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Abstract. We propose an approach to study non-Abelian Iwasawa theory,
using the idea of Johnson homomorphisms in low dimensional topology. We intro-
duce arithmetic analogues of Johnson homomorphisms/maps, called the p-Johnson
homomorphisms/maps, associated to the Zassenhaus filtration of a pro-p Galois
group over a Zyp-extension of a number field. We give their cohomological inter-
pretation in terms of Massey products in Galois cohomology.

1. Introduction

Let p be an odd prime number, and let p,» denote the group of p"-th
roots of unity for a positive integer n and we set fipee := Up>ipyn. We let
koo := Q(p1p) and k the maximal pro-p extension of ko which is unramified
outside p. We let I', := Gal(ky/Q) and F}, := Gal(k/ks), the Galois groups
of the extensions k.,/Q and k/k., respectively. Classical Iwasawa theory
then deals with the action of I', on the Abelianization H,(F),,Z,) of F,
([Iwl1]). A basic problem of non-Abelian Iwasawa theory, with which we
are concerned in this paper, is to study the conjugate action of I', on F,
itself. In terms of schemes, one has the tower of étale pro-finite covers

(1.1) X, := Spec(O;[1/p]) — X, = Spec(O,,[1/p]) = X := Spec(Z[1/p]),

where O, and Oj, denote the rings of integers of k., and k, respectively,
and the Galois groups

(1.2) Iy = Gal(X;°/Xp), Fp= Gal(Xp/X;O) =m0 (X)),
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where 71" stands for the maximal pro-p quotient of the étale fundamental
group. So the problem is to study the monodromy action of I', on the arith-
metic pro-p fundamental group F},.

Now let us recall the analogy between a prime and a knot

(1.3) prime knot
' Spec(F,) = K(Z,1) < Spec(Z) | S* = K(Z,1) — S

Here K (x, 1) stands for the Eilenberg-MacLane space and Spec(Z) := Spec(Z)U
{o0}, oo being the infinite prime of Q@ which may be seen as an analogue
of the end of R® ([De]). This analogy (1.3) opens a research area, called
arithmetic topology, which studies systematically further analogies between
number theory and 3-dimentional topology ([Ms2]). In particular, there are

known intimate analogies between Iwasawa theory and Alexander-Fox theory
([Ma], [Ms2; Chap. 9 ~ 12]).

Arithmetic topology suggests that topological counterparts of (1.1) and
(1.2) may be the tower of covers

X = XZ = X = S®\ K,

for a knot K in S3, where X and Xx denote the infinite cyclic cover and
the universal cover of the knot complement X, respectively, and the Galois
groups

T = Cal(XZ/Xx), Fi := Cal(Xx/XL) =m(XX),

and we have the conjugate action of I'x on Fi.

To push our idea further, suppose that K is a fibered knot so that Xi is
a mapping torus of the monodromy ¢ : S — S, S being the Seifert surface of
K. Then Fx = m(S) and the conjugate action of ' on Fi is nothing but
the monodromy action induced by ¢ on Fj

(14) ¢* : FIC — AU_t(Flc)

Note here that the monodromy ¢ may be regarded as a mapping class of the
surface S. Thus the action (1.4) can be studied by means of the Johnson
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homomorphisms/maps, associated to the lower central series of Fi, defined
on a certain filtration of the mapping class group for the surface S ([J], [Ki],
[Mt]) or, more generally, on the automorphism group Aut(Fi) ([Kw], [Sal).

In this paper, we regard the action of I, on F}, as an arithmetic analogue of
the monodromy action (1.4) and propose an approach to study non-Abelian
Iwasawa theory by introducing arithmetic analogues of the Johnson homo-
morphisms/maps, called the p-Johnson homomorphisms/maps, associated to
the Zassenhaus filtration of F),, defined on a certain filtration of the auto-
morphism group Aut(F},). For this, we lay a foundation of a general theory
of p-Johnson homomorphisms/maps in the context of pro-p group.

We note that our viewpoint and approach differs from what is called
“non-commutative Iwasawa theory” (cf. [CFKSV], [Kt; 3]). The works by

M. Ozaki ([O]) and R. Sharifi ([Sh]) are related to ours (see Remark 3.2.7),
however, our approach is different from theirs and closer to geometric topol-

ogy.

Here is the content of this paper. In Section 2, we give a general the-
ory of p-Johnson homomorphisms in the context of pro-p groups. We use
the Zassenhaus filtration of a finitely generated pro-p group G in order to
introduce the p-Johnson homomorphisms, defined on a certain filtration of
the automorphism group of G. In Section 3, we give a framework to study
non-Abelian Iwasawa theory by means of the p-Johnson homomorphisms. In
Section 4, we give a theory of Johnson maps for a free pro-p group F' by
extending the p-Johnson homomorphisms in Section 2 to maps, called the p-
Johnson maps, defined on the automorphism group Aut(F') itself. In Section
5, we give a cohomological interpretation of the p-Johnson homomorphisms
in terms of Massey products in Galois cohomology:.

Notation. For subgroup A, B of a group G, [A, B] stands for the subgroup
of G generated by [a,b] ;= aba™'b~! for alla € A,b € B.

2. Zassenhaus filtration and p-Johnson homomorphisms for a
pro-p group.

In this section, we give a general theory of p-Johnson homomorphisms for
pro-p groups. We associate to the Zassenhaus filtration of a finitely generated
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pro-p group G a certain filtration on the automorphism group Aut(G) of G,
and introduce the p-Johnson homomorphisms defined on each term of the
filtration of Aut(G).

Throughout this section, let p be a fixed prime number and G a finitely
generated pro-p group. For general properties of pro-p groups, we consult
[Ko] and [DDMS].

2.1. Zassenhaus filtration and the associated Lie algebra. Let F,[[G]]
be the complete group algebra of G over F, = Z/pZ with the augmentation
ideal I := Ker(ep, o)), where eg g @ Fp[[G]] — F, is the augmentation
homomorphism ([Ko; 7.1]). For each positive integer n, we define the normal
subgroup G,, of G by

(2.1.1) G,={g9geG|g—1€l}}.

The descending series {G,, }n>1 is called the Zassenhaus filtration of G ([Ko;
7.4]). The family {G,,},>1 forms a full system of neighborhoods of the iden-
tity 1 in G and satisfies the following properties

We recall the fact that the abstract commutator subgroup of a finitely gen-
erated pro-p group is closed ([DDMS;1.19]).

The Zassenhaus filtration is in fact the fastest descending series of G
having the properties (2.1.2) and (2.1.3). Namely, it is shown by Jennings’
theorem and an inverse limit argument that we have the following inductive
description of G,,:

(2.1.4) Go= G’ [ GGyl (0> 2),

where [n/p] stands for the least integer m such that mp > n. ([DDMS; 12.9]).
We note by (2.1.3) that elements of G;/G;1; and G;/G;+; commute, in

particular, G,,/G,41 is central in G/G,41. The 2nd term Gy is the Frattini

subgroup G?[G, G| of G and we denote by H the Frattini quotient

(2.1.5) H:=G/Gy = G/G"|G,G] = H\(G,F,).

For g € G, we write [g] for the image of g in H: [g] := g mod G5. We note
that each G, is a finitely generated pro-p group ([DDMS; 1.7, 1.14)).



For each n > 1, we let
grn(G> = Gn/Gn+17

which is a finite dimensional [F,-vector space. The graded [F,-vector space

(2.1.6) gr(G) = P er,(G)

n>1

has a natural structure of a graded Lie algebra over F, by (2.1.3). Here, for
a=gmod Git1,b=hmod Gj11 (g € G;,h € Gj), the Lie bracket is defined
by

la, b]gr(G) := [g, h] mod Gitjtr-

Further, by (2.1.2) again, gr(G) has the operation [p| defined by, for a =
g mod G4 € gr,(G),

[p](a) == ¢” mod G,

which makes gr(G) a restricted Lie algebra over F,, ([DDMS; 12.1]).
The restricted universal enveloping algebra (abbreviated to universal en-
velope) U(gr(G)) of gr(G) is given as follows. For each m > 0, we let

gt (F,[[Gl]) = 15 /15

and consider the graded associative algebra over [F),:

gr(F,[[G]]) == D gr, (F, [[G])).

m>0
For each m > 1, we have an injective F,-linear map
Om g1, (G) — gr, (Fp[[G]])
defined by
Om(g mod Gpy1) := g — 1 mod IZT for g € G,

Putting all 6,, together over m > 1, we have an injective graded Lie algebra
homomorphism over F,

gr(0) = P b - er(G) — gr(F,[[C]).

m>1



Then (gr(F,[[G]]), gr(#)) is the universal envelope of gr(G) ([DDMS; 12.8]):
(2.1.7) Ugr(G) = gr(F,[[G]]).

2.2. The automorphism group and p-Johnson homomorphisms. Let
Aut(G) denote the group of continuous automorphisms of a finitely generated
pro-p group G. We note that any abstract group homomorphism between
finitely generated pro-p groups is always continuous and so Aut(G) is same
as the group of automorphisms of G (as an abstract group) ([DDMS; 1.21]).
We also note that every term G, of the Zassenhaus filtration of GG is a char-
acteristic subgroup of GG, namely, invariant under the action of Aut(G).

Since any automorphism ¢ of G induces an automorphism [¢],,, of G/G 41
for each integer m > 0, we have the group homomorphism

(2.2.1) [ Jm @ Aut(G) — Aut(G/Gpsr).
We then define the normal subgroup Ag(m) of Aut(G) by

Ag(m) = Ker([ |m)
={o € Awt(G) | 9(9)g~" € Grna}  (m >0).

We call the resulting descending series {Ag(m) }n>0 the Andreadakis-Johnson
filtration of Aut(G) associated to the Zassenhaus filtration of G (cf [A], [Sa]).
In particular, we set simply [¢] := [¢]; for ¢ € Aut(G) and the 1st term
Ag(1) is called the induced automorphism group of G and denoted by IA(G):

(2.2.2)

(2.2.3) IA(G) := Ker([ ] : Auwt(G) — GL(H)),

where GL(H ) denotes the group of F,-linear automorphisms of H = G/Gs.

The family {Ag(m)}>0 forms a full system of neighborhood of the iden-
tity idg in Aut(G) and it can be shown that Aut(G) is a pro-finite group and
IA(G) is a pro-p group ([DDMS; 5.3, 5.5]). So Aut(G) is virtually a pro-p
group.

The next Lemma will play a basic role to introduce the p-Johnson homo-
morphisms.

Lemma 2.2.4. For ¢ € Ag(m) (m >0) and g € G,, (n > 1), we have
¢(g)g_l € Gm-i-n'
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Proof. We fix m and prove the assertion by induction on n. For n = 1, the
assertion ¢(g)g~! € G,,41 is true by definition (2.2.2) of Ag(m). Assume
that

(2.2.4.1) $(g)g € Gryiifg€ Giand 1 <i < n.

By (2.1.4), we have
Gni1 = (G[(n+1)/p})p H [Gi, G-
itj=n+1
Since Gry1/(I 1} jon1[Gis Gy]) is Abelian, we have
Goir ={d"|a € Gy} [] 1Gi Gl
i+j=n+1
and so any element g of G,11 can be written in the form
g = ap[blv 01]61 T [bqv CQ]eq7

where a € G141y and for each s (1 <'s < g) there are 4,5 (i +j =n+1)
such that b, € G, c; € G;. Since we have

P(9)g™" = d(a)Pp([br, 1) - - - D([bg, €g])*[bg, cq] = - - - [br, 1] a7,
it suffices to show that

{ (2.2.4.2) 6([b,)b,c]" € Grsnsr itb € Gie€ Gyandi+j=n+ 1,
(2.2.4.3) gb(a)pa_p € Gm+n+l ifae G[(n_,_l)/p}.

(2.2.4.2). For simplicity, we shall use the notation: [¢,z] := ¥(z)z~! and
[z,¢] = x(z)"! for z € G and ¢ € Aut(G). By the “three subgroup
lemma” and the induction hypothesis (2.2.4.1), we have

o([b, Db, ]t =9, [b, c]]

€ [¢,[Gi, Gjl]

C [l¢, Gil, Gl[IGy, ], Gi]
C [Ginsis Gil|Gny Gil
= Gm+iti = Gmini1-



(2.2.4.3). Let t := [(n+1)/p] so that pt > n+1. By (2.1.1) and the induction
hypothesis (2.2.4.1), we have

¢(a) —a = (p(a)a™" —1)a € I5™.

Therefore we have

Bafa =1 = (Bla) — aV)a
~ (6(a) — aya’

c Jp(t+m) c Jmtntl
Hence ¢(a)?a™ € Gppint1 by (2.1.1). O

Lemma 2.2.4 yields the following properties of the Andreadakis-Johnson fil-
tration {Ag(m)}m>o-

Proposition 2.2.5. We have

(1) [Ac(i), Ac(j)] C Ag(i+j) fori,j > 0.

Proof. (1) We use the same notation as in the proof of (2.2.4.2). By Lemma
2.2.4, we have

[[Ac(d), Gl Ac(i)] C |G, Ac(i)] C Giyjun,
G, Ag(i)], Ac(j)] C [Gigr, Ac(f)] C Giyjia

By the three subgroup lemma, we have
[[Ac(i), Ac(1)], G] C [Ac()), Gl Ac(D][[G, Ac(d)], Ac(4)] C Gisjta.
By definition (2.2.2), we obtain
[Ac(i), Ac(j)] C Ac(i+ ).
(2) Let g € G and ¢ € Ag(m). We shall show that for any integer d > 1,

(2.2.5.1) ¢'(9)97" = (6(9)g™")" mod Gaps1,

from which the assertion follows. In fact, let d = p in (2.2.5.1). Then
(2(9)g™ 1P € Gpme1y by (2.1.2), and Gopmi1 C Giye because m > 1. So
®"(9)g™! € Gpyo and hence ¢P € Ag(m + 1).
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We prove (2.2.5.1) by induction on d. For d = 1, it is obviously true.

Suppose ¢%(g)g™ = (¢(g9)g™")? mod Gmi1. Note that ¢¥(g)g™" € G,
since (¢(g)g~1)? € Gpy1. Then we have

o () g7 (d(9)g™ )T = ¢ (g)o(g)d(g) g (B(g)g ™) Y
= o(0*(g)g~")(o(g)g~ ")
= ¢(¢*(9)97")(¢%(g9)g™") " mod Gapmys.

Since $(¢%(9)g™')(¢%(9)g™!) " € Gams1 by Lemma 2.2.4, ¢ (g)g™" =
(6(g)g~ 1) mod Gapnyy and hence the induction holds. [

Now we are going to introduce the p-Johnson homomorphisms. Let ¢ €
Ag(m) (m > 0). For g € G, we have ¢(g)g~" € Gyuy1. Then we see that
#(g)g" mod Gny2 € gr,,,1(G) depends only on the class [g] € H. In fact,
for ¢’ = ggo with g € G5, we have

3(9)9 ™" = d(9)0(92)95 "9~ = ¢(g9)g ™" mod Gioya,
since ¢(g2)g5 "+ € Grmys by Lemma 2.2.4. Thus we have a map

Tm(¢) . H —>grm+1(G)
defined by

(2.2.6) Tu(9)(h) == &(g)g™" mod Gpa (h = [g]).
Lemma 2.2.7. For ¢ € Ag(m) (m > 0), the map 7,,(¢) is F,-linear.

Proof. Let h = [g], ' = [¢'] and ¢ € F,. Using the property that G,,41/Gm2
is central in G /G, 12, we have

Tm(@)(h+ 1) = 7,(0)([99])
= ¢(99')(99") " mod Gis
= ¢(g9)¢ g,)gl_lg_l mod G40

and

Tm(@)(ch) = T (9)(l9°])

= ¢(9°)g™° mod G
(6(9)g™")¢ mod G
= cTm(@)(h). O
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Let Homg, (H, gr,,,,(G)) denote the group of F-linear maps H — gr,, ., (G).
By Lemma 2.2.7, we have the map

Tm - AG(m) — Home(Ha grm+1(G))'

For m = 0, we easily see by (2.2.6) that 79(¢) = [¢] — idg for ¢ € Aut(G).

Theorem 2.2.8. For m > 1, the map 7, is a group homomorphism and its
kernel is Ag(m +1).

Proof. Let ¢1, 92 € Ag(m). For any g € G, we have

Tm(0102)([9]) = d1(d2(9))g™" mod Gy
= d1(d2(9)g7") - P1(9)g~" mod Gy

Since ¢2(9)g™" € Gny1, d1(d2(9)g7") = d2(g9)g™" mod Gopyr by Lemma
2.2.4. Since Goyy1 C Gpao by m > 1, we have

Tm(0102)([9]) = D1(9)g™" - d2(9)g™" mod Girys
= (T (#1) + 7in(92))([9])

for any g € GG. Hence the former assertion is proved. The latter assertion on
Ker(7,,) is obvious by definition (2.2.6). O

The homomorphism 7, : Ag(m) — Homg, (H,gr,,,,G)) (m > 1) or the
induced injective homomorphism

Tm @ 8n(Ag) == Ag(m)/Ag(m + 1) — Homg, (H, gr,,,,(G)) (m >1)

is called the m-th p-Johnson homomorphism.

We give some properties of the p-Johnson homomorphisms. Firstly, we
note that the group Aut(G) acts on both Ag(m) and Homg, (H,gr,, ., (G))
by the following rules, respectively:

{ g =vopod~t (¢ € Aut(G), ¢ € Ac(m)),
(W) (h) =[]~ (h)) (¥ € Aut(G),n € Homg, (H, gr,,1(G)), h € H).

Then we have the following
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Proposition 2.2.9. The p-Johnson homomorphism T, (resp. T,,) is Aut(G)-
equivariant (resp. Aut(G) /TIA(G)-equivariant).

Proof. Let ¢ € Aut(G) and ¢ € Ag(m). Then we have, for any g € G,

Tm(¥-9)([9]) = Tm( 0 doy™)([g])
= (W odot™)(g)g™" mod Ga.

On the other hand, we have, for any g € G,

@ 7m(@))((9]) =¥ (m()([¥]([9])))
= Y(m(0) ([ (9)])
= (o™ (9)) (¥ (g))™") mod G

= (Y ogoy™)(g)g™" mod Gryyo.
Hence 7, is Aut(G)-equivariant. As for 7,,, it suffices to note that IA(G)

acts trivially on gr,,(Ag) = Ag(m)/Ag(m + 1) by Proposition 2.2.5 (1) and
on Homg, (H,gr,,,(G)) by (2.2.3) and Lemma 2.2.4. [

Next we compute the p-Johnson homomorphism on inner automorphisms.
Let Inn : G — Aut(G) be the homomorphism defined by

Inn(z)(g) := xgz™" (2,9 € G).

The image Inn(G) is a normal subgroup of Aut(G) and called the group of
inner automorphisms of G.

Proposition 2.2.10. Let m > 1 and x € G,,. Then we have
Inn(x) € Ag(m)

and
Tm(Inn(z))([g]) = [z, 9] mod Griz (g € G).

Proof. For z € G,,, and g € G, we have

Inn(z)(g)g~" = [z, 9] € G,

from which the assertions follow. O
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Finally we compute the p-Johnson homomorphisms on commutators of au-
tomorphisms.

Lemma 2.2.11. For ¢ € Ag(i),¢ € Ag(j) (k,m > 0) and g € G, we
have, in gr;, ;1 (G),

Tivi ([, ¢]) (g])
=Y(d(9)g ) (D(9)g™") " = d(¥(9)9™ ) (W(g9)g™ ")~ mod Gipjpa.

Proof. By a straightforward computation, we obtain

[, 6] (9)g™"
= [¥,0]((¢(9)g™") ") - (W ™) (W(9)g™") ") - (d(g9)g™") - ¥(g)g™"

Since [¢,¢] € Ag(i + j) by Proposition 2.2.5 (1) and ¢(g9)g~" € G;41 by
Lemma 2.2.4, we have

[, 8l((¢(9)g™ "))

Similarly, we have

(¢¢¢_1)((¢(9)9_1)_1) ¢((¢(9)g_1)_1) mod Gt jt1-

By these three equations together, we have

[¥, ¢l(9)g7"
= (0(9)g™) " o((W(9)(g™) ™) - (b(g9)g™") - ¥(g)g™" mod Giyjya.

Since ¥(9)g™" € Git1,0(9)97" € Gjy1 and [Giy1, Gj11] C Giyjy2, we have

[, ¢)(9)g~"
= (o(9)g )" Y(d(9)g™) - d((W(9)g™") ") - b(g)g™" mod Giyjio.

Since we easily see that

{ (0(9)g™ ") "b(o(9)g™") = ¥(e(9)g™")(d(g)g™") " mod Gijyo,
o((0(9)g™) ™) - v(9)g™ = (0(¥(9)g™") - (W(9)g™") ")~ mod Giyjso,

we obtain the assertion. [

(6(9)g~") ™" mod Gijojs1.
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By Proposition 2.2.5, we can form the graded Lie algebra over I, associ-
ated to the Andreadakis-Johnson filtration:

gr(Ag) = P er,.(Ac), gr,.(Ac) = Ac(m)/Ac(m+1),

m>0

where the Lie bracket is given by the commutator on the group Aut(G).
Then by Lemma 2.2.11, the direct sum of Johnson homomorphisms 7, over
all m > 1 defines a Lie algebra homomorphism from gr(Ag) to the derivation
algebra of gr(G) as follows. Recall that an IF,-linear endomorphism of gr(G)
is called a derivation on gr(G) if it satisfies

([z,y]) = [0(x), y] + [z, 0(y)] (2,9 € gr(G)).

Let Der(gr(G)) denote the associative F,-algebra of all derivations on gr(G)
which has a Lie algebra structure over [F, with the Lie bracket defined by
[0,8"] := 008" —0"00 for 6, " € Der(gr(G)). For m > 0, we define the subspace
Der,,(gr(G)) of Der(gr(G)), the degree m part, by

Der,,(gr(G)) := {6 € Der(gr(G)) | 6(gr,(G)) C gryin(G) forn > 1}

so that we have

Der(gr(G)) = €P Der,, (gr(G)).

m>0

Since a derivation on gr(G) is determined by its restriction on H = gr,(G),
we have a natural inclusion

Der, (gr(G)) € Homg, (H, gr,,,1(G)); 6+ dlu

for each m > 1 and hence we have the inclusion

Der, (gr(G)) C @HomFP(Ha 8ry1(G)),

m>1

where Der, (gr(G)) is the Lie subalgebra of Der(gr(G)) consisting of positive
degree parts.

Proposition 2.2.12. The direct sum of 1,, over m > 1 defines the Lie
algebra homomorphism

gr(r) = @Tm . gr(Ag) — Dery(gr(G)).

m>1
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Proof. (ct. [Da; Proposition 3.18]) By Lemma 2.2.11, it suffices to show that
for ¢ € Ag(m), the map g — ¢(g)g~! is indeed a derivation on gr(G). Let
¢ € Ag(m) (m>1) and g € G;, h € G;. By using the commutator formulas

[ab, ] = a[b,cla™ - [a,c], [a,bc] = [a,b]-bla,c]b™" (a,b,c € G),

we obtain

o([g, h])]g, b~

= [0(9), o(h)]lg, h]~*

= [g97'¢(9), o(h)h~"h][g, h]~!

= g(lg7'0(9), 6(M)h~'] - (¢(h)h~") g~ é(g), h](p(R)h~ 1)) g™"
g, d(h) R (o(R)h™)[g, R (o(R)R™1) " g, k] "

= g([g7'0(9), 6(h)h~"] - (¢(R)R~") g™ ¢(g), h](d(R)h~1) " )g™"
lg, o(h)R~[@(R)R, [g, h]].

Since ¢7'¢(g9) € Gizm, d(h)h™! € Gj4m by Lemma 2.2.4, we have

lg70(9), p(R)h "] € Gitjiom.

Similarly, we have
[¢(h>h_17 [gv h’” < Gi+2j+m-

By these three claims together, we have

o(lg, h])lg, h] ™"
= gp(h)h g7 o (g), h)(gp(h)h~ ") g, ¢(h)h™"] mod Gitjirmy1.

Noting z[g7'¢(g), ]z~ = [g7'0(9), h] mod Giyjim+1 for x € G, our claim
is proved. [

3. Non-Abelian Iwasawa theory

In this section, we propose an approach to study non-Abelian Iwasawa
theory by means of the Johnson homomorphisms. In the course, we introduce
some invariants from a dynamical viewpoint.

Throughout this section, a fixed prime number p is assumed to be odd.

3.1. Classical Iwasawa theory. Let k£ be a number field of finite de-
gree over Q and let ko, be a Z,-extension of k, namely, ky/k is a Galois
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extension whose Galois group is isomorphic to the additive group of p-adic
integers Z,. We call k the cyclotomic Z,-extension of k if k., is the unique
Zy-extension of k contained in k(puy~). Let S, denote the set of primes of
k lying over p and S a finite set of primes of k containing S,. Note that
the extension k. /k is unramified outside S,. Let ks be the maximal pro-p
extension of k which is unramified outside S, and let M be a subextension
of kg/k such that M/k is a Galois extension. We set

(3.1.1) I' .= Gal(kx/k), G := Gal(M/k) and G := Gal(M k)
so that we have the exact sequence
(3.1.2) l—G—§—T —1

We assume that G is a finitely generated pro-p group, in other words, the
p-invariant is zero.

We fix a topological generator v of I' and its lift ¥ € G. We then define
the automorphism ¢5 of G' by Inn(%)

(3.1.3) ¢5(9) =797 (9 € G).

We note that if we choose a different lift 5" of v, ¢5 differs from ¢5 by an
inner automorphism of G :

(3.1.4) ¢5 =Inn(z) o g5 (z =751 €q).

Let H be the Frattini quotient of G, H = G/GP|G, G], as in (2.1.5). The
[F,-linear automorphism [¢5] of H induced by ¢ is independent of the choice
of a lift 4 and so is denoted by [¢,]. Similarly, we let H, be the Abelian-
ization of G, Hy, = G/|G,G], and [¢,] the Z,-module automorphism of
H,, induced by ¢5, which is independent of the choice of a lift 4 of 4. The
reason that we use the Zassenhaus filtrarion instead of the lower central se-

ries throughout this paper is that any p-power of ¢5 acts non-trivially on
G/|G, G] in general.

By the Magnus correspondence v — 14X, we identify the complete group
algebra F,[[I']] (resp. Z,[[I']]) with the power series algebra IF,[[X]] (resp.
Z,[X]]). We set simply A := Z,[[X]] (Iwasawa algebra) and A := F,[[X]].
Classical Iwasawa theory studies the A-module structure of H.,, in other
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words, the p-power iterated action of [¢,]s on Hs. A fundamental theorem
of Iwasawa ([Iwl]), under our assumption on G, tells us that there is a A-
module homomorphism, called a pseudo-isomorphism,

(3.1.5) Heo — DM (X))

with finite kernel and cokernel, where f;(X) is a power of an irreducible dis-
tinguished polynomial. Recall that a nonconstant polynomial f(X) € Z,[X]
is called distinguished if f(X) has the form X9 + a; X971 + - -+ + a4 with all
a; = 0 mod p. The Iwasawa polynomial (p-adic zeta function) associated to
H. is defined by [];_, fi(X). The set of degrees of f;, {deg(f1),...,deg(fs)},
is also an invariant of the A-module H,,. The Iwasawa A-invariant A(H,) is
defined by their sum Y ;_, deg(f:).

In some cases, the pseudo-isomorphism in (3.1.5) turns out to be an iso-
morphism. Then we can describe the p-power iterated action of [¢,] on H
in terms of deg(f;)’s. Since H is finite, there is an integer d > 0 such that
[, ] = [¢ pa] = idp, namely, [6,]7" € TA(G). We call such smallest integer
d the p-period of [¢,] on H.

Proposition 3.1.6. Suppose that we have a A-module isomorphism
Heo =~ @ A/ (£i(X)),
i=1

where f; is a distinguished polynomial of degree deg(f;). Let d(Hs) denote
the mazimum of deg(f1),...,deg(fs). Then we have

(@) = [6,0] = idyr, namely, [6,"" € TA(G)

if and only if
p* > d(Hy).

Hence the p-period of [¢,] is given by the smallest integer > log, d(Hx).

Proof. By the assumption, we have a A-module isomorphism

H ~ @K/(Xdeg(fi))'

i=1
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Since the action of [%]pd — idyg on H corresponds the multiplication by
(1+ X —1 = X7, [6,]"" = idy if and only if X** € (XdeU9) for all
7. From this the assertion follows. [J

Example 3.1.7H Let k := Q1p)s koo = Q(upe) and M the maximal
unramified pro-p extension of k.. The assumption of Proposition 3.1.5 is
then satisfied if the Vandiver conjecture is true, namely, p does not divide
the class number of the maximal real subfield of k£ ([Wa; Theorem 10.16]).
The Vandiver conjecture is known to be true for p < 163577856 ([BH]).
For instance, we have Hy, = A/(f) for p = 37 and Hoo = A/(f1) © A/(f2)
for p = 157, where f, f; and f; are all distinguished polynomials of degree
one ([IS]). So, the p-period of [¢,] is zero, namely, [¢,] acts trivially on H.
Mizusawa made a program to compute the Iwasawa polynomial when £ is
an imaginary quadratic field Q(v/—D), ks is the cyclotomic Z,-extension
and M is the maximal unramified pro-p extension of k.. For example, when
p=3and D = 186,211,231,249, H,, = A/(f) with deg(f) = 2 and so the
3-period of [¢,] is one, and when p = 3 and D = 214,274, H,, = A/(f) with
deg(f) = 4 and so the 3-period of [¢,] is two.

3.2. Non-Abelian Iwasawa theory via Johnson homomorphisms. A
basic problem in non-Abelian Iwasawa theory is to understand the p-power
iterated action of ¢5 on G, while classical Iwasawa theory deals with that of
(¢,] on Hy as shown in 3.1. Let {G),},>1 be the Zassenhaus filtration of G
so that H = G/Gs, and let [¢5],, be the automorphism of G/G,,+1 induced
by ¢5 as defined in (2.2.1). We aim to study the p-power iterated action of
[¢5]m on G/Gpqq for all m > 1 by means of the p-Johnson homomorphisms
introduced in 2.2.

First, let us see how a different choice of a lift of v affects the action of a
power of [¢5],, on G/Gi1

Lemma 3.2.1. Let 7, 7' be lifts of v in G and set x = ¥'5~1 € G as in
(3.1.4). Suppose x € G,,. Then, for each integer e > 1, we have

iny/ S A(;(m) <~ qbfy c Ag(m)

*We thank Y. Mizusawa for informing us of this example.
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Proof. By (3.1.4), we have

0%(9) = yos(9)y ™" v = xds(x) - 95 (2) € G,

for any g € G. Since elements of G/G,+1 and G,,/G,y1 commute, the
assertion is shown as follows
05 € Ag(m) & ¢5(9)g™" € Gy for any g € G
S yes(9)y'g € Gpyy forany g € G
& ¢5(9)g7" € Gy for any g € G
& ¢35 € Ag(m) O

Let gr(G) = @,,~, gr,,(G), gr,(G) = G,/Gpt1, be the graded Lie algebra
over T, associated to the Zassenhaus filtration of G' as in (2.1.6), and let
{Ac(m)}m>o be the Andreadakis-Johnson filtration of Aut(G). For m > 1,
let

Tm @ Ag(m) — Homg, (H, gr,, 1 (G))

be the p-Johnson homomorphism. The next Corollary follows immediately
from Lemma 3.2.1.

Corollary 3.2.2. Let 7, 7' be lifts of v in G and set x = ¥77! € G.
Suppose x € Gy and ¢ € Ag(m) (e > 1). Then we have

Tm(¢§y’) = Tm((ﬁ»ey)

Proof. By Lemma 3.2.1, ¢5, € Ag(m). Since ¢S, = Inn(y) o ¢5 with
y = zos(x)-- -gbfiy_l(at) € Gpi1, the assertion follows from Theorem 2.2.8
and Proposition 2.2.10. [

We fix a lift 4 € G of . Generalizing the p-period of [¢,] on H = G/G,,,
we define the p-period d(m) of ¢5 acting on G/G,,41 for each m > 1 by the
smallest integer d > 0 such that

(3.2.3) o' € Ag(m).

Thus we have non-decreasing sequence {d(m)},,>1 of integers.

Lemma 3.2.4. For each integer m > 1, we have

d(m+1) =d(m) or d(m) + 1.
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Proof. By definition of d(m), we have d(m + 1) > d(m). Suppose gbgd €

Ag(m). Then by Proposition 2.2.5 (2), we have gbgdﬂ € Ag(m +1). Hence
dm+1)<d(m)+1. O

Now we introduce another sequence of integers {m(d)}qs>0 as follows. For
each integer d > 0, we define the integer m(d) > 1 by

(3:25) o0 € Aa(m(d), &% ¢ Ac(m(d)+1).

It is a strictly increasing sequence. In fact, we have

Lemma 3.2.6. For each integer d > 0, we have
m(d+1) > m(d) + 1.

Proof. Since gbgd € Ag(m(d)) for each d > 0, by Proposition 2.2.5 (2), we

have qbgdﬂ € Ag(m(d)+1). Hence, by definition (3.2.5), we have m(d+1) >
m(d)+1. O

Then the sequence {Tm(d)(gbgyd)}dzo in Homg, (H, gr,,,(a)+1(G)) describes the
action of qﬁffd on G/Gpyay41 for all d > 0. In Section 5, we give a coho-

mological interpretation of Tm(d)(qﬁgd) in terms of Massey products in Galois
cohomology.

Remark 3.2.7. Let M the maximal unramified pro-p extension of k..
Ozaki ([O]) studied the I'-action on the graded pieces associated to the lower
central series of G = Gal(M/ky) and obtained arithmetic results. We also
refer to Sharifi’s paper [Sh] for a related work. Our approach is different from
theirs.

4. p-Johnson maps for a free pro-p group

In this section, following Kawazumi ([Kw]), we extend the p-Johnson
homomorphisms in Section 2 to maps defined on the whole group of auto-
morphisms when G is a free pro-p group.

Throughout this section, let F' denote a free pro-p group on z,...,z,. A
fixed prime number p is arbitrary in 4.1 and assumed to be odd in 4.2.
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4.1. p-Johnson maps. We keep the same notations as in 2.1, only re-
placing G by F. Let F,[[F]] be the complete group algebra of F' over [F, with
augmentation ideal Ip. Let {F,},>1 be the Zassenhaus filtration defined by
F,=FN(1+1})andlet H := F/F, = F/FP[F, F] be the Frattini quotient
of F'. We write [f] for the image of f € F'in H: [f] := f mod F,. We denote
[z;] by X; (1 <j <r)simply so that H is a vector space over F, with basis
X1, .., X,
H=FX & - -@&F,X,.

Asin 2.1, let gr(F') be the graded restricted Lie algebra over F, associated
to the Zassenhaus filtration {F},},>1 of F’

gr(F) = Per,(F), gr,(F) = F/Fi.

n>1

It is the free Lie algebra over F, on Xi,...,X,. Its restricted universal en-
veloping algebra Ugr(F) is given by the graded associative algebra gr(F,[[F]])
(cf. (2.1.7))

Ugr(G) = gr(F,[[F])) := D er,, (B [IFN), gr(F[[F]) = 17/ 177
m>0
together with the injective restricted Lie algebra homomorphism

gr(0) = D b : gr(F) — gx(E,[[F])),

m>1
where 6, : gr,,(F) — gr,,(F,[[F]]) is given by
O (f mod Fyiq) := f — 1 mod I?“.

By the correspondence z;—1 mod 1% € gr,(F,[[F]]) — X; € H, the universal
envelope gr(F,[[F]]) is identified with the tensor algebra on H over F, or the
non-commutative polynomial algebra F,(X1,..., X, ) of variables X1, ..., X,
over [,

Ugr(G) = gr(F[[F])) = @ e

m>0

= F(X1,...,X,).
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Here the graded piece gr,,(F,[[F]]) corresponds to H®™, the vector space
over F), with basis X, --- X;,, (1 <4y,...,4, <r), monomials of degree m,

im

and so 0, may be regarded as the injective [F)-linear map
(4.1.1) O = gr, (F) — H®™

In order to extend the Johnson homomorphisms in 2.2 to the maps defined
on the whole automorphism group Aut(F'), we work with the completion U of
the universal envelope Ugr(F') = gr(F,[[F]]) with respect to Ip-adic topology.
So U is the complete tensor algebra on H over [F, which is identified with

the Fp-algebra F,((X1,...,X,)) of non-commutative formal power series of
variables X, ..., X, over F, (In [Kw] Kawazumi wrote 1" for U)
U = H H®™
m>0

=F,((X1,....X,)).

Then the composite of 6,, in (4.1.1) with the natural inclusion H®™ < U is
nothing but the restriction to F,, of the Magnus embedding

(4.1.2) 0:F— U~
defined by (z;) =14+ X, (1 <7 <r).

For n > 1, we let

U, =[] 2™

m>n

be the two-sided ideal of U corresponding to formal power series of degree
> n. An F,-algebra automorphism ¢ of U is then called filtration-preserving if
o(Uy,) = U, for all n > 0 and we denote by Aut®™(U) the group of filtration-
preserving F,-algebra automorphisms of U. The following useful Lemma,
which we call Kawazumi’s lemma, gives a criterion for a [F,-algebra endo-

morphism of U to be a filtration-preserving automorphism.

Lemma 4.1.3. (Kawazumi’s lemma). A F,-algebra endomorphz’sm v of

U is a filtration-preserving automorphism of U, ¢ € Autﬁl( ), if and only if
the following conditions are satisfied:
(1) ¢(U,) C U, for alln > 0.
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(2) the induced F,-linear map [¢] on U,/Us = H defined by [©](h) := @(h) mod U,
(h € H) is an isomorphism.

Proof. Suppose ¢ € Autﬁl(ﬁ ). Since ¢ is filtration-preserving, the condition
(1) holds. To show the condition (2), consider the following commutative
diagram for vector spaces over F, with exact rows:

0 — (72 — (71 — H — 0
| ¢lg, 1 ¢lg, [l
0 — U, — Uy — H — 0.

Since ¢(U,) = U, for all n > 0, we have Coker(p|z) = 0 for i = 1,2, in
particular. Since ¢ is an automorphism, we have Ker(¢) = 0, in particular,
Ker(¢|p) = 0 for i = 1,2. By snake lemma applied to the above diagram,
we obtain Ker([p]) = 0 and Coker([¢]) = 0, hence the condition (2).

Suppose that an [F-algebra endomorphism ¢ of U satisfies the conditions
(1) and (2). Let z = () be any element of U with z,, € H®™ for m > 0.
To show that ¢ is an automorphism, we have only to prove that there exists
uniquely ¥y = (y,) € U such that

(4.1.3.1) z=¢(y).

Note by the condition (1) and (2) that ¢ induces an [F,-linear automorphism
of ﬁm/ﬁm+1 = H®™ which is nothing but [¢]®™. Then, writing ¢(y;); for
the component of ¢(y;) in H®/ for ¢ < j, the equation (4.1.3.1) is equivalent
to the following system of equations:

( 2o = SD(?/O) = Yo,
21 =[] (y1),
20 = [@]®*(y2) + ©(y1)2,

(4.1.3.2)

\

Since [p]®™ is an automorphism, we can find the unique solution y = ()
of (4.1.3.2) from the lower degree. Therefore ¢ is an F,-algebra automor-
phism. Furthermore, we can see easily that if 29 = -+ = 2,1 = 0, then
Yo ="+ = Yp_1 = 0 for n > 1. This means that ¢~(U,) C U, and so ¢ is
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filtration-preserving. [

By Lemma 4.1.3, each ¢ € Aut™(U) induces an [F,-linear automorphism
[¢] of H = U, /U, and so we have a group homomorphism

[]: Aut™(U) — GL(H).
We define the induced automorphism group of U by
IA(D) := Ker([ ]).

We note that there is a natural splitting s : GL(H) — Aut™(U) of [ ], which
is defined by

s(P)((2m)) = (P™(2,)) for P € GL(H).

In the following, we also regard [P] € GL(H) as an element of Aut™ (D)
through the splitting s and write simply [P] for s([P]). Thus we have the
following

Lemma 4.1.4. We have a semi-direct decomposition
Awt™(U) = IA(U) x GL(H)
given by ¢ = (o []™", [¢])-
Let ¢ € IA(U). Since ¢ acts on Uy /Us = H trivially, we have
¢(h) —h € U, for any h € H,
and so we have a map
E : IA(U) — Homg, (H,Uy); ¢ = oly — idy,

where Homp, (H, U,) denotes the group of F,-linear maps H — Us. The fol-
lowing Proposition will play a key role in our discussion.

Proposition 4.1.5. The map E is bijective.
Proof. Injectivity: Suppose E(p) = E(¢') for ¢ € IA(U). Then we
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have ¢|y = ¢'|i. Since an F,-algebra endomorphism of U is determined by
its restriction on H, we have p = ¢'. R
Surjectivity: Take any n € Homg, (H,Us). We can extend n +idy : H — U,
uniquely to a IF,-algebra endomorphism ¢ of U. Then we have obviously
gp(ﬁn) C ﬁn for all n > 0. Since ﬁl/ﬁg = H and we see that

[p](hmod Us) = ¢(h) mod Us = h + 5(h) mod Us = hmod Us,

we have [¢] = idy. By Kawazumi’s Lemma 2.1, we have ¢ € IA(U) and
E(p)=n. O

By Lemma 4.1.4 and Proposition 4.1.5, we have the following

Corollary 4.1.6. We have a bijection

E : Aut™(U) ~ Homg, (H,U,) x GL(H)
given by E(p) = (E(¢ o [¢]™), [¢]).

The Magnus embedding 6 : F < U* in (4.1.2) is extended to an F,-
algebra isomorphism, denoted by the same 6,

(4.1.7) 0 :F,[[F]] = U,

which satisfies

(4.1.8) 0(1%) = U, form > 1.

For m > 0, let 6,,, denote the component of § in H®™ as in (4.1.1):

B(c) =) Onla), O(a) € H" (a € F,[[F]).

m=0

Note that 0o(f) = 1 and 6,(f) = [f] for f € F. Further we can write 6,,(«)
as

(419) 6)m(O‘) = Z 6('él SRR a)Xl e Xim>

1<in, yim<r
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where the coefficient €(iy - -4,,;a) is given in terms of the pro-p Fox free
derivative 0/0z; : Z[[F]] — Z,[[F]] ([Ih], [Ms2, 8.3])

o o
€(ir-im;@) = e, | 5oz ) modp,
11 im

where ez, 117y © Zp|[F]] = Z, is the augmentation map and & € Z,[[F]] such
that @ mod p = a.

An F-algebra automorphism ¢ of F,[[F]] is said to be filtration-preserving
if o(Ip) = Ip for all n > 0 and we denote by Aut™(F,[[F]]) the group of
filtration-preserving automorphisms of F,[[F]]. By (4.1.7) and (4.1.8), we
have an isomorphism

(4.1.10) At (F,[[F]]) ~ Aut™ (0); o fopob.

Now, let ¢ € Aut(F). Then ¢ induces a filtration-preserving F,-algebra
automorphism ¢ of F,[[F]]). In fact, ¢ induces an automorphism [¢], of a
finite p-group F'/F, and hence an F,-algebra automorphism, denoted by the
same [¢],, of a finite group ring F,[F/F,]

[@ln = FplF/F] — FplF/F

for each n > 1, which sends the augmentation ideal of F,[F/F,] onto it-
self. Taking the inverse limit with respect to n, we obtain an [F,-algebra
automorphism

¢ :=1lim[g], : F,[[F]] = F,[[F]

such that ¢(I) = Ir. Thus we have an injective homomorphism
Aut(F) — Aut(F,[[F]); ¢ — 6.
By composing with the isomorphism (4.1.10), we obtain an injective homo-

morphism

7 Aut(F) — Awt™(U); ¢ — o dod.

Lemma 4.1.11. Let [¢] denote the F,-linear automorphism of H induced by
¢ € Aut(F). Then we have

[7°(¢)] = [¢] in GL(H).
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Proof. We have, for X; € H (1 <j <r),

()

| |
S/
-
—~
8
<
~— —~
— s
I
—_

Hence we have [R(¢)] = [¢]. O

By Lemma 4.1.11, we have, for ¢ € Aut(F),
®(¢) = (R(¢) o [0] %, [¢])

I~
under the semi-direct decomposition Aut®(U) = IA(U) x GL(H) of Lemma
4.1.4. We set

(4.1.12) K(¢) =R (p)o[d]  =00dob 0[] (¢ Aut(F)).

Now, we define the extended p-Johnson map
7 . Aut(F) — Homg, (H,Uy) x GL(H)
by composing #? with E of Corollary 4.1.6, and we define the p-Johnson map
. Aut(F) — Homg, (H, U,)

by the composing 7/ with the projection on Hompg (H, (72), namely, for ¢ €
Aut(F),

(4.1.13) 7(¢) == E(+"(¢)) = °(0)|u — idp.
For m > 1, we define the m-th p-Johnson map
70 o Aut(F) — Homy, (H, H®™tY)

by the m-th component of 7X:

(4.1.14) ()= _7h(¢) (¢ € Aut(Q)).

m>1
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Unlike the p-Johnson homomorphisms (Theorem 2.2.8), the p-Johnson
map 77 = E ok : Aut(F) — Hom(H, U,) is no longer a homomorphism. In
fact, we have the following

Proposition 4.1.15. We have

K (¢1 0 ¢2) = K (¢1) 0 [p1] 0 K7 () 0 1] 7.

Proof. By (4.1.12), we have

K (p1a) =00 (¢192) 0 0" o [p1¢a] 7!
=0oprogyo 0~1 o] "o [¢1]_1A
=0opio0 ofp] T ofpi]obogrol Tt olhy] T ofgn] !
= K%(¢1) o [¢1] 0 K¥(2) © [d1] . O

Proposition 4.1.15 yields an infinite sequence coboundary relations which
Johnson maps 7, satisfies. Here we give the formulas for 7¥ and 7.

Proposition 4.1.16. We have
1 (0102) = 7{(d1) + [¢1]%% 0 7{(62) 0 [Pu] Y,
T3 (d102) = 13(61) + (11 (1) @ idy +idy @ /(1)) © [1]%% 0 7/ (d2) © [¢]
+[01]% 0 73 (da) 0 [1] .
Proof. By definition (4.1.14), we have

(4.1.16.1) T (p1h2) = D T (d162).

m>1
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On the other hand, by Proposition 4.1.15 and (4.1.13), we have, for h € H,

0 (p102) —h + K (d162)(h)
—h + (+°(¢1) © [¢1] © K%(¢2) 0 [91] ") ()
i+ (6(61) o [n] © (i + 70(62))) (0]~ (1)

— —h+ (+(61) © [on]) ( +Z <h>)

(o) (mz o [or] ) >)
—ht ()
+:2 (1) (([01]%% 0 7 (¢2) © [p1] ') (R))

+2(61) (([61]%% 0 74 (2) © [$2] ) (h)) mod Uy
We note that

K2() | grom = (idg + 77(¢))®™ : HE™ — H x Uy

for any ¢ € Aut(F') and so we have the following congruences mod 174:

K (¢1)(h) = b+ 17 (1) (h) + 75(61)(h),
K (1)(([¢1]%% 0 Tf(cbz) ° [<Z>1]‘1)(h))

= ([61]%% 0 7{(¢2) © [¢1] 1) (1)

+((r(¢1) @idp +idy ®@ 77 (¢1)) © [¢1]* 0 77 (d2) 0 [¢1] ") (),
K2 (01)(([91]° 0 77 (d2) 0 [@1] 1) (1) = ([91]%° 0 75(¢2) © [6a] ) (R).

Therefore we have

7 (¢162) (h)
=71 (¢1)(h) + 74 (¢1)(h)
(4.1.16.2)  +([¢1]* o 7{(¢2) 0[]~ )( )
H((6) @ idn +idy © 7 (91)) © [0 0 7(62) o [61] ) (1)
+([¢1]%3 0 7Y (¢2) © [¢1] 1) (h) mod U,.

Comparing (4.1.16.1) and (4.1.16.2), we obtain the assertions. [
Next, we compute the p-Johnson maps for inner automorphisms of F'.

Proposition 4.1.17. Let f € F' and h € H. For m > 1, we have

T (n(f)(h) = 6n(h+Y D (=1)00(/)h84, (f) -4, (f)-

J=1 qo+-+gj=m
9020,915-++,95 21
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In particular, we have, for m =1,2,

7 (In(f))(h) = [f]h = h[f],
75 (Inn(f))(h) = 02(f)h — hb>(f) + R[fILf] = [fIR[f].

Proof. Since [Im(f)] = idg, by (4.1.12), we have

k(Inn(f))(z) = (Ao Inn( ) 067 1(z)

=0(f)=0(f~")
= (1 +) Hm(f)> z (1 + Z(—l)j(z 9q(f))j>
for 2 € U. Therefore, by (4.1.13), we have
(Inn(f))(h) = &"(Im(f))(h
—29 fh+Z > | )4, (1) 64, (f)

qi,-- qg'Zl

for h € H. Taking the component in H®™*+Y we obtain the assertion. [

Finally we give the relation between the p-Johnson maps and the p-Johnson
homomorphisms in Section 2.

Proposition 4.1.18. The restriction ongL to Ap(m) coincides with 0,,, 107,
for each m > 1:

7 |ap(m) = Oms1 © T+ Ap(m) — Hom(H, H®™ ),
where 6,,,1 is the injection gr,, . (F) < H®Mm+ in (4.1.1).
Proof. Tt suffices to show that for ¢ € Ap(m),
T(0)(X)) = Ona (T (9)(X;)) 1< 5 <
By (4.1.13) and [¢] = idg, we have

(@)(X;) = (K(d)]n —idu)(X;)
(00dob ) (0(x;) — 1) — (B(x;) — 1)
0(p(x;)) — 0(x;).
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Therefore we see that
(4.1.18.1)  72(4)(X;) = the component in H®™ ) of (¢(x;)) — 0(x;).

m

On the other hand, since ¢(z;)z;" € Fi1, we have

0(6(x;)7;") = 1+ Osa (D)) = 1+ Oy (Tin(6) (X)) mod U,
Multiplying the above equation by #(z;) from right, we have
(4.1.18.2) 0(p(2;)) = 0(;) + Ot (T (9) (X)) mod Uy s

By (4.1.18.1) and (4.1.18.2), we obtain the assertion. [

4.2. Examples in Non-Abelian Iwasawa theory. Let us come back
to the arithmetic situation set up in 3.1 and keep the same notations. So, as
in (3.1.1) and (3.1.2), we have an exact sequence of pro-p Galois groups

l—G—G§—T —1,

where

G =Gal(M/ky), G = Gal(M/k) and G = Gal(ky/k).
In order to apply the materials in 4.1, we assume that
(F) G = Gal(M/ky) is a free pro-p group F on z1,. .., z,.

This condition (F) is satisfied for the following cases.

Example 4.2.1 ([Iw2], [W1]). Suppose that

(1) k is totally real,

(2) M = lzig,

(3) the Iwasawa p-invariant of Hy, = G/[G, G] is zero.

Then the condition (F) is satisfied where the generator rank r is equal to the
Iwasawa A-invariant of H,.

To give the following example, we introduce the notation. For a field K,
K(p) denotes the maximal pro-p extension of K.

Example 4.2.2 ([Sc|, [W2]). Suppose that
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(1) k is a CM-field containing pu, i.e., k = k*(u,) where k™ is the maximal
totally real subfield of k,

(2) the completions k;” of k™ with respect to any prime p lying over p do not
contain /i,

(3) koo is the cyclotomic Z,-extension of k, and

(4) the Iwasawa p-invariant of the maximal Abelian unramified pro-p Galois
group over k., is zero.

The condition (4) is known to be true if £ is Abelian over Q ([FW]). So, the
above four conditions are satisfied for the p-th cyclotomic field k£ = Q(u,),
for instance.

A finite p-extension L/k is called positively ramified over S, if L, C
k7 (p)(pp) for any prime p over p. Since the composite of positively rami-
fied p-extensions is positively ramified again, the maximal positively ramified
pro-p extension of k exists, and it contains the cyclotomic Z,-extension k.
We then let

M := the maximal pro-p extension of k which is unramified outside S
and positively ramified over 5,.

Then the condition (F) is satisfied with

r=2\" + #(S (ko) \ Sp(kOO)) -1,

where A~ denotes the Iwasawa A~ -invariant of k, and S(ke) (resp. Sp(ks))
denotes the set of primes of k4 lying over S (resp. S,). The pro-p Galois
group I' = G = Gal(M/k«) has the following presentation

F= <a'l>bla cee aa')\*ab)\*7cv(v € S(koo) \ Sp(km)) |
22

H ch[ai,bi] =1).

v€S (koo )\Sp (ko) =1

We may take S to be S, U {q} such that there is only one prime of k., lying
over q (there are infinitely many such q). Then F' and G may be seen as
arithmetic analogues of the fundamental groups of a one-boundary surface
and a surface bundle over a circle (a fibered knot complement), respectively.

We fix a lift 4 € G of a topological generator v of I' and consider the
automorphism ¢5 := Inn(y) € Aut(F) as in (3.1.3). The p-power iterated
action of [¢5], on F/F,, ., is described by the m-th p-Johnson map

70 0 Aut(F) — Homg, (H, H™ D) (m > 1).
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For an integer d > 0, we can write

2D = > T i )X X

1<i1, . yim1 <7

Suppose that gbf/d € Ap(m). Then we can also write
d d B B
(4.2.3) B0 @) (N = D 7)) i DX X
1<it, . ytmy1 <7
and, by Proposition 4.1.18, we have
d . . d . .
(@8 ) (i -~ imyr; Xj) = T(85 ) (i1 -+ dmyrs X;) € .

These coefficients are numerical datum encoded in the Johnson maps,/ ho-
momorphisms. In Section 5, we express these coefficients in terms of Massey
products in Galois cohomology.

5. Massey products

In this section, we give a cohomological interpretation of p-Johnson ho-
momorphisms in terms of Massey products in Galois cohomology.
A fixed prime number p is arbitrary in 5.1 and assumed to be odd in 5.2.

5.1. Massey products and the Magnus expansion. Firstly, we re-
call some general materials on Massey products. For the sign convention,
we follow [Dw]. Let G be a pro-p group and let ay,...,a,, € H(G,F,). A
Massey products (o, . . ., ay,) is said to be defined if there is an array

A={a; € CHG.F) | 1<i<m+1,(ij) # (Lm+ 1))

such that
[aiiv1] = a; (1 <i<m),

J—1
dCLZ’j = Zau U CLlj (j # 1+ 1),
=1
where d denotes the differential on cochains and U denotes the cup product.

An array A is called a defining system for (aq,...,a,,). Then we define
(a1, ..., am) 4 by the cohomology class represented by the 2-cocycle

m
E ay U agmt1-
1=2
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A Massey product of aq, ..., a,, is then defined by
(a1, .. am) = {{a1,...,am)a € H*(G,F,) | Aranges over defining systems}.

We recall some basic properties of Massey products, which will be used
in 5.2.

5.1.1. One has (a1,a2) = a3 Uas. For m > 3, (a1,...,q,) is defined
and consists of a single element if («;,,...,a;) = 0 for all proper subsets
{i1,...,q} of {1,...,m}.

5.1.2. Let ¥ : G — G’ be a continuous homomorphism of pro-p groups. Then
if {(@1,...,qy,) is defined for o; € H'(G',F,) with defining system A = (a;;),
then so is (U*(a1), ..., U*(ay,)) with defining system A* = (U*(a;;)) and we
have U*((aq, ..., am)) C (¥ (aq), ..., Y*(am)).

Next, we recall a relation between Massey products and the Magnus ex-
pansion. Let G be a finitely generated pro-p group with a minimal presenta-
tion

l—N-—F - G—1,

where F is a free pro-p group on 1, ..., x, with s = dimg, H(G, F,,). We set
gi := m(z;) (1 <i < s). Note that m induces the isomorphism H'(G,F,) ~
HY(F,F,). We let tg : H'(N,F,)9 — H?*(G,F,) be the transgression map
defined as follows. For a € H'(N,F,)Y, choose a 1-cochain b € C'(F,TF,)
such that b|y = a. Since the value db(f1, f2), fi € F, depends only on the
cosets f; mod N, there is a 2-cocyle ¢ € Z*(G,F,) such that 7*(c¢) = db. Then
we define tg(a) by the class of ¢. By Hochschild-Serre spectral sequence, tg
is an isomorphism and so we have the dual isomorphism, called the Hopf
isomorphism,

(5.1.3) tg : Ho(G,F,) = Hy(N,F,)g = N/NP|N, F].

Then we have the following Proposition. The proof goes in the same manner
as in [Msl, Theorem 2.2.2].

Proposition 5.1.4. Notations being as above, let aq,. .., an € HY(G,F))
and A = (a;;) a defining system for the Massey product (o, ..., ou,). Let
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f €N and set §:= (tg")"*(f mod NP?[N, F]). Then we have

<O‘1>W; ) O‘m>A(5)
= Z(—l)jH > > e (9i)  msi—eymin (93l - i3 f),

c1+-+cj=m 1<iy,...,i;<s

where ¢y, ..., c; run over positive integers satisfying c; + ---+c¢; = m and
gi=m(x;) (1 <i<s) ande(iy---ij; f) is the Magnus coefficient defined in
(4.1.9).

5.2. Massey products and p-Johnson homomorphisms. We come
back to the arithmetic situation in 4.2 and keep the same notations. So we
have an exact sequence of pro-p Galois groups

1—F—G—T1—1,

where
F =Gal(M/ky), G = Gal(M/k) and I" = Gal(kw /k),
and F is a free pro-p group on z1, ..., x,. We fix a lift ¥ € G of a topological
generator v of I' and let ¢5 := Inn(y) € Aut(F).
Let d(1) be the p-period of [¢,] on H as in (3.2.3) so that gbf/d(l) e IA(F).
If necessary, we replace the base field & by the subextension ky(1y of ko with

A1) and vpd(l) with v so that we may suppose that

Qﬁ’y S IA(F)>

degree [kqn) : k] = p

namely, ¢5 acts trivially on H.
For each integer d > 0, let k4 be the subextension of k., with [k, : k] = p?
and let
(jd = Gal(M/kd)

Then the pro-p group G4 has the presentation
l—N;g—F %G, —1

where F is the free pro-p group on xy, ..., x,, T,y with 74(x,41) = vf”d and
Ny is the closed subgroup of F generated normally by

d — — .
Rjq = &% (x)(xppam )0 (1<5 <)
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Lemma 5.2.1. For each integer d > 0, the homomorphism ng : F — G4
induces the isomorphism of cohomology groups

HY(G4,F,) — H'(F,F,).

Proof. Since Gy = F /N4, we have
(5.2.1.1)
H'Y(G4,F,) = Hom(Ga/GY[Ga, Ga), F,) ~ Hom (F /Ny F*[F, F),F,),

where Hom, stands for the group of continuous homomorphisms. Since ¢§d
acts trivially on H = F/FP[F, F], qbgd(:cj)xj_l € FP[F,F]| and so R;q =
QSf{d(xj)x;l[:zj,a:rH] € FP[F,F] (1 <j<r). Therefore we have

(5.2.1.2) N, C FPIF, F).
By (5.2.1.1) and (5.2.1.2), we have
H'(Gq, F,) ~ Hom(F/F[F, F),F,) = H'(F,F,). O

By Lemma 5.2.1, Hochschild-Serre spectral sequence yields the Hopf isomor-
phism as in (5.1.3)

th : HZ(gdan) ;) Hl(Nda]Fp)gd = Nd/Ng[Ndaf]a
and we define ;4 € Hy(Gy,F,,) by
g = (tg") ' (R;q mod NE[Ny, F]) (1<j<r).

We set g; = ma(x;) (1 < j <r+1)andlet g € H(Gy,F,) denote the
Kronecker dual to g;, namely g/ (g;) = d;;-

For d > 0, let m(d) be the integer defined in (3.2.5). Since ¢5 € IA(F),
m(d) > 1. Let Tm(d)(gb?ﬁyd)(z'l -+ 1m(); X;) be the coeflicients of the m(d)-th
p-Johnson homomorphism defined in (4.2.3). The following theorem gives an

interpretation of 7,y (@5 ) (i1 - - im(ay; X;) in terms of the Massey product in
the cohomology of G;.

Theorem 5.2.2. Notations being as above, let iy, ..., in@s+1 € {1,...,7}.
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Then the Massey product (g; ,- - - ,g;*m(d)ﬂ) 1s uniquely defined and we have,
for each d > 0,

LN . m * *
(B s X5) = (~1" O g gy

Proof. Let G/, be the pro-p group given by the presentation

1— N, — F 4 gl —1,
where N’ is the closed subgroup of F' generated normally by

d _ :
ja =05 (z)a;t (L<j <)

We set g} := 7'(2;) (1 <j <r)andlet g;" be the Kronecker dual to gj. As
in Lemma 5.2.1, 7/, induces the isomorphism tg : H'(G/},F,) = H' (N}, F,)g
and so we have the Hopf isomorphism tg" : Hy(G),F,) — Hy(N},F,).
We define ¢, € Hy(G),F,) by (tg¥) (R}, mod N[N}, F]). Since ¢§d €
Ar(m(d)), we note R ; € Fa1 (1 <j <)

Suppose m(d) > 2. By Proposition 5.1.4, if [ < m(d), we have

(0,7 g, Y alEg) =0

for any i1,...,4; € {1,...r}, 1 < j < r, and any defining system A’
because we have €(iy---i;; R, ;) = 0. Since R’ ;s generate H(Nj, F,)g,
(9:,">---,9;,") = 0 for any 4,...,4 € {1,...r}. Therefore, by 5.1.1, the
Massey product (g, ..., g7 <d>+1> is uniquely defined and, by Proposition
5.1.4 again, we have

(5.2.2.1)

<g7€1*7 R 7g,z<m(d)+1>( ;7d)

(=)™ D (i - - - dpnayr1; R 4)

d . .
(_1)m(d)+17_m(d)(¢gy )(dy - - *Um(d)+13 X;)-

We define the homomorphism

\If:gd—>gfi

by
U(g) =g; (1 <j<r), U(gps1) =1

so that we have

§a=Yl&a) g =V (g) 1<i,5<r)



Then our assertion follows from (5.2.2.1) and the naturality 5.1.2 of Massey
products as follows:

(95 9w Gid) = (O (g ) W (9 ) N(P(Ea)
= V({95 i) (Yl 0))
= (g5 79'§m(d)+1>(d§,d)
(=)™ Dy (85 ) (i - imgay+13 X). O

Remark 5.2.3. (1) Theorem 5.2.2 may be regarded as an arithmetic ana-
logue in non-Abelian Iwasawa theory of Kitano’s result ([Ki, Theorem 4.1]).
(2) For Massey products in cohomology of a pro-p group, we also refer to
[G], [MT1] and [MT?2].
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