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Abstract

We initiate the study of mixing times of Markov chain under monotone censoring. Suppose
we have some Markov ChainM on a state space Ω with stationary distribution π and a monotone
set A ⊂ Ω. We consider the chain M ′ which is the same as the chain M started at some x ∈ A
except that moves of M of the form x → y where x ∈ A and y /∈ A are censored and replaced by
the move x → x. If M is ergodic and A is connected, the new chain converges to π conditional
on A. In this paper we are interested in the mixing time of the chain M ′ in terms of properties
of M and A. Our results are based on new connections with the field of property testing. A
number of open problems are presented.

1 Introduction

1.1 A motivating example

Consider critical percolation on a square in the hexagonal lattice. Formally this is given by the
probability space {0, 1}Hn with the uniform distribution, where we denote by Hn the sites in the
hexagonal lattice in the square. It is trivial to sample a configuration from this model by sampling
each hexagon independently. Let A be the event of a left to right crossing (by 1’s). It is well known,
by duality, that P[A] = 0.5. Suppose we want to sample a configuration of A. One natural way
to do so is by rejection sampling: sampling a random configuration and accepting it if and only
if it is in A. A different natural way to sample is to start with a particular left to right crossing
configuration and then repeatedly re-sample edge as long as the resulting configuration is in A. It
is not hard to see that the second procedure will also converge to the uniform distribution on A.
However, how long would it take to converge?

1.2 Monotone sampling in {0, 1}n

We will study a more general question. Consider the partial order on {0, 1}n where x 6 y if and
only if xi 6 yi for all i ∈ [1, n]. We say a set A ⊂ {0, 1}n is monotone if x ∈ A and x 6 y imply
that y ∈ A. For a monotone set A and x0 ∈ A, let Mx0

A denote the following Markov chain started
at x0.
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• Given the current stat x, pick a coordinate i uniformly at random and re-randomize xi to
obtain y.

• Let the next state of the chain be y if y ∈ A. Otherwise let it be x.

It is trivial to verify that the chain converges to the uniform distribution on A (it is clear that the
chain is irreducible by monotonicity of A). We aim to analyze the mixing time (see, e.g., [1, 10] for
definition) for the chain Mx0

A .
To this end, we will use a standard geometric bound on the mixing time given by the conductance

of the underlying graph for a Markov chain. Given a graph G = G(V,E), the conductance φ(G) is
defined to be

φ(G) = min
S⊆V :|vol(S)|6|E|

Φ(S) , where Φ(S)
△
=

|∂ES|

vol(S)
, (1)

where vol(S) is the sum of degrees over vertices in S and ∂E(S) = {(x, y) ∈ E : x ∈ S, y 6∈ S}
denotes the edge boundary set of S. In light of this, we will view A as the underlying graph for the
Markov chain MA. Alternatively, A can be seen as the induced subgraph of the hypercube {0, 1}n

with a suitable number of self-loops added to each vertex so that the degree is n for every x ∈ A.
In what follows, we denote by P the uniform probability measure on {0, 1}n.

Theorem 1.1. For any monotone set A ⊂ {0, 1}n, we have

φ(A) >
P[A]

16n
.

Combined with standard results in the theory of Markov chains [8, 9] (see also [10, Theorem
13.14]), Theroem 1.1 yields the following corollary on the mixing time of MA.

Corollary 1.2. For any monotone set A ⊂ {0, 1}n, the mixing time for the chain MA satisfies

τmix(MA) 6 2( 16n
P[A])

2 log(4 · 2nP(A)) .

Note that this implies that the mixing time is polynomial in n as long as A is large (of measure
at least inverse polynomial in n). In particular, the mixing time for our motivating example of
sampling a critical percolation configuration with a left to right crossing has mixing time at most
O(n3). Our result is tight up to polynomial factors in n as the following example shows:

Example 1.3. Assume n > 2m and let A = {x : x1 = x2 . . . = xm = 1}∪{x : xm+1 = . . . = x2m =
1}. Clearly A is monotone and P[A] = 2−m+1. Considering Φ(B) for B = {x : x1 = x2 . . . = xm =
1} ⊂ A, we see that φ(A) 6 2−m. Similarly starting from the point (1, . . . , 1, 0, . . . , 0) it is easy to
see that the mixing time is lower bounded by the time to hit (1, . . . , 1) with probability at least 1/4,
which is lower bounded by 2m−4.

Our proof uses a new ingredient in the context of mixing of Markov chain, i.e., a result from
the theory of property testing. Property testing, explicitly defined in [12], plays a central role
in probabilistically checkable proofs. However, it was extended and extensively studied on its own
right for checking properties such as graph properties with fascinating connections to many areas of
combinatorics including in particular to regularity lemmas. It turns out that the natural algorithm
which samples a number of random neighboring pairs and rejects the monotonicity if a violating
pair is seen, works well for monotonicity testing [6]. The key to the success of this natural testing
algorithm, which is also the key to our proof of Theorem 1.1, is the following structural theorem
on approximately monotone set.
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Theorem 1.4. [6, Theorem 2] For any set S ⊂ {0, 1}n, define

δ(S) = (n2n)−1|{(x, y) ∈ {0, 1}n × {0, 1}n : |x− y| = 1, x 6 y, x ∈ S, y 6∈ S}| ,

ε(S) = min{P(S ⊕A) : A is monotone } .

where ⊕ denotes the symmetric difference of two sets. Then we have δ(S) > ε(S)/n.

1.3 Proof of Theorem 1.1

Recall that P is the uniform measure on {0, 1}n. In light of definition (1), it suffices to prove that

Φ(B) >
P(A)

16n
for all B ⊂ A such that P(B) 6 P(A)/2 . (2)

It is clear that (2) holds if P(A)P(B) < 8 · 2−n since in this case by connectivity of A we have that

Φ(B) >
1

vol(B)
=

1

P(B)n2n
>

P(A)

8n
.

It remains to consider the case when P(A)P(B) > 8 · 2−n. Denote by C = A \ B and by Ω the
collection of monotone sets in the hypercube {0, 1}n. We claim that

either P(B ⊕ F ) >
P(A)P(B)

16
, for all F ∈ Ω ,or P(C ⊕ F ) >

P(A)P(B)

16
, for all F ∈ Ω . (3)

Otherwise, there exist monotone sets B′ and C ′ such that

P(B ⊕B′) <
P(A)P(B)

16
and P(C ⊕ C ′) <

P(A)P(B)

16
. (4)

In particular, we have P(B′) > P(B)/2 and P(C ′) > 7
16P(A). An application of FKG inequality [5]

gives that

P(B′ ∩ C ′) > P(|B′|) · P(C ′) >
7

32
P(A)P(B) .

Combined with (4), it follows that

P(B ∩ C) > P(B′ ∩ C ′)− P(B ⊕B′)− P(C ⊕ C ′) >
7

32
P(A)P(B)− 2

1

16
P(A)P(B) > 0 ,

contradicting with the fact that B ∩ C = ∅. Thus, we completed verification of (3).

Without loss of generality we assume now that P(B⊕F ) > P(A)P(B)
16 , for all F ∈ Ω (if the same

holds for C, we just apply the following analysis to C in the same manner, with the observation
that ∂EB = ∂EC). By Theorem 1.4, we get that

|Ψ(B)| >
2nP(A)P(B)

16
where Ψ(B)

△
= {(x, y) ∈ {0, 1}n×{0, 1}n : |x−y| = 1, x 6 y, x ∈ B, y 6∈ B} .

For (x, y) ∈ Ψ(B), we have x ∈ B and x 6 y, and thus y ∈ A since A is a monotone set. Therefore,

we get (x, y) ∈ ∂EB, yielding that Ψ(B) ⊆ ∂EB. This implies that |∂EB| > 2nP(A)P(B)
16 . Combined

with the fact that vol(B) = n2nP(B), it completes the proof of (2) and thus the proof of the
theorem.
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1.4 Discussions and open problems

It seems plausible that the bound on the mixing time obtained in Corollary 1.2 is not sharp. A
case of particular interest is when P(A) > 1/2. Indeed, we ask the following open question.

Question 1.1. Suppose that there exists a constant c > 0 such that a monotone subset A ⊂ {0, 1}n

has measure P(A) > c. Is it true that τmix(MA) 6 Cn log n, where C > 0 is a constant depending
only on c?

In a different direction our results suggest testing non-product measures. For example, suppose
we wish to reproduce Theorem 1.1 for the Ising model on some graph G, where we denote by µ the
stationary measure. For this to work we will need an analogue of the testing result. In this setup
it is natural to define for a set S ⊂ {0, 1}n (identifying 0 with − and 1 with +)

δ(S) =
∑

(x,y)∈Ψ(S)

µ(x)

n
, where Ψ(S) = {(x, y) ∈ {0, 1}n × {0, 1}n : |x− y| = 1, x 6 y, x ∈ S, y 6∈ S},

ε(S) = min{µ(S ⊕A) : A is monotone} .

We then ask

Question 1.2. Consider the ferromagnetic Ising model on a graph G = (V,E). Under what
assumptions is it the case that δ(S) > (ε(S)/n)a for all S ⊂ {0, 1}n and a fixed constant a > 0?

The following example suggests that some assumptions are needed. Consider Curie-Weiss model
(Ising model on the complete graph) at low temperature (so the stationary measure admits double
wells, see [2, 3]) with n sites. For convenience, suppose that n is even. Let A = {x :

∑n
i xi 6 n/2}.

We claim that ε(A) > 1/6. In order to see this, let Ak = {x :
∑n

i=1 xi = k} and A′
k = {x :∑n

i=1 xi = n− k} for k 6 n/2. For x ∈ Ak and y ∈ Ac, define

a(x, y) =
1y∈A′

k
,y>xµ(y)

|{y : y ∈ A′
k, y > x}|

and so a(x, y) =
1y∈A′

k
,y>xµ(x)

|{y : y ∈ A′
k, y > x}|

.

Thus,
∑

y∈Ac a(x, y) = µ(x) for all x ∈ A. In addition, by symmetry for every y ∈ Ac we have

∑

x6y,x∈A

a(x, y) = µ(y)

(so a(·, ·) is a mass transportation from A to Ac with respect to measure µ). Therefore, for any
monotone set B we have

µ(B ∩Ac) >
∑

x∈B∩A

∑

y∈Ac

a(x, y) =
∑

x∈B∩A

µ(x) = µ(A ∩B) .

This implies that µ(B ∩Ac) > µ(B)/2. Combined with the simple fact that µ(A) = 1/2, it follows
that

µ(A⊕B) > max(µ(A)− µ(B), µ(B)/2) > 1/6 ,

as desired. However, it is clear that
δ(S) 6 µ(An/2) ,
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which is exponentially small in n at low temperature [2, 3].
It would be interesting to further study testing other properties for various non-product distri-

butions.
Finally, we note that the influence to the mixing time of censoring was studied in [11], where it

was shown that the mixing can only be delayed for Glauber dynamics on monotone spin systems by
censoring some updates (the censoring is prescribed without information on what is the proposed
update). In [7], an example was given to demonstrate that censoring can indeed speed up the
mixing for proper coloring. This question was then studied in [4] in much more general settings,
which introduced a certain partial order on the class of stochastically monotone Markov kernels and
proved that the monotonicity of Markov chains implies monotonicity of mixing times. These results
are different from ours in at least the following two senses: (1) They focus on Markov chains with
the same stationary measure while our censoring will even change the state space of the Markov
chain; (2) They aim at qualitative results which ensure monotonicity for mixing times of Markov
chains under consideration, while ours aims to give a quantitative bound on the mixing time for
the censored Markov chain.
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