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3 ON A CLASS OF CALDER ÓN-ZYGMUND OPERATORS ARISING FROM

PROJECTIONS OF MARTINGALE TRANSFORMS

MICHAEL PERLMUTTER*

ABSTRACT. We prove that a large class of operators, which arise as the projections of
martingale transforms of stochastic integrals with respect to Brownian motion, as well as
other closely related operators, are in fact Calderón–Zygmund operators. Consequently,
such operators are not only bounded onLp, 1 < p < ∞, but also satisfy weak-type
inequalities. Unlike the boundedness onLp, which can be obtained directly from the
Burkholder martingale transform inequalities, the weak-type estimates do not follow from
the corresponding martingale results.

1. INTRODUCTION AND STATEMENT OF RESULTS

Martingale inequality methods provide a powerful tool to study theLp boundedness,
1 < p < ∞, of the basic Calderón-Zygmund singular integral operators onRn. An ad-
vantage of these techniques is that they give very good information on the size of theseLp

bounds and, in particular, provide constants that are independent of the dimension. These
same arguments can be used to extend results fromRn to manifolds and to the Ornstein-
Uhleneck case. For some applications of these methods we refer the reader to [3], [4], [7],
[8], [9], [14], [21], [30], [31], and the many references provided there. However, as power-
ful as these techniques are, weak-type martingale inequalities cannot be directly transferred
to singular integral operators. For example, while Burkholder’s celebratedLp inequalities,
1 < p < ∞, for martingale transforms [16], with his famous bound“(p∗ − 1)”, gives the
sameLp bound for many singular integral operators, his weak-type martingale transform
bound“2” provides no information for the weak-type inequalities of those operators. This
is due to the fact that the probabilistic representation of such operators involves the use of
conditional expectation which does not preserve weak-typeinequalities. The purpose of
this paper is to show that a very general class of operators, including many of the opera-
tors considered in [7] and [8], which arise as the projections of martingale transforms,are
Calderón-Zygmund operators. Such operators do not have tobe of convolution type. Once
we know that these are Calderón-Zygmund operators, they then satisfy all the properties of
such operators, including their weak-type boundedness. This does not, of course, answer
important questions that have been of interest to many people, starting with Stein [33] in
the case of the Riesz transforms: do these operators have weak-type bounds independent
of the dimension? Do weak-type inequalities hold for Riesz transforms on Wiener space?
For a more precise formulation of these questions, see [2].

For the rest of this paper, and following standard terminology (see for example [22,
p.175]), we will say that an operatorT acting on the Schwartz space of rapidly decreasing
functions onRn is a Calderón-Zygmund (CZ) operator if it admits a bounded extension to
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L2(Rn) and is of the form

(1.1) Tf(x) =

∫

Rn

K(x, x̃)f(x̃)dx̃

where the kernelK satisfies the following conditions

|K(x, x̃)| ≤
κ

|x− x̃|n
(1.2)

|∇xK(x, x̃)| ≤
κ

|x− x̃|n+1
(1.3)

|∇x̃K(x, x̃)| ≤
κ

|x− x̃|n+1
,(1.4)

for some universal constantκ wheneverx 6= x̃. (In (1.1) the integral is defined in the
principal-value sense ifK(x, x̃) is singular along the diagonal{x = x̃}. This convention
will be used throughout the entirety of this paper.) If thereexists a functionK̄, defined
on Rn \ {0}, so thatK̄(x − x̃) = K(x, x̃) for all x 6= x̃, then we say thatT is of
convolution type. The Hilbert, Riesz, and Beurling-Ahlfors transforms discussed below are
basic examples of CZ operators of convolution type which give rise to interesting Fourier
multipliers. It is well known (see for example [22, p.183]) that CZ operators are strong-
type(p, p) for 1 < p <∞ and are weak-type(1, 1). More precisely, there exists universal
constantsCp,n,κ, depending only onp, n, andκ, such that

(1.5) ‖Tf‖p ≤ Cp,n,κ‖f‖p, 1 < p <∞

and

(1.6) |{x : |Tf(x)| > λ}| ≤
C1,n,κ

λ
‖f‖1.

The purpose of this paper is to prove the following theorem. As we shall see, in the case
thatα = 1 or 2, these operators are the conditional expectations of martingale transforms
which were used in [8] and [7] respectively. Background information onα-stable processes
will be provided at the beginning of the next section.

Theorem 1.1. Let 0 < α ≤ 2. Let (Xt)t>0 be a rotationally-invariant (symmetric)α-
stable process onRn and let.ϕ denote the density ofX1. For y ≥ 0, letϕy(x) =

1
ynϕ(

x
y ).

LetA(x, y) = (ai,j(x, y)) be an(n+ 1)× (n+ 1) matrix-valued function with

(1.7) ‖A‖ = ‖ sup
|v|≤1

(|A(x, y)v|)‖L∞(Rn×[0,∞)) <∞.

Further assume thatai,j(x, y) = ai,j(y) is independent ofx wheneveri or j = n + 1.
Consider the kernel

(1.8) KA(x, x̃) =

∫ ∞

0

∫

Rn

2yA(x̄, y)∇ϕy(x̄− x̃)∇ϕy(x̄− x)dx̄dy,

where∇ = (∂x1
, . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫

Rn

K(x, x̃)f(x̃)dx̃

is a CZ operator.

Remark 1.1. If we make the additional assumption thatai,j(y) = 0 wheneveri or j =
n + 1, we may also write our kernel in terms of the density ofXt, which we denoteψt.
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It is well known (see e.g. [11]) that ψt obeys the scaling relationψt(x) = 1
tn/αψ(

x
t1/α

)
which impliesϕt1/α = ψt. Therefore, after a simple change of variables we see that

(1.9) KA(x, x̃) =

∫ ∞

0

∫

Rn

2

α
t

2
α−1A(x̄, t1/α)∇ψt(x̄− x̃)∇ψt(x̄ − x)dx̄dt.

The reason why we need the assumption thatai,j(y) = 0 wheneveri or j = n + 1
is because these entries correspond to “vertical” derivatives with respect to the dilation
parametert, and the change of variablesy = t1/α does not commute with the taking of
vertical derivatives.

The rest of this paper is organized as follows. In section two, we give background
information on CZ operators, martingale transforms, and the connection between the two
topics as well as a brief introduction to Lévy processes. Insection three, we give the proof
of theorem1.1, and in section four, we give our closing remarks and discussadditional
properties of CZ operators.

2. PRELIMINARIES

We start with a brief introduction to an important class of L´evy processes called rota-
tionally invariantα−stable processes. Recall that a Lévy process onRn is a stochasti-
cally continuous process,(Xt)t≥0, with stationary and independent increments such that
X0 = 0 a.s. By stochastic continuity we mean that for everyǫ > 0,

lim
tց0

P(|Xt| > ǫ) = 0.

The celebrated Lévy-Khintchine formula says that ifXt a Lévy process, its characteristic
function is given byE(eiξ·Xt) = etρ(ξ) where

ρ(ξ) = ib · ξ −
1

2
Bξ · ξ +

∫

Rn

(eiξ·y − 1− i(ξ · y)I(|y|≤1))dν(y)

with b ∈ Rn, B a symmetric non-negativen × n matrix, andν a measure satisfying
ν({0}) = 0 and ∫

Rn

|y|2

|y|2 + 1
dν(y) <∞.

For 0 < α ≤ 2, ρ(ξ) = −|ξ|α gives the rotationally invariantα−stable processes. In
the case thatα = 2, (Xt)t≥0 is Brownian motion (running at twice the usual speed), and
the density ofXt is given by

(2.1)
1

(4πt)n/2
e−|x|2/4t.

If α = 1, then(Xt)t≥0 is the Cauchy process and the density ofXt is given by

(2.2)
Γ(n+1

2 )

π(n+1)/2

t

(|x|2 + t2)(n+1)/2
.

For further background on Lévy processes we refer the reader to [11], [12], and [32].
We now consider the basic examples of CZ operators which arise as projections of

martingale transforms, the Riesz and Beurling-Ahlfors transforms. Forf ∈ Lp(Rn), we
define the Riesz transform in directionj, 1 ≤ j ≤ n, by

Rjf(x) =
Γ(n+1

2 )

π(n+1)/2

∫

Rn

xj − x̃j
|x− x̃|n+1

f(x̃)dx̃.
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Whenn = 1, the Riesz transform is called the Hilbert transform. Likewise, forf ∈ Lp(C),
we define the Beurling-Ahlfors operator by

Bf(z) = −
1

π

∫

C

f(w)

(z − w)2
dw.

(As in (1.1), the above integrals are defined in the principal-value sense.) These operators
are Fourier multipliers with

R̂jf(ξ) = mj(ξ)f̂(ξ) and B̂f(ξ) = mB(ξ)f̂(ξ),

wheremj(ξ) =
iξj
|ξ| andmB(ξ) =

ξ21−ξ22−2iξ1ξ2
|ξ|2 . Therefore, we can decompose the

Beurling-Ahlfors transform as

(2.3) B = R2
2 −R2

1 + 2iR1R2.

In [33] Stein showed that for the Riesz transform, the constant in (1.5) can be taken to
be independent of the dimension,n. Gundy and Varopoulos showed in [23] that the Riesz
transforms could be interpreted probabilistically as projections of martingale transforms,
and from this it again follows that the constant may be taken to be independent of dimen-
sion. See [2] for more on this topic. These techniques were further explored by Bañuelos
and Wang in [8] to prove the sharp inequalities

‖Rjf‖p ≤ Cp‖f‖p and ‖((Rjf)
2 + f2)1/2‖p ≤

√
C2

p + 1‖f‖p,

where

p∗ = max

{
p,

p

p− 1

}
, and Cp = cot

(
π

2p∗

)
.

The first inequality had been proved earlier by Iwaniec and Martin in [25] using the method
of rotations.

In [29] Lehto showed that the best possible constant in (1.5) for Beurling-Ahlfors trans-
form is at least(p∗ − 1). Iwaniec conjectured in [26] that it is exactly(p∗ − 1). In [8]
it was shown that the best possible constant for the Beurling-Ahlfors transform is at most
4(p∗ − 1). This constant was reduced to2(p∗ − 1) by Nazarov and Volberg in [30] using
a Littlewood-Paley inequality proved using Bellman functions techniques. The Bellman
function in [30] is itself constructed from Burkholder martingale inequalities. In [7] the
martingale techniques from [8] are applied to space-time Brownian motion to reproduce
the bound2(p∗ − 1). These martingale methods were refined in [6] to reduce this constant
to 1.575(p∗ − 1), which is the best known bound as of now valid for all1 < p < ∞. We
do point out that for1000 < p <∞, this bound was improved to1.4(p∗ − 1) in [14].

With the exception of [30], the basic idea for the above results is to embedLp(Rn) into
Mp, the space of p-integrable martingales, apply a martingaletransform, and project back
ontoLp(Rn). This “factorization” of the operators “lifts” all the analysis to the martingale
setting. We will now give a brief description of this processstarting with some background
information on martingale transforms and their bounds.

Let (Xt)t≥0 be a martingale adapted to the Brownian filtration. Then, we may find an
R

n-valued predictable processHs such that

Xt = X0 +

∫ t

0

Hs · dBs,
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whereBs is a standard Brownian motion. For ann× n matrix-valued function,A(x), we
define a new martingale

(A ∗X)t =

∫ t

0

A(Xs)Hs · dBs,

which we call the martingale transform ofX byA. In [8] Bañuelos and Wang applied the
Burkholder inequalities [16, 17] to show

‖A ∗X‖p ≤ ‖A‖(p∗ − 1)‖X‖p, 1 < p <∞,

where‖A‖ = ‖ sup|v|≤1 |A(x)v|‖L∞(Rn) and the norm of a martingaleMt is defined
by‖M‖p = supt≥0 ‖Mt‖p. This bound is sharp.

We now consider how to embedLp(Rn) into the space of martingales and project back
to Lp(Rn) using the method developed by Gundy and Varopoulos in [23] and used by
Bañuelos and Wang in [8]. Let

(2.4) py(x) =
Γ(n+1

2 )

π(n+1)/2

y

(|x|2 + y2)(n+1)/2

be the Poisson kernel for the upper half-space,R
n+1
+ , and forf(x) ∈ C∞

0 (Rn), let (py ∗
f)(x) = uf (x, y). (Note that by (2.2) py is the density of the Cauchy process at time
y.) Background radiation is a “time-reversed Brownian motion,” (Bt)t≤0, taking values
in R

n+1
+ such thatB−∞ has distribution given by the Lebesgue measure onRn × {∞},

andB0 is distributed by the Lebesgue measure onRn × {0}. We writeBt = (Xt, Yt)
with Xt taking values inRn andYt > 0. The standard rules of stochastic calculus, in
particular Ito’s formula, hold for the background radiation process. Therefore,uf(Xt, Yt)
is a martingale and

f(X0) = uf (B0) =

∫ 0

−∞

∇uf(Xs, Ys) · dBs,

where∇ = (∂x1
, . . . , ∂xn , ∂y). This allows us to define the martingale transform off by

an(n+ 1)× (n+ 1) matrix-valued function,A(x, y), as

(2.5) (A ∗ f) =

∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · dBs.

The random variableA ∗ f is not a function of the endpoint,X0. This motivates us to
define a projection operator by averaging the integral in(2.5) over all paths ending atx,
that is,

TAf(x) = E

(∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · dBs|X0 = x

)
.

It is known (see [2]) thatE(|(f(B0)|
p) =

∫
Rn |f(x)|pdx, which implies

sup
t≥0

‖uf(Bt)‖p = ‖f‖p

since |uf (Bt)|
p is a submartingale. In other words, liftingf ∈ Lp(Rn) to the space

of martingales does not change its norm. Combining this withthe fact that conditional
expectation is a contraction inLp(Rn), we see that the operator norm ofTA is the same as
the operator norm of the martingale transformX → A ∗X . Thus, we have

‖TAf(x)‖p ≤ (p∗ − 1)‖A‖‖f‖p.
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It is known (see for example [16]) that martingale transforms are weak-type(1, 1) and
in fact we have the sharp inequality

P{|A ∗X | > λ} ≤
2‖A‖

λ
‖X‖1.

Unfortunately, this does not give us information about the weak-type behavior ofTA be-
cause weak-type inequalities are not preserved under conditional expectation. Therefore,
we seek to representTA as a purely analytic operator by finding a kernelKA(x, x̃) such
that

TAf(x) =

∫

Rn

KA(x, x̃)f(x̃)dx̃.

Let f, g ∈ C∞
0 (Rn) and note that

g(B0) =

∫ 0

−∞

∇Ug(Bs) · dBs

by Ito’s formula. Therefore, using basic facts about the covariation of stochastic integrals
and the occupation time formula for the background radiation process, (see [20, p.31 and
57] and [23])

∫

Rn

TAf(x)g(x)dx =

∫

Rn

E

(∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · dBs|X0 = x

)
g(x)dx

= E

(∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · dBsg(B0)

)

= E

(∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · dBs

∫ 0

−∞

∇ug(Bs) · dBs

)

= E

(∫ 0

−∞

A(Xs, Ys)∇uf (Xs, Ys) · ∇ug(Bs)ds

)

=

∫ ∞

0

∫

Rn

2yA(x, y)∇uf (x, y) · ∇ug(x, y)dxdy.(2.6)

Using the fact that∇uf (x, y) = ((∇py) ∗ f)(x) and applying Fubini’s theorem, we see
that we have

KA(x, x̃) =

∫ ∞

0

∫

Rn

2yA(x̄, y)∇py(x̄− x̃)∇py(x̄ − x)dx̄dy.

Note that this is the kernel from (1.8) with α = 1.
If we defineAj = (ajl,m) by

ajl,m =





1 l = n+ 1, m = j
−1 l = j, m = n+ 1
0 otherwise



 ,

then plugging into (2.6) and Fourier transforming shows thatTAj = Rj . In fact, if A is
any matrix with constant coefficients,TA will be a linear combination of first and second
order Riesz transforms and the identity. Moreover, ifA(x, y) = A(y) is independent ofx
and‖A‖ <∞, thenTA is a Fourier multiplier.

The approach of [7] is similar, but uses space-time Brownian motion and the heat kernel
for the one-half Laplacian,

(2.7) ht(x) =
1

(2πt)n/2
e−|x|2/2t,
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instead of background radiation and the Poisson kernel. (Weremark thatht is the density
of a standard Brownian motion at timet. Observe that this is, up to a simple time change,
t = 2s, the density of the stable process given in (2.1).) FixT > 0, and letZt = (Bt, T−t)
for 0 < t < T whereBt is Brownian motion onRn with initial distribution given by
the Lebesgue measure. We now letuf(x, t) denote the extension off to the upper half-
space by convolution withht. Ito’s formula shows thatuf (Zt) is a martingale. For an
n × n matrix-valued function,A(x, t), we define a martingale transform and a projection
operator by

A ∗ f =

∫ T

0

A(Bs, T − s)∇xuf(Bs, T − s) · dBs

and

ST
Af(x) = E(A ∗ f |B0 = (x, 0)).

It is shown in [7] that limT→∞ ST
A = SA exists inL2(Rn). Moreover,

(2.8) ‖SAf(x)‖p ≤ (p∗ − 1)‖A‖‖f‖p.

If A(i,j) is defined by

a
(i,j)
l,m =

{
−1 l = i m = j
0 otherwise

}
,

thenSA is the second order Riesz transform,RiRj . By (2.3) this easily leads us to the
conclusion that (1.5) holds for the Beurling-Ahlfors transform with constant2(p∗ − 1).
As with the projection operators arising from background radiation, ifA(x, y) = A(y) is
independent ofx, thenSA is a Fourier multiplier. Furthermore, we may again find a kernel
so that

SAf(x) =

∫

Rn

KA(x, x̃)f(x̃)dx̃,

where

KA(x, x̃) =

∫ ∞

0

∫

Rn

A(x̄, t)∇xht(x̄ − x̃)∇xht(x̄ − x)dx̄dt.

In light of remark1.1, we see that this is (up to multiplication by a constant) the kernel from
(1.8) in the case thatα = 2 andai,j(x, y) = 0 whenever eitheri or j = n+ 1. Therefore,
the operators considered in theorem1.1 include the operators from [7] and many of the
operators considered in [8]. (In [8] all entries of the matrix,A(x, y) = (ai,j(x, y)), are
allowed to depend on bothx andy, even wheni or j = n+1. Depending on the choice of
A, TA may not satisfy (1.3) and (1.4) in that case.)

3. THE PROOF OFTHEOREM 1.1

Proof. We need to verify thatTA is bounded onL2(Rn) and thatKA satisfies the estimates
(1.2), (1.3), and (1.4). From the definition ofTA, we observe that (1.3) and (1.4) are
equivalent.

Lemma 3.1. TA is bounded onL2(Rn). In particular, there exists a constantCn,α, de-
pending only onn andα, such that for allf ∈ C∞

0 (Rn)

(3.1) ‖TAf‖2 ≤ Cn,α‖A‖‖f‖2.
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Proof. Let f, g ∈ C∞
0 (Rn).We will show that

∣∣∣∣
∫

Rn

TAf(x)g(x)dx

∣∣∣∣ ≤ Cn,α‖A‖‖f‖2‖g‖2.

Lettinguf andug denoteϕy ∗ f andϕy ∗ g respectively,
∣∣∣∣
∫

Rn

TAf(x)g(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∫

Rn

KA(x, x̃)f(x̃)g(x)dx̃dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

∫

Rn

∫ ∞

0

∫

Rn

2yA(x̄, y)∇ϕy(x̄− x̃) · ∇ϕy(x̄− x)f(x̃)g(x)dx̄dydx̃dx

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫

Rn

2yA(x̄, y)

∫

Rn

∇ϕy(x̄− x̃)f(x̃)dx̃ ·

∫

Rn

∇ϕy(x̄− x)g(x)dxdx̄dy

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫

Rn

2yA(x̄, y)∇uf (x̄, y) · ∇ug(x̄, y)dx̄dy

∣∣∣∣

≤ 2‖A‖

∫ ∞

0

∫

Rn

y1/2|∇uf (x, y)|y
1/2|∇ug(x, y)|dxdy.

Now by the Cauchy-Schwartz inequality and Holder’s inequality,
∫ ∞

0

∫

Rn

y1/2|∇uf (x, y)|y
1/2|∇ug(x, y)|dxdy

≤

∫ ∞

0

(∫

Rn

y|∇uf(x, y)|
2dx

)1/2 (∫

Rn

y|∇ug(x, y)|
2dx

)1/2

dy

≤

(∫ ∞

0

∫

Rn

y|∇uf(x, y)|
2dxdy

)1/2 (∫ ∞

0

∫

Rn

y|∇ug(x, y)|
2dxdy

)1/2

.

The proof will be complete once we show that
(∫ ∞

0

y

∫

Rn

|∇uf(x, y)|
2dxdy

)
≤ Cn,α‖f‖

2
2.

Sinceϕ is the density ofX1, which has characteristic functionE(eiX1ξ) = e−|ξ|α , we have

that ϕ̂(ξ) = e−(2π|ξ|)α . Therefore, we may apply Plancherel’s theorem, use the scaling
relation for the Fourier transform, and substitutet = y|ξ|, to see that

∫ ∞

0

y

∫

Rn

|∇xuf(x, y)|
2dxdy =

∫ ∞

0

y

∫

Rn

4π2|ξ|2|ϕ̂y(ξ)|
2|f̂(ξ)|2dξdy

= C

∫ ∞

0

y

∫

Rn

|ξ|2|ϕ̂(ξy)|2|f̂(ξ)|2dξdy

= C

∫ ∞

0

t

∫

Rn

|ϕ̂(ξ′t)|2|f̂(ξ)|2dξdt

= C

∫

Rn

|f̂(ξ)|2
∫ ∞

0

te−2(2πt)αdtdξ

≤ Cn,α

∫

Rn

|f̂(ξ)|2dξ = Cn,α‖f‖
2
2.
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Likewise,
∫ ∞

0

y

∫

Rn

|∂yuf(x, y)|
2dxdy =

∫ ∞

0

y

∫

Rn

|∂yϕ̂y(ξ)|
2|f̂(ξ)|2dξdy

= C

∫ ∞

0

y

∫

Rn

|∂yϕ̂(ξy)|
2|f̂(ξ)|2dξdy

= C

∫ ∞

0

y

∫

Rn

|ξ · ∇ϕ̂(ξy)|2|f̂(ξ)|2dξdy

≤ C

∫ ∞

0

y

∫

Rn

|ξ|2|∇ϕ̂(ξy)|2|f̂(ξ)|2dξdy

≤ C

∫

Rn

|ξ|4
∫ ∞

0

y3|ϕ̂(ξy)|2|f̂(ξ)|2dydξ

= C

∫

Rn

|f̂(ξ)|2
∫ ∞

0

t|ϕ̂(ξ′t)|2dtdξ ≤ Cn,α‖f‖
2
2.

�

Now that we knowTA is bounded onL2(Rn), we will show that it is, in fact, a CZ
operator. It suffices to show thatKi,j

A satisfies (1.2) and (1.3) for 1 ≤ i, j,≤ n+ 1 where

(3.2) Ki,j
A (x, x̃) =

∫ ∞

0

∫

Rn

2yai,j(x̄, y)∂xiϕy(x̄− x̃)∂xjϕy(x̄− x)dx̄dy.

The following lemma will be used to see that certain integrals converge.

Lemma 3.2. There exists a constantCn,α, depending only onn andα, such that for all
x ∈ Rn, 1 ≤ i, j ≤ n,

|ϕ(x)| ≤
Cn,α

(1 + |x|2)(n+α)/2
(3.3)

|∂xiϕ(x)| ≤
Cn,α|x|

(1 + |x|2)(n+2+α)/2
≤

Cn,α

(1 + |x|2)(n+1+α)/2
(3.4)

and

(3.5) |∂xi∂xjϕ(x)| ≤
Cn,α

(1 + |x|2)(n+2+α)/2
.

Proof. Inverting the characteristic function ofX1 we see

(3.6) ϕ(x) =

∫

Rn

e−ix·ξe−|ξ|α .

From this we readily see thatϕ ∈ C∞(Rn), so in order to show (3.4) it suffices to show
that there exists a constantCn,α so that

(3.7) |∂xiϕ(x)| ≤ Cn,α|x|

and

(3.8) |∂xiϕ(x)| ≤
Cn,α

|x|n+1+α
.

Using the fact that ∫

Rn

ξie
−|ξ|αdξ = 0,
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we see that

|∂xiϕ(x)| =

∣∣∣∣
∫

Rn

ξie
−ix·ξe−|ξ|αdξ

∣∣∣∣

=

∣∣∣∣
∫

Rn

ξi(e
−ix·ξ − 1)e−|ξ|αdξ

∣∣∣∣

≤

∫

Rn

|ξ| |e−ix·ξ − 1|e−|ξ|αdξ

≤ 2

∫

Rn

|ξ|2|x|e−|ξ|αdξ ≤ Cn,α|x|,

with the last inequality following because

|eix·ξ − 1| ≤ | cos(x · ξ)− 1|+ | sin(x · ξ)| ≤ 2|x · ξ|.

Therefore (3.7) holds.
To show (3.8), we expressXt as a process subordinated to Brownian motion. A subor-

dinator is an a.s. increasing one-dimensional Lévy process. It is well known (see [12] for
details) that there exists a subordinator,Tt, such that

Xt = BTt ,

whereBt is a standard Brownian motion (run at twice the usual speed).By conditioning
onTt we see that the density ofXt is given by

ψt(x) =

∫ ∞

0

1

(4πs)n/2
e−|x|2/4sηα/2(t, s)ds,

whereηα/2(t, ·) is the density ofTt. Sinceϕ = ψ1, we see that

∂xiϕ(x) =

∫ ∞

0

1

(4πs)n/2
xi
s
e−|x|2/4sηα/2 (1, s) ds

= Cn
xi
|x|n

∫ ∞

0

u
n
2
−1e−uηα/2

(
1,

|x|2

4u

)
du.

It is known (see e.g. [13]) that there exists a constantCα, depending only onα, such that

(3.9) ηα/2(t, s) ≤ Cαts
−1−α/2.

Therefore we have

|∂xiϕ(x)| ≤
Cα

|x|n+1+α

∫ ∞

0

u(n+α)/2e−udu

so (3.8) holds. Similar computations show

|ϕ(x)| ≤
Cα

|x|n+α

∫ ∞

0

u(n+α−2)/2e−udu

and

|∂xi∂xjϕ(x)| ≤
Cα

|x|n+α+2

∫ ∞

0

u(n+α+2)/2(u+ 1)e−udu.

Moreover, sinceϕ is smooth, it and all of its all of its partial derivatives arebounded near
the origin. Thereforeϕ satisfies (3.3) and (3.5). �
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We are now poised to prove the theorem.
Case 1.Eitheri or j = n+ 1:

The fact thata(i,j)(x, y) = a(i,j)(y) depends only ony allows us to use the semigroup
property ofψy. Note that

ϕy ∗ ϕy = ψyα ∗ ψyα = ψ2yα = ϕ21/αy.

Therefore, substitutingw = x̄− x̃ we see that

|K(i,j)(x, x̃)| =

∣∣∣∣
∫ ∞

0

∫

Rn

2ya(i,j)(y)∂xiϕy(w)∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

2ya(i,j)(y)

∫

Rn

∂xiϕy(w)∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

2ya(i,j)(y)∂xi∂xjϕ21/αy(x− x̃)dy

∣∣∣∣

≤ ‖a(i,j)‖∞

∫ ∞

0

2y|∂xi∂xjϕ21/αy(x − x̃)|dy.

Likewise,

|∂xk
K(i,j)(x, x̃)| =

∣∣∣∣
∫ ∞

0

∫

Rn

2ya(i,j)(y)∂xiϕy(w)∂xk
∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣

≤ ‖a(i,j)‖∞

∫ ∞

0

2y|∂xi∂xj∂xk
ϕ21/αy(x − x̃)|dy.

Therefore, it suffices to show that there exists a constantCn,α so that|K(x)| ≤ Cn,α
1

|x|n

and|K ′(x)| ≤ Cn,α
1

|x|n+1 for all x 6= 0, where

K(x) =

∫ ∞

0

2y|∂xi∂xjϕ21/αy(x)|dy

and

K ′(x) =

∫ ∞

0

2y|∂xi∂xj∂xk
ϕ21/αy(x)|dy.

ϕy is homogeneous of order−n, so itsk − th order partial derivatives are homogeneous
of order−n− k. Therefore, if we make the substitutiony = |x|t we have

K(x) =

∫ ∞

0

2y|∂xi∂xjϕ21/αy(x)|dy

=

∫ ∞

0

2|x|t|∂xi∂xjϕ21/α|x|t(|x|x
′)||x|dt

=

∫ ∞

0

2|x|t
1

|x|n+2
|∂xi∂xjϕ21/αt(x

′)||x|dt

=
1

|x|n

∫ ∞

0

2t|∂xi∂xjϕ21/αt(x
′)|dt

wherex′ = x
|x| . Similarly,

K ′(x) =
1

|x|n+1

∫ ∞

0

2t|∂xi∂xj∂xk
ϕ21/αt(x

′)|dt.
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The lemma will be proved as soon as we bound the above integrals. We have assumed that
eitheri or j = n+1, so we need to bound the following four integrals for any1 ≤ k, l ≤ n.

∫ ∞

0

2t|∂t∂tϕ21/αt(x
′)|dt,

∫ ∞

0

2t|∂t∂xk
ϕ21/αt(x

′)|dt,

∫ ∞

0

2t|∂t∂xk
∂xl

ϕ21/αt(x
′)|dt,

∫ ∞

0

2t|∂t∂t∂xk
ϕ21/αt(x

′)|dt.

We will show how to bound the first integral. The other three may be bounded by the exact
same method. Recalling thatϕt(x) =

1
tnϕ

(
x
t

)
, we see that

∂t∂tϕ21/αt(x) =
C

(1)
n

tn+2
ϕ
(x
t

)
+
C

(2)
n

tn+3

n∑

i=1

xi∂xiϕ
(x
t

)
+
C

(3)
n

tn+4

n∑

i=1

n∑

j=1

xixj∂xi∂xjϕ
(x
t

)
,

whereC(1)
n , C

(2)
n andC(3)

n are constants depending onn.
Therefore, it suffices to bound

∫ ∞

0

t

tn+a
∂βϕ

(
x′

t

)
dt

whena = 2, 3, or 4 andβ is a multi-index with|β| = a− 2. By (3.3), (3.4), and (3.5), we
have

∂βϕ(x) ≤
Cn,α

(1 + |x|2)(n+α+|β|)/2
,

which implies

∂βϕ
(x
t

)
≤

Cn,αt
n+α+|β|

(t2 + |x|2)(n+α+|β|)/2
.

Therefore,
∫ ∞

0

t

tn+a
∂βϕ

(
x′

t

)
dt ≤

∫ ∞

0

t

tn+a

tn+α+|β|

(t2 + 1)(n+α+|β|)/2
dt

=

∫ ∞

0

tα−1

(1 + t2)(n+α+|β|)/2
dt <∞.

Case 2.1 ≤ i, j ≤ n:
Sinceai,j(x, y) depends on bothx andy, we are unable to use the semi-group property

of ψy. We are, however, still able to pull out‖A‖ and use homogeneity. This again allows
us to bound our kernel by the product of1|x−x̃|n and an integral. As in case 1, we start out
by substitutingw = x− x̃ to see

|K(i,j)(x, x̃)| ≤ ‖A‖

∫ ∞

0

∫

Rn

2y|∂xiϕy(w)||∂xjϕy(w − (x̃− x))|dwdy and

|∂xk
K(i,j)(x, x̃)| ≤ ‖A‖

∫ ∞

0

∫

Rn

2y|∂xiϕy(w)||∂xk
∂xjϕy(w − (x̃− x))|dwdy.

Therefore, we need to show that there exists a constantCn,α so that|K(x)| ≤ Cn,α
1

|x|n

and|K ′(x)| ≤ Cn,α
1

|x|n+1 for all x 6= 0 where now

K(x) =

∫ ∞

0

∫

Rn

2y|∂xiϕy(w)||∂xjϕy(w − x)|dwdy

and

K ′(x) =

∫ ∞

0

∫

Rn

2y|∂xiϕy(w)||∂xk
∂xjϕy(w − x)|dwdy.
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Using homogeneity and substitutingy = t|x| andw = |x|z we see that

|K(x)| =

∫ ∞

0

∫

Rn

2y|∂xiϕy(w)||∂xjϕy(w − x)|dwdy

=

∫ ∞

0

∫

Rn

2t|x||∂xiϕ|x|t(|x|z)||∂xjϕ|x|t(|x|(z − x′))||x|n+1dzdt

=
1

|x|n

∫ ∞

0

∫

Rn

2t|∂xiϕt(z)||∂xjϕt(z − x′)|dzdt.(3.10)

Similarly, we have

(3.11) |K ′(x)| =
1

|x|n+1

∫ ∞

0

∫

Rn

2t|∂xiϕt(z)||∂xk
∂xjϕt(z − x′)|dzdt.

Therefore, to complete the proof, we need to show that the integrals in (3.10) and (3.11)
are convergent. (Note that a simple rotation of coordinatesshows they do not depend on
x′.) We will show that the integral in (3.11) converges. The proof that the integral in (3.10)
converges is similar.

By (3.4) and (3.5) we know that there exists a constantCn,α so

(3.12) |∂xiϕ(x)| ≤
Cn,α|x|

(1 + |x|2)(n+2+β)/2

and

(3.13) |∂xi∂xjϕ(x)| ≤
Cn,α

(1 + |x|2)(n+2+β)/2
,

whereβ = min{α, 12}. (The fact thatβ ≤ 1
2 will be used to see that a certain integral is

convergent.) Therefore,

(3.14) |∂xiϕt(x)| ≤
Cnt

β |x|

(t2 + |x|2)(n+2+β)/2

and

(3.15) |∂xi∂xjϕt(x)| ≤
Cnt

β

(t2 + |x|2)(n+2+β)/2
.

This allows us to see that
∫ ∞

0

∫

Rn

2t|∂xj∂xiϕt(z)||∂xjϕt(z − x′)|dzdt

≤

∫

Rn

∫ ∞

0

t
tβ

(|z|2 + t2)(n+2+β)/2

|x′ − z|tβ

(|x′ − z|2 + t2)(n+2+β)/2
dtdz,

so it suffices to show thatg1(z) andg2(z) are integrable overRn for

g1(z) =

∫ 1

0

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|

(|x′ − z|2 + t2)(n+2+β)/2
dt and

g2(z) =

∫ ∞

1

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|

(|x′ − z|2 + t2)(n+2+β)/2
dt.
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If zn is a sequence converging toz, then

lim
n→∞

g(zn) = lim
n→∞

∫ ∞

1

t1+2β 1

(|zn|2 + t2)(n+β+2)/2

|x′ − zn|

(|x′ − zn|2 + t2)(n+β+2)/2
dt

=

∫ ∞

1

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|

(|x′ − z|2 + t2)(n+2+β)/2
dt = g2(z),

with the middle inequality justified by the dominating convergence theorem applied to
|x′ − z| 1

t2n+3 . Thusg2(z) is continuous onRn. Furthermore, for largez, substituting
t = |z| tan(θ) allows us to see that

g2(z) ≤ Cn,β

∫ ∞

1

t1+2β |z|

(|z|2 + t2)n+β+2
dt

≤ Cn,β

∫ π/2

0

|z|1+2β tan1+2β(θ)|z||z| sec2(θ)

|z|2n+4+2β sec2n+4+2β(θ)
dθ

= Cn,β
1

|z|2n+1

∫ π/2

0

sin1+2β(θ) cos2n+1(θ)dθ,

sog2(z) is integrable.
Likewise, we can see thatg1(z) is continuous onRn \ {0, x′} using by applying the

dominating convergence theorem witht2β+1|z|−n−β−2|x′−z|−n−β−1, and for largez we
have

g1(z) ≤ Cn,β
1

|z|2n+1

∫ π/2

0

sin1+2β(θ) cos2n+1(θ)dθ.

Therefore, it remains to show thatg1(z) is integrable near0 andx′.
If |z| < 1/2 and0 < t < 1, it is easy to see

|x′ − z|

(|x′ − z|2 + t2)(n+2+β)/2
≤ Cn,β ,

so again substitutingt = |z| tan(θ) we see

g1(z) ≤ Cn,β

∫ 1

0

t1+2β

(|z|2 + t2)(n+2+β)/2
dt

≤ Cn,β
1

|z|n−β

∫ π/2

0

sin2β(θ) cosn−β−1(θ)dθ.

Sinceβ ≤ 1
2 , the last integral is finite, sog1(z) is integrable near 0. A simple change

of variables and a nearly identical computation shows thatg1(z) is integrable nearx′, so
thereforeg1(z) is integrable on all ofRn which completes the proof.

�

We end this section by remarking that ifi or j = n + 1, then the integral in (3.11) is
divergent. This is why we need the assumption thatai,j(x, y) = ai,j(y) in that case.

4. CLOSING REMARKS

Examining the proof of theorem1.1, we see that the only facts we used were the homo-
geneity ofϕy(x), the fact that̂ϕ is “small enough” to causeTA to be bounded onL2(Rn),
and the bounds (3.3), (3.4), and (3.5). This immediately gives us the following corollary.
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Corollary 4.1. Let φ ∈ C2(Rn) satisfy (3.3), (3.4), and (3.5), and fory > 0, let φy =
1
ynφ

(
x
y

)
. Assume that there exists a constantC such that for allξ′ ∈ Sn−1

(4.1)
∫ ∞

0

tφ̂(tξ′)2dt < C.

LetA(x, y) be as in theorem1.1. Consider the kernel

KA(x, x̃) =

∫ ∞

0

∫

Rn

2yA(x̄, y)∇φy(x̄− x̃)∇φy(x̄− x)dx̄dy,

where∇ = (∂x1
, . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫

Rn

K(x, x̃)f(x̃)dx̃

is a CZ operator.

The key to proving lemma (3.2) was the fact that we could write theα-stable process
asBTt whereTt is theα/2 stable subordinator andBt is an independent Brownian mo-
tion (run at twice the usual speed). This motivates the following question. LetTt be a
subordinator, letBt be an independent Brownian motion, and letXt = BTt . Under what
conditions onTt does the density ofX1 satisfy the conditions of corollary4.1?

If Xt = BTt is any such process, called subordinate Brownian motion in the literature,
it is well known (see for example [28]) that there exists a functionΦ : [0,∞) → [0,∞),
called the Laplace exponent ofTt, such that

(4.2) e−λTt = e−tΦ(λ)

and that the Lévy symbol ofXt is given by

ρ(ξ) = −Φ
(
|ξ|2

)
.

Inspecting the proofs of lemma3.1and lemma3.2, we see that in order for the density of
X1 to satisfy the conditions of corollary4.1, it suffices to have a bound similar to (3.9) on
the density ofT1, and forΦ(λ) to increase fast enough asλ → ∞ for the integrals in the
proofs to converge. We summarize this in the following corollary.

Corollary 4.2. LetXt = BTt whereTt is a subordinator andBt is an independent Brow-
nian motion run at twice the usual speed. Letφ denote the density ofX1, and fory > 0,

let φy(x) = 1
ynφ

(
x
y

)
. LetΦ be the Laplace exponent ofTt and assume that there exists

someδ > 0 so that

(4.3) Φ(λ) ≥ O(λδ), asλ→ ∞.

Further assume that there exist a constantsC andγ > 0 such that the density ofT1, η(1, ·),
satisfies

(4.4) η(1, s) ≤ Cs−1−γ/2

for all s > 0. LetA(x, y) be as in theorem1.1and consider the kernel

KA(x, x̃) =

∫ ∞

0

∫

Rn

2yA(x̄, y)∇φy(x̄− x̃)∇φy(x̄− x)dx̄dy,

where∇ = (∂x1
, . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫

Rn

K(x, x̃)f(x̃)dx̃

is a CZ operator.
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An interesting example of subordinate Brownian motion is provided by the so called
relativisticα-stable processes. The relativisticα-stable process with massm ≥ 0 is the
Lévy process,Xm

t , with Lévy symbol

(4.5) ρ(ξ) = −
(
(|ξ|2 +m2/α)α/2 −m

)
.

These processes have been widely studied in recent years because of their importance
in relativistic quantum mechanics. (See [18] and the references provided there for more
information.) In [35] it is shown thatTt, the subordinator forXm

t , has density

(4.6) ηm,α/2(t, s) = emte−m2/αsηα/2(t, s),

and Laplace exponent

(4.7) Φ(λ) = (λ+m2/α)α/2 −m.

Therefore, we readily see that the conditions of corollary4.2are satisfied.
The motivation of this paper was to answer questions left open in [7] and [8]. Are

the operators considered in those papers weak-type(1, 1) in addition to being strong-type
(p, p) for 1 < p < ∞? Proving that these operators are CZ shows that the answer to
this question is, in fact, yes. However, CZ operators are also known to satisfy a number
of other desirable properties. For example, they boundedlymap the Hardy spaceH1(Rn)
to L1(Rn) and the space of functions with bounded mean oscillation (BMO) toL∞(Rn).
More precisely, ifT is any CZ operator, then there exist universal constantsCn andC′

n,
which depend only onn, so that

‖T ‖H1→L1 ≤ Cn(κ+ ‖T ‖L2→L2)

and
‖T ‖BMO→L∞ ≤ C′

n(κ+ ‖T ‖L2→L2)

whereκ is as in (1.2), (1.3) and (1.4). For details on this topic, see [22, ch. 8].
Another interesting property of CZ operators is that they are bounded on certain weighted

Lp spaces. A weight is a functionw ∈ L1
loc(R

n) which is positive almost everywhere. The
associated spaceLp(w), 1 ≤ p <∞, is the collection of functionsf onRn such that

‖f‖pLp(w) =

∫

Rm

|f(x)|pw(x)dx <∞.

The Muckenhoupt characteristic ofw is defined as

(4.8) ‖w‖Ap = sup
Q

1

|Q|

∫

Q

wdx ·

(
1

|Q|

∫

Q

w−1/(p−1)dx

)p−1

,

with the supremum taken over all cubes,Q. Note that whenp = 2 this becomes

‖w‖A2
= sup

Q

1

|Q|

∫

Q

wdx ·
1

|Q|

∫

Q

w−1dx.

w is said to be anAp weight if ‖w‖Ap is finite. In this case, it is well known (see for
example [22, ch. 9]) that ifT is a CZ operator, then there exists a constantCn,p,T,w,
depending on then, p, T , andw, such that

‖Tf‖Lp(w) ≤ Cn,p,T,w‖f‖Lp(w),

for all f ∈ Lp(w) when1 < p < ∞. (A corresponding weak-type result holds when
p = 1.)
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Recently, in [24], Hytönen proved the so called “A2 conjecture,” thatCn,2,T,w depends
linearly on‖w‖2, i.e., there exists a constantCn,2,T such that

‖Tf‖L2(w) ≤ Cn,2,T ‖w‖A2
‖f‖L2(w),

for all f ∈ L2(w). Combining this with a result of Dragičević, Grafakos, Pereyra, and
Petermichl [19] shows that

‖Tf‖Lp(w) ≤ Cn,p,T ‖w‖
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

for all f ∈ Lp(w). For more information weightedLp spaces and theA2 conjecture, see
[22, ch. 9] and [24].

The operators considered in [7] are generalized in [1] and [5] by taking the projections
of martingales transforms involving more general Lévy processes in place of Brownian
motion. These more general operators are shown in these papers to obey the same“p∗−1”
strong-type bound for1 < p < ∞ as the operators from [7]. In the current paper we have
shown that the operators considered in [7] are CZ operators, and therefore are also weak-
type (1,1). It would be interesting to know if the same is trueof the operators studied in
[1] and [5].

Acknowledgments.I would like to thank my advisor, Rodrigo Bañuelos, for his invaluable
help and encouragement while writing this paper.
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