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ON A CLASS OF CALDER ON-ZYGMUND OPERATORS ARISING FROM
PROJECTIONS OF MARTINGALE TRANSFORMS

MICHAEL PERLMUTTER*

ABSTRACT. We prove that a large class of operators, which arise asrbjeqgpions of
martingale transforms of stochastic integrals with respe&rownian motion, as well as
other closely related operators, are in fact Calderonrdytd operators. Consequently,
such operators are not only bounded bh, 1 < p < oo, but also satisfy weak-type
inequalities. Unlike the boundedness &/, which can be obtained directly from the
Burkholder martingale transform inequalities, the wegbetestimates do not follow from
the corresponding martingale results.

1. INTRODUCTION AND STATEMENT OF RESULTS

Martingale inequality methods provide a powerful tool tadst the L. boundedness,
1 < p < oo, of the basic Calderon-Zygmund singular integral opesatmR". An ad-
vantage of these techniques is that they give very goodrimdtion on the size of thede’
bounds and, in particular, provide constants that are iedégnt of the dimension. These
same arguments can be used to extend results ®brio manifolds and to the Ornstein-
Uhleneck case. For some applications of these methods eethef reader to], [4], [ 7],
(81,191, [14], [21], [30], [31], and the many references provided there. However, as power
ful as these techniques are, weak-type martingale ind@sadiannot be directly transferred
to singular integral operators. For example, while Burkleok celebrated? inequalities,
1 < p < oo, for martingale transforms.f], with his famous bound(p* — 1)”, gives the
samelL? bound for many singular integral operators, his weak-tyjpetimgale transform
bound“2” provides no information for the weak-type inequalitiestaige operators. This
is due to the fact that the probabilistic representatioruchsoperators involves the use of
conditional expectation which does not preserve weak-tygpgualities. The purpose of
this paper is to show that a very general class of operatwekding many of the opera-
tors considered in/] and [3], which arise as the projections of martingale transforans,
Calderdon-Zygmund operators. Such operators do not hawe ¢d convolution type. Once
we know that these are Calderon-Zygmund operators, tlegyhtisfy all the properties of
such operators, including their weak-type boundednests ddes not, of course, answer
important questions that have been of interest to many pestarting with SteingJ] in
the case of the Riesz transforms: do these operators hadetymabounds independent
of the dimension? Do weak-type inequalities hold for Rieansforms on Wiener space?
For a more precise formulation of these questions, gee [

For the rest of this paper, and following standard termigpl¢see for exampleZ?,
p.175]), we will say that an operat@racting on the Schwartz space of rapidly decreasing
functions ornR™ is a Calderén-Zygmund (CZ) operator if it admits a boundddmsion to
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L?(R™) and is of the form

(1.1) i@ = | Kof@d

where the kernel( satisfies the following conditions
R

1.2 Klz.2)| < ———
(1.2) | (I’I”_Iw—fln
~ K
(1-3) |VIK(I5I)| < m
K
. Z VI)| &
(1.4) VK (x,7)| P

for some universal constanrtwheneverr # z. (In (1.1) the integral is defined in the
principal-value sense iK (z, &) is singular along the diagon&k = #}. This convention
will be used throughout the entirety of this paper.) If therésts a function’’, defined
onR"™ \ {0}, so thatK(z — ) = K(z,%) for all z # #, then we say thaf is of
convolutiontype. The Hilbert, Riesz, and Beurling-AhBaransforms discussed below are
basic examples of CZ operators of convolution type whicle gise to interesting Fourier
multipliers. It is well known (see for examplé?, p.183]) that CZ operators are strong-
type(p,p) for 1 < p < co and are weak-typél, 1). More precisely, there exists universal
constants’), ,, ., depending only op, n, andx, such that

(1.5) ITFllp < Cpmullfllpy 1<p<oo
and

Cl,n,ﬁ
(1.6) s [Tf@)] > M < =551 f

The purpose of this paper is to prove the following theoreraw shall see, in the case
thata = 1 or 2, these operators are the conditional expectations of nuate transforms
which were used ing] and [7] respectively. Background information enstable processes
will be provided at the beginning of the next section.

Theorem 1.1. Let0 < a < 2. Let(X});~o be a rotationally-invariant (symmetric)-

stable process oR™ and let. denote the density df;. Fory > 0, lety, (z) = U%gp(%).

LetA(z,y) = (a™ (z,y)) be an(n + 1) x (n + 1) matrix-valued function with
(1.7) Al = ‘ST<pl(|A(Iay)vD”LOO(]R"X[O,oo)) < oo.

Further assume that®’ (z,y) = a*’(y) is independent of whenever or j = n + 1.
Consider the kernel

A8 Kawd) = [ [ 2A@0)TVe,( -5V - )dady,
0 n
whereV = (0, ...,0.,,0,). Then the operator

Taf(@)= | Kw)f@)ia

is a CZ operator.

Remark 1.1. If we make the additional assumption thét (y) = 0 wheneveri or j =
n + 1, we may also write our kernel in terms of the densityXaf which we denote),.
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It is well known (see e.g. 1[1]) that ¢, obeys the scaling relatiog, (x) = ﬁw(ﬂ%)
which impliesy,1,« = ;. Therefore, after a simple change of variables we see that

(1.9) Ka(z,7) = /OOO / %t%—lA(:z,tl/a)Vzpt(:z — 3)V (T — z)dzdt.

The reason why we need the assumption #idt(y) = 0 wheneveri or j = n + 1

is because these entries correspond to “vertical” devieativith respect to the dilation
parametet, and the change of variablgs= ¢'/® does not commute with the taking of
vertical derivatives.

The rest of this paper is organized as follows. In section, twe give background
information on CZ operators, martingale transforms, ardctinnection between the two
topics as well as a brief introduction to Lévy processeseletion three, we give the proof
of theorem1.1, and in section four, we give our closing remarks and disedsstional
properties of CZ operators.

2. PRELIMINARIES

We start with a brief introduction to an important class eivl processes called rota-
tionally invarianta—stable processes. Recall that a Lévy proces®bns a stochasti-
cally continuous proces$X;):>o, with stationary and independent increments such that
Xo = 0 a.s. By stochastic continuity we mean that for every 0,

lim P(|X,| > ¢) = 0.
N0

The celebrated Lévy-Khintchine formula says thaXifa Lévy process, its characteristic
function is given byE (e’ Xt) = ') where

pO) = b€ = ZBE €+ [ (=1 =il )y n)vly)

with b € R™, B a symmetric non-negative x n matrix, andv a measure satisfying

v({0}) =0and
ly[?
/Rn o £ 1d1/(y) < 00.

For0 < a < 2, p(§) = —|£|* gives the rotationally invariant—stable processes. In
the case that = 2, (X¢):>0 is Brownian motion (running at twice the usual speed), and
the density ofX, is given by

1 2
el
(2.1) CORE e .
If o« =1, then(X,),>¢ is the Cauchy process and the densitykofis given by
T (nrtl

n(n+1)/2 (|:1:|2 4 t2)(n+1)/2 .

For further background on Lévy processes we refer the readel1], [12], and [37].

We now consider the basic examples of CZ operators whicle assprojections of
martingale transforms, the Riesz and Beurling-Ahlforasfarms. Forf € LP(R"™), we
define the Riesz transform in directignl < j < n, by

L) Tj— Ty o
R]f(x) - 71_("4,1)/2 ‘/Rn |CC _ 57|n+1 f((E)d(E
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Whenn = 1, the Riesz transformis called the Hilbert transform. Liieyforf € L?(C),
we define the Beurling-Ahlfors operator by

Bf(z) = —l/Cde.

T Jo (z —w)?

(Asin (1.1), the above integrals are defined in the principal-valussgrirhese operators
are Fourier multipliers with

-~ o~

Rif(€) =m;(&)f(¢) and BF(€) = mp(€)F(©),

G266

wherem;(§) = £ andmp() = HE

I€]
Beurling-Ahlfors transform as

. Therefore, we can decompose the

(2.3) B = R3 — R} +2iR R».

In [33] Stein showed that for the Riesz transform, the constart.i €an be taken to
be independent of the dimension, Gundy and Varopoulos showed ind that the Riesz
transforms could be interpreted probabilistically as @ctpns of martingale transforms,
and from this it again follows that the constant may be takelpetindependent of dimen-
sion. See7] for more on this topic. These techniques were further enquidoy Bafiuelos
and Wang in §] to prove the sharp inequalities

IR; flly < Collfll, and [[((R3f)? + 1) 2]lp < /C2 + 11 s

p* :max{p’p%l}’ and Cp = cot (22*) .

The first inequality had been proved earlier by lwaniec andidan [25] using the method
of rotations.

In [29] Lehto showed that the best possible constant if) for Beurling-Ahlfors trans-
form is at leastp* — 1). Iwaniec conjectured in[f] that it is exactly(p* — 1). In [8]
it was shown that the best possible constant for the BeuAinifors transform is at most
4(p* — 1). This constant was reduced2¢{* — 1) by Nazarov and Volberg in3[]] using
a Littlewood-Paley inequality proved using Bellman funas techniques. The Bellman
function in [3(] is itself constructed from Burkholder martingale ineqties. In [7] the
martingale techniques frong] are applied to space-time Brownian motion to reproduce
the boun®(p* — 1). These martingale methods were refinedijt¢ reduce this constant
to 1.575(p* — 1), which is the best known bound as of now valid forak p < co. We
do point out that fol 000 < p < oo, this bound was improved tb4(p* — 1) in [14].

With the exception of{(], the basic idea for the above results is to embeR™) into
MP, the space of p-integrable martingales, apply a martingateform, and project back
onto L?(R™). This “factorization” of the operators “lifts” all the angdis to the martingale
setting. We will now give a brief description of this procssarting with some background
information on martingale transforms and their bounds.

Let (X:):>0 be a martingale adapted to the Brownian filtration. Then, &g find an
R™-valued predictable process; such that

where

t
Xt:Xo—i—/ H, - dBs,
0



CZ OPERATORS AND MARTINGALE TRANSFORMS 5

whereB; is a standard Brownian motion. For anx n matrix-valued functionA(z), we
define a new martingale

t
(A*X)t:/ A(X)H, - dB.,
0

which we call the martingale transform &f by A. In [8] Bafiuelos and Wang applied the
Burkholder inequalitiesi[6, 17] to show

[A* X[, < [Al(p" = DIIXlp, 1<p<oo0,
where || Al| = |[sup), < |[A(z)v|||=®~) and the norm of a martingalé/; is defined
by||M ||, = sup;~g || M¢]|p- This bound is sharp.
We now consider how to embdd (R™) into the space of martingales and project back

to LP(R™) using the method developed by Gundy and Varopoulos i §nd used by
Bafiuelos and Wang irg]. Let

L(%) y
(2.4) py(z) = T+ D/2 (|72 + y2)(n+ D72

be the Poisson kernel for the upper half-spa&&&!*, and for f(x) € C§5°(R™), let (p, *
f)(x) = uys(z,y). (Note that by 2.2) p, is the density of the Cauchy process at time
y.) Background radiation is a “time-reversed Brownian mofidB;),<o, taking values

in R’ such thatB_ ., has distribution given by the Lebesgue measur@®dnx {co},
and By is distributed by the Lebesgue measureRshx {0}. We write B; = (X;,Y;)
with X; taking values inR™ andY; > 0. The standard rules of stochastic calculus, in
particular Ito’s formula, hold for the background radiatiorocess. Therefore, (X,,Y;)

is a martingale and

0

£(Xo) = ug(Bo) = / Vuy(X,,Ys) - dB,,

whereV = (0, ..., 0s,,0,). This allows us to define the martingale transformydiy
an(n + 1) x (n + 1) matrix-valued functionA(z, y), as

(2.5) (Axf) = / D AKX YV (X, Y.) - dB.

The random variablel * f is not a function of the endpoink . This motivates us to
define a projection operator by averaging the integrglin) over all paths ending at,
that is,

0
Taf(z) =E (/ A(X,, Yo)Vuy(X,,Ys) - dB| X = x> .
Itis known (seef]) that E(|(f(Bo)|”) = [g. | f(2)[Pdx, which implies
sup [[ug (Bo)llp = 1 1l»

since|us(B,)|P is a submartingale. In other words, liftinfj € LP(R™) to the space
of martingales does not change its norm. Combining this withfact that conditional
expectation is a contraction i’ (R™), we see that the operator norm®f is the same as
the operator norm of the martingale transfakm— A x X. Thus, we have

ITaf@)p < (" = DIAlp-
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It is known (see for examplelf]) that martingale transforms are weak-tyfel) and
in fact we have the sharp inequality
2||A
pilaxx| > < 28 x),

Unfortunately, this does not give us information about tleakltype behavior o’y be-
cause weak-type inequalities are not preserved under toomali expectation. Therefore,
we seek to represefity as a purely analytic operator by finding a ker#gl (x, #) such
that

Taf(z) = Ku(z,z)f(2)dz.
Rn
Let f,¢9 € C§°(R™) and note that

0
g(Bo) = [ VU, (B

by Ito’s formula. Therefore, using basic facts about theac@tion of stochastic integrals
and the occupation time formula for the background radigpimcess, (se€’], p.31 and
57]and P3))

/n Taf(2)g(x)dz = / E </0 A(X,, Vo) Vus (X, Ys) - dBy| Xo = x) g(a)dz

(/ A(X,, Vo) Vuy (X, Ys) - stg(Bo))

0

E(/ A(X,, YY) Vugp(X,, Ys) - dB/

— 00

Vug(Bs) - dBS>
=FE (/_OO A(X,, Yo Vus(X,, V) - Vug(Bs)ds>

(2.6) = /0 /n 2yA(z,y)Vus(z,y) - Vug(z,y)dzdy.

Using the fact thaWVu,(z,y) = ((Vpy) * f)(x) and applying Fubini’s theorem, we see
that we have

Ka(z,2) = /OOO /n 2yA(2,y)Vpy (T — 2)Vpy (T — x)dzdy.

Note that this is the kernel frond (8) with o« = 1.
If we defineA; = (af ) by

_ 1 l=n+1, m=j
al,, =1 —1 l=j,m=n+1 },
0 otherwise

then plugging into Z.6) and Fourier transforming shows thaf, = R;. In fact, if Ais
any matrix with constant coefficientg, will be a linear combination of first and second
order Riesz transforms and the identity. Moreovet (f,y) = A(y) is independent of
and||A|| < oo, thenTy is a Fourier multiplier.

The approach of{] is similar, but uses space-time Brownian motion and th¢ kexael

for the one-half Laplacian,
1

_ —|z|?/2t
(2.7) hi(x) = (271'15)”/28 ,
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instead of background radiation and the Poisson kernel.r@vark that, is the density

of a standard Brownian motion at timeObserve that this is, up to a simple time change,
t = 2s, the density of the stable process giverdril).) Fix T > 0, and letZ; = (B;, T—t)

for 0 < t < T where B; is Brownian motion orR™ with initial distribution given by
the Lebesgue measure. We nowdegi{x, t) denote the extension g¢f to the upper half-
space by convolution witth,. Ito’s formula shows that:;(Z;) is a martingale. For an

n x n matrix-valued functionA(z, t), we define a martingale transform and a projection
operator by

T
Axf= / A(Bs, T = 5)Vauy(Bs, T — 5) - dBs
0

and
Shf(z) = E(Ax f|By = (x,0)).

Itis shown in [/] thatlimp_, o, S£ = S, exists inL?(R™). Moreover,

(2.8) [Saf(@)lp < " = DIANISIp-
If AG9) is defined by

Gj) | -1 Il=im=j

“m =\ 0 otherwise [’
then S, is the second order Riesz transfori,RR;. By (2.3 this easily leads us to the
conclusion that 1.5 holds for the Beurling-Ahlfors transform with constetfp* — 1).
As with the projection operators arising from backgrourdiation, if A(z,y) = A(y) is
independent of, thenS 4 is a Fourier multiplier. Furthermore, we may again find a kérn
so that

Saf(z) = | Kalz, 2)f(2)dz,

RTL

where

Ka(z,z) = / A(Z, t)Vhy (T — )V hy (T — x)dzdt.
0 R

Inlight of remarkl.1, we see that this is (up to multiplication by a constant) ekl from
(1.9 in the case that = 2 anda®’ (x,y) = 0 whenever eithei or j = n + 1. Therefore,
the operators considered in theorém include the operators fronY] and many of the
operators considered i][ (In [8] all entries of the matrixA(z,y) = (a*I(x,y)), are
allowed to depend on bothandy, even wheri or j = n+ 1. Depending on the choice of
A, Ty may not satisfy 1.3) and (L.4) in that case.)

3. THE PROOF OFTHEOREM1.1

Proof. We need to verify thaf', is bounded ori.?(R™) and thatk 4 satisfies the estimates
(1.2, (1.3, and (L.4). From the definition ofl’y, we observe thatl(3) and (L.4) are
equivalent.

Lemma 3.1. T4 is bounded or.2(R™). In particular, there exists a constant, ., de-
pending only om ande, such that for allf € C§°(R")

3.1) ITafll2 < Cuall ANl £ll2-
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Proof. Let f, g € C§°(R™).We will show that

[ 1as@g(a)ds

< CrollAllll fl2llgll2-

Lettingu s andu, denotep, * f andy, * g respectively,

[ Taf@g(oyis

_ /R [ a0 f@)ge)drda

.
- / ) / n / N / YA,V (7 — B) - Vipy (T — ) ()g(a)dndydid

_ /OOO/ 2A@y) [ Vey(@ -1 / wy(g-;_x)g(x)dxda-:dy‘

= / / 2yA(Z,y)Vuy(z,y) - Vuy(z,y)drdy
0 n

< 2)/4] / / Y2 Vg (2, )y 2 Vg (2, )| dady.
O n

Now by the Cauchy-Schwartz inequality and Holder’s ineijyal

/ /yl/QIVUf(I,y)lyl/QIVug(I,y)ldIdy
0 n

oo 1/2 1/2
< / ( / nyWuf(x,y)Fdx) < / nyWug(x,y)Pda:) dy
g 00 1/2 0 1/2
é(/ / y|vuf($vy)|2d$dy> (/ / yWug(x,y)dedy) |
0 R™ 0 R™

The proof will be complete once we show that

</ y / |Vuf<x,y>|2dxdy>scn,a|f|§.
0 n

Sincey is the density of(;, which has characteristic functid{c*:¢) = ¢~ I¢I” we have

that p(€) = e~ 7€) Therefore, we may apply Plancherel's theorem, use thersrali
relation for the Fourier transform, and substittite y|¢|, to see that

= 2 — - 7'(2 2|~ 21 7 2
| v [ s Pasay = [y [ aniepigrITe Paedy
= [Ty [ e PIfe Pty

—c [ "o [ renpife e

-0 e 2 >~ 672(27Tt)"‘dd

| s [ e v

<Coo [ IFOFE = Cuallf1E
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Likewise,
> 2 _ > — 2| 7 2
| v [Pz = [y [ og@PfeRde

—c [y [ waeniferden

=c [y 16 vaErIFiords

<c [y [ 1epIvatenifiorasy
C s [T 317, 2176 2dud

<c [ et [ vt Pie P

—c [ IF©F | daeoldds < a3

R™ 0

O

Now that we knowTI’4 is bounded orn.?(R™), we will show that it is, in fact, a CZ
operator. It suffices to show that);’ satisfies {.2) and (L.3) for 1 <4, j, < n + 1 where

(3.2) K,icij(% T) = / / 2ya™I (%, )0, 0y (T — T)0y; 0y (T — x)dTdy.
0 n
The following lemma will be used to see that certain integcainverge.

Lemma 3.2. There exists a constaut, ., depending only om and «, such that for all
reR"1<4,5<n,

Cn,a
(3.3) @l < g eror
On_’a|:p| Cn,a
(3.4) |02, 0(2)| < (14 |z[2)(nF2+a)/2 = (1 + |]2)(n+1+a)/2
and
(3.5) 102,02, ()] < G

(1 + |z|?)(n+2+a)/2”
Proof. Inverting the characteristic function &f; we see
(3.6) p(z) = / el I8l

From this we readily see that € C°°(R™), so in order to show3.4) it suffices to show
that there exists a constal}, , so that

(3.7) 0z, 0(z)| < Cy 0l
and

Cn,a
(3.8) |0z, ()| < ZptiTe

Using the fact that
/ e 1Mde =0,
Rn
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we see that

]Rn

Eile "¢ — 1)e"£'°‘d5’
Rn
< / €l e — 1]e” 1€ de
]Rn

= 2/ |§|2|I|87|£|ad€ < Cn,a|x|v
R'Vl

with the last inequality following because
€€ — 1] < | cos(z - €) — 1] + | sin(z - €)] < 2| - €].

Therefore 8.7) holds.

To show (3.8), we expressY; as a process subordinated to Brownian motion. A subor-
dinator is an a.s. increasing one-dimensional Lévy pmckss well known (seel?] for
details) that there exists a subordinaifif,such that

X, = Br,,

whereB, is a standard Brownian motion (run at twice the usual speBg)conditioning
onT; we see that the density of, is given by

> 1 71)2 S,
1/)t(gj) :A W@ |x]*/4 n /2(1575)6157

wheren®/2(t, -) is the density off;. Sincep = v, we see that

i 1 T 2
_ v —|xz|?/4s, a/2
O, 0(x) = /0 sy 7% s e n*<(1,s)ds

RS 2
=C), 9cln / w3 e Un*/? (1, ﬂ) du.
2™ Jo du

Itis known (see e.g.1[3]) that there exists a constafif,, depending only or, such that

(3.9) n®/2(t,s) < Cots™17/2,

Therefore we have
O(l > n+o —u
10y, ()| < W/o L) /2 u g
so (3.8) holds. Similar computations show

COC > n+oa— —u
lo(@)] < le”*a/o Snha-2)/2,u g,

and
CO‘ > n+ao —u
000,000 € T [ a2 e

Moreover, sincey is smooth, it and all of its all of its partial derivatives dreunded near
the origin. Therefore satisfies 8.3) and @.5). O
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We are now poised to prove the theorem.
Case 1.Eitheriorj =n+ 1:

The fact that.(*) (z,y) = a(7)(y) depends only o allows us to use the semigroup
property ofy,. Note that

Py * Py = Yya x Pya = Poya = Po1/oy-

Therefore, substituting = z — = we see that
|K(i’j)(9c7 z)| = / / 2ya(i’j)(y)('“)mcpy(w)8mj oy (w — (z — i))dwdy’
O n

| [T [ aziwyw)azjwy(w—(x—fc))dwdy\

= / 2ya(i’j)(y)azi81j<p21/ay(x—:i:)dy‘
0

IN

a9 o / 2910z, Ds, 31/ (x = 7)|dy.
Likewise,

|00, K9 (2,7)| =

| 2w 0)0n0,0)01,00, 000 = (0 = 2wy
< ”a(i’j)”w/ 2y|awiawjawk9021/ﬂy($ - :i)|dy

0
Therefore, it suffices to show that there exists a consignt so that| K (z)| < Cnafom
and|K'(x)| < On_,oéw;l+1 for all x # 0, where

K@) = [ 2010000, 020 (o)ldy
0
and
K@) = [ 201001, 0000, (@) ds
0

y IS homogeneous of ordern, so itsk — th order partial derivatives are homogeneous
of order—n — k. Therefore, if we make the substitutign= |x|t we have

K(z) = / 2(00,0s, @170y ()] dy

0

- / 2t [t]0, D, 31 o] 2]t
0

- [ 10,0 |Jz|d

=, 2|I|t|1‘|T+2| 2O, o170 (2| @] dE
1 o ,

= 2t]0y, Oz ; 01704 (") |dt
|$| 0

wherez’ = ﬁ Similarly,

1 oo
K'(w) = o /0 2110y, Oy py1 oy ().
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The lemma will be proved as soon as we bound the above insedié have assumed that
eitheri or j = n+1, so we need to bound the following four integrals for any &, < n.

/ 2t|0,0r a1 /04 (2')|dt, / 2t|0y 0, o170 (2)|dL,
0 0

/ 2t|0¢ 0y, O, P21 /04 (2 |dE, / 2t|0¢ 010z, Po1/ay(2")|dL.
0 0

We will show how to bound the first integral. The other threg/fa bounded by the exact

same method. Recalling that(z) = % (%), we see that

07(11) Z 07(12) n Z 07(13) n o n .
6tat@21/at(x) = tn+2 ¥ (?)+tn+3 E xzawysp (?)+tn+4 § § $1x78$16$190 (?) ’
i=1 i=1j=1

whereC{V, ¢ andC?) are constants depending an
Therefore, it suffices to bound

o0 t xl
B =) dt

whena = 2,3, or4 andp is a multi-index with| 8| = a — 2. By (3.3), (3.4), and @.5), we
have

Cn,a
(1 + |z|?)(ntetlBD/2’

9%p(x) <

which implies
C,, ot TatlBl

s E)
0 ‘P(t = @ 2P)rat B

oy 2 0o tn+0¢+\6|
B | = <
[ e (7)< [ w g s

[e’e} toz—l
= /0 T t2)(n+a+|6\)/2 dt < 0.

Therefore,

Case21<4,5<n:

Sincea®’ (z,y) depends on both andy, we are unable to use the semi-group property
of 1,. We are, however, still able to pull ofid|] and use homogeneity. This again allows
us to bound our kernel by the product@ﬁfjﬂW and an integral. As in case 1, we start out
by substitutingy = 2 — 7 to see

K6 (2, 3)] < ||| / / 2100, 0y ()][0s, 0y (w0 — (& — )| dwdy and
0 R™

100 K09 (2, 7)| < || A / / 2910, 04 (W) |00 O, 03 (w — (& — )| duwdy.

Therefore, we need to show that there exists a constant so that| K (z)| < O,mﬁ
and|K'(z)| < Cy,a e forall z # 0 where now

K(z) = / / 29100y (1) |0, 0y (w — )| deody
0 n
and -
K@= [ [ 20100, 0)10.0.,0,(0 - o)dudy.
O n
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Using homogeneity and substituting= ¢|z| andw = |x|z we see that

K@= [ [ 2100001000, - 2 audy

= [ [ 2lel0ngralelz)10n, eranllal s - el

c10) = [ [ oo el - s
Similarly, we have
Gl K@= rmr [ [ 20006000, — o dzat
Therefore, to complete the proof, we need to show that thegiats in 8.10 and @.11)
are convergent. (Note that a simple rotation of coordinghtesvs they do not depend on
z'.) We will show that the integral ir3(11) converges. The proof that the integral in1(0)

converges is similar.
By (3.4) and 3.5 we know that there exists a constany , so

Ch,a ||
(3.12) |0z, ()] < (1 [2]2) 2B/
and
(3.13) |0, 02 0(w)] < (e

(1 + |z|2)(n+2+8)/2°

wheres = min{a, %}. (The fact thats < % will be used to see that a certain integral is
convergent.) Therefore,

CntP x|
(3.14) |0z, (2)] < @+ [2P) 202
and
B
(3.15) |0, 0z 01 ()| < Cut

(2 + |z|2)(n+2+5)/2°

This allows us to see that

/ / 2t|0s, 05,0t (2)]|0x, 01 (2 — a')|dzdt
0 n

- Oot t8 |z" — z|t8 dtd
= Jen Jo (2|2 + tz)(n+2+5)/2 (|z" — 2|2 + t2)(n+2+[5)/2 Z,
so it suffices to show thag (z) andgz(z) are integrable oveR™ for

B 1 |a" — z]

1
1+28
91(2)—/0 3 (|Z|2+t2)(n+2+5)/2 (|I/_Z|2_|_t2)(n+2+[j)/2dt and

e 1 |a" — z|
_ 1+28
gQ(Z) - \/; t (|Z|2 + t2)(n+2+5)/2 (|.I'/ _ Z|2 + t2)(n+2+,8)/2 dt.
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If z, is a sequence convergingipthen

o0 1 |[2" — 2]
. T 1428 n
nll_)H;O 9(zn) = nh_{I;O ! t ([2n |2 + 2) (0 TBTD/2 (|77 — 2, |2 + 2)(n5+2)/2 dt

1 |a" — z|
— 1+283 _
- /1 Ty e (7 = 2y = 92(2),

with the middle inequality justified by the dominating conyence theorem applied to
|2/ — z| 5. Thusga(z) is continuous orR™. Furthermore, for large, substituting
t = |z| tan(#) allows us to see that

o0
EET I .
92(2) < Cn,B/l ¢ (|Z|2+t2)n+ﬁ+2dt

™/2 | 2128 tan' 25 (9) | 2| |z| sec?(0)
< Cup do
" Jo | 2|2n+4+28 gec2nt4+26 ()

1

/2
= C"=B|Z|2—n+1 /0 sin!T27(6) cos®*1(0)db,

S0g2(2) is integrable.

Likewise, we can see that (z) is continuous orR™ \ {0, z’'} using by applying the
dominating convergence theorem wit{ 1| z| =" =#=2|z/ — 2|="=F~1 and for large: we
have

1 7T/2
g1(2) < On_ﬂ|2|2—n+1/ sin' 727 (6) cos®*1(9)d#.
0

Therefore, it remains to show that(z) is integrable neab anda’.
If 2] <1/2and0 <t < 1, itis easy to see

|2 — 2]

(|Jz/ — 2|2 + t2)(n+2+5)/2 < Cnp)
S0 again substituting= |z| tan(f) we see
1 t1+25
91(2) = O"-ﬂ/o (|22 + 2)(n+2+5)/2 dt

1 /2
< On_ﬂT_ﬂ sinw(ﬁ) cos”fﬁ*l(t?)dﬁ.
|2 0

Sinces < % the last integral is finite, sg;(z) is integrable near 0. A simple change
of variables and a nearly identical computation shows ghét) is integrable neat’, so
thereforey, (z) is integrable on all oR™ which completes the proof.

O

We end this section by remarking thatiibr j = n + 1, then the integral in3.11) is
divergent. This is why we need the assumption thé(z, y) = a*7(y) in that case.

4. CLOSING REMARKS

Examining the proof of theoreth 1, we see that the only facts we used were the homo-
geneity ofp, (), the fact thats is “small enough” to caus€, to be bounded ol ?(R"),
and the bounds3(3), (3.4), and @.5). This immediately gives us the following corollary.
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Corollary 4.1. Let¢ € C*(R") satisfy 8.3, (3.4), and 8.5, and fory > 0, let ¢, =

Z%(b (%) . Assume that there exists a consta@hsuch that for all¢’ € 5™~!

(4.1) /0 h to(te)2dt < C.

Let A(z,y) be as in theorem.1 Consider the kernel

Ky(z,z) = / / 2yA(Z,y)Voy (T — T)V, (T — x)dZdy,
0 n
whereV = (0,,,...,0.,,0y). Then the operator

Tafe)= [ K)f@)d

is a CZ operator.

The key to proving lemma3(2) was the fact that we could write thestable process
as B, whereT; is the«/2 stable subordinator anfl; is an independent Brownian mo-
tion (run at twice the usual speed). This motivates the ¥alig question. Lefl; be a
subordinator, leB, be an independent Brownian motion, andXgt= Br,. Under what
conditions orl; does the density ok; satisfy the conditions of corolla.1?

If X; = By, is any such process, called subordinate Brownian motiondriterature,
it is well known (see for example’f]) that there exists a functio® : [0, c0) — [0, 00),
called the Laplace exponent®f, such that

4.2) e Mt = 7t
and that the Lévy symbol oX; is given by
p(€) = =@ (l€%) -

Inspecting the proofs of lemntaland lemma3.2, we see that in order for the density of
X, to satisfy the conditions of corollad.], it suffices to have a bound similar t8.6) on
the density off;, and for®(\) to increase fast enough as— oo for the integrals in the
proofs to converge. We summarize this in the following clargl

Corollary 4.2. Let X, = By, whereT; is a subordinator and3; is an independent Brow-
nian motion run at twice the usual speed. kedenote the density of;, and fory > 0,
let ¢, (z) = yinqb (%) Let® be the Laplace exponent @f and assume that there exists
somey > 0 so that

(4.3) d(N) > O(N°), as\ — oo.

Further assume that there exist a constafitand~ > 0 such that the density @, n(1, ),
satisfies

(4.4) n(l,s) < Cs—1-7/2
forall s > 0. Let A(z,y) be as in theoren.1and consider the kernel
Kaloi3)= [ [ 200,090, - 90, - a)dady
0 n
whereV = (0,,,...,0.,,0,). Then the operator

Tafa) = [ K@)

is a CZ operator.
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An interesting example of subordinate Brownian motion isvited by the so called
relativistic a-stable processes. The relativistiestable process with mass > 0 is the
Lévy processX;", with Lévy symbol

(4.5) p(€) = — (&> +m¥*)/2 —m).

These processes have been widely studied in recent yeaasidmeof their importance
in relativistic quantum mechanics. (Se&j and the references provided there for more
information.) In [35] it is shown that7}, the subordinator foX ", has density

(46) nm,a/Q(t’ S) _ emtefm2/ocsna/2(t’ S),
and Laplace exponent
(4.7) B(N) = (A +m2/ )2 _m,

Therefore, we readily see that the conditions of corolfaBare satisfied.

The motivation of this paper was to answer questions lefndpg7] and [8]. Are
the operators considered in those papers weak{tye in addition to being strong-type
(p,p) for 1 < p < o0? Proving that these operators are CZ shows that the answer to
this question is, in fact, yes. However, CZ operators are lat®wn to satisfy a number
of other desirable properties. For example, they boundedly the Hardy spacl ' (R")
to L'(R") and the space of functions with bounded mean oscillation @k L>°(R™).
More precisely, ifT" is any CZ operator, then there exist universal constahtandC/,,
which depend only on, so that

[Tz —rr < Cu(k + [T 2 12)
and
T Brmo— L < Cp(k + [T 12— 12)
wherex is asin (L.2), (1.3 and (L.4). For details on this topic, se&f, ch. 8].

Another interesting property of CZ operators is that th@tsunded on certain weighted

LP spaces. A weight s a functian € L. .(R™) which is positive almost everywhere. The

associated spade’(w), 1 < p < oo, is the collection of functiong onR" such that

1y = [ I @)Pute)ds < .

The Muckenhoupt characteristic afis defined as

L L Vo gy)
(4.8) llwl]a, :sup—/ wdz - <—/ w P da:> ,
Q 1QlJq Ql Jq

with the supremum taken over all cubéxs, Note that whemp = 2 this becomes

1 1
|lw]] A :sup—/ wdx-—/ wda.
e Qg Ql Jq

w is said to be am,, weight if [|w|| 4, is finite. In this case, it is well known (see for
example P2, ch. 9]) that if 7" is a CZ operator, then there exists a const@nt, 7.,
depending on the, p, T, andw, such that

1T fllLr(w) < Crp 7wl fllLo(w)s

forall f € LP(w) whenl < p < oo. (A corresponding weak-type result holds when
p=1)



CZ OPERATORS AND MARTINGALE TRANSFORMS 17

Recently, in P4], Hytonen proved the so called!; conjecture,” that’,, » 1., depends
linearly on||lwl|2, i.e., there exists a constafif, o such that

1T fll 22wy < Crn2.rllwllasll fll 22 w)s

for all f € L?(w). Combining this with a result of Dragicevic, Grafakosy®ea, and
Petermichl [L9] shows that

max{l,ﬁ}

ITflLr(w) < Crprllwla, [ f 1l 2o ()

forall f € L?(w). For more information weighted? spaces and thd, conjecture, see
[22, ch. 9] and P4].

The operators considered if [are generalized inl] and [5] by taking the projections
of martingales transforms involving more general Lévygaesses in place of Brownian
motion. These more general operators are shown in thesesgapEbey the samg* — 17
strong-type bound for < p < oo as the operators from?]. In the current paper we have
shown that the operators consideredihdre CZ operators, and therefore are also weak-
type (1,1). It would be interesting to know if the same is tafie¢he operators studied in
[1] and [5].

Acknowledgments.| would like to thank my advisor, Rodrigo Bafiuelos, for rigaluable
help and encouragement while writing this paper.
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