tab. I)

W = 5.968, R′
k(ψk) = 1.035, Rk(ψ∗) = 0.227.

Using formula (70) (or (A9)) we have

ω2
k = ω2 = 0.00868.
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We solve the Cauchy problem (61) on the interval [Xk−1, Xk]

dψ(k)

dx
= −

λ
k∑

i=k−1

aiθ
2
i (ψ

(k))

σ(a;ψ(k))
k∑

i=k−1

ai (θ
2
i (ψ

(k)) + θ′i(ψ
(k)))

− ω2
k < 0, (74)

ψ(k)(Xk−1) = ψk−1

and simultaneously determine the concentration ak with the help of formulae (61)

ak−1 =
a0θk(ψ

k)

θk(ψk)− θk−1(ψk)
, ak(t) = −

a0θk−1(ψ
k)

θk(ψk)− θk−1(ψk)
. (75)

Note that in the case (72), (73) it is enough to solve the initial value problem on any one

interval and then to continue solution on subsequent intervals ‘periodically’.

On Fig. 3 the results of numerical integration are shown.

0.1 0.2 0.3

a1(x) a2(x) a3(x) a4(x)

0

5

4

3

2

1

ψ(x)

x

FIG. 3: The distribution of the concentrations ak(x) and acidity function ψ(x). The fragment of

approximation at λ = 200

A. Comparison between the weak solution and the solution of the original problem

Algorithm of the numerical integration of the original problem (7)–(10) is described in

[13] and its modification presented in [14, 17]. We compare the numerical solution with the

weak solution for the following parameters (see also Appendix A):

ψ1 = 5, ψk−1 − ψk = ∆ψ = 1, µk = µ = 1, δk = δ = 15, a0 = 1, Hk = 0.25.
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On Figs. 4, 5 the results of calculation are shown.
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FIG. 4: The distribution of the concentration at δ = 15. Comparison between the weak solution

and the numerical solution. λ = 30, U0 = 15.063 (I∗ = 7.439 µA, U∗ = 15.213 V); λ = 40,

U0 = 15.290 (I∗ = 9.919 µA, U∗ = 15.442 V)

1
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3
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1.00.2 0.4 0.6 0.80

x

ψ

λ = 30
0.062

1.00.2 0.4 0.6 0.80

x

0.064

0.066

0.068

σ

λ = 30

FIG. 5: The distribution of the acidity ψ(x) and conductivity σ(x) at δ = 15. Comparison between

the weak solution and the numerical solution

Starting from parameters λ = 30 we have a good agreement between the weak solution

(74), (75) and the solution of original problem (7)–(10).
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XIII. CONCLUSION

Described technique of constructing the weak solutions for the original problem is quite

specific. Success is primarily due to the fact that the presence of a small parameter at

higher derivatives and turning points dictates specific structure of solution. For large values

of the parameter λ the functions ak are almost completely focused at certain intervals.

Moreover, these functions quickly and exponentially decrease outside of own intervals (see

(17) and Sec.V, XI). It allows to split a system of n equations on a separate subsystems

containing only two equations. However, this involve the additional difficulties. The problem

of determination of the acidity function becomes singular. The removing of this singularity

is possible by the introduction of some perturbation of the problem (see (61) and Sec.XI).

One of the most interesting result is the fact that at λ = ∞ a generalized solution

of the original problem is occurred (see (53)). At moderate values of the parameter λ

approximation of a weak solution is actually the asymptotic of the original problem solution.

Confirmation of this fact is a good coincidence of the weak solution of the problem and the

numerical solution of the problem. In more detail the process of separation will be described

in [15] which gives the solution of non-stationary problem.
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Appendix A: Asymptotic evaluation of integral (67)

Using the symmetric properties of function Rk(ψ) we can get:

1

2
λHk =

ψk−1∫

ψ∗

dψ

Rk(ψ) + ω2
0

, ω2
0 =

ω2

λ
, ψ∗ =

1

2
(ψk + ψk−1). (A1)
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We recall that

Rk(ψk−1) = 0, R′
k(ψk−1) < 0, R′

k(ψ∗) = 0, Rk(ψ∗) > 0. (A2)

We change variables:

Rk(ψ) = τ, Rk(ψ∗) = τ0 > 0, F(τ) =
1

R′
k(ψ)

. (A3)

Then, we can rewrite (A1) in the form:

1

2
λHk =

Rk(ψk−1)=0∫

Rk(ψ∗)=τ0

dτ

R′
k(ψ)(τ + ω2

0)
=

0∫

τ0

F(τ)dτ

τ + ω2
0

. (A4)

We note that integrand has the integrable singularity in vicinity of point τ = τ0. Actually,

using (A3) we have:

Rk(ψ) = τ = Rk(ψ∗) +
1

2
R′′
k(ψ∗)(τ − τ0)

2 + · · · = τ0 +
1

2
R′′
k(ψ∗)(ψ − ψ∗)

2 + · · · , (A5)

(ψ − ψ∗) ≈

(
2(τ − τ0)

R′′
k(ψ∗)

)1/2

, τ < τ0, R′′
k(ψ∗) < 0,

R′
k(ψ) = R′′

k(ψ∗)(ψ − ψ∗) + · · · ≈ R′′
k(ψ∗)

(
2(τ − τ0)

R′′
k(ψ∗)

)1/2

,

F(τ) = O((τ0 − τ)−1/2), τ → τ0.

Further, we present (A4) in the form (we construct the asymptotic following [21]):

1

2
λHk = +F(−ω2

0) ln
ω2
0

τ0 + ω2
0

0∫

τ0

F(τ)−F(−ω2
0)

τ + ω2
0

dτ (A6)

We keep principal terms only and write:

1

2
λHk = F(0) ln

ω2
0

τ0
+

0∫

τ0

F(τ)− F(0)

τ
dτ +O(ω2

0 lnω
2
0). (A7)

Taking into account that R′
k(ψk) = −R′

k(ψk−1) > 0 we get:

1

2
λHk = −

1

R′
k(ψk)

ln
ω2
0

Rk(ψ∗)
+

lnW

R′
k(ψk)

+O(ω2
0 lnω

2
0), (A8)

where

W = exp



R

′
k(ψk)

0∫

τ0

F(τ)− F(0)

τ
dτ



 . (A9)
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Finally, we have

ω2 = λWRk(ψ∗) exp

(
−
1

2
λHkR

′
k(ψk)

)
→ 0, λ→ ∞. (A10)

Integral in formula (A9) has not singularity and can be calculated by numerical methods.

Other way for calculating integral is the application of the Taylor series:

0∫

τ0

F(τ)−F(0)

τ
dτ = −

∞∑

m=1

F (m)(0)

mm!
τm0 , (A11)

F (m)(0) =
dmF(τ)

dτm

∣∣∣∣
τ=0

=

(
1

R′
k(ψ)

d

dψ

)m
1

R′
k(ψ)

∣∣∣∣
ψ=ψk−1

.

The results of calculation presented in Tab. I and on Fig. 6 for the following parameters:

ψk−1 − ψk = ∆ψ, µk = µ, δk = δ.

Note, that W , µa0R
′
k(ψk), µa0Rk(ψ∗) almost do not depend on δ starting from δ ≈ 100. In

particular, this means that one can assume δk = δ > 100.

TABLE I: W (δ,∆ψ), R′
k(ψk), Rk(ψ∗)

δ W µa0R
′
k(ψk) µa0Rk(ψ∗)

∆ψ = 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

1 3.878 3.547 3.090 2.592 0.491 0.924 1.270 1.523 0.062 0.241 0.522 0.895

2 4.249 4.969 6.029 7.121 0.500 0.995 1.468 1.888 0.061 0.231 0.479 0.776

3 4.452 5.968 8.947 13.641 0.505 1.035 1.591 2.145 0.061 0.227 0.459 0.722

5 4.668 7.249 14.021 30.464 0.510 1.078 1.738 2.483 0.061 0.222 0.440 0.672

10 4.876 8.747 22.404 77.309 0.515 1.120 1.896 2.899 0.060 0.218 0.423 0.629

15 4.958 9.414 27.196 117.581 0.517 1.137 1.963 3.093 0.060 0.217 0.417 0.613

20 5.001 9.789 30.239 149.349 0.518 1.146 2.000 3.205 0.060 0.216 0.414 0.605

30 5.046 10.198 33.855 194.272 0.519 1.155 2.040 3.330 0.060 0.215 0.410 0.597

50 5.084 10.552 37.260 244.555 0.520 1.163 2.074 3.441 0.060 0.215 0.408 0.590

100 5.113 10.834 40.175 294.483 0.520 1.169 2.101 3.530 0.060 0.214 0.406 0.585

200 5.128 10.981 41.767 324.653 0.521 1.172 2.115 3.578 0.060 0.214 0.404 0.583

103 5.140 11.102 43.111 351.837 0.521 1.175 2.126 3.617 0.060 0.214 0.404 0.581

104 5.143 11.129 43.422 358.369 0.521 1.175 2.129 3.626 0.060 0.214 0.403 0.580
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In Tab. II the numerical solution ω2 of the equation (67) and asymptotic values ω2
a

calculated by formula (A10) are presented for the following parameters:

ψk−1 − ψk = ∆ψ = 1, µk = µ = 1, δk = δ = 15, a0 = 1, Hk = 0.25.

lgW (δ,∆ψ)

∆ψ = 0.5

∆ψ = 1.0

∆ψ = 1.5

∆ψ = 2.0

lg δ

3

2

1

0

0 1 2 3 4

∆ψ = 2.0

∆ψ = 1.5

∆ψ = 1.0

∆ψ = 0.5

lg δ

Rk(ψ∗; δ; ∆ψ)

R′
k(ψk; δ; ∆ψ)

0 1 2 3 4

0

1

2

3

4

FIG. 6: Dependences W (δ,∆ψ), Rk(ψ∗; δ;∆ψ), R
′
k(ψk; δ;∆ψ) on δ. See table I

TABLE II: Dependence ω2 and its asymptotic value ω2
a on parameter λ at δ = 15. See table I

λ 10 20 30 40 50 60 70 80

ω2 2.579329 1.439443 0.663345 0.249932 0.080934 0.024045 0.006828 0.001889

ω2
a 4.929054 2.380993 0.862609 0.277790 0.083867 0.024307 0.006849 0.001891

ω2
a/ω

2 1.910983 1.654107 1.300393 1.111465 1.036242 1.010913 1.003144 1.000880

Appendix B: Generalized solution of the stationary problem

At λ = ∞ (or ε = 0) it is easily to construct the generalized solution of the stationary

problem (7)–(11). Assuming λ = ∞ we rewrite the problem in the following form

ak(x)θk(ψ(x)) = 0,




L∫

0

ak(x)θk(ψ(x))v(x) dx = 0


 , k = 1, ..., n, (B1)
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L∫

0

ak(x) dx =Mk, (B2)

where ak(x), ψ(x) are the generalized functions (distributions), v(x) is a compact function.

Obviously, we have the following solution (compare with (53))

ak(x) =






0, x 6 xk−1,

a0, xk−1 6 x 6 xk,

0, xk 6 x,

ψ(x) = ψk, xk−1 6 x 6 xk, k = 1, . . . , n, (B3)

where

x0 = 0, xk = xk−1 +Mka
−1
0 , k = 1, . . . , n, xn = L, a0 = L−1

n∑

i=1

Mi (B4)
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