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p-Johnson homomorphisms and pro-p groups

Masanori Morishita and Yuji Terashima

Dedicated to Professor Kazuya Kato

Abstract. We propose an approach to study non-Abelian Iwasawa theory,

using the idea of Johnson homomorphisms in low dimensional topology. We intro-

duce arithmetic analogues of Johnson homomorphisms/maps, called the p-Johnson

homomorphisms/maps, associated to the Zassenhaus filtration of a pro-p Galois

group over a Zp-extension of a number field. We give their cohomological inter-

pretation in terms of Massey products in Galois cohomology.

1. Introduction

Let p be an odd prime number, and let µpn denote the group of pn-th
roots of unity for a positive integer n and we set µp∞ := ∪n≥1µpn. We let
k∞ := Q(µp∞) and k̃ the maximal pro-p extension of k∞ which is unramified
outside p. We let Γp := Gal(k∞/Q) and Fp := Gal(k̃/k∞), the Galois groups
of the extensions k∞/Q and k̃/k∞, respectively. Classical Iwasawa theory
then deals with the action of Γp on the Abelianization H1(Fp,Zp) of Fp

([Iw1]). A basic problem of non-Abelian Iwasawa theory, with which we
are concerned in this paper, is to study the conjugate action of Γp on Fp

itself. In terms of schemes, one has the tower of étale pro-finite covers

(1.1) X̃p := Spec(Ok̃[1/p]) → X∞p := Spec(Ok∞ [1/p]) → Xp := Spec(Z[1/p]),

where Ok∞ and Ok̃ denote the rings of integers of k∞ and k̃, respectively,
and the Galois groups

(1.2) Γp = Gal(X∞p /Xp), Fp = Gal(X̃p/X
∞
p ) = πpro−p

1 (X∞p ),
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where πpro−p
1 stands for the maximal pro-p quotient of the étale fundamental

group. So the problem is to study the monodromy action of Γp on the arith-
metic pro-p fundamental group Fp.

Now let us recall the analogy between a prime and a knot

(1.3)
prime knot

Spec(Fp) = K(Ẑ, 1) →֒ Spec(Z) S1 = K(Z, 1) →֒ S3

HereK(∗, 1) stands for the Eilenberg-MacLane space and Spec(Z) := Spec(Z)∪
{∞}, ∞ being the infinite prime of Q which may be seen as an analogue
of the end of R3 ([De]). This analogy (1.3) opens a research area, called
arithmetic topology, which studies systematically further analogies between
number theory and 3-dimentional topology ([Ms2]). In particular, there are
known intimate analogies between Iwasawa theory and Alexander-Fox theory
([Ma], [Ms2; Chap. 9 ∼ 12]).

Arithmetic topology suggests that topological counterparts of (1.1) and
(1.2) may be the tower of covers

X̃K → X∞K → XK := S3 \ K,

for a knot K in S3, where X∞K and X̃K denote the infinite cyclic cover and
the universal cover of the knot complement XK, respectively, and the Galois
groups

ΓK := Gal(X∞K /XK), FK := Gal(X̃K/X
∞
K ) = π1(X

∞
K ),

and we have the conjugate action of ΓK on FK.
To push our idea further, suppose that K is a fibered knot so that XK is

a mapping torus of the monodromy φ : S → S, S being the Seifert surface of
K. Then FK = π1(S) and the conjugate action of ΓK on FK is nothing but
the monodromy action induced by φ on FK

(1.4) φ∗ : ΓK −→ Aut(FK).

Note here that the monodromy φ may be regarded as a mapping class of the
surface S. Thus the action (1.4) can be studied by means of the Johnson
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homomorphisms/maps, associated to the lower central series of FK, defined
on a certain filtration of the mapping class group for the surface S ([J], [Ki],
[Mt]) or, more generally, on the automorphism group Aut(FK) ([Kw], [Sa]).

In this paper, we regard the action of Γp on Fp as an arithmetic analogue of
the monodromy action (1.4) and propose an approach to study non-Abelian
Iwasawa theory by introducing arithmetic analogues of the Johnson homo-
morphisms/maps, called the p-Johnson homomorphisms/maps, associated to
the Zassenhaus filtration of Fp, defined on a certain filtration of the auto-
morphism group Aut(Fp). For this, we lay a foundation of a general theory
of p-Johnson homomorphisms/maps in the context of pro-p group.

We note that our viewpoint and approach differs from what is called
“non-commutative Iwasawa theory” (cf. [CFKSV], [Kt; 3]). The works by
M. Ozaki ([O]) and R. Sharifi ([Sh]) are related to ours (see Remark 3.2.7),
however, our approach is different from theirs and closer to geometric topol-
ogy.

Here is the content of this paper. In Section 2, we give a general the-
ory of p-Johnson homomorphisms in the context of pro-p groups. We use
the Zassenhaus filtration of a finitely generated pro-p group G in order to
introduce the p-Johnson homomorphisms, defined on a certain filtration of
the automorphism group of G. In Section 3, we give a framework to study
non-Abelian Iwasawa theory by means of the p-Johnson homomorphisms. In
Section 4, we give a theory of Johnson maps for a free pro-p group F by
extending the p-Johnson homomorphisms in Section 2 to maps, called the p-
Johnson maps, defined on the automorphism group Aut(F ) itself. In Section
5, we give a cohomological interpretation of the p-Johnson homomorphisms
in terms of Massey products in Galois cohomology.

Notation. For subgroup A,B of a group G, [A,B] stands for the subgroup
of G generated by [a, b] := aba−1b−1 for all a ∈ A, b ∈ B.

2. Zassenhaus filtration and p-Johnson homomorphisms for a

pro-p group.

In this section, we give a general theory of p-Johnson homomorphisms for
pro-p groups. We associate to the Zassenhaus filtration of a finitely generated
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pro-p group G a certain filtration on the automorphism group Aut(G) of G,
and introduce the p-Johnson homomorphisms defined on each term of the
filtration of Aut(G).

Throughout this section, let p be a fixed prime number and G a finitely
generated pro-p group. For general properties of pro-p groups, we consult
[Ko] and [DDMS].

2.1. Zassenhaus filtration and the associated Lie algebra. Let Fp[[G]]
be the complete group algebra of G over Fp = Z/pZ with the augmentation
ideal IG := Ker(ǫFp[[G]]), where ǫFp[[G]] : Fp[[G]] → Fp is the augmentation
homomorphism ([Ko; 7.1]). For each positive integer n, we define the normal
subgroup Gn of G by

(2.1.1) Gn := {g ∈ G | g − 1 ∈ InG}.
The descending series {Gn}n≥1 is called the Zassenhaus filtration of G ([Ko;
7.4]). The family {Gn}n≥1 forms a full system of neighborhoods of the iden-
tity 1 in G and satisfies the following properties

(2.1.2) (Gi)
p ⊂ Gpi (i ≥ 1).

(2.1.3) [Gi, Gj] ⊂ Gi+j (i, j ≥ 1).

We recall the fact that the abstract commutator subgroup of a finitely gen-
erated pro-p group is closed ([DDMS;1.19]).

The Zassenhaus filtration is in fact the fastest descending series of G
having the properties (2.1.2) and (2.1.3). Namely, it is shown by Jennings’
theorem and an inverse limit argument that we have the following inductive
description of Gn:

(2.1.4) Gn = (G[n/p])
p
∏

i+j=n

[Gi, Gj] (n ≥ 2),

where [n/p] stands for the least integer m such thatmp ≥ n. ([DDMS; 12.9]).
We note by (2.1.3) that elements of Gi/Gi+j and Gj/Gi+j commute, in

particular, Gn/Gn+1 is central in G/Gn+1. The 2nd term G2 is the Frattini
subgroup Gp[G,G] of G and we denote by H the Frattini quotient

(2.1.5) H := G/G2 = G/Gp[G,G] = H1(G,Fp).

For g ∈ G, we write [g] for the image of g in H : [g] := g mod G2. We note
that each Gn is a finitely generated pro-p group ([DDMS; 1.7, 1.14]).
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For each n ≥ 1, we let

grn(G) := Gn/Gn+1,

which is a finite dimensional Fp-vector space. The graded Fp-vector space

(2.1.6) gr(G) :=
⊕

n≥1

grn(G)

has a natural structure of a graded Lie algebra over Fp by (2.1.3). Here, for
a = g mod Gi+1, b = h mod Gj+1 (g ∈ Gi, h ∈ Gj), the Lie bracket is defined
by

[a, b]gr(G) := [g, h] mod Gi+j+1.

Further, by (2.1.2) again, gr(G) has the operation [p] defined by, for a =
g mod Gn+1 ∈ grn(G),

[p](a) := gp mod Gpn+1,

which makes gr(G) a restricted Lie algebra over Fp ([DDMS; 12.1]).
The restricted universal enveloping algebra (abbreviated to universal en-

velope) U(gr(G)) of gr(G) is given as follows. For each m ≥ 0, we let

grm(Fp[[G]]) := ImG /I
m+1
G .

and consider the graded associative algebra over Fp:

gr(Fp[[G]]) :=
⊕

m≥0

grm(Fp[[G]]).

For each m ≥ 1, we have an injective Fp-linear map

θm : grm(G) −→ grm(Fp[[G]])

defined by

θm(g mod Gm+1) := g − 1 mod Im+1
G for g ∈ Gm.

Putting all θm together over m ≥ 1, we have an injective graded Lie algebra
homomorphism over Fp

gr(θ) :=
⊕

m≥1

θm : gr(G) −→ gr(Fp[[G]]).
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Then (gr(Fp[[G]]), gr(θ)) is the universal envelope of gr(G) ([DDMS; 12.8]):

(2.1.7) Ugr(G) = gr(Fp[[G]]).

2.2. The automorphism group and p-Johnson homomorphisms. Let
Aut(G) denote the group of continuous automorphisms of a finitely generated
pro-p group G. We note that any abstract group homomorphism between
finitely generated pro-p groups is always continuous and so Aut(G) is same
as the group of automorphisms of G (as an abstract group) ([DDMS; 1.21]).
We also note that every term Gn of the Zassenhaus filtration of G is a char-
acteristic subgroup of G, namely, invariant under the action of Aut(G).

Since any automorphism φ ofG induces an automorphism [φ]m ofG/Gm+1

for each integer m ≥ 0, we have the group homomorphism

(2.2.1) [ ]m : Aut(G) −→ Aut(G/Gm+1).

We then define the normal subgroup AG(m) of Aut(G) by

(2.2.2)
AG(m) := Ker([ ]m)

= {φ ∈ Aut(G) | φ(g)g−1 ∈ Gm+1} (m ≥ 0).

We call the resulting descending series {AG(m)}m≥0 theAndreadakis-Johnson
filtration of Aut(G) associated to the Zassenhaus filtration of G (cf [A], [Sa]).
In particular, we set simply [φ] := [φ]1 for φ ∈ Aut(G) and the 1st term
AG(1) is called the induced automorphism group of G and denoted by IA(G):

(2.2.3) IA(G) := Ker([ ] : Aut(G) −→ GL(H)),

where GL(H) denotes the group of Fp-linear automorphisms of H = G/G2.
The family {AG(m)}m≥0 forms a full system of neighborhood of the iden-

tity idG in Aut(G) and it can be shown that Aut(G) is a pro-finite group and
IA(G) is a pro-p group ([DDMS; 5.3, 5.5]). So Aut(G) is virtually a pro-p
group.

The next Lemma will play a basic role to introduce the p-Johnson homo-
morphisms.

Lemma 2.2.4. For φ ∈ AG(m) (m ≥ 0) and g ∈ Gn (n ≥ 1), we have

φ(g)g−1 ∈ Gm+n.
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Proof. We fix m and prove the assertion by induction on n. For n = 1, the
assertion φ(g)g−1 ∈ Gm+1 is true by definition (2.2.2) of AG(m). Assume
that

(2.2.4.1) φ(g)g−1 ∈ Gm+i if g ∈ Gi and 1 ≤ i ≤ n.

By (2.1.4), we have

Gn+1 = (G[(n+1)/p])
p
∏

i+j=n+1

[Gi, Gj].

Since Gn+1/(
∏

i+j=n+1[Gi, Gj]) is Abelian, we have

Gn+1 = {ap | a ∈ G[(n+1)/p]}
∏

i+j=n+1

[Gi, Gj]

and so any element g of Gn+1 can be written in the form

g = ap[b1, c1]
e1 · · · [bq, cq]eq ,

where a ∈ G[(n+1)/p] and for each s (1 ≤ s ≤ q) there are i, j (i+ j = n+ 1)
such that bs ∈ Gi, cs ∈ Gj. Since we have

φ(g)g−1 = φ(a)pφ([b1, c1])
e1 · · ·φ([bq, cq])eq [bq, cq]−eq · · · [b1, c1]−e1a−p,

it suffices to show that
{

(2.2.4.2) φ([b, c])[b, c]−1 ∈ Gm+n+1 if b ∈ Gi, c ∈ Gj and i+ j = n+ 1,
(2.2.4.3) φ(a)pa−p ∈ Gm+n+1 if a ∈ G[(n+1)/p].

(2.2.4.2). For simplicity, we shall use the notation: [ψ, x] := ψ(x)x−1 and
[x, ψ] := xψ(x)−1 for x ∈ G and ψ ∈ Aut(G). By the “three subgroup
lemma” and the induction hypothesis (2.2.4.1), we have

φ([b, c])[b, c]−1 = [φ, [b, c]]
∈ [φ, [Gi, Gj]]
⊂ [[φ,Gi], Gj][[Gj , φ], Gi]
⊂ [Gm+i, Gj][Gm+j , Gi]
= Gm+i+j = Gm+n+1.
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(2.2.4.3). Let t := [(n+1)/p] so that pt ≥ n+1. By (2.1.1) and the induction
hypothesis (2.2.4.1), we have

φ(a)− a = (φ(a)a−1 − 1)a ∈ I t+m
G .

Therefore we have

φ(a)pa−p − 1 = (φ(a)p − ap)a−p

= (φ(a)− a)pa−p

∈ Ip(t+m) ⊂ Im+n+1.

Hence φ(a)pa−p ∈ Gm+n+1 by (2.1.1). �

Lemma 2.2.4 yields the following properties of the Andreadakis-Johnson fil-
tration {AG(m)}m≥0.

Proposition 2.2.5. We have

(1) [AG(i),AG(j)] ⊂ AG(i+ j) for i, j ≥ 0.
(2) AG(m)p ⊂ AG(m+ 1) ifm ≥ 1.

Proof. (1) We use the same notation as in the proof of (2.2.4.2). By Lemma
2.2.4, we have

[[AG(j), G],AG(i)] ⊂ [Gj+1,AG(i)] ⊂ Gi+j+1,
[[G,AG(i)],AG(j)] ⊂ [Gi+1,AG(j)] ⊂ Gi+j+1.

By the three subgroup lemma, we have

[[AG(i),AG(j)], G] ⊂ [AG(j), G],AG(i)][[G,AG(i)],AG(j)] ⊂ Gi+j+1.

By definition (2.2.2), we obtain

[AG(i),AG(j)] ⊂ AG(i+ j).

(2) Let g ∈ G and φ ∈ AG(m). We shall show that for any integer d ≥ 1,

(2.2.5.1) φd(g)g−1 ≡ (φ(g)g−1)d mod G2m+1,

from which the assertion follows. In fact, let d = p in (2.2.5.1). Then
(φ(g)g−1)p ∈ Gp(m+1) by (2.1.2), and G2m+1 ⊂ Gm+2 because m ≥ 1. So
φp(g)g−1 ∈ Gm+2 and hence φp ∈ AG(m+ 1).
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We prove (2.2.5.1) by induction on d. For d = 1, it is obviously true.
Suppose φd(g)g−1 ≡ (φ(g)g−1)d mod G2m+1. Note that φd(g)g−1 ∈ Gm+1,
since (φ(g)g−1)d ∈ Gm+1. Then we have

φd+1(g)g−1(φ(g)g−1)−(d+1) = φd+1(g)φ(g)−1φ(g)g−1(φ(g)g−1)−(d+1)

= φ(φd(g)g−1)(φ(g)g−1)−d

≡ φ(φd(g)g−1)(φd(g)g−1)−1 mod G2m+1.

Since φ(φd(g)g−1)(φd(g)g−1)−1 ∈ G2m+1 by Lemma 2.2.4, φd+1(g)g−1 ≡
(φ(g)g−1)d+1 mod G2m+1 and hence the induction holds. �

Now we are going to introduce the p-Johnson homomorphisms. Let φ ∈
AG(m) (m ≥ 0). For g ∈ G, we have φ(g)g−1 ∈ Gm+1. Then we see that
φ(g)g−1 mod Gm+2 ∈ grm+1(G) depends only on the class [g] ∈ H . In fact,
for g′ = gg2 with g2 ∈ G2, we have

φ(g′)g′−1 = φ(g)φ(g2)g
−1
2 g−1 ≡ φ(g)g−1 mod Gm+2,

since φ(g2)g
−1
2 ∈ Gm+2 by Lemma 2.2.4. Thus we have a map

τm(φ) : H −→ grm+1(G)

defined by

(2.2.6) τm(φ)(h) := φ(g)g−1 mod Gm+2 (h = [g]).

Lemma 2.2.7. For φ ∈ AG(m) (m ≥ 0), the map τm(φ) is Fp-linear.

Proof. Let h = [g], h′ = [g′] and c ∈ Fp. Using the property that Gm+1/Gm+2

is central in G/Gm+2, we have

τm(φ)(h+ h′) = τm(φ)([gg
′])

= φ(gg′)(gg′)−1 mod Gm+2

= φ(g)φ(g′)g′−1g−1 mod Gm+2

= (φ(g)g−1)(φ(g′)g′−1) mod Gm+2

= τm(φ)(h) + τm(φ)(h
′),

and
τm(φ)(ch) = τm(φ)([g

c])
= φ(gc)g−c mod Gm+2

= (φ(g)g−1)c mod Gm+2

= cτm(φ)(h). �
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Let HomFp
(H, grm+1(G)) denote the group of Fp-linear maps H → grm+1(G).

By Lemma 2.2.7, we have the map

τm : AG(m) −→ HomFp
(H, grm+1(G)).

For m = 0, we easily see by (2.2.6) that τ0(φ) = [φ]− idH for φ ∈ Aut(G).

Theorem 2.2.8. For m ≥ 1, the map τm is a group homomorphism and its

kernel is AG(m+ 1).

Proof. Let φ1, φ2 ∈ AG(m). For any g ∈ G, we have

τm(φ1φ2)([g]) = φ1(φ2(g))g
−1 mod Gm+2

= φ1(φ2(g)g
−1) · φ1(g)g

−1 mod Gm+2.

Since φ2(g)g
−1 ∈ Gm+1, φ1(φ2(g)g

−1) ≡ φ2(g)g
−1 mod G2m+1 by Lemma

2.2.4. Since G2m+1 ⊂ Gm+2 by m ≥ 1, we have

τm(φ1φ2)([g]) = φ1(g)g
−1 · φ2(g)g

−1 mod Gm+2

= (τm(φ1) + τm(φ2))([g])

for any g ∈ G. Hence the former assertion is proved. The latter assertion on
Ker(τm) is obvious by definition (2.2.6). �

The homomorphism τm : AG(m) → HomFp
(H, grm+1G)) (m ≥ 1) or the

induced injective homomorphism

τm : grm(AG) := AG(m)/AG(m+ 1) →֒ HomFp
(H, grm+1(G)) (m ≥ 1)

is called the m-th p-Johnson homomorphism.

We give some properties of the p-Johnson homomorphisms. Firstly, we
note that the group Aut(G) acts on both AG(m) and HomFp

(H, grm+1(G))
by the following rules, respectively:
{
ψ.φ := ψ ◦ φ ◦ ψ−1 (ψ ∈ Aut(G), φ ∈ AG(m)),
(ψ.η)(h) := ψ(η([ψ]−1(h))) (ψ ∈ Aut(G), η ∈ HomFp

(H, grm+1(G)), h ∈ H).

Then we have the following
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Proposition 2.2.9. The p-Johnson homomorphism τm (resp. τm) is Aut(G)-
equivariant (resp. Aut(G)/IA(G)-equivariant).

Proof. Let ψ ∈ Aut(G) and φ ∈ AG(m). Then we have, for any g ∈ G,

τm(ψ.φ)([g]) = τm(ψ ◦ φ ◦ ψ−1)([g])
= (ψ ◦ φ ◦ ψ−1)(g)g−1 mod Gm+2.

On the other hand, we have, for any g ∈ G,

(ψ.τm(φ))([g]) = ψ(τm(φ)([ψ]
−1([g])))

= ψ(τm(φ))([ψ
−1(g)]))

= ψ(φ(ψ−1(g))(ψ−1(g))−1) mod Gm+2

= (ψ ◦ φ ◦ ψ−1)(g)g−1 mod Gm+2.

Hence τm is Aut(G)-equivariant. As for τm, it suffices to note that IA(G)
acts trivially on grm(AG) = AG(m)/AG(m+ 1) by Proposition 2.2.5 (1) and
on HomFp

(H, grm+1(G)) by (2.2.3) and Lemma 2.2.4. �

Next we compute the p-Johnson homomorphism on inner automorphisms.
Let Inn : G→ Aut(G) be the homomorphism defined by

Inn(x)(g) := xgx−1 (x, g ∈ G).

The image Inn(G) is a normal subgroup of Aut(G) and called the group of
inner automorphisms of G.

Proposition 2.2.10. Let m ≥ 1 and x ∈ Gm. Then we have

Inn(x) ∈ AG(m)

and
τm(Inn(x))([g]) = [x, g] mod Gm+2 (g ∈ G).

Proof. For x ∈ Gm and g ∈ G, we have

Inn(x)(g)g−1 = [x, g] ∈ Gm+1,

from which the assertions follow. �
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Finally we compute the p-Johnson homomorphisms on commutators of au-
tomorphisms.

Lemma 2.2.11. For ψ ∈ AG(i), φ ∈ AG(j) (k,m ≥ 0) and g ∈ G, we

have, in gri+j+1(G),

τi+j([ψ, φ])([g])
= ψ(φ(g)g−1)(φ(g)g−1)−1 − φ(ψ(g)g−1)(ψ(g)g−1)−1 mod Gi+j+2.

Proof. By a straightforward computation, we obtain

[ψ, φ](g)g−1

= [ψ, φ]((φ(g)g−1)−1) · (ψφψ−1)((ψ(g)g−1)−1) · ψ(φ(g)g−1) · ψ(g)g−1.

Since [ψ, φ] ∈ AG(i + j) by Proposition 2.2.5 (1) and φ(g)g−1 ∈ Gj+1 by
Lemma 2.2.4, we have

[ψ, φ]((φ(g)g−1)−1) ≡ (φ(g)g−1)−1 mod Gi+2j+1.

Similarly, we have

(ψφψ−1)((ψ(g)g−1)−1) ≡ φ((ψ(g)g−1)−1) mod G2i+j+1.

By these three equations together, we have

[ψ, φ](g)g−1

≡ (φ(g)g−1)−1 · φ((ψ(g)(g−1)−1) · ψ(φ(g)g−1) · ψ(g)g−1 mod Gi+j+2.

Since ψ(g)g−1 ∈ Gi+1, φ(g)g
−1 ∈ Gj+1 and [Gi+1, Gj+1] ⊂ Gi+j+2, we have

[ψ, φ](g)g−1

≡ (φ(g)g−1)−1 · ψ(φ(g)g−1) · φ((ψ(g)g−1)−1) · ψ(g)g−1 mod Gi+j+2.

Since we easily see that

{
(φ(g)g−1)−1ψ(φ(g)g−1) ≡ ψ(φ(g)g−1)(φ(g)g−1)−1 mod Gi+j+2,
φ((ψ(g)g−1)−1) · ψ(g)g−1 ≡ (φ(ψ(g)g−1) · (ψ(g)g−1)−1)−1 mod Gi+j+2,

we obtain the assertion. �
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By Proposition 2.2.5, we can form the graded Lie algebra over Fp associ-
ated to the Andreadakis-Johnson filtration:

gr(AG) :=
⊕

m≥0

grm(AG), grm(AG) := AG(m)/AG(m+ 1),

where the Lie bracket is given by the commutator on the group Aut(G).
Then by Lemma 2.2.11, the direct sum of Johnson homomorphisms τm over
all m ≥ 1 defines a Lie algebra homomorphism from gr(AG) to the derivation
algebra of gr(G) as follows. Recall that an Fp-linear endomorphism of gr(G)
is called a derivation on gr(G) if it satisfies

δ([x, y]) = [δ(x), y] + [x, δ(y)] (x, y ∈ gr(G)).

Let Der(gr(G)) denote the associative Fp-algebra of all derivations on gr(G)
which has a Lie algebra structure over Fp with the Lie bracket defined by
[δ, δ′] := δ◦δ′−δ′◦δ for δ, δ′ ∈ Der(gr(G)). Form ≥ 0, we define the subspace
Derm(gr(G)) of Der(gr(G)), the degree m part, by

Derm(gr(G)) := {δ ∈ Der(gr(G)) | δ(grn(G)) ⊂ grm+n(G) for n ≥ 1}

so that we have
Der(gr(G)) =

⊕

m≥0

Derm(gr(G)).

Since a derivation on gr(G) is determined by its restriction on H = gr1(G),
we have a natural inclusion

Derm(gr(G)) ⊂ HomFp
(H, grm+1(G)); δ 7→ δ|H

for each m ≥ 1 and hence we have the inclusion

Der+(gr(G)) ⊂
⊕

m≥1

HomFp
(H, grm+1(G)),

where Der+(gr(G)) is the Lie subalgebra of Der(gr(G)) consisting of positive
degree parts.

Proposition 2.2.12. The direct sum of τm over m ≥ 1 defines the Lie

algebra homomorphism

gr(τ) :=
⊕

m≥1

τm : gr(AG) −→ Der+(gr(G)).

13



Proof. (cf. [Da; Proposition 3.18]) By Lemma 2.2.11, it suffices to show that
for φ ∈ AG(m), the map g 7→ φ(g)g−1 is indeed a derivation on gr(G). Let
φ ∈ AG(m) (m ≥ 1) and g ∈ Gi, h ∈ Gj. By using the commutator formulas

[ab, c] = a[b, c]a−1 · [a, c], [a, bc] = [a, b] · b[a, c]b−1 (a, b, c ∈ G),

we obtain

φ([g, h])[g, h]−1

= [φ(g), φ(h)][g, h]−1

= [gg−1φ(g), φ(h)h−1h][g, h]−1

= g([g−1φ(g), φ(h)h−1] · (φ(h)h−1)[g−1φ(g), h](φ(h)h−1)−1)g−1
·[g, φ(h)h−1](φ(h)h−1)[g, h](φ(h)h−1)−1[g, h]−1

= g([g−1φ(g), φ(h)h−1] · (φ(h)h−1)[g−1φ(g), h](φ(h)h−1)−1)g−1
·[g, φ(h)h−1][φ(h)h−1, [g, h]].

Since g−1φ(g) ∈ Gi+m, φ(h)h
−1 ∈ Gj+m by Lemma 2.2.4, we have

[g−1φ(g), φ(h)h−1] ∈ Gi+j+2m.

Similarly, we have
[φ(h)h−1, [g, h]] ∈ Gi+2j+m.

By these three claims together, we have

φ([g, h])[g, h]−1

≡ gφ(h)h−1[g−1φ(g), h](gφ(h)h−1)−1[g, φ(h)h−1] mod Gi+j+m+1.

Noting x[g−1φ(g), h]x−1 ≡ [g−1φ(g), h] mod Gi+j+m+1 for x ∈ G, our claim
is proved. �

3. Non-Abelian Iwasawa theory

In this section, we propose an approach to study non-Abelian Iwasawa
theory by means of the Johnson homomorphisms. In the course, we introduce
some invariants from a dynamical viewpoint.

Throughout this section, a fixed prime number p is assumed to be odd.

3.1. Classical Iwasawa theory. Let k be a number field of finite de-
gree over Q and let k∞ be a Zp-extension of k, namely, k∞/k is a Galois
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extension whose Galois group is isomorphic to the additive group of p-adic
integers Zp. We call k∞ the cyclotomic Zp-extension of k if k∞ is the unique
Zp-extension of k contained in k(µp∞). Let Sp denote the set of primes of
k lying over p and S a finite set of primes of k containing Sp. Note that
the extension k∞/k is unramified outside Sp. Let k̃S be the maximal pro-p
extension of k which is unramified outside S, and let M be a subextension
of k̃S/k such that M/k is a Galois extension. We set

(3.1.1) Γ := Gal(k∞/k), G := Gal(M/k) and G := Gal(M/k∞)

so that we have the exact sequence

(3.1.2) 1 −→ G −→ G −→ Γ −→ 1.

We assume that G is a finitely generated pro-p group, in other words, the
µ-invariant is zero.

We fix a topological generator γ of Γ and its lift γ̃ ∈ G. We then define
the automorphism φγ̃ of G by Inn(γ̃)

(3.1.3) φγ̃(g) = γ̃gγ̃−1 (g ∈ G).

We note that if we choose a different lift γ̃′ of γ, φγ̃′ differs from φγ̃ by an
inner automorphism of G :

(3.1.4) φγ̃′ = Inn(x) ◦ φγ̃ (x := γ̃′γ̃−1 ∈ G).

Let H be the Frattini quotient of G, H = G/Gp[G,G], as in (2.1.5). The
Fp-linear automorphism [φγ̃ ] of H induced by φγ̃ is independent of the choice
of a lift γ̃ and so is denoted by [φγ]. Similarly, we let H∞ be the Abelian-
ization of G, H∞ = G/[G,G], and [φγ]∞ the Zp-module automorphism of
H∞ induced by φγ̃, which is independent of the choice of a lift γ̃ of γ. The
reason that we use the Zassenhaus filtrarion instead of the lower central se-
ries throughout this paper is that any p-power of φγ̃ acts non-trivially on
G/[G,G] in general.

By the Magnus correspondence γ 7→ 1+X , we identify the complete group
algebra Fp[[Γ]] (resp. Zp[[Γ]]) with the power series algebra Fp[[X ]] (resp.
Zp[[X ]]). We set simply Λ := Zp[[X ]] (Iwasawa algebra) and Λ := Fp[[X ]].
Classical Iwasawa theory studies the Λ-module structure of H∞, in other
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words, the p-power iterated action of [φγ]∞ on H∞. A fundamental theorem
of Iwasawa ([Iw1]), under our assumption on G, tells us that there is a Λ-
module homomorphism, called a pseudo-isomorphism,

(3.1.5) H∞ −→
s⊕

i=1

Λ/(fi(X))

with finite kernel and cokernel, where fi(X) is a power of an irreducible dis-
tinguished polynomial. Recall that a nonconstant polynomial f(X) ∈ Zp[X ]
is called distinguished if f(X) has the form Xd + a1X

d−1 + · · ·+ ad with all
ai ≡ 0 mod p. The Iwasawa polynomial (p-adic zeta function) associated to
H∞ is defined by

∏s
i=1 fi(X). The set of degrees of fi, {deg(f1), . . . , deg(fs)},

is also an invariant of the Λ-module H∞. The Iwasawa λ-invariant λ(H∞) is
defined by their sum

∑s
i=1 deg(fi).

In some cases, the pseudo-isomorphism in (3.1.5) turns out to be an iso-
morphism. Then we can describe the p-power iterated action of [φγ] on H
in terms of deg(fi)’s. Since H is finite, there is an integer d ≥ 0 such that
[φγ]

pd = [φ
γpd ] = idH , namely, [φγ]

pd ∈ IA(G). We call such smallest integer

d the p-period of [φγ] on H .

Proposition 3.1.6. Suppose that we have a Λ-module isomorphism

H∞ ≃
s⊕

i=1

Λ/(fi(X)),

where fi is a distinguished polynomial of degree deg(fi). Let d(H∞) denote

the maximum of deg(f1), . . . , deg(fs). Then we have

[φγ]
pd = [φγpd ] = idH , namely, [φγ]

pd ∈ IA(G)

if and only if

pd ≥ d(H∞).

Hence the p-period of [φγ] is given by the smallest integer ≥ logp d(H∞).

Proof. By the assumption, we have a Λ-module isomorphism

H ≃
s⊕

i=1

Λ/(Xdeg(fi)).
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Since the action of [φγ ]
pd − idH on H corresponds the multiplication by

(1 + X)p
d − 1 = Xpd, [φγ]

pd = idH if and only if Xpd ∈ (Xdeg(fi)) for all
i. From this the assertion follows. �

Example 3.1.7.∗ Let k := Q(µp), k∞ := Q(µp∞) and M the maximal
unramified pro-p extension of k∞. The assumption of Proposition 3.1.5 is
then satisfied if the Vandiver conjecture is true, namely, p does not divide
the class number of the maximal real subfield of k ([Wa; Theorem 10.16]).
The Vandiver conjecture is known to be true for p < 163577856 ([BH]).
For instance, we have H∞ = Λ/(f) for p = 37 and H∞ = Λ/(f1) ⊕ Λ/(f2)
for p = 157, where f, f1 and f2 are all distinguished polynomials of degree
one ([IS]). So, the p-period of [φγ ] is zero, namely, [φγ] acts trivially on H .
Mizusawa made a program to compute the Iwasawa polynomial when k is
an imaginary quadratic field Q(

√
−D), k∞ is the cyclotomic Zp-extension

and M is the maximal unramified pro-p extension of k∞. For example, when
p = 3 and D = 186, 211, 231, 249, H∞ = Λ/(f) with deg(f) = 2 and so the
3-period of [φγ ] is one, and when p = 3 and D = 214, 274, H∞ = Λ/(f) with
deg(f) = 4 and so the 3-period of [φγ] is two.

3.2. Non-Abelian Iwasawa theory via Johnson homomorphisms. A
basic problem in non-Abelian Iwasawa theory is to understand the p-power
iterated action of φγ̃ on G, while classical Iwasawa theory deals with that of
[φγ] on H∞ as shown in 3.1. Let {Gn}n≥1 be the Zassenhaus filtration of G
so that H = G/G2, and let [φγ̃ ]m be the automorphism of G/Gm+1 induced
by φγ̃ as defined in (2.2.1). We aim to study the p-power iterated action of
[φγ̃]m on G/Gm+1 for all m ≥ 1 by means of the p-Johnson homomorphisms
introduced in 2.2.

First, let us see how a different choice of a lift of γ affects the action of a
power of [φγ̃ ]m on G/Gm+1

Lemma 3.2.1. Let γ̃, γ̃′ be lifts of γ in G and set x = γ̃′γ̃−1 ∈ G as in

(3.1.4). Suppose x ∈ Gm. Then, for each integer e ≥ 1, we have

φe
γ̃′ ∈ AG(m) ⇐⇒ φe

γ̃ ∈ AG(m).

∗We thank Y. Mizusawa for informing us of this example.
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Proof. By (3.1.4), we have

φe
γ̃′(g) = yφe

γ̃(g)y
−1, y := xφγ̃(x) · · ·φe−1

γ̃ (x) ∈ Gm,

for any g ∈ G. Since elements of G/Gm+1 and Gm/Gm+1 commute, the
assertion is shown as follows

φe
γ̃′ ∈ AG(m) ⇔ φe

γ̃′(g)g−1 ∈ Gm+1 for any g ∈ G
⇔ yφe

γ̃(g)y
−1g−1 ∈ Gm+1 for any g ∈ G

⇔ φe
γ̃(g)g

−1 ∈ Gm+1 for any g ∈ G
⇔ φγ̃ ∈ AG(m) �

Let gr(G) =
⊕

n≥1 grn(G), grn(G) = Gn/Gn+1, be the graded Lie algebra
over Fp associated to the Zassenhaus filtration of G as in (2.1.6), and let
{AG(m)}m≥0 be the Andreadakis-Johnson filtration of Aut(G). For m ≥ 1,
let

τm : AG(m) −→ HomFp
(H, grm+1(G))

be the p-Johnson homomorphism. The next Corollary follows immediately
from Lemma 3.2.1.

Corollary 3.2.2. Let γ̃, γ̃′ be lifts of γ in G and set x = γ̃′γ̃−1 ∈ G.
Suppose x ∈ Gm+1 and φe

γ̃ ∈ AG(m) (e ≥ 1). Then we have

τm(φ
e
γ̃′) = τm(φ

e
γ̃).

Proof. By Lemma 3.2.1, φe
γ̃′ ∈ AG(m). Since φe

γ̃′ = Inn(y) ◦ φe
γ̃ with

y = xφγ̃(x) · · ·φe−1
γ̃ (x) ∈ Gm+1, the assertion follows from Theorem 2.2.8

and Proposition 2.2.10. �

We fix a lift γ̃ ∈ G of γ. Generalizing the p-period of [φγ ] on H = G/Gm,
we define the p-period d(m) of φγ̃ acting on G/Gm+1 for each m ≥ 1 by the
smallest integer d ≥ 0 such that

(3.2.3) φpd

γ̃ ∈ AG(m).

Thus we have non-decreasing sequence {d(m)}m≥1 of integers.

Lemma 3.2.4. For each integer m ≥ 1, we have

d(m+ 1) = d(m) or d(m) + 1.
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Proof. By definition of d(m), we have d(m + 1) ≥ d(m). Suppose φpd

γ̃ ∈
AG(m). Then by Proposition 2.2.5 (2), we have φpd+1

γ̃ ∈ AG(m + 1). Hence
d(m+ 1) ≤ d(m) + 1. �

Now we introduce another sequence of integers {m(d)}d≥0 as follows. For
each integer d ≥ 0, we define the integer m(d) ≥ 1 by

(3.2.5) φpd

γ̃ ∈ AG(m(d)), φpd

γ̃ /∈ AG(m(d) + 1).

It is a strictly increasing sequence. In fact, we have

Lemma 3.2.6. For each integer d ≥ 0, we have

m(d+ 1) ≥ m(d) + 1.

Proof. Since φpd

γ̃ ∈ AG(m(d)) for each d ≥ 0, by Proposition 2.2.5 (2), we

have φpd+1

γ̃ ∈ AG(m(d)+1). Hence, by definition (3.2.5), we have m(d+1) ≥
m(d) + 1. �

Then the sequence {τm(d)(φ
pd

γ̃ )}d≥0 in HomFp
(H, grm(d)+1(G)) describes the

action of φpd

γ̃ on G/Gm(d)+1 for all d ≥ 0. In Section 5, we give a coho-

mological interpretation of τm(d)(φ
pd

γ̃ ) in terms of Massey products in Galois
cohomology.

Remark 3.2.7. Let M the maximal unramified pro-p extension of k∞.
Ozaki ([O]) studied the Γ-action on the graded pieces associated to the lower
central series of G = Gal(M/k∞) and obtained arithmetic results. We also
refer to Sharifi’s paper [Sh] for a related work. Our approach is different from
theirs.

4. p-Johnson maps for a free pro-p group

In this section, following Kawazumi ([Kw]), we extend the p-Johnson
homomorphisms in Section 2 to maps defined on the whole group of auto-
morphisms when G is a free pro-p group.

Throughout this section, let F denote a free pro-p group on x1, . . . , xr. A
fixed prime number p is arbitrary in 4.1 and assumed to be odd in 4.2.
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4.1. p-Johnson maps. We keep the same notations as in 2.1, only re-
placing G by F . Let Fp[[F ]] be the complete group algebra of F over Fp with
augmentation ideal IF . Let {Fn}n≥1 be the Zassenhaus filtration defined by
Fn = F ∩ (1 + InF ) and let H := F/F2 = F/F p[F, F ] be the Frattini quotient
of F . We write [f ] for the image of f ∈ F in H : [f ] := f mod F2. We denote
[xj ] by Xj (1 ≤ j ≤ r) simply so that H is a vector space over Fp with basis
X1, . . . , Xr

H = FpX1 ⊕ · · · ⊕ FpXr.

As in 2.1, let gr(F ) be the graded restricted Lie algebra over Fp associated
to the Zassenhaus filtration {Fn}n≥1 of F

gr(F ) :=
⊕

n≥1

grn(F ), grn(F ) := Fn/Fn+1.

It is the free Lie algebra over Fp on X1, . . . , Xr. Its restricted universal en-
veloping algebra Ugr(F ) is given by the graded associative algebra gr(Fp[[F ]])
(cf. (2.1.7))

Ugr(G) = gr(Fp[[F ]]) :=
⊕

m≥0

grm(Fp[[F ]]), grm(Fp[[F ]]) := ImF /I
m+1
F

together with the injective restricted Lie algebra homomorphism

gr(θ) =
⊕

m≥1

θm : gr(F ) −→ gr(Fp[[F ]]),

where θm : grm(F ) → grm(Fp[[F ]]) is given by

θm(f mod Fm+1) := f − 1 mod Im+1
F .

By the correspondence xj−1 mod I2F ∈ gr1(Fp[[F ]]) 7→ Xj ∈ H , the universal
envelope gr(Fp[[F ]]) is identified with the tensor algebra on H over Fp or the
non-commutative polynomial algebra Fp〈X1, . . . , Xr〉 of variables X1, . . . , Xr

over Fp

Ugr(G) = gr(Fp[[F ]]) =
⊕

m≥0

H⊗m

= Fp〈X1, . . . , Xr〉.
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Here the graded piece grm(Fp[[F ]]) corresponds to H⊗m, the vector space
over Fp with basis Xi1 · · ·Xim (1 ≤ i1, . . . , im ≤ r), monomials of degree m,
and so θm may be regarded as the injective Fp-linear map

(4.1.1) θm : grm(F ) →֒ H⊗m

In order to extend the Johnson homomorphisms in 2.2 to the maps defined
on the whole automorphism group Aut(F ), we work with the completion Û of
the universal envelope Ugr(F ) = gr(Fp[[F ]]) with respect to IF -adic topology.

So Û is the complete tensor algebra on H over Fp which is identified with
the Fp-algebra Fp〈〈X1, . . . , Xr〉〉 of non-commutative formal power series of

variables X1, . . . , Xr over Fp (In [Kw] Kawazumi wrote T̂ for Û)

Û :=
∏

m≥0

H⊗m

= Fp〈〈X1, . . . , Xr〉〉.

Then the composite of θm in (4.1.1) with the natural inclusion H⊗m →֒ Û is
nothing but the restriction to Fm of the Magnus embedding

(4.1.2) θ : F →֒ Û×

defined by θ(xj) := 1 +Xj (1 ≤ j ≤ r).

For n ≥ 1, we let

Ûn :=
∏

m≥n

H⊗m

be the two-sided ideal of Û corresponding to formal power series of degree
≥ n. An Fp-algebra automorphism ϕ of Û is then called filtration-preserving if

ϕ(Ûn) = Ûn for all n ≥ 0 and we denote by Autfil(Û) the group of filtration-

preserving Fp-algebra automorphisms of Û . The following useful Lemma,
which we call Kawazumi’s lemma, gives a criterion for a Fp-algebra endo-

morphism of Û to be a filtration-preserving automorphism.

Lemma 4.1.3. (Kawazumi’s lemma). A Fp-algebra endomorphism ϕ of

Û is a filtration-preserving automorphism of Û , ϕ ∈ Autfil(Û), if and only if

the following conditions are satisfied:
(1) ϕ(Ûn) ⊂ Ûn for all n ≥ 0.
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(2) the induced Fp-linear map [ϕ] on Û1/Û2 = H defined by [ϕ](h) := ϕ(h)mod Û2

(h ∈ H) is an isomorphism.

Proof. Suppose ϕ ∈ Autfil(Û). Since ϕ is filtration-preserving, the condition
(1) holds. To show the condition (2), consider the following commutative
diagram for vector spaces over Fp with exact rows:

0 −→ Û2 −→ Û1 −→ H −→ 0
↓ ϕ|Û2

↓ ϕ|Û1
↓ [ϕ]

0 −→ Û2 −→ Û1 −→ H −→ 0.

Since ϕ(Ûn) = Ûn for all n ≥ 0, we have Coker(ϕ|Ûi
) = 0 for i = 1, 2, in

particular. Since ϕ is an automorphism, we have Ker(ϕ) = 0, in particular,
Ker(ϕ|Ûi

) = 0 for i = 1, 2. By snake lemma applied to the above diagram,
we obtain Ker([ϕ]) = 0 and Coker([ϕ]) = 0, hence the condition (2).

Suppose that an Fp-algebra endomorphism ϕ of Û satisfies the conditions

(1) and (2). Let z = (zm) be any element of Û with zm ∈ H⊗m for m ≥ 0.
To show that ϕ is an automorphism, we have only to prove that there exists
uniquely y = (ym) ∈ Û such that

(4.1.3.1) z = ϕ(y).

Note by the condition (1) and (2) that ϕ induces an Fp-linear automorphism

of Ûm/Ûm+1 = H⊗m, which is nothing but [ϕ]⊗m. Then, writing ϕ(yi)j for
the component of ϕ(yi) in H

⊗j for i < j, the equation (4.1.3.1) is equivalent
to the following system of equations:

(4.1.3.2)





z0 = ϕ(y0) = y0,
z1 = [ϕ](y1),
z2 = [ϕ]⊗2(y2) + ϕ(y1)2,
· · ·
zm = [ϕ]⊗m(ym) + ϕ(y1)m + · · ·+ ϕ(ym−1)m,
· · ·

Since [ϕ]⊗m is an automorphism, we can find the unique solution y = (ym)
of (4.1.3.2) from the lower degree. Therefore ϕ is an Fp-algebra automor-
phism. Furthermore, we can see easily that if z0 = · · · = zn−1 = 0, then
y0 = · · · = yn−1 = 0 for n ≥ 1. This means that ϕ−1(Ûn) ⊂ Ûn and so ϕ is
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filtration-preserving. �

By Lemma 4.1.3, each ϕ ∈ Autfil(Û) induces an Fp-linear automorphism

[ϕ] of H = Û1/Û2 and so we have a group homomorphism

[ ] : Autfil(Û) −→ GL(H).

We define the induced automorphism group of Û by

IA(Û) := Ker([ ]).

We note that there is a natural splitting s : GL(H) → Autfil(Û) of [ ], which
is defined by

s(P )((zm)) := (P⊗m(zm)) for P ∈ GL(H).

In the following, we also regard [P ] ∈ GL(H) as an element of Autfil(Û)
through the splitting s and write simply [P ] for s([P ]). Thus we have the
following

Lemma 4.1.4. We have a semi-direct decomposition

Autfil(Û) = IA(Û)⋊GL(H)

given by ϕ = (ϕ ◦ [ϕ]−1, [ϕ]).

Let ϕ ∈ IA(Û). Since ϕ acts on Û1/Û2 = H trivially, we have

ϕ(h)− h ∈ Û2 for any h ∈ H,

and so we have a map

E : IA(Û) −→ HomFp
(H, Û2); ϕ 7→ ϕ|H − idH ,

where HomFp
(H, Û2) denotes the group of Fp-linear maps H → Û2. The fol-

lowing Proposition will play a key role in our discussion.

Proposition 4.1.5. The map E is bijective.

Proof. Injectivity: Suppose E(ϕ) = E(ϕ′) for ϕ, ϕ′ ∈ IA(Û). Then we
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have ϕ|H = ϕ′|H . Since an Fp-algebra endomorphism of Û is determined by
its restriction on H , we have ϕ = ϕ′.
Surjectivity: Take any η ∈ HomFp

(H, Û2). We can extend η + idH : H → Û2

uniquely to a Fp-algebra endomorphism ϕ of Û . Then we have obviously

ϕ(Ûn) ⊂ Ûn for all n ≥ 0. Since Û1/Û2 = H and we see that

[ϕ](hmod Û2) = ϕ(h)mod Û2 = h+ η(h)mod Û2 = hmod Û2,

we have [ϕ] = idH . By Kawazumi’s Lemma 2.1, we have ϕ ∈ IA(Û) and
E(ϕ) = η. �

By Lemma 4.1.4 and Proposition 4.1.5, we have the following

Corollary 4.1.6. We have a bijection

Ê : Autfil(Û) ≃ HomFp
(H, Û2)×GL(H)

given by Ê(ϕ) = (E(ϕ ◦ [ϕ]−1), [ϕ]).

The Magnus embedding θ : F →֒ Û× in (4.1.2) is extended to an Fp-
algebra isomorphism, denoted by the same θ,

(4.1.7) θ : Fp[[F ]]
∼−→ Û ,

which satisfies

(4.1.8) θ(InF ) = Ûn for m ≥ 1.

For m ≥ 0, let θm denote the component of θ in H⊗m as in (4.1.1):

θ(α) =

∞∑

m=0

θm(α), θm(α) ∈ H⊗m (α ∈ Fp[[F ]]).

Note that θ0(f) = 1 and θ1(f) = [f ] for f ∈ F . Further we can write θm(α)
as

(4.1.9) θm(α) =
∑

1≤i1,...,im≤r

ǫ(i1 · · · im;α)Xi1 · · ·Xim ,
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where the coefficient ǫ(i1 · · · im;α) is given in terms of the pro-p Fox free
derivative ∂/∂xj : Zp[[F ]] → Zp[[F ]] ([Ih], [Ms2, 8.3])

ǫ(i1 · · · im;α) = ǫZp[[F ]]

(
∂mα̃

∂xi1 · · ·∂xim

)
mod p,

where ǫZp[[F ]] : Zp[[F ]] → Zp is the augmentation map and α̃ ∈ Zp[[F ]] such
that α̃ mod p = α.

An Fp-algebra automorphism ϕ of Fp[[F ]] is said to be filtration-preserving
if ϕ(InF ) = InF for all n ≥ 0 and we denote by Autfil(Fp[[F ]]) the group of
filtration-preserving automorphisms of Fp[[F ]]. By (4.1.7) and (4.1.8), we
have an isomorphism

(4.1.10) Autfil(Fp[[F ]]) ≃ Autfil(Û); ϕ 7→ θ ◦ ϕ ◦ θ−1.

Now, let φ ∈ Aut(F ). Then φ induces a filtration-preserving Fp-algebra

automorphism φ̂ of Fp[[F ]]). In fact, φ induces an automorphism [φ]n of a
finite p-group F/Fn and hence an Fp-algebra automorphism, denoted by the
same [φ]n, of a finite group ring Fp[F/Fn]

[φ]n : Fp[F/Fn]
∼−→ Fp[F/Fn]

for each n ≥ 1, which sends the augmentation ideal of Fp[F/Fp] onto it-
self. Taking the inverse limit with respect to n, we obtain an Fp-algebra
automorphism

φ̂ := lim
←−
n

[φ]n : Fp[[F ]]
∼−→ Fp[[F ]]

such that φ̂(IF ) = IF . Thus we have an injective homomorphism

Aut(F ) −→ Autfil(Fp[[F ]]); φ 7→ φ̂.

By composing with the isomorphism (4.1.10), we obtain an injective homo-
morphism

κ̂θ : Aut(F ) −→ Autfil(Û); φ 7→ θ ◦ φ̂ ◦ θ−1.

Lemma 4.1.11. Let [φ] denote the Fp-linear automorphism of H induced by

φ ∈ Aut(F ). Then we have

[κ̂θ(φ)] = [φ] in GL(H).
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Proof. We have, for Xj ∈ H (1 ≤ j ≤ r),

κ̂θ(φ) = (θ ◦ φ̂ ◦ θ−1)(Xj)

= (θ ◦ φ̂ ◦ θ−1)(θ(xj)− 1)

= (θ ◦ φ̂)(xj − 1)
= θ(φ(xj))− 1

≡ [φ(xj)] mod Û2

= [φ](Xj) mod Û2.

Hence we have [κ̂θ(φ)] = [φ]. �

By Lemma 4.1.11, we have, for φ ∈ Aut(F ),

κ̂θ(φ) = (κ̂θ(φ) ◦ [φ]−1, [φ])

under the semi-direct decomposition Autfil(Û) = IA(Û)⋊GL(H) of Lemma
4.1.4. We set

(4.1.12) κθ(φ) := κ̂θ(φ) ◦ [φ]−1 = θ ◦ φ̂ ◦ θ−1 ◦ [φ]−1 (φ ∈ Aut(F )).

Now, we define the extended p-Johnson map

τ̂ θ : Aut(F ) −→ HomFp
(H, Û2)⋊GL(H)

by composing κ̂θ with Ê of Corollary 4.1.6, and we define the p-Johnson map

τ θ : Aut(F ) −→ HomFp
(H, Û2)

by the composing τ̂ θ with the projection on HomFp
(H, Û2), namely, for φ ∈

Aut(F ),

(4.1.13) τ θ(φ) := E(κθ(φ)) = κθ(φ)|H − idH .

For m ≥ 1, we define the m-th p-Johnson map

τ θm : Aut(F ) −→ HomFp
(H,H⊗(m+1))

by the m-th component of τK :

(4.1.14) τ θ(φ) :=
∑

m≥1

τ θm(φ) (φ ∈ Aut(G)).

26



Unlike the p-Johnson homomorphisms (Theorem 2.2.8), the p-Johnson

map τ θ = E ◦ κθ : Aut(F ) → Hom(H, Û2) is no longer a homomorphism. In
fact, we have the following

Proposition 4.1.15. We have

κθ(φ1 ◦ φ2) = κθ(φ1) ◦ [φ1] ◦ κθ(φ2) ◦ [φ1]
−1.

Proof. By (4.1.12), we have

κθ(φ1φ2) = θ ◦ (φ̂1φ2) ◦ θ−1 ◦ [φ1φ2]
−1

= θ ◦ φ̂1 ◦ φ̂2 ◦ θ−1 ◦ [φ2]
−1 ◦ [φ1]

−1

= θ ◦ φ̂1 ◦ θ−1 ◦ [φ1]
−1 ◦ [φ1] ◦ θ ◦ φ̂2 ◦ θ−1 ◦ [φ2]

−1 ◦ [φ1]
−1

= κθ(φ1) ◦ [φ1] ◦ κθ(φ2) ◦ [φ1]
−1. �

Proposition 4.1.15 yields an infinite sequence coboundary relations which
Johnson maps τ θm satisfies. Here we give the formulas for τ θ1 and τ θ2 .

Proposition 4.1.16. We have

τ θ1 (φ1φ2) = τ θ1 (φ1) + [φ1]
⊗2 ◦ τ θ1 (φ2) ◦ [φ1]

−1,
τ θ2 (φ1φ2) = τ θ2 (φ1) + (τ θ1 (φ1)⊗ idH + idH ⊗ τ θ1 (φ1)) ◦ [φ1]

⊗2 ◦ τ θ1 (φ2) ◦ [φ1]
−1

+[φ1]
⊗3 ◦ τ θ2 (φ2) ◦ [φ1]

−1.

Proof. By definition (4.1.14), we have

(4.1.16.1) τ θ(φ1φ2) =
∑

m≥1

τ θm(φ1φ2).
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On the other hand, by Proposition 4.1.15 and (4.1.13), we have, for h ∈ H ,

τ θ(φ1φ2) = −h + κθ(φ1φ2)(h)
= −h + (κθ(φ1) ◦ [φ1] ◦ κθ(φ2) ◦ [φ1]

−1)(h)
= −h + (κθ(φ1) ◦ [φ1] ◦ (idH + τ θ(φ2)))([φ1]

−1(h))

= −h + (κθ(φ1) ◦ [φ1])

(
[φ1]

−1(h) +
∑

m≥1

(τ θm(φ2) ◦ [φ1]
−1)(h)

)

= −h + κθ(φ1)

(
h+

∑

m≥1

([φ1]
⊗m ◦ τ θm(φ2) ◦ [φ1]

−1)(h)

)

= −h + κθ(φ1)(h)
+κθ(φ1)(([φ1]

⊗2 ◦ τ θ1 (φ2) ◦ [φ1]
−1)(h))

+κθ(φ1)(([φ1]
⊗3 ◦ τ θ2 (φ2) ◦ [φ1]

−1)(h)) mod Û4.

We note that

κθ(φ)|H⊗m = (idH + τ θ(φ))⊗m : H⊗m −→ H × Û2m

for any φ ∈ Aut(F ) and so we have the following congruences mod Û4:

κθ(φ1)(h) ≡ h+ τ θ1 (φ1)(h) + τ θ2 (φ1)(h),
κθ(φ1)(([φ1]

⊗2 ◦ τ θ1 (φ2) ◦ [φ1]
−1)(h))

≡ ([φ1]
⊗2 ◦ τ θ1 (φ2) ◦ [φ1]

−1)(h)
+((τ θ1 (φ1)⊗ idH + idH ⊗ τ θ1 (φ1)) ◦ [φ1]

⊗2 ◦ τ θ1 (φ2) ◦ [φ1]
−1)(h),

κθ(φ1)(([φ1]
⊗3 ◦ τ θ1 (φ2) ◦ [φ1]

−1)(h)) ≡ ([φ1]
⊗3 ◦ τ θ2 (φ2) ◦ [φ1]

−1)(h).

Therefore we have

(4.1.16.2)

τ θ(φ1φ2)(h)
≡ τ θ1 (φ1)(h) + τ θ2 (φ1)(h)
+([φ1]

⊗2 ◦ τ θ1 (φ2) ◦ [φ1]
−1)(h)

+((τ θ1 (φ1)⊗ idH + idH ⊗ τ θ1 (φ1)) ◦ [φ1]
⊗2 ◦ τ θ1 (φ2) ◦ [φ1]

−1)(h)

+([φ1]
⊗3 ◦ τ θ2 (φ2) ◦ [φ1]

−1)(h) mod Û4.

Comparing (4.1.16.1) and (4.1.16.2), we obtain the assertions. �

Next, we compute the p-Johnson maps for inner automorphisms of F .

Proposition 4.1.17. Let f ∈ F and h ∈ H. For m ≥ 1, we have

τ θm(Inn(f))(h) = θm(f)h+
m∑

j=1

∑

q0+···+qj=m
q0≥0,q1,...,qj≥1

(−1)jθq0(f)hθq1(f) · · · θqj (f).
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In particular, we have, for m = 1, 2,

τ θ1 (Inn(f))(h) = [f ]h− h[f ],
τ θ2 (Inn(f))(h) = θ2(f)h− hθ2(f) + h[f ][f ]− [f ]h[f ].

Proof. Since [Im(f)] = idH , by (4.1.12), we have

κθ(Inn(f))(z) = (θ ◦ Înn(f) ◦ θ−1)(z)
= θ(f)zθ(f−1)

=

(
1 +

∑

m≥1

θm(f)

)
z

(
1 +

∑

j≥1

(−1)j(
∑

q≥1

θq(f))
j

)

for z ∈ Û . Therefore, by (4.1.13), we have

τ θ(Inn(f))(h) = κθ(Im(f))(h)− h

=
∑

m≥1

θm(f)h+
∑

j≥1

∑

qo≥0.
q1,...,qj≥1

(−1)jθq0(f)hθq1(f) · · · θqj (f)

for h ∈ H . Taking the component in H⊗(m+1), we obtain the assertion. �

Finally we give the relation between the p-Johnson maps and the p-Johnson
homomorphisms in Section 2.

Proposition 4.1.18. The restriction of τ θm to AF (m) coincides with θm+1◦τm
for each m ≥ 1:

τ θm|AF (m) = θm+1 ◦ τm : AF (m) −→ Hom(H,H⊗(m+1)),

where θm+1 is the injection grm+1(F ) →֒ H⊗(m+1) in (4.1.1).

Proof. It suffices to show that for φ ∈ AF (m),

τ θm(φ)(Xj) = θm+1(τm(φ)(Xj)) 1 ≤ j ≤ r.

By (4.1.13) and [φ] = idH , we have

τ θ(φ)(Xj) = (κθ(φ)|H − idH)(Xj)

= (θ ◦ φ̂ ◦ θ−1)(θ(xj)− 1)− (θ(xj)− 1)
= θ(φ(xj))− θ(xj).
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Therefore we see that

(4.1.18.1) τ θm(φ)(Xj) = the component in H⊗(m+1) of θ(φ(xj))− θ(xj).

On the other hand, since φ(xj)x
−1
j ∈ Fm+1, we have

θ(φ(xj)x
−1
j ) ≡ 1 + θm+1(φ(xj)x

−1
j ) = 1 + θm+1(τm(φ)(Xj)) mod Ûm+2.

Multiplying the above equation by θ(xj) from right, we have

(4.1.18.2) θ(φ(xj)) ≡ θ(xj) + θm+1(τm(φ)(Xj)) mod Ûm+2.

By (4.1.18.1) and (4.1.18.2), we obtain the assertion. �

4.2. Examples in Non-Abelian Iwasawa theory. Let us come back
to the arithmetic situation set up in 3.1 and keep the same notations. So, as
in (3.1.1) and (3.1.2), we have an exact sequence of pro-p Galois groups

1 −→ G −→ G −→ Γ −→ 1,

where
G = Gal(M/k∞), G = Gal(M/k) and G = Gal(k∞/k).

In order to apply the materials in 4.1, we assume that

(F) G = Gal(M/k∞) is a free pro-p group F on x1, . . . , xr.

This condition (F) is satisfied for the following cases.

Example 4.2.1 ([Iw2], [W1]). Suppose that
(1) k is totally real,
(2) M := k̃S,
(3) the Iwasawa µ-invariant of H∞ = G/[G,G] is zero.
Then the condition (F) is satisfied where the generator rank r is equal to the
Iwasawa λ-invariant of H∞.

To give the following example, we introduce the notation. For a field K,
K(p) denotes the maximal pro-p extension of K.

Example 4.2.2 ([Sc], [W2]). Suppose that
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(1) k is a CM-field containing µp i.e., k = k+(µp) where k
+ is the maximal

totally real subfield of k,
(2) the completions k+p of k+ with respect to any prime p lying over p do not
contain µp,
(3) k∞ is the cyclotomic Zp-extension of k, and
(4) the Iwasawa µ-invariant of the maximal Abelian unramified pro-p Galois
group over k∞ is zero.
The condition (4) is known to be true if k is Abelian over Q ([FW]). So, the
above four conditions are satisfied for the p-th cyclotomic field k = Q(µp),
for instance.

A finite p-extension L/k is called positively ramified over Sp if Lp ⊂
k+p (p)(µp) for any prime p over p. Since the composite of positively rami-
fied p-extensions is positively ramified again, the maximal positively ramified
pro-p extension of k exists, and it contains the cyclotomic Zp-extension k∞.
We then let

M := the maximal pro-p extension of k which is unramified outside S
and positively ramified over Sp.
Then the condition (F) is satisfied with

r = 2λ− +#(S(k∞) \ Sp(k∞))− 1,

where λ− denotes the Iwasawa λ−-invariant of k, and S(k∞) (resp. Sp(k∞))
denotes the set of primes of k∞ lying over S (resp. Sp). The pro-p Galois
group F = G = Gal(M/k∞) has the following presentation

F = 〈a1, b1, . . . , aλ−, bλ− , cv(v ∈ S(k∞) \ Sp(k∞)) |
∏

v∈S(k∞)\Sp(k∞)

cv

2λ−∏

i=1

[ai, bi] = 1〉.

We may take S to be Sp ∪ {q} such that there is only one prime of k∞ lying
over q (there are infinitely many such q). Then F and G may be seen as
arithmetic analogues of the fundamental groups of a one-boundary surface
and a surface bundle over a circle (a fibered knot complement), respectively.

We fix a lift γ̃ ∈ G of a topological generator γ of Γ and consider the
automorphism φγ̃ := Inn(γ̃) ∈ Aut(F ) as in (3.1.3). The p-power iterated
action of [φγ̃]m on F/Fm+1 is described by the m-th p-Johnson map

τ θm : Aut(F ) −→ HomFp
(H,H⊗(m+1)) (m ≥ 1).
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For an integer d ≥ 0, we can write

τ θm(φ
pd

γ̃ )([f ]) =
∑

1≤i1,...,im+1≤r

τ θ(φpd

γ̃ )(i1 · · · im+1; [f ])Xi1 · · ·Xim+1 .

Suppose that φpd

γ̃ ∈ AF (m). Then we can also write

(4.2.3) θm+1◦τm(φpd

γ̃ )([f ]) =
∑

1≤i1,...,im+1≤r

τ(φpd

γ̃ )(i1 · · · im+1; [f ])Xi1 · · ·Xim+1

and, by Proposition 4.1.18, we have

τ θ(φpd

γ̃ )(i1 · · · im+1;Xj) = τ(φpd

γ̃ )(i1 · · · im+1;Xj) ∈ Fp.

These coefficients are numerical datum encoded in the Johnson maps/ ho-
momorphisms. In Section 5, we express these coefficients in terms of Massey
products in Galois cohomology.

5. Massey products

In this section, we give a cohomological interpretation of p-Johnson ho-
momorphisms in terms of Massey products in Galois cohomology.

A fixed prime number p is arbitrary in 5.1 and assumed to be odd in 5.2.

5.1. Massey products and the Magnus expansion. Firstly, we re-
call some general materials on Massey products. For the sign convention,
we follow [Dw]. Let G be a pro-p group and let α1, . . . , αm ∈ H1(G,Fp). A
Massey products 〈α1, . . . , αm〉 is said to be defined if there is an array

A = {aij ∈ C1(G,Fp) | 1 ≤ i ≤ m+ 1, (i, j) 6= (1, m+ 1)}
such that 




[ai,i+1] = αi (1 ≤ i ≤ m),

daij =

j−1∑

l=1

a1l ∪ alj (j 6= i+ 1),

where d denotes the differential on cochains and ∪ denotes the cup product.
An array A is called a defining system for 〈α1, . . . , αm〉. Then we define
〈α1, . . . , αm〉A by the cohomology class represented by the 2-cocycle

m∑

l=2

a1l ∪ al,m+1.
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A Massey product of α1, . . . , αm is then defined by

〈α1, . . . , αm〉 := {〈α1, . . . , αm〉A ∈ H2(G,Fp) | A ranges over defining systems}.

We recall some basic properties of Massey products, which will be used
in 5.2.

5.1.1. One has 〈α1, α2〉 = α1 ∪ α2. For m ≥ 3, 〈α1, . . . , αm〉 is defined
and consists of a single element if 〈αi1, . . . , αil〉 = 0 for all proper subsets
{i1, . . . , il} of {1, . . . , m}.

5.1.2. Let Ψ : G → G ′ be a continuous homomorphism of pro-p groups. Then
if 〈α1, . . . , αm〉 is defined for αi ∈ H1(G ′,Fp) with defining system A = (aij),
then so is 〈Ψ∗(α1), . . . ,Ψ

∗(αm)〉 with defining system A∗ = (Ψ∗(aij)) and we
have Ψ∗(〈α1, . . . , αm〉) ⊂ 〈Ψ∗(α1), . . . ,Ψ

∗(αm)〉.

Next, we recall a relation between Massey products and the Magnus ex-
pansion. Let G be a finitely generated pro-p group with a minimal presenta-
tion

1 −→ N −→ F π−→ G −→ 1,

where F is a free pro-p group on x1, . . . , xs with s = dimFp
H1(G,Fp). We set

gi := π(xi) (1 ≤ i ≤ s). Note that π induces the isomorphism H1(G,Fp) ≃
H1(F ,Fp). We let tg : H1(N,Fp)

G → H2(G,Fp) be the transgression map
defined as follows. For a ∈ H1(N,Fp)

G , choose a 1-cochain b ∈ C1(F ,Fp)
such that b|N = a. Since the value db(f1, f2), fi ∈ F , depends only on the
cosets fi mod N , there is a 2-cocyle c ∈ Z2(G,Fp) such that π∗(c) = db. Then
we define tg(a) by the class of c. By Hochschild-Serre spectral sequence, tg
is an isomorphism and so we have the dual isomorphism, called the Hopf
isomorphism,

(5.1.3) tg∨ : H2(G,Fp)
∼→ H1(N,Fp)G = N/Np[N,F ].

Then we have the following Proposition. The proof goes in the same manner
as in [Ms1, Theorem 2.2.2].

Proposition 5.1.4. Notations being as above, let α1, . . . , αm ∈ H1(G,Fp)
and A = (aij) a defining system for the Massey product 〈α1, . . . , αm〉. Let
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f ∈ N and set β := (tg∨)−1(f mod Np[N,F ]). Then we have

〈α1, . . . , αm〉A(β)

=

m∑

j=1

(−1)j+1
∑

c1+···+cj=m

∑

1≤i1,...,ij≤s

a1,1+c1(gi1) · · · am+1−cj ,m+1(gij)ǫ(i1 · · · ij; f),

where c1, . . . , cj run over positive integers satisfying c1 + · · · + cj = m and

gi := π(xi) (1 ≤ i ≤ s) and ǫ(i1 · · · ij ; f) is the Magnus coefficient defined in

(4.1.9).

5.2. Massey products and p-Johnson homomorphisms. We come
back to the arithmetic situation in 4.2 and keep the same notations. So we
have an exact sequence of pro-p Galois groups

1 −→ F −→ G −→ Γ −→ 1,

where
F = Gal(M/k∞), G = Gal(M/k) and Γ = Gal(k∞/k),

and F is a free pro-p group on x1, . . . , xr. We fix a lift γ̃ ∈ G of a topological
generator γ of Γ and let φγ̃ := Inn(γ̃) ∈ Aut(F ).

Let d(1) be the p-period of [φγ ] on H as in (3.2.3) so that φpd(1)

γ̃ ∈ IA(F ).
If necessary, we replace the base field k by the subextension kd(1) of k∞ with

degree [kd(1) : k] = pd(1) and γp
d(1)

with γ so that we may suppose that

φγ̃ ∈ IA(F ),

namely, φγ̃ acts trivially on H .
For each integer d ≥ 0, let kd be the subextension of k∞ with [kd : k] = pd

and let
Gd := Gal(M/kd).

Then the pro-p group Gd has the presentation

1 −→ Nd −→ F πd−→ Gd −→ 1

where F is the free pro-p group on x1, . . . , xr, xr+1 with πd(xr+1) = γp
d

and
Nd is the closed subgroup of F generated normally by

Rj,d := φpd

γ̃ (xj)(xr+1xjx
−1
r+1)

−1 (1 ≤ j ≤ r).
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Lemma 5.2.1. For each integer d ≥ 0, the homomorphism πd : F → Gd

induces the isomorphism of cohomology groups

H1(Gd,Fp)
∼−→ H1(F ,Fp).

Proof. Since Gd = F/Nd, we have
(5.2.1.1)

H1(Gd,Fp) = Homc(Gd/Gp
d [Gd,Gd],Fp) ≃ Homc(F/NdFp[F ,F ],Fp),

where Homc stands for the group of continuous homomorphisms. Since φpd

γ̃

acts trivially on H = F/F p[F, F ], φpd

γ̃ (xj)x
−1
j ∈ F p[F, F ] and so Rj,d =

φpd

γ̃ (xj)x
−1
j [xj , xr+1] ∈ Fp[F ,F ] (1 ≤ j ≤ r). Therefore we have

(5.2.1.2) Nd ⊂ Fp[F ,F ].

By (5.2.1.1) and (5.2.1.2), we have

H1(Gd,Fp) ≃ Homc(F/Fp[F ,F ],Fp) = H1(F ,Fp). �

By Lemma 5.2.1, Hochschild-Serre spectral sequence yields the Hopf isomor-
phism as in (5.1.3)

tg∨ : H2(Gd,Fp)
∼−→ H1(Nd,Fp)Gd = Nd/N

p
d [Nd,F ],

and we define ξj,d ∈ H2(Gd,Fp) by

ξj,d := (tg∨)−1(Rj,d mod Np
d [Nd,F ]) (1 ≤ j ≤ r).

We set gj := πd(xi) (1 ≤ j ≤ r + 1) and let g∗i ∈ H1(Gd,Fp) denote the
Kronecker dual to gj, namely g∗i (gj) = δij.

For d ≥ 0, let m(d) be the integer defined in (3.2.5). Since φγ̃ ∈ IA(F ),

m(d) ≥ 1. Let τm(d)(φ
pd

γ̃ )(i1 · · · im(d);Xj) be the coefficients of the m(d)-th
p-Johnson homomorphism defined in (4.2.3). The following theorem gives an

interpretation of τm(d)(φ
pd

γ̃ )(i1 · · · im(d);Xj) in terms of the Massey product in
the cohomology of Gd.

Theorem 5.2.2. Notations being as above, let i1, . . . , im(d)+1 ∈ {1, . . . , r}.
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Then the Massey product 〈g∗i1, · · · , g∗im(d)+1
〉 is uniquely defined and we have,

for each d ≥ 0,

τm(d)(φ
pd

γ̃ )(i1 · · · im(d)+1;Xj) = (−1)m(d)+1〈g∗i1, · · · , g
∗
im(d)+1

〉(ξj,d).

Proof. Let G ′d be the pro-p group given by the presentation

1 −→ N ′d −→ F
π′
d−→ G ′d −→ 1,

where N ′ is the closed subgroup of F generated normally by

R′j,d := φpd

γ̃ (xj)x
−1
j (1 ≤ j ≤ r).

We set g′j := π′(xj) (1 ≤ j ≤ r) and let g′i
∗ be the Kronecker dual to g′j. As

in Lemma 5.2.1, π′d induces the isomorphism tg : H1(G ′d,Fp)
∼→ H1(N ′d,Fp)G′

and so we have the Hopf isomorphism tg∨ : H2(G ′d,Fp)
∼→ H1(N

′
d,Fp).

We define ξ′j,d ∈ H2(G ′d,Fp) by (tg∨)−1(R′j,d mod N ′pd [N
′
d, F ]). Since φpd

γ̃ ∈
AF (m(d)), we note R′j,d ∈ Fm(d)+1 (1 ≤ j ≤ r).

Suppose m(d) ≥ 2. By Proposition 5.1.4, if l ≤ m(d), we have

〈g′i1
∗
, . . . , g′il

∗〉A′(ξ′j,d) = 0

for any i1, . . . , il ∈ {1, . . . r}, 1 ≤ j ≤ r, and any defining system A′,
because we have ǫ(i1 · · · il;R′j,d) = 0. Since R′j,d’s generate H1(N

′
d,Fp)G′

d
,

〈g′i1
∗, . . . , g′il

∗〉 = 0 for any i1, . . . , il ∈ {1, . . . r}. Therefore, by 5.1.1, the
Massey product 〈g′i1

∗, . . . , g′∗im(d)+1
〉 is uniquely defined and, by Proposition

5.1.4 again, we have
(5.2.2.1)

〈g′i1
∗, . . . , g′∗im(d)+1

〉(ξ′j,d) = (−1)m(d)+1ǫ(i1 · · · im(d)+1;R
′
j,d)

= (−1)m(d)+1τm(d)(φ
pd

γ̃ )(i1 · · · im(d)+1;Xj).

We define the homomorphism

Ψ : Gd −→ G ′d
by

Ψ(gj) := g′j (1 ≤ j ≤ r), Ψ(gr+1) := 1.

so that we have

ξ′j,d = Ψ∗(ξj,d) g′i
∗
= Ψ∗(g∗i ) (1 ≤ i, j ≤ r).
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Then our assertion follows from (5.2.2.1) and the naturality 5.1.2 of Massey
products as follows:

〈g∗i1, . . . , g∗im(d)+1
〉(ξj,d) = 〈Ψ∗(g′i∗), . . . ,Ψ∗(g′∗im(d)+1

) 〉(Ψ∗(ξ′j,d))
= Ψ∗(〈g′∗i1 , . . . , g′

∗
im(d)+1

〉)(Ψ∗(ξ′j,d))
= 〈g′∗i1 , . . . , g′

∗
im(d)+1

〉(ξ′j,d)
= (−1)m(d)+1τm(d)(φ

pd

γ̃ )(i1 · · · im(d)+1;Xj). �

Remark 5.2.3. (1) Theorem 5.2.2 may be regarded as an arithmetic ana-
logue in non-Abelian Iwasawa theory of Kitano’s result ([Ki, Theorem 4.1]).
(2) For Massey products in cohomology of a pro-p group, we also refer to
[G], [MT1] and [MT2].

Acknowledgement. We would like to thank Yasushi Mizusawa, Manabu
Ozaki, Takuya Sakasai and Takao Satoh for helpful communication. We
would also like to thank the referee for useful comments.

References

[A] S. Andreadakis, On the automorphisms of free groups and free nilpotent
groups, Proc. London Math. Soc. 15, (1965), 239-268.
[BH] J. P. Buhler, D. Harvey, Irregular primes to 163 million, Math. Comp.
80 (2011), no. 276, 2435-2444.
[CFKSV] J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, The
GL2 main conjecture for elliptic curves without complex multiplication,
Publ. Math. Inst. Hautes Etudes Sci. No. 101, (2005), 163-208.
[Da] M. Day, Nilpotence invariants of automorphism groups, Lecture note.
Available at http://www.math.caltech.edu/∼2010-11/1term/ma191a/

[De] C. Deninger, A note on arithmetic topology and dynamical systems,
Algebraic number theory and algebraic geometry, Contemp. Math., 300,
Amer. Math. Soc., Providence, RI, 2002, 99-114.
[DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic
pro-p groups, Second edition. Cambridge Studies in Advanced
Mathematics, 61, Cambridge University Press, Cambridge, 1999.
[Dw] W. G. Dwyer, Homology, Massey products and maps between groups,
J. Pure Appl. Algebra 6, (1975), no. 2, 177-190.
[FW] B. Ferrero, L. Washington, The Iwasawa invariant µp vanishes for
abelian number fields, Ann. of Math. 109, (1979), no. 2, 377-395.

37

http://www.math.caltech.edu/~2010-11/1term/ma191a/
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