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1 Introduction

Since the discovery of apparent cosmic acceleration [1–4] there has been an explosion

in the number of dark energy [5, 6] and modified gravity theories [7] constructed in

an attempt to describe these observations. The route model builders usually go down

is to write a Lagrangian at background order according to some phenomenological or

physically motivated principles, obtain constraints at background order on the theory,

perturb it and obtain further constraints from the perturbations. This entire process

is model dependent, with the results and constraints obtained being limited to the

theoretical prejudices which were imposed by the functional form of the Lagrangian

which was written down. The proliferation of models has prompted recent interest

in looking for ways to phenomenologically parameterize theories [8–29]. Constructing

a good set of phenomenological tools and probes of perturbations in the dark sector

is particularly pertinent given the recent data releases from CFHTLenS [30], Planck

[31, 32] and in the future, the Dark Energy Survey [33], LSST [34], and Euclid [35].

The formalism we introduced in [36–40], and develop in the current paper, does not

require a Lagrangian for the theory to be presented for useful and consistent information

about the dark sector to be extracted from observations. Our formalism can be thought

of as a way to phenomenologically parameterize deviations of the gravity theory realized

by nature from General Relativity. This can be done with specific theories in mind, or

by studying the signatures of generic theories. The important point is that we obtain

consistent cosmological perturbations from a model independent formalism: we are

able to remain agnostic about the functional form of the Lagrangian.

The way in which the problem is tackled is caught between a tension of “theoretical

generality” and “experimental feasibility”. From a theorists perspective, generality is

key; however, this usually results in a system with more freedom than it is reasonable to

expect observations to be able to constrain. Our strategy is therefore to study general

theories which are imposed with (often well motivated) restrictions, whilst retaining

important features of the general theory.

The key aspect to our approach is how we “package” the parameterization. The

new “PPF” approach, outlined in [13, 20, 26], provides the general modifications to

the gravitational field equations. The free functions in the modifications are called the

PPF functions. There are a large number of “free” PPF functions for a general theory,

but particular theories may severely restrict the form and freedom of the coefficients.

In spirit, our approach is similar since we identify all the PPF functions for modified

gravity theories satisfying various restrictions. Our additional contribution to this is to

provide a useful way to package the modifications, by characterizing equations of state

for dark sector perturbations.
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Our aim in this paper is to extend the formalism we introduced in [36–39] for

parameterizing dark sector perturbations to encompass substantially broader classes of

theories (see also [41]). This paper also acts as companion to [39]: here we explain,

justify, and prove the claims made in that short paper. Our particular aims can be

summarized as

• Present general modifications to gravitational field equations that are relevant for

“high derivative” scalar field theories, in a model independent way.

• Understand how to impose reparameterization invariance.

• Obtain an understanding of how different field contents of theories affect observ-

ables, via equations of state for dark sector perturbations.

• Motivate these modifications from an action for perturbations. This action for

perturbations can be calculated from an explicit theory.

The idea is to modify the Einstein-Hilbert action with a term which contains all

non-standard gravitational physics; we call this term the dark Lagrangian. This modi-

fied action is written as

S =

∫

d4x
√−g

[

R

16πG
− Lmatter − Ld

]

. (1.1)

Varying the action with respect to the metric gµν gives

Gµν = 8πG
[

Tµν + Uµν

]

. (1.2)

All contributions due to the dark Lagrangian Ld are contained within the dark energy-

momentum tensor Uµν . We assume that the energy-momentum tensor that comes from

the matter Lagrangian is conserved, ∇µT
µν = 0, which immediately implies that the

dark energy-momentum tensor is also conserved

∇µU
µν = 0. (1.3)

The field equations for perturbations are

δEGµν = 8πG
[

δETµν + δEUµν

]

, (1.4)

where “δE” is the relevant perturbation operator (we will explain why it has the “E”

subscript later on). The perturbed conservation equation is

δE(∇µU
µν) = 0. (1.5)
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The goal of this paper is to elucidate how different field contents of the dark Lagrangian

can influence the gravitational field equations at perturbed order, whilst assuming an

absolute minimum of theoretical structure for the Lagrangian of the dark sector; this

will tell us how to construct the perturbed dark energy-momentum tensor δEUµν . We

are able to obtain a “usefully small” number of free functions which can be constrained

with current observational data.

Setup of the background and notation We will assume that the geometry of

the background space-time is spatially homogeneous and isotropic, this is described by

a spatially flat FRW metric. This is written in conformal coordinates as gµν = a2(τ)ηµν ,

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. The symmetry of the background

enables us to use a (3 + 1) decomposition: we foliate the space with 3D hypersurfaces

whose metric is γµν . The 3D surfaces are peirced by a time-like unit vector uµ. The

metric is thus decomposed as gµν = γµν − uµuν , where uµ and γµν are subject to the

conditions that

uµuµ = −1, uµγµν = 0, γµν = γ(µν). (1.6)

An orthogonal vector Vµ is a vector that satisfies uµVµ = 0. We will make use of the

transverse-traceless orthogonal projection operator,

⊥αβ
µν ≡ γα

µγ
β
ν − 1

3
γαβγµν . (1.7)

This operator satisfies

uµ⊥αβ
µν = 0, γµν⊥αβ

µν = 0, ⊥αβ
µν⊥µν

ρσ = ⊥αβ
ρσ. (1.8)

The space-time covariant derivative of uµ defines the extrinsic curvature tensor Kµν of

the 3D sheets,

Kµν = γα
µγ

β
νKαβ = K(µν) = ∇µuν =

1
3
Kγµν , K ≡ Kµ

µ = γµνKµν . (1.9)

We use an overdot to denote derivative along uµ, and an overline above the derivative

to denote spatial differentiation. That is, for some quantity Xν ,

Ẋν ≡ uµ∇µXν , ∇̄µXν ≡ γα
µ∇αXν . (1.10)

2 Fluid language

Rather than follow the usual route and cast the parameterization in terms of “fields”,

we use the more physically intuitive “fluid” description. This is a useful way to collect
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all modifications to each component of the gravitational field equations. For instance,

only certain derivatives and combinations of fields in the underlying dark sector theory

will go into modifying the sources of given components of the perturbed gravitational

field equations.

This approach is already commonly used at the level of the cosmological back-

ground. The dark energy momentum tensor Uµν has just two components: the density,

ρ, and pressure, P , of the dark fluid. These macroscopic fluid quantities contain the

observationally relevant parts of the microscopic dark sector Lagrangian (if the back-

ground spacetime is FRW). The dark energy-momentum tensor is simply written as

Uµν = ρuµuν + Pγµν (2.1)

and satisfies the conservation equation ∇µU
µ
ν = 0, whose only component is ρ̇ =

−3H(ρ + P ). The system of background field equations is not yet closed, unless the

pressure P is specified in terms of field variables which have evolution equations. The

most common way to do this is to write the equation of state P = wρ, where in general

w = w(a). With this equation of state the background field equations close. This is

the only piece of freedom at the background which a dark sector theory can modify.

At the level of linearized perturbations, the components of the (Eulerian) perturbed

dark energy-momentum tensor can be parameterized as

δEU
µ
ν = δρuµuν + 2(ρ+ P )v(µuν) + δPγµ

ν + PΠµ
ν . (2.2)

The perturbation operator “δE” will be explained in the next section, but for now it

should just be understood to be the relevant perturbation for the perturbed gravita-

tional field equations. The components δρ, vµ, δP and Πµ
ν are the dark sector perturbed

density, velocity, perturbed pressure and anisotropic stress: these are the perturbed fluid

variables of the dark sector. Explicitly, each of the perturbed fluid variables can be

found from a given expression for δEU
µ
ν by applying projectors along various directions,

δρ = uµu
νδEU

µ
ν , (2.3a)

(ρ+ P )vα = −uµγ
α
νδEU

µ
ν , (2.3b)

δP = 1
3
γµ

νδEU
µ
ν , (2.3c)

PΠαβ = ⊥αβ
µ
νδEU

µ
ν . (2.3d)

Most commonly, δEU
µ
ν will be computed or given in terms of perturbed field variables

(such as metric or scalar field perturbations); (2.3) can be used to determine how these

field variables combine to construct the fluid variables – we will give explicit examples

later on.
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The components of (2.2) are constrained by the perturbed conservation equation

δE(∇µU
µ
ν) = 0. (2.4)

This has two independent projections, which, using (2.2), respectively become

δ̇ρ+K(δρ+ δP ) + (ρ+ P )∇̄µv
µ + ρuαδEΓ

µ
αµ + uνUµ

αδEΓ
α
µν = 0, (2.5a)

(ρ+ P )v̇α + [ρ̇+ Ṗ + 4
3
K(ρ+ P )]vα + ∇̄αδP + Pγβ

α∇̄λΠ
λ
β

+Pγµ
αδEΓ

β
βµ − γλ

αU
µ
βδEΓ

β
µλ = 0, (2.5b)

where the perturbation to the Christoffel symbols is given by

δEΓ
α
µν = 1

2
gαβ

(

∇µδEgνβ +∇νδEgµβ −∇βδEgµν
)

. (2.6)

What we see, therefore, is that the perturbed conservation equation (2.4) provides

evolution equations for two of the perturbed fluid variables: the density perturbation

δρ and the velocity field vα (the perturbed metric variables which will come out from the

perturbed Christoffel symbols (2.6) are evolved via the gravitational field equations).

However, the set of perturbed fluid equations (2.5) are not closed since there is no

evolution equation for the perturbed pressure δP or the anisotropic stress Πµ
ν . This

is highlighted much more clearly in the synchronous gauge and Fourier space and for

scalar perturbations only, since (2.5) becomes

(

δ

1 + w

)·

= −
[

− k2θ + 1
2
ḣ
]

− 3H
1 + w

wΓ, (2.7a)

(1 + w)θ̇ = −H(1 + w)

(

1− 3
dP

dρ

)

θ − dP

dρ
δ − wΓ + 2

3
wΠ, (2.7b)

where the gauge invariant entropy perturbation

wΓ ≡
(

δP

δρ
− dP

dρ

)

δ (2.8)

is used to package the pressure perturbation. We have defined the scalar velocity field,

θ, via θ = ik · v/k2. The scalar metric perturbations, h (and below we will use η) are

defined as in [42]. Notice that this fluid is general, in the sense that we have allowed

for non-zero entropy perturbations, anisotropic stress, and ẇ 6= 0.

It should now be clear that all that needs to be specified is the entropy perturbation

wΓ and the anisotropic stress Πµ
ν of the dark fluid: these are the two “physical”
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pieces of freedom which a dark sector theory will end up specifying. Once these are

provided in terms of variables whose equations of motion are already specified, the

system of equations closes and can be solved. These will be key in the packaging of our

parameterization, and will form what we call the equations of state for perturbations.

Schematically, these equations of state for perturbations look like

wΓ = A1δ + A2θ + A3ḣ + . . . , Π = B1δ +B2θ +B3η + . . . , (2.9)

where {Ai, Bi} represent the free functions which control the precise form of the equa-

tions of state for perturbations. If the underlying theory is reparameterization invari-

ant, these functions must form a gauge invariant combination (since wΓ and Π are both

gauge invariant by definition).

The key point which will come out of our analysis is that wΓ and Πµ
ν are con-

structed from dynamical fluid and metric components in different ways depending on

the field content and symmetries of the dark sector theory. The most pertinent ques-

tion our approach is able to answer is precisely which of these dynamical components

are required to construct the gauge invariant entropy perturbation and the anisotropic

stress to describe broad classes of modified gravity and dark energy theories.

3 Perturbed EMT from field content

We will now describe how knowing the field content of the dark sector is sufficient

for obtaining the perturbed dark energy-momentum tensor from the Lagrangian for

perturbations. We then discuss issues of reparameterization invariance and provide

field equations.

3.1 The Lagrangian for perturbations

We will start off with a very general theory, where the field content of the dark sector

includes the metric gµν and a scalar field φ, as well as the partial derivatives of these

fields. The dark sector field content that we study is

L = L(gµν , ∂αgµν , φ, ∂αφ, ∂α∂βφ). (3.1)

Note that we have not included the second partial derivative of the metric: it is clear

how to extend the framework presented here to include such field contents. The La-

grangian for perturbations in this theory is given by everything quadratic in the first
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perturbation to these field variables, yielding

L{2} = AδLφ
2 + BµδLφ∇µδLφ+ 1

2
Cµν∇µδLφ∇νδLφ+DµνδLφ∇µ∇νδLφ

+Eµαβ∇µδLφ∇α∇βδLφ+ 1
2
Fµναβ∇µ∇νδLφ∇α∇βδLφ

+Iρµν∇ρδLgµνδLφ+ Jρµνα∇ρδLgµν∇αδLφ

+Nρµναβ∇ρδLgµν∇α∇βδLφ+ 1
2
Mρµν σαβ∇ρδLgµν∇σδLgαβ

+1
4

[

VµνδLφδLgµν + YαµνδLgµν∇αδLφ+ ZµναβδLgαβ∇µ∇νδLφ

+1
2
WµναβδLgµνδLgαβ + Uρµναβ∇ρδLgµνδLgαβ

]

. (3.2)

The perturbation operator “δL” in (3.2) will be explained shortly, but for now it should

simply be taken as a perturbation operator. There are 15 tensors {A, . . . ,Zµναβ} in

the Lagrangian for perturbations, each describing couplings between perturbed field

variables. For this reason, we call the tensors coupling tensors. The coupling tensors

are functions of background field variables only; in the cosmological background, this

means that the coupling tensors are functions of time and not position. In addition,

they have a number of symmetries which can be deduced from the objects that they

are contracted with. For example, since δLgµν = δLg(µν) and ∇µ∇νδLφ = ∇(µ∇ν)δLφ,

one can deduce that

Dµν = D(µν), Wµναβ = W(µν)(αβ) = Wαβµν , Zµναβ = Z(µν)(αβ). (3.3)

This is not an exhaustive list, and symmetries of the other coupling tensors can be read

off from (3.2).

Providing the Lagrangian for perturbations is sufficient for calculating the lin-

earized field equations,

δLGµν = 8πGδLTµν + δLUµν , (3.4)

where the perturbed dark energy momentum tensor δLUµν is calculated from L{2} via

δLU
µν = −1

2

[

4
δ̂

δ̂δLgµν
L{2} + UµνgαβδLgαβ

]

. (3.5)

Here, “δ̂” denotes functional variation. Clearly, L{2} contains more information than

is needed for the linearized gravitational field equations. The perturbed dark energy

momentum tensor of all theories with field content (3.1) can be constructed from (3.2)

by using (3.5), and subsequntly written as

δLU
µν = Ŷ

µνδLφ+ Ŵ
µναβδLgαβ, (3.6a)
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where Ŷµν and Ŵµναβ are derivative operators that are given by

Ŷ
µν ≡ A

µν + B
αµν∇α + C

αβµν∇α∇β + D
ραβµν∇ρ∇α∇β, (3.6b)

Ŵ
µναβ ≡ E

µναβ + F
ρµναβ∇ρ +G

ρσµναβ∇ρ∇σ, (3.6c)

where we have defined

A
µν ≡ −1

2

[

Vµν − 4∇ρIρµν
]

, (3.7a)

B
αµν ≡ −1

2

[

Yαµν − 4(Iαµν +∇ρJ ρµνα)
]

, (3.7b)

C
αβµν ≡ −1

2

[

Zαβµν − 4(J βµνα +∇ρN ρµναβ)
]

, (3.7c)

D
ραβµν ≡ 2N ρµναβ, (3.7d)

E
µναβ ≡ −1

2

[

Wµναβ + Uµνgαβ −∇ρUρµναβ
]

, (3.7e)

F
ρµναβ ≡ −1

2

[

Uραβµν − Uρµναβ − 4∇ǫMǫµνραβ
]

, (3.7f)

G
ρσµναβ ≡ 2Mρµνσαβ . (3.7g)

The expressions (3.7) provides us with an understanding as to how the coupling ten-

sors in the Lagrangian for perturbations combine to construct the perturbed energy-

momentum tensor; these relationships will prove to be crucial when it comes to under-

standing the structure of its components.

In the subsequent analysis we will restrict ourselves to a subset of these theories:

only those which are linear in ∂αgµν . This has the consequence of removing all quadratic

couplings of the derivative of the perturbed metric in the Lagrangian for perturbations.

That is, it sets M = 0 in L{2} and therefore G = 0 in δLU
µν . There is no reason

in principle to prevent the inclusion of such tensors, but this restriction significantly

simplifies the algebra. Notice that a corollary of this is that from (3.7f) we see that

Fρµναβ = −Fραβµν . An anti-symmetry of this type could not have been realized without

having the underlying structure of the Lagrangian for perturbations from which the

perturbed energy-momentum tensor was derived.

We call the bold-face tensors {A, . . . ,G} used in (3.6) the EMT expansion tensors.

The indices in the EMT expansion tensors in Ŵ are structured so that the last two

are contracted with δLgαβ (and so are symmetric), the next two are the same indices

on δLU
µν (and are still symmetric), and the first indices are contracted with covariant

derivatives (and have no symmetry). In general, the EMT expansion tensors have the

following symmetries in their indices:

A
µν = A

(µν), B
αµν = B

α(µν), C
αβµν = C

(αβ)(µν), D
ραβµν = D

ρ(αβ)(µν), (3.8a)

E
αβµν = E

(αβ)(µν), F
ραβµν = F

ρ(αβ)(µν), G
ρσαβµν = G

ρσ(αβ)(µν). (3.8b)
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Note that E has the same symmetries as C, and F has the same symmetries as D. In

backgrounds with “arbitrary” symmetry these tensors have a very large number of free

components; later on we will impose the background to be spatially isotropic, which

substantially reduces the number of independent components of these tensors.

To show that a given explicit theory (e.g. one written down from a background

Lagrangian) fits into a particular flavour of our formalism, it suffices to show that its

Lagrangian for perturbations is of the form (3.2), and that is guaranteed if its field

content is given by (3.1). The theory (3.2) will contain Lorentz violating theories

and theories which do not satisfy reparameterization invariance. One of our aims

is to identify the maximum possible freedom in theories of the type (3.2). We will

then identify the freedom for reasonable subsets of theories, since retaining too much

generality yields a highly intractable set of equations; we are constantly keeping in

mind the desire to use observationally obtained data to constrain the space of allowed

theories. This will yield expressions from which we can extract the “dark sources” to

the linearized gravitational field equations.

3.2 Reparameterization invariance

As it stands, the perturbed dark energy-momentum tensor (3.6) will be able to de-

scribe very wide classes of theories, including those which are usually deemed to be

theoretically unattractive. One of the properties we might like a theory to possess is

an invariance under reparameterization,

xµ → xµ + ξµ. (3.9)

Linearized gravitational theories, of the types considered in this paper, are not a priori

reparameterization invariant (RI). For example, under (3.9) the metric perturbation

δgµν transforms as

δgµν → δgµν + 2∇(µξν). (3.10)

One common tactic is to build gauge invariant cosmological perturbation theory by

constructing the theory from gauge invariant perturbed field variables.

We are able to impose reparameterization invariance on the theory, which cor-

responds to imposing constraints and relationships between the components of the

EMT expansion tensors (3.8). To do this we need to understand the role that the

reparameterization-field ξµ plays in the system. This is done by writing all expressions

in their “reparameterized” form which involves relating the perturbation operators δL
and δE. These correspond to perturbations in Lagrangian and Eulerian coordinate

systems respectively. For a field variable X say, these perturbations are linked via

δLX = δEX +£ξX, (3.11)
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where £ξ is the Lie derivative along ξ
µ (the vector which generates coordinate reparam-

eterizations). For the current purposes it is useful to think of ξµ as being a Stuckelberg

field, whose role is to restore reparameterization invariance, and therefore to think of

δLgµν as being the Stuckelberg-completed (and thus RI) metric perturbation. For the

scalar field and metric perturbations, and the perturbed dark energy-momentum tensor

one has

δLφ = δEφ+£ξφ, (3.12a)

δLgµν = δEgµν +£ξgµν , (3.12b)

δLU
µν = δEU

µν +£ξU
µν , (3.12c)

where the Lie derivatives are

£ξφ = ξµ∇µφ, (3.12d)

£ξgµν = 2∇(µξν), (3.12e)

£ξU
µν = ξα∇αU

µν − 2Uα(µ∇αξ
ν). (3.12f)

Putting these expressions together, and using (3.6a) to provide the Lagrangian per-

turbed dark energy-momentum tensor, the Eulerian perturbed dark energy-momentum

tensor which sources the gravitational field equation is

δEU
µν = Ŷ

µνδEφ+ Ŵ
µναβδEgαβ +∆{ξ}δEU

µν , (3.13)

where the contribution due to the Stuckelberg field ξµ is

∆{ξ}δEU
µν ≡ Ŷ

µν£ξφ+ Ŵ
µναβ£ξgαβ − £ξU

µν . (3.14)

Applying the projectors (2.3) onto (3.13) provides expressions for the perturbed fluid

variables in terms of perturbed field variables. Explicitly, one obtains

δρ = uµuνδEU
µν − ρuµuνδEgµν , (3.15a)

(ρ+ P )vα = −uµγ
α
νδEU

µν + ργαµuνδEgµν , (3.15b)

δP = 1
3
γµνδEU

µν + 1
3
PγµνδEgµν , (3.15c)

PΠαβ = ⊥αβ
µνδEU

µν + P⊥αβνλδEgλν . (3.15d)

The extra terms on the right-hand-side are due to the fact that the variation operator

does not commute with index raising and lowering.

A priori all components of the Stuckelberg field ξµ are dynamical and couple to

the perturbed gravitational field equations via ∆{ξ}δEU
µν . We will shortly provide
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their equations of motion. Only when ∆{ξ}δEU
µν is independent of a given component

of ξµ is the theory invariant under reparameterizations of that relevant space-time

coordinate. That is, if ξ0 does not appear in any components of ∆{ξ}δEU
µν then the

theory is SO(1, 0) invariant (i.e. under time reparameterizations), and if ξi does not

appear then the theory is SO(0, 3) invariant (i.e. under spatial reparameterizations).

Finally, if neither ξ0 nor ξi appear in ∆{ξ}δEU
µν , then the theory is fully SO(1, 3)

reparameterization invariant. Later on we will show precisely how the components of

the EMT expansion tensors can be arranged to make each of these invariances manifest.

3.3 Perturbed conservation equation

Providing the perturbed dark energy-momentum tensor is only part of the story. We

also require that δEU
µν satisfies a conservation equation,

δE(∇µU
µν) = 0. (3.16)

Using (3.13) for δEU
µν , this can be written schematically to show the contributions to

(3.16) from the perturbed scalar field, F ν , from the perturbed metric, Jν , and from the

ξ-field, Eν ,

F ν = Jν + Eν , (3.17)

where

F ν ≡ ∇µ(Ŷ
µνδEφ), (3.18a)

Jν ≡ −
[

∇µ(Ŵ
µναβδEgαβ) + 2Uα(µδEΓ

ν)
µα

]

, (3.18b)

Eν ≡ ∇µ(£ξU
µν)−∇µ(Ŷ

µν£ξφ)−∇µ(Ŵ
µναβ£ξgαβ). (3.18c)

We now see that (3.16) constitutes the equation of motion of the Stuckelberg fields. It

should be clear that constraints must be placed on the components of Ŷ and Ŵ (and

therefore on the EMT expansion tensors) to keep these equations of motion at most of

second order.

4 The perturbed fluid variables

In this section we provide the perturbed fluid variables as functions of the perturbed

field variables for a “generic” theory. This will tell us exactly how time and space

derivatives of field variables combine to construct the fluid variables; remembering

that it is actually the fluid variables which source the gravitational field equations

governing the evolution of the perturbed metric variables.
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In the appendix we provide detailed descriptions of the calculations performed to

obtain the perturbed fluid variables for a subset of the theories described by (3.6). The

subset is the set of theories which

(a) have second order field equations,

(b) are at most linear in ∂αgµν , and

(c) are reparameterization invariant.

Whilst condition (a) is not likely to be relaxed, conditions (b) and (c) can be relaxed,

but we won’t explicitly do so in this paper (for the sake of “simplicity”). Condition (b)

means that the perturbed dark energy-momentum tensor is given by (3.6) where the

Ŵ tensor is expanded to

Ŵ
µναβ = E

µναβ + F
ρµναβ∇ρ. (4.1)

Demanding reparameterization invariance translates into the requirement that the

gauge fields contribution to the perturbed fluid variables vanishes, that is,

uµuν∆{ξ}δEU
µν = 0, uµγ

α
ν∆{ξ}δEU

µν = 0, (4.2a)

γµν∆{ξ}δEU
µν = 0, ⊥αβ

µν∆{ξ}δEU
µν = 0, (4.2b)

where ∆{ξ}δEU
µν is given by (3.14).

To resolve these conditions to such an extent that the perturbed fluid variables

can be written down as known functions of the perturbed field variables requires very

dense and involved calculations and is presented in Appendix A. The calculation is

formulated entirely in tensorial notation, and so one can obtain a clear and unambigu-

ous understanding of the geometrical meaning of reparameterization invariance and

precisely how to impose second order field equations.

The result of the calculation is that the perturbed fluid variables for the subset of

the theories described by (3.6) which satisfy conditions (a-c) above, are given by





δ − A14ḣ

θ

δP



 =





A11 A12 0

A21 A22 0

A31 A32 A33









δφ
˙δφ

δ̈φ



 , (4.3)

and all have zero scalar anisotropic stress, ΠS = 0 (in addition, the vector and tensor

anisotropic stresses vanish). One finds that all AIJ are scale independent (that is,

they just depend on time and not scale k). The matrix [AIJ] is called the activation

matrix. We reiterate that we have not specified the functional form of the background

Lagrangian: only its field content and various symmetry requirements.
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There are other classes of theories which have non-vanishing ΠS,ΠV and ΠT that

are constructed in this model independent way, notably the elastic dark energy theory

[41].

5 Equations of state for dark sector perturbations

At the level of the cosmological background, despite their complexity, all dark theories

boil down to specifying the time dependence of a single function, which is commonly

thought of as the equation of state parameter, w(a). Clearly, different theories predict

different values and functional forms of w(a), but that is all they do: there is nothing

else to be measured at the background that will tell us about the nature of the dark

sector. An obvious question then arises: how many functions need to be measured to

characterize perturbations in the dark sector?

In [36] we showed that the cosmological perturbations of all reparameterization

invariant single derivative scalar field theories (i.e. scalar field theories of the type

L = L(φ,X ), where X ≡ −1
2
gµν∇µφ∇νφ is the kinetic scalar) are encoded by a single

function, which we called α (this function is, in general, time-dependent). This func-

tion arose as a single parameter in an equation of state for dark sector perturbations

(similar “closure relations” have also since been given in [43]). In analogue to w(a)

at background order, wide varieties of theories may well give rise to the same values

of α, in which case these theories will be indistinguishable at the level of linearized

perturbations. The point is that observationally all we can hope to do is constrain the

values of α (at the level of linearized perturbations). A series of questions naturally

arise. For instance: what do the equations of state for dark sector perturbations look

like for more general theories? Which fluid and metric variables appear in the equations

of state? Specifically, those theories containing more than one derivative of the scalar

field and/or derivatives of the metric.

The contributions to the fluid variables (4.3) from δφ, ˙δφ and δ̈φ in δP will introduce

terms which a priori require another equation of motion and are thus not-closed. To

remove these non-closed terms we derive equations of state. We will now show how to

compute the equation of state for perturbations from the activation matrix (4.3).

We start off by writing down the following part of the activation matrix which

contains the known fluid variables:

(

δ − A14ḣ

θ

)

=

(

A11 A12

A21 A22

)(

δφ
˙δφ

)

. (5.1)

We obtain expressions for δφ, ˙δφ and δ̈φ by inverting and differentiating (5.1) and
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isolating the combination δ̇ − 3H(1 + w)θ̇. This process yields

δφ =
1

D
[

A22(δ − A14ḣ)−A12θ
]

, (5.2a)

˙δφ =
1

D
[

A11θ − A21(δ − A14ḣ)
]

, (5.2b)

δ̈φ =
1

E
[

δ̇ − 3H(1 + w)θ̇ − Ȧ14ḣ− A14ḧ−Fδφ− G ˙δφ
]

, (5.2c)

where we defined the denominators as

D ≡ A11A22 −A12A21, (5.3a)

E ≡ A12 − 3H(1 + w)A22, (5.3b)

and the numerators as

F ≡ Ȧ11 − 3H(1 + w)Ȧ21, (5.4a)

G ≡ A11 + Ȧ12 − 3H(1 + w)(A21 + Ȧ22). (5.4b)

We now insert (5.2) into δP ’s row of the activation matrix (4.3) to obtain the following

schematic form of the pressure perturbation:

δP = A1δ +A2θ +A3ḣ+A4ḧ +A5

[

δ̇ − 3H(1 + w)θ̇
]

. (5.5)

The Ai are defined in terms of the AIJ as

A1 ≡ 1

D

[

A22

(

A31 −
F
E A33

)

− A21

(

A32 −
G
EA33

)]

, (5.6a)

A2 ≡ 1

D

[

A11

(

A32 −
G
EA33

)

− A12

(

A31 −
F
E A33

)]

, (5.6b)

A3 ≡ 1

D

[

A21A14

(

A32 −
G
EA33

)

− A14A22

(

A31 −
F
E A33

)

− D
E A33Ȧ14

]

, (5.6c)

A4 ≡ − 1

EA33A14, (5.6d)

A5 ≡ 1

EA33. (5.6e)

We then use the perturbed fluid equations (2.7) to replace the “δ̇ − 3H(1 + w)θ̇”

combination in (5.5). After doing this, one obtains the following schematic form of the

entropy perturbation

wΓ = B1δ + B2θ + B3ḣ+ B4ḧ, (5.7)
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where the Bi are given by

ρB1 ≡ A1 + 3HwA5 − dP
dρ
ρ, (5.8a)

ρB2 ≡ A2 + (1 + w)
[

3H2(1− 3dP
dρ
) + k2

]

A5, (5.8b)

ρB3 ≡ A3 − 1
2
(1 + w)A5, (5.8c)

ρB4 ≡ A4. (5.8d)

We now see that the only Bi with scale dependence is B2, and that can be written

as B2 = B(1)
2 (t) + B(2)

2 (t)k2. The entropy perturbation (5.7) now needs to take on

gauge invariant form. In order to impose this, we recall that the fluid and metric

variables transform from the synchronous to the conformal Newtonian gauge, defined

as ds2 = a2(τ)
[

− (1 + 2Ψ)dτ 2 + (1− 2Φ)dx2
]

, via

δ = δ̂ + 3H(1 + w)ζ, (5.9a)

θ = θ̂ + ζ, (5.9b)

η = Φ +Hζ, (5.9c)

ḣ = −6(Φ̇ +HΨ) +
[

2k2 − 6(Ḣ − H2)
]

ζ. (5.9d)

Here, ζ is the gauge transformation parameter and all gauge independent quantities

need to be independent of ζ . Additional transformations can be computed, making use

of ζ̇ = Ψ−Hζ .

We have a function, wΓ, constructed in the synchronous gauge in (5.7), which we

wish to put into gauge invariant form. To do this, we use (5.9), to write wΓ in the

conformal Newtonian gauge:

wΓ = B1δ̂ + B2θ̂ − 6B3(Φ̇ +HΨ) + B4

[

− 6(Φ̈ +HΨ̇) + 2k2 − 12Ḣ + 6H2
]

+ζ
[

3H(1 + w)B1 + B2 + 2B3(k
2 − 3[Ḣ − H2])

+B4(−6Ḧ + 18HḢ − 6H3 − 2k2H)
]

. (5.10)

The last term in brackets multiplying ζ is required to vanish for wΓ to be gauge

invariant. We will pick particular forms of Bi which will satisfy this requirement and

will yield a useful form of wΓ. From the outset we will define

B1 ≡ α− dP
dρ
. (5.11a)

Suppose we had B3 = B4 = 0, then the choice B2 = −3H(1+w)B1 would yield a gauge

invariant function wΓ. This motivates us to define for the general case B3 6= B4 6= 0,

B2 ≡ −3H(1 + w)B1β1. (5.11b)
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Similarly, from working out the required value of B3 in the case B4 = 0, we are motivated

to define

B3 ≡ − 3H(1 + w)B1β2

2k2 − 6(Ḣ − H2)
. (5.11c)

In the full case where all terms are present, the only value of B4 which yields a gauge

invariant combination is

B4 =
3H(1 + w)B1(1− β1 − β2)

6Ḧ + 6H3 − 18HḢ + 2k2H
. (5.11d)

Using (5.11), the entropy perturbation (5.7) becomes

wΓ = (α− dP
dρ
)

[

δ − 3H(1 + w)β1θ −
3H(1 + w)β2

2k2 − 6(Ḣ − H2)
ḣ

+
3H(1 + w)(1− β1 − β2)

6Ḧ+ 6H3 − 18HḢ+ 2k2H
ḧ

]

. (5.12)

In the conformal Newtonian gauge, (5.12) becomes

wΓ = (α− dP
dρ
)

[

δ̂ − 3H(1 + w)β1θ̂ +
9H(1 + w)β2

k2 − 3(Ḣ − H2)
(Φ̇ +HΨ)

−3H(1 + w)
3(Φ̈ +HΨ̇) + (6Ḣ − 3H2 − k2)Ψ

3Ḧ + 3H3 − 9HḢ + k2H
(1− β1 − β2)

]

. (5.13)

Equation (5.12) is the gauge-invariant entropy perturbation which closes the perturbed

fluid equations (written in the synchronous gauge). There are three free dimensionless

functions: {α, β1, β2}. In a future paper [44] we will confront the parameters in the

equations of state with observational data.

One should note that the combinations (5.11) end up imposing

3H(1 + w)A1 +A2 +
(

2k2 − 6[Ḣ − H2]
)

A3 −
(

6Ḧ + 6H3 − 18HḢ+ 2k2H
)

A4

+3(1 + w)
(

Ḣ + 3H2[w − dP
dρ
]
)

A5 = 3H(1 + w)dP
dρ
ρ (5.14)

on the Ai (5.6), and

B4 =
3H(1 + w)B1 + B2 +

(

2k2 − 6[Ḣ − H2]
)

B3

6Ḧ + 6H3 − 18HḢ + 2k2H
(5.15)

on the Bi (5.8). This corresponds to non-trivial relationships between the AIJ (4.3). In

the simple case where A14 = A33 = 0, the condition (5.15) becomes B2 = −3H(1+w)B1,

which can be verified to hold precisely for k-essence theories.
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The important thing we have done is to compute the equations of state for per-

turbations without specifying the functional form of the dark sector Lagrangian. The

equation of state (5.12) truly is model independent. It does depend, however, on the

assumptions (a)-(c) outlined at the beginning of section 4.

We will conclude this section with a short example which does not satisfy repa-

rameterization invariance. In previous work [38, 41] we studied the elastic dark energy

theory, or equivalently a time-dependent massive gravity theory. In that theory, the

dark sector Lagrangian is composed of the metric only, and spatial reparameterization

invariance is explicitly broken since they correspond to the deformations of an elastic

medium. The equations of state for perturbations are given by wΓ = 0 and

wΠS = 3
2
(w − c2s)×

{
[

δ − 3(1 + w)η
]

synchronous gauge,
[

δ − 3(1 + w)Φ
]

conformal Newtonian gauge.
(5.16)

The (gauge invariant) combination “δ − 3(1 + w)η” arose naturally from the theory,

even though spatial reparameterization invariance is explicitly broken, and c2s is the

sound speed of the elastic medium. More general theories could lead to the inclusion

of higher time-derivatives of η.

6 Examples

The results we presented in the previous sections were for “general” Lagrangians, where

we only imposed the field content and reparameterization invariance and we never

proposed a functional form of the Lagrangian. This yields expressions which hold for

a very broad range of theories – this could be percieved as a weakness. What we can

do, however, is to start from a more familiar standpoint, and write down the functional

form of the Lagrangian.

In this section we show that there is a relatively quick and easy way to compute

the equation of state for perturbations for a theory with a specified Lagrangian, and

indeed these are included within the general case (5.12).

6.1 Minimally coupled scalar field theories

As the first and simplest example, we will take the dark sector Lagrangian to be that

for minimally coupled scalar fields:

L = L(φ,X ), (6.1)

where X ≡ −1
2
∇µφ∇µφ. The energy density and pressure are given by

ρ = 2L,XX − L, P = L, (6.2)
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which are functions with the following dependancies:

ρ = ρ(φ,X ), P = P (φ,X ). (6.3)

The first variations of these functions is then given by

δρ = ρ,φδφ+ ρ,X δX , δP = P,φδφ+ P,X δX . (6.4)

For this theory it is simple to obtain θ = b1δφ (where b1 ≡ −(2X )−1/2) and ΠS = 0.

The activation matrix is thus





δρ

θ

δP



 =





ρ,φ ρ,X
b1 0

P,φ P,X





(

δφ

δX

)

. (6.5)

The perturbed field variables δφ, δX can be eliminated in favour of the perturbed fluid

variables δρ, θ to give

δφ =
1

b1
θ, δX =

1

ρ,X
δρ− ρ,φ

b1ρ,X
θ. (6.6)

The perturbed pressure can then be written in terms of “known” perturbed fluid vari-

ables,

δP =
P,X

ρ,X
δρ+

ρ,φ
b1

[

P,φ

ρφ
− PX

ρ,X

]

θ (6.7)

It is simple to show that the gauge invariant entropy perturbation is

wΓ = (α− dP
dρ
)
[

δ − 3H(1 + w)θ
]

, (6.8)

with

α ≡ P,X

ρ,X
=

(

1 +
2XL,XX

L,X

)−1

. (6.9)

This has provided us with a well known result: the perturbed fluid equations for mini-

mally coupled dark energy models close with a single parameter, α.

6.2 Kinetic gravity braiding

The second example we consider forms the first three terms of Horndeski’s theory [45–

47], and is called the Kinetic Gravity Braiding (KGB) theory [48–51]. This theory
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represents a useful example of theories which end up introducing perturbed metric

variables into the equation of state. The KGB Lagrangian is

L = A(φ,X )�φ+ B(φ,X ). (6.10)

where X ≡ −1
2
gµν∇µφ∇νφ as usual, and �φ ≡ ∇µ∇µφ. The energy-momentum tensor

(EMT) is given by

Uµν = L,X∇µφ∇νφ+ 2∇(µA∇ν)φ+ Pgµν , P ≡ B −∇µφ∇µA. (6.11)

From (6.11), the density ρ and pressure P for a spatially isotropic and homogeneous

background are given by

ρ = −B + 2(A,φ + B,X )X − 2A,XX
√
2X K, (6.12a)

P = B + 2A,φX +A,X

√
2X Y , (6.12b)

where K ≡ Kµ
µ = 3H,Y ≡ Ẋ 1. From (6.12) we see that ρ and P have the following

dependancies:

ρ ≡ ρ(φ,X , K), P ≡ P (φ,X ,Y). (6.13)

Since the fluid equation is ρ̇ = −K(ρ + P ), ρ can only be constructed from first time

derivatives of fields and so there is nothing else that ρ could be a function of, while

remaining at most of first order in time derivatives. The fluid equation is thus

ρ,X Ẋ + ρ,φφ̇+K(ρ+ P + K̇
K
ρ,K) = 0. (6.14)

We now want to derive the perturbed fluid variables. It is simple to use (6.13) to obtain

δρ and δP in terms of δφ, δX , δK and δY . In the synchronous gauge,

δK =
1

2
ḣ, δX = φ̇ ˙δφ, δY = φ̈ ˙δφ+ φ̇δ̈φ. (6.15)

The perturbed velocity θ and anisotropic stress ΠS must be computed from direct

perturbation of the EMT. One finds that ΠS = 0, and we can write the perturbed fluid

variables in the form of an activation matrix,







δ − 1
2

ρ,K
ρ
ḣ

θ

δP






=







ρ,φ
ρ

ρ,X
ρ

0

b1 b2φ̇ 0

P,φ (P,X φ̇+ P,Y φ̈) P,Y φ̇











δφ
˙δφ

δ̈φ



 , (6.16)

1These expressions correct two typos which are present in equations (12a) and (12b) of [39].
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where we defined the coefficients in θ’s row as

(ρ+ P )b1 ≡ −
√
2X

(

B,X + 2A,φ −K
√
2X A,X

)

, (ρ+ P )b2 ≡ −A,X

√
2X . (6.17)

All components of this activation matrix are scale independent. We have now shown

that the KGB theory has an activation matrix which is of precisely the same form as

that we derived from a model independent approach in (4.3). This means that the

gauge invariant entropy perturbation is given by (5.12).

7 Discussion

In this paper we completed our goal of proving the claims made in our previous paper

regarding the form of the equation of state for perturbations. We did this in a model

independent way, using the geometrically enlightening tensorial notation. We also

showed how models with a given functional form of the Lagrangian fall into our category.

One of the clear advantages of our approach is that we are able to compute con-

sistent cosmological perturbations in a model independent manner. Our approach

provides complete transparency as to how to relax the restrictions of reparameteriza-

tion invariance or how to include more fields and/or their derivatives. However, this

generality leads to a highly complicated set of equations (which we presented in the

appendices of this paper).

The result of the calculations – equations of state for perturbations – yields a set

of modifications to the gravitational field equations which are very easy to incorporate

into numerical codes, such as CAMB [52]. The modifications hold physical significance,

and, for the broad class of theories we presented in this paper, yield a small enough

number of parameters that we are able to meaningfully constrain their values with

current observations. This is the subject of future work.
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A Calculation of the perturbed fluid variables

Here we present details of the calculation leading up to the activation matrix (4.3)

for a general reparameterization invariant scalar-tensor theory with second order field

– 21 –



equations. We begin by introducing some useful technology, before moving on to the

explicit calculations and results.

A.1 The Fourier decomposition

There are a number of spatial derivatives within the energy-momentum tensor (EMT):

we find that working in Fourier space significantly simplifies calculations, and allows

tensorial notation to be maintained throughout. The advantage of this approach is

that all constraints and conditions can be formulated via geometrical projections of the

“free” tensors in the theory.

Let us begin with a space-time vector field Aµ, whose time-like and space-like

components can be explicitly isolated via Aµ = −auµ + bµ, where uµbµ = 0. Then, the

covariant derivative of Aµ is given by

∇µAν = −uν∇µa− aKµν + γα
ν∇µbα + bαK

α
µuν . (A.1)

Similarly for a symmetric orthogonal space-time tensor field Bµν = γα
µγ

β
νBαβ ,

∇λBµν = γα
µγ

β
ν∇λBαβ + 2Kα

λγ
β
(µuν)Bαβ . (A.2)

Since this will be useful later on, the second covariant derivative of the vector field is

given by

∇β∇µAν = −uν∇β∇µa + γα
ν∇β∇µbα − 2Kν(µ∇β)a− a∇βKµν

+2K(α
βuν)∇µbα + uνK

α
µ∇βbα + bαuν∇βK

α
µ +Kα

µKνβbα. (A.3)

We now move to Fourier space, by expanding each space-time field in Fourier

modes,

Bµν =

∫

d3k B(k)µνe
ikx, bµ =

∫

d3k b(k)µe
ikx, a =

∫

d3k a(k)e
ikx, (A.4)

where kx ≡ kµxµ and kµuµ = 0. We will always leave out the integral sign to avoid

clutter. The Fourier modes are only time-dependent, and the complex exponential eikx

only has space-like derivatives,

∇µe
ikx = ikµe

ikx. (A.5)

For example, using an obvious notation for a scalar field F and its Fourier mode F(k),

we have

∇µF = ∇µ(F(k)e
ikx)

=

[

− Ḟ(k)uµ + ikµF(k)

]

eikx, (A.6)
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while for a vector field we obtain

∇µAν = −uν∇µ(a(k)e
ikx)− a(k)e

ikxKµν + γα
ν∇µ(b(k)αe

ikx) + b(k)αK
α
µuνe

ikx

=

[

uνuµȧ(k) − γα
νuµḃ(k)α − ikµ(uνa(k) − γα

νb(k)α)− a(k)Kµν + b(k)αK
α
µuν

]

eikx,

(A.7)

and for the orthogonal tensor field,

∇λBµν = γα
µγ

β
ν∇λ(B(k)αβe

ikx) + 2Kα
λγ

β
(µuν)B(k)αβe

ikx

=

[

− γα
µγ

β
νḂ(k)αβuλ + ikλγ

α
µγ

β
νB(k)αβ + 2Kα

λγ
β
(µuν)B(k)αβ

]

eikx.(A.8)

We now proceed by evaluating some useful examples.

First, we will evaluate the Lie derivative of the metric gµν along the vector field ξµ,

given by £ξgµν = 2∇(µξν). We parameterize the components of ξµ as ξµ = (−χuµ +

γν
µων)e

ikx, where χ and ωµ are the Fourier modes, and we find

£ξgµν = 2

[

χ̇uµuν − (ω̇α − 1
3
Kωα)γ

α
(µuν) − 1

3
Kχγµν − ik(µuν)χ+ ik(µγ

α
ν)ωα

]

eikx.

(A.9)

A second useful example is evaluating the covariant derivative of the (Eulerian) per-

turbed metric in the synchronous gauge; the tensor field here is of the symmetric

orthogonal type. Writing the Fourier mode as δEgµν = Hµνe
ikx, we find that

∇λδEgµν =

[

− Ḣµνuλ + ikλHµν +
2
3
KHλ(µuν)

]

eikx. (A.10)

Finally, the Lie derivative of the spatially isotropic energy-momentum tensor Uµν =

ρuµuν + Pγµν along ξµ is given by £ξU
µν = ξα∇αU

µν − 2Uα(µ∇αξ
ν), and evaluates to

£ξU
µν =

[

[2ρχ̇− ρ̇χ]uµuν + 2[iPχkα − ρ(ω̇α − 1
3
Kωα)]γ

α(µuν)

−[Ṗ − 2
3
PK]χγµν − 2iPkǫωλγ

ǫ(µγν)λ

]

eikx. (A.11)
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For reference, the covariant derivative of £ξgµν is

∇β£ξgµν = 2

[

− uβuµuνχ̈ + uβu(µγ
α
ν)ω̈α +

(

Kµνuβ + 2Kβ(µuν) + ikβuµuν + iuβk(µuν)

)

χ̇

−
(

uβK
α
(µuν) +Kβ(µγ

α
ν) + iuβk(µγ

α
ν) + ikβγ

α
(µuν)

)

ω̇α

−
(

∇βKµν − kβk(µuν) + ikβKµν + iKβ(µkν)

)

χ

+

(

Kα
(µKν)β + ikβK

α
(µuν) − kβγ

α
(µkν) +

1
2
uµ∇βK

α
ν +

1
2
uν∇βK

α
µ

)

ωα

]

eikx.

(A.12)

A.2 Perturbed EMT

Here we lay out the Fourier decomposition of the perturbed EMT. This is performed

by writing

δEU
µ
ν = δρuµuν + (ρ+ P )v(µuν) + δPγµ

ν + PΠµ
ν . (A.13)

Note that the mixed EMT is obtained from the contravariant EMT via

δEU
µ
ν = gανδEU

µα + UαµδEgνα. (A.14)

The perturbed fluid variables can be obtained from δEU
µν by application of various

“projectors”,

δρ = uµuνδEU
µν , (A.15a)

vα = − 1
ρ+P

uµγν
αδEU

µν , (A.15b)

δP = 1
3
γµνδEU

µν , (A.15c)

PΠαβ = ⊥αβ
µνδEU

µν . (A.15d)

We made use of the transverse-traceless orthogonal projection operator, ⊥αβ
µν , defined

in (1.7).

We note that the Lie derivatives are given by

£ξφ = ξα∇αφ, £ξgµν = 2∇(µξν), £ξU
µν = ξα∇αU

µν − 2Uα(µ∇αξ
ν). (A.16)

The Fourier decompositions of the scalar field δEφ, gauge field ξµ and metric per-

turbation are given by

δEφ = δφeikx, ξµ = ζµe
ikx, δEgµν = Hµνe

ikx, (A.17a)

vµ = Vµe
ikx, Πµν = πµνe

ikx. (A.17b)
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where it is to be understood that {δφ, ζµ, Hµν , Vµ, πµν} are the Fourier modes (and as

such, only have time-like derivatives). In the synchronous gauge, the metric perturba-

tion is only space-like, and so satisifies

Hµν = γα
µγ

β
νHαβ. (A.18)

We isolate the time-like and space-like parts of the Fourier mode ζµ of the gauge field

ξµ by writing

ζµ = −uµχ+ ωµ, (A.19)

where

ωµ = γα
µωα. (A.20)

We will decompose the space-like vector kµ into a scalar k multiplying a unit space-like

vector k̂µ via

kµ = ikk̂µ, k̂µ = γν
µk̂ν , k̂µk̂µ = 1. (A.21)

When needed, we will decompose the Fourier modes Hµν , ωα, Vµ and πµν into scalars

via

Hαβ = 1
3
γαβHL + k̂ρk̂σ⊥ρσ

αβHT, (A.22a)

ωµ = ωskµ, (A.22b)

Vµ = −kθk̂µ, (A.22c)

παβ = k̂ρk̂σ⊥ρσ
αβΠ

S (A.22d)

We reiterate that we are interested in scalar perturbations in this paper.

We will relate the longitudinal, HL, and transverse, HT, modes of the metric per-

turbation to the synchronous gauge variables h and η. Note that

k(ρ+ P )θ = k̂µuνδEU
µν , (A.23a)

γαβHαβ = HL, ⊥µν
αβHµν = k̂ρk̂σ⊥ρσ

αβHT. (A.23b)

By using (A.14), in the synchronous gauge the mixed EMT is deduced via

δEU
µ
ν = UµαδEgνα + gναδEU

µα

= 1
3
Pγµ

νHL + P k̂ρk̂σ⊥ρσµ
νHT + gναδEU

µα. (A.24)
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A.3 Evaluating the perturbed EMT

We now use this technology to derive the activation matrix for the scalar field theory

described in section 4. Using geometric projectors we will be able to isolate the tensors

and their scale dependence which multiply the field variables that are used to con-

struct the perturbed fluid variables; we will also be able to impose reparameterization

invariance at the tensorial level.

From the Lagrangian for perturbations, the Eulerian perturbed EMT is computed

via

δEU
µν = Ŷ

µνδEφ+ Ŵ
µναβδEgαβ + Ŷ

µν£ξφ+ Ŵ
µναβ£ξgαβ − £ξU

µν . (A.25)

Note that we have included the gauge field ξµ explicitly: when the parameters in the

theory are arranged to make it deouple, the theory is reparameterization invariant.

For the Eulerian perturbed EMT (A.25), we take the derivative operators to be

Ŷ
µν = A

µν + B
αµν∇α + C

αβµν∇α∇β + D
ραβµν∇ρ∇α∇β, (A.26a)

Ŵ
µναβ = E

µναβ + F
ρµναβ∇ρ; (A.26b)

that is, we have set G = 0. We will write the Eulerian perturbed scalar field and the

Eulerian perturbed metric as in (A.17). After using the Fourier decompositions, the

EMT is given by

e−ikxδEU
µν = Y

(0)µνδφ+ Y
(1)µν ˙δφ+ Y

(2)µν δ̈φ+ Y
(3)µν

...
δφ

+W
(0)µναβHαβ +W

(1)µναβḢαβ + e−ikx∆{ξ}δEU
µν , (A.27)

where ∆{ξ}δEU
µν is the contribution to the EMT from the gauge field, given by

∆{ξ}δEU
µν = Ŵ

ρσµν£ξgµν + Ŷ
ρσ£ξφ− £ξU

µν . (A.28)

The coefficients of each time derivative of δφ and Hµν in (A.27) are given by

Y
(0)µν = A

µν + ikαB
αµν − kαkβC

αβµν − ikρkαkβD
ραβµν , (A.29a)

Y
(1)µν = −uαB

αµν −KαβC
αβµν

−ikǫ[2γ
ǫ
(αuβ)C

αβµν +KραD
ραǫµν +Kαβ(D

αǫβµν + D
ǫαβµν)]

+uλkρkǫD
λǫρµν , (A.29b)

Y
(2)µν = uαuβC

αβµν + 1
3
K(uργαβ + 2γρ(αuβ))D

ραβµν

+ikǫ(uαuβD
ǫαβµν + 2uργ

ǫ
(αuβ)D

ραβµν), (A.29c)

Y
(3)µν = −uρuαuβD

ραβµν , (A.29d)

W
(0)µναβ = E

µναβ + 2
3
Kγα

ργ
β
(πuǫ)F

ρµνπǫ + ikρF
ρµναβ , (A.29e)

W
(1)µναβ = −uρF

ρµναβ . (A.29f)
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Before we proceed any further, notice that (A.29d) represents the contribution of third

time derivatives of δφ to the perturbed energy-momentum tensor (A.27). These terms

are clearly problematic, but can be remedied by setting uρuαuβD
ραβµν = 0. Thus, we

take Y
(3)µν = 0 in everything that follows. We have written these in such a way that

the individual terms are grouped in order of scale, kµ. We now use (A.21) to explicitly

isolate the scale dependence, yielding

Y
(0)µν = Y

(0,0)µν + Y
(0,1)µνk + Y

(0,2)µνk2 + Y
(0,3)µνk3, (A.30a)

Y
(1)µν = Y

(1,0)µν + Y
(1,1)µνk + Y

(1,2)µνk2, (A.30b)

Y
(2)µν = Y

(2,0)µν + Y
(2,1)µνk, (A.30c)

W
(0)µναβ = W

(0,0)µναβ +W
(0,1)µναβk, (A.30d)

W
(1)µναβ = W

(1,0)µναβ . (A.30e)

A glance at (A.30e) shows that any coefficient of ḣ or η̇ which may be present will

always be scale independent. Also, there is no k2 dependence of any coefficients of δ̈φ

(this is evident from the lack of a Y
(2,2)µν -term). The time-dependent coefficients of

each term in (A.30) are given by

Y
(0,0)µν ≡ A

µν , (A.31a)

Y
(0,1)µν ≡ −k̂αB

αµν , (A.31b)

Y
(0,2)µν ≡ k̂αk̂βC

αβµν , (A.31c)

Y
(0,3)µν ≡ k̂ρk̂αk̂βD

ραβµν , (A.31d)

Y
(1,0)µν ≡ −uαB

αµν −KαβC
αβµν − (∇ρKαβ)D

ραβµν , (A.31e)

Y
(1,1)µν ≡ k̂ǫ[2γ

ǫ
(αuβ)C

αβµν +KραD
ραǫµν +KρβD

ρǫβµν +KαβD
ǫαβµν ], (A.31f)

Y
(1,2)µν ≡ −uλk̂ǫk̂ρD

λǫρµν , (A.31g)

Y
(2,0)µν ≡ uαuβC

αβµν + 1
3
K(uργαβ + 2γρ(αuβ))D

ραβµν , (A.31h)

Y
(2,1)µν ≡ −k̂ǫ(uαuβD

ǫαβµν + 2uργ
ǫ
(αuβ)D

ραβµν), (A.31i)

W
(0,0)µναβ ≡ E

µναβ + 2
3
Kγα

ργ
β
(πuǫ)F

ρµνπǫ, (A.31j)

W
(0,1)µναβ ≡ −k̂ρF

ρµναβ , (A.31k)

W
(1,0)µναβ ≡ uρF

ρµναβ . (A.31l)

Just to explain the labels on these objects (we will be introducing another set later on

when we look at the gauge fields influence on the system): Y(X,Y)µν is the coefficient of
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the Xth-time derivative and Yth multiple of k infront of δφ; these coefficients explicitly

only have time dependence. An obvious extension to the W(X,Y)µναβ as time dependent

coefficients of Hαβ. There is also a nice structure which emerges:

Y
(N)µν =

3−N
∑

n=0

Y
(N,n)µνkn, N = 0, 1, 2, (A.32a)

W
(N)µναβ =

1−N
∑

n=0

W
(N,n)µναβkn, N = 0, 1. (A.32b)

The upper limits in these sums are set by the number of derivatives we used in the

operator expansions of Ŷµν , Ŵµναβ.

In a similar fashion, the gauge field contribution (A.28) can be written as

e−ikx∆{ξ}δEU
ρσ = Θ(0)ρσχ+Θ(1)ρσχ̇+Θ(2)ρσχ̈

+Ξ(0)ρσαωα + Ξ(1)ρσαω̇α + Ξ(2)ρσαω̈α, (A.33)

where the coefficient of each time derivative is

Θ(0)ρσ ≡ −Y
(0)ρσ φ̇− Y

(1)ρσ φ̈− Y
(2)ρσ

...
φ + ρ̇uρuσ + [Ṗ − 2

3
PK]γρσ

−2
[

∇βKµνF
βρσµν + 1

3
KγµνE

ρσµν − kβk(µuν)F
βρσµν

+ikǫ(Pγǫ(ρuσ) +KµνF
ǫρσµν +Kα(µγ

ǫ
β)F

αρσµβ + γǫ
(βuµ)E

ρσµβ)
]

,(A.34a)

Θ(1)ρσ ≡ −Y
(1)ρσ φ̇− 2Y(2)ρσ φ̈+ 2

[

−KµνW
(1)ρσµν + 2Kβ(µuν)F

βρσµν

+uµuνE
ρσµν + ikβ(uµuνF

βρσµν − γβ
(µuν)W

(1)ρσµν)
]

− 2ρuρuσ, (A.34b)

Θ(2)ρσ ≡ 2uµuνW
(1)ρσµν − Y

(2)ρσ φ̇, (A.34c)

Ξ(0)ρσα ≡ 2
[

1
3
K(−ργα(ρuσ) + γα

(µuν)E
ρσµν) + (Kα

(µKν)β +
1
2
uµ∇βK

α
ν)F

βρσµν

+ikǫ(K
α
(µuν)F

ǫρσµν + γǫ
(µγ

α
ν)E

ρσµν + Pγǫ(ργσ)α)− kβk(µγ
α
ν)F

βρσµν
]

,

(A.34d)

Ξ(1)ρσα ≡ −2
[

− ργα(ρuσ) + γα
(µuν)E

ρσµν +Kβ(µγ
α
ν)F

βρσµν −Kα
(µuν)W

(1)ρσµν

+ikβ(γ
α
(µuν)F

βρσµν − γβ
(µγ

α
ν)W

(1)ρσµν)
]

, (A.34e)

Ξ(2)ρσα ≡ −2u(µγ
α
ν)W

(1)ρσµν . (A.34f)
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Explicitly isolating the scale dependence of these expressions yields

Θ(0)ρσ = Θ(0,0)ρσ +Θ(0,1)ρσk +Θ(0,2)ρσk2 +Θ(0,3)ρσk3, (A.35a)

Θ(1)ρσ = Θ(1,0)ρσ +Θ(1,1)ρσk +Θ(1,2)ρσk2, (A.35b)

Θ(2)ρσ = Θ(2,0)ρσ +Θ(2,1)ρσk, (A.35c)

Ξ(0)ρσα = Ξ(0,0)ρσα + Ξ(0,1)ρσαk + Ξ(0,2)ρσαk2, (A.35d)

Ξ(1)ρσα = Ξ(1,0)ρσα + Ξ(1,1)ρσαk, (A.35e)

Ξ(2)ρσα = Ξ(2,0)ρσα. (A.35f)

The time-dependent coefficients in (A.35) are

Θ(0,0)ρσ ≡ −Y
(0,0)ρσ φ̇− Y

(1,0)ρσφ̈− Y
(2,0)ρσ

...
φ + ρ̇uρuσ + [Ṗ − 2

3
PK]γρσ

+2
3

[

K̇γµνW
(1,0)ρσµν −K(γµνE

ρσµν + 2
3
Kγβ(µuν)F

βρσµν)
]

, (A.36a)

Θ(0,1)ρσ ≡ −Y
(0,1)ρσ φ̇− Y

(1,1)ρσφ̈+Θ(2,1)ρσ
...
φ

φ̇
− 2((ρ+ P )k̂ǫγ

ǫ(ρuσ)

−1
3
KγµνW

(0,1)ρσµν − 1
2
k̂αΞ

(1,0)ρσα − 1
6
Kk̂αΞ

(2,0)ρσα), (A.36b)

Θ(0,2)ρσ ≡ −Y
(0,2)ρσ φ̇+Θ(1,2)ρσ φ̈

φ̇
− k̂αΞ

(2,0)ρσα, (A.36c)

Θ(0,3)ρσ ≡ −Y
(0,3)ρσ

...
φ, (A.36d)

Θ(1,0)ρσ ≡ −Y
(1,0)ρσ φ̇− 2Y(2,0)ρσ φ̈− 2ρuρuσ

+2
[

− 1
3
KγµνW

(1,0)ρσµν + 2
3
Kγβ(µuν)F

βρσµν + uµuνE
ρσµν

]

, (A.36e)

Θ(1,1)ρσ ≡ −Y
(1,1)ρσ φ̇+ 2uµuνW

(0,1)ρσµν − k̂αΞ
(2,0)ρσα + 2Θ(2,1)ρσ φ̈

φ̇
, (A.36f)

Θ(1,2)ρσ ≡ −Y
(1,2)ρσ φ̇, (A.36g)

Θ(2,0)ρσ ≡ 2uµuνW
(1,0)ρσµν − Y

(2,0)ρσ φ̇, (A.36h)

Θ(2,1)ρσ ≡ −Y
(2,1)ρσ φ̇, (A.36i)

Ξ(0,0)ρσα ≡ 2
3
K(−ργα(ρuσ) + γα

(µuν)E
ρσµν + 1

3
Kγα

(µγν)βF
βρσµν)

+1
6
Ξ(2,0)ρσαK̇ + 1

3
K 1

3
K(uµγ

α
βuνF

βρσµν + uµγνβu
α
F
βρσµν), (A.36j)

Ξ(0,1)ρσα ≡ 2k̂ǫ(
1
3
Kγα

(µuν)F
ǫρσµν + γǫ

(µγ
α
ν)E

ρσµν + Pγǫ(ργσ)α), (A.36k)

Ξ(0,2)ρσα ≡ −2k̂ǫγ
ǫ
(µγ

α
ν)W

(0,1)ρσµν , (A.36l)

Ξ(1,0)ρσα ≡ −2
[

− ργα(ρuσ) + γα
(µuν)E

ρσµν

+1
3
Kγβ(µγ

α
ν)F

βρσµν + 1
6
KΞ(2,0)ρσα

]

, (A.36m)

Ξ(1,1)ρσα ≡ 2(γα
(µuν)W

(0,1)ρσµν + k̂ǫγ
ǫ
(µγ

α
ν)W

(1,0)ρσµν), (A.36n)
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Ξ(2,0)ρσα ≡ −2u(µγ
α
ν)W

(1,0)ρσµν . (A.36o)

These satisfy the structure

Θ(N)ρσ =

3−N
∑

N=0

Θ(N,n)ρσkn, N = 0, 1, 2, (A.37a)

Ξ(N)ρσα =

2−N
∑

N=0

Ξ(N,n)ρσαkn, N = 0, 1, 2. (A.37b)

We have now obtained all the “basic” equations required. To recap what we have

done: we have used purely geometrical projectors to isolate the scale and time de-

pendence of the extra fields δφ,Hµν (these are the Fourier modes of the scalar field

perturbation δEφ and metric perturbation δEgµν) which appear in a dark sector theory.

We have also isolated how the gauge field components χ ∼ ξ0 and ωi ∼ ξi (where “∼”

denotes that the field is the Fourier mode) enter into the perturbed energy-momentum

tensor, again, isolating how each time and space derivative enters.

It is worth pointing out again that all tensors in the EMT can be traced back to

an effective Lagrangian for perturbation.

We now show how to impose two important theoretical priors upon the theory: (i)

second order field equations and (ii) reparameterization invariance. Between (i) and

(ii) we will show how the “naive” activation matrix can be obtained – it is naive in the

sense that reparamterization invariance has not yet been imposed on the components

of the matrix.

A.4 Second order field equation constraints

The conditions for second order field equations are obtained by removing time deriva-

tives of all fields of order 2 and above from expressions for δρ and θ. This amounts to

requiring

uµuνY
(2)µν = 0, uµγ

α
νY

(2)µν = 0. (A.38)

A.5 Naive fluid variables

Here we show which projections of the tensors (A.27) give rise to which elements of

the naive activation matrix. We use the term “naive” since we have not imposed

reparameterization invariance at this stage; doing so is a rather complicated process

which we consign to its own section, but the net effect is to remove some components

of the naive activation matrix components. We have already imposed the second order

field equation conditions (A.38).
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Using (A.22a) to decompose the Fourier mode Hµν into its longitudinal HL and

transverse HT scalar modes, the Eulerian perturbed energy-momentum tensor (A.27)

is given by

e−ikxδEU
µν = Y

(0)µνδφ+ Y
(1)µν ˙δφ+ Y

(2)µν δ̈φ

+1
3
γαβW

(0)µναβHL + k̂ρk̂σ⊥ρσ
αβW

(0)µναβHT

+1
3
γαβW

(1)µναβḢL + k̂ρk̂σ⊥ρσ
αβW

(1)µναβḢT

+e−ikx∆{ξ}δEU
µν . (A.39)

Using the projectors (A.15), the naive set of fluid variables will be given by

δρ = κ11δφ+ κ12
˙δφ+ κ14HL + κ15ḢL + κ16HT + κ17ḢT, (A.40a)

k(ρ+ P )θ = κ21δφ+ κ22
˙δφ+ κ24HL + κ25ḢL + κ26HT + κ27ḢT, (A.40b)

3δP = κ31δφ+ κ32
˙δφ+ κ33δ̈φ

+κ34HL + κ35ḢL + κ36HT + κ37ḢT, (A.40c)

ΠS = κ41δφ+ κ42
˙δφ+ κ43δ̈φ

+κ44HL + κ45ḢL + κ46HT + κ47ḢT, (A.40d)

where the time and space dependant naive activation coefficients κIJ are given by

κ11 = uµuνY
(0)µν , (A.41a)

κ12 = uµuνY
(1)µν , (A.41b)

κ14 = 1
3
uµuνγαβW

(0)µναβ , (A.41c)

κ15 = 1
3
uµuνγαβW

(1)µναβ , (A.41d)

κ16 = uµuν k̂ρk̂σ⊥ρσ
αβW

(0)µναβ , (A.41e)

κ17 = uµuν k̂ρk̂σ⊥ρσ
αβW

(1)µναβ , (A.41f)

κ21 = k̂ǫγ
ǫ
µuνY

(0)µν , (A.41g)

κ22 = k̂ǫγ
ǫ
µuνY

(1)µν , (A.41h)

κ24 = k̂ǫγ
ǫ
µuνγαβW

(0)µναβ , (A.41i)

κ25 = k̂ǫγ
ǫ
µuνγαβW

(1)µναβ , (A.41j)

κ26 = k̂ǫγ
ǫ
µuν k̂ρk̂σ⊥ρσ

αβW
(0)µναβ , (A.41k)

κ27 = k̂ǫγ
ǫ
µuν k̂ρk̂σ⊥ρσ

αβW
(1)µναβ , (A.41l)
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κ31 = γµνY
(0)µν , (A.41m)

κ32 = γµνY
(1)µν , (A.41n)

κ33 = γµνY
(2)µν , (A.41o)

κ34 = P + 1
3
γµνγαβW

(0)µναβ , (A.41p)

κ35 = 1
3
γµνγαβW

(1)µναβ , (A.41q)

κ36 = P + γµν k̂ρk̂σ⊥ρσ
αβW

(0)µναβ , (A.41r)

κ37 = γµν k̂ρk̂σ⊥ρσ
αβW

(1)µναβ . (A.41s)

Note that κ13 and κ23 are not present (these would made the equations of motion higher-

order). There is a clear reason we have called the κIJ the naive fluid variables: since

we have not yet imposed reparameterization invariance, there should be contributions

due to the components of the ξµ-field appearing in (A.40).

We deliberatly have not written out the κ4i: they will vanish in the reparameteri-

zation invariant theories we consider in this paper. The factors of P appearing in κ34

and κ36 are due to (A.24). We have used (A.38) to ensure that the field equations are

at most of second order. The scale dependence of the κIJ can be explicitly isolated by

inspecting (A.30) to read off the scale dependence of the Y
(X)µν and W

(X)µναβ tensors.

A.6 Reparamerization invariance: decoupling conditions

In order to impose reparameterization invariance, we require that the gauge field does

not enter into the perturbed fluid variables. This requires

uµuν∆{ξ}δEU
µν = 0, uµγ

α
ν∆{ξ}δEU

µν = 0, (A.42a)

γµν∆{ξ}δEU
µν = 0, ⊥αβ

µν∆{ξ}δEU
µν = 0. (A.42b)

These must hold at each order in kµ, and so

uµuνΘ
(X,Y)µν = 0, uµγ

α
νΘ

(X,Y)µν = 0, (A.43a)

γµνΘ
(X,Y)µν = 0, ⊥αβ

µνΘ
(X,Y)µν = 0, (A.43b)

uµuνΞ
(X,Y)µνσ = 0, uµγ

α
νΞ

(X,Y)µνσ = 0, (A.43c)

γµνΞ
(X,Y)µνσ = 0, ⊥αβ

µνΞ
(X,Y)µνσ = 0, (A.43d)

where the Θ(X,Y)µν and Ξ(X,Y)µνσ are defined in (A.36). We call (A.43) the decoupling

conditions; requiring that they hold is equivalent to requiring the theory to be reparam-

eterization invariance. Enforcing (A.43) upon the naive fluid variables leads to various

simplifications, which we now derive in detail.
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A.6.1 Scale dependencies

We will pick a few of (A.36) to study in detail, each of which are significant. To begin

with, we look at the set of coefficients,

Θ(0,2)ρσ, Θ(0,3)ρσ, Θ(1,2)ρσ, Θ(2,1)ρσ, Ξ(0,2)ρσα. (A.44)

Applying (A.43) to (A.44) reveals that the following tensors have no non-zero compo-

nents:

Y
(0,2)ρσ , Y

(0,3)ρσ , Y
(1,2)ρσ , Y

(2,1)ρσ , γǫ
(µγ

α
ν)W

(0,1)ρσµν . (A.45)

These tensors are the coefficients of k2δφ, k3δφ, k2 ˙δφ, kδ̈φ and kh, kη, respectively, in

all fluid variables (we reiterate that there was never any coefficients of k2δ̈φ, kḣ, kη̇);

and so all terms of this form vanish from all fluid variables.

Now consider Θ(0,1)ρσ and apply (A.43),

uρuσΘ
(0,1)ρσ = −uρuσY

(0,1)ρσ φ̇− uρuσY
(1,1)ρσφ̈ = 0, (A.46a)

k̂πuργ
π
σΘ

(0,1)ρσ = −k̂πuργ
π
σY

(0,1)ρσ φ̇− k̂πuργ
π
σY

(1,1)ρσ φ̈+ (ρ+ P )k̂ǫγ
ǫπ = 0,

(A.46b)

γρσΘ
(0,1)ρσ = −γρσY

(0,1)ρσ φ̇− γρσY
(1,1)ρσ φ̈ = 0. (A.46c)

(A.46a) and (A.46c) removes both kδφ and k ˙δφ from δρ and δP . If we write κ21 =
∑

κ21(n)k
n and κ22 =

∑

κ22(n)k
n, then (A.46b) tells us that κ21(1) and κ22(1) satisfy

κ21(1)φ̇+ κ22(1)φ̈ = ρ+ P. (A.47)

A.6.2 Occurences of h and η

Inspecting (A.36k) and applying (A.43) reveals that

uρuσΞ
(0,1)ρσα = 2uρuσk̂ǫ(

1
3
Kγα

(µuν)F
ǫρσµν + γǫ

(µγ
α
ν)E

ρσµν), (A.48a)

uργ
π
σΞ

(0,1)ρσα = 2uργ
π
σk̂ǫ(

1
3
Kγα

(µuν)F
ǫρσµν + γǫ

(µγ
α
ν)E

ρσµν), (A.48b)

γρσΞ
(0,1)ρσα = 2γρσk̂ǫ(

1
3
Kγα

(µuν)F
ǫρσµν + γǫ

(µγ
α
ν)E

ρσµν + Pγǫ(ργσ)α), (A.48c)

⊥ζπ
ρσΞ

(0,1)ρσα = 2⊥ζπ
ρσk̂ǫ(

1
3
Kγα

(µuν)F
ǫρσµν + γǫ

(µγ
α
ν)E

ρσµν + Pγǫ(ργσ)α).

(A.48d)

Inside the brackets of each term is the coefficient of h and η in δρ, θ, δP and Π respec-

tively, and so, by insisting that the decoupling conditions are respected, we find that

h and η are not present in any fluid variables. This means that all κIJ of the form κi4

and κi6 vanish.
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A.6.3 Occurences of ḣ and η̇

We now resolve the reparameterization-invariance conditions with respect to occurences

of ḣ and η̇. To illustrate what we will be looking for, we take a simple example where

the EMT given by

δUµν = F
ρµναβ∇ρδgαβ, F

ρµναβ = F
ρ(µν)(αβ). (A.49)

We will refer to the last two indices “(α, β)” on Fρµναβ as the “metric indices” and the

penultimate two indices “(µ, ν)” as the “EMT-indices”. For this discussion it is not

necessary to know whether these perturbations are Eulerian or Lagrangian. As usual,

we study metric perturbations in the synchronous gauge, δgµν = γα
µγ

β
νδgαβ . Using

(A.10), the EMT becomes

δUµν =
[

− uρF
ρµναβḢαβ + ikρF

ρµναβHαβ +
2
3
KHρ(αuβ)F

ρµναβ
]

eikx. (A.50)

It is clear that the coefficients of ḣ and η̇ in all fluid variables are given by the spatial

projection of F on the metric indices,

uργα
πγβ

ǫ
F
ρµναβ . (A.51)

The coefficients of ḣ and η̇ in the perturbed density, velocity, perturbed pressure and

stress are found from application of the projectors defined in (A.15) on the EMT-indices.

We will now explicitly study the appearances of ḣ and η̇ in each of the perturbed fluid

variables.

Appearance of ḣ and η̇ in θ First, we will prove that neither ḣ nor η̇ contribute to

θ. The projector of interest here is that for the scalar velocity field, θ,

k(ρ+ P )θ = k̂ǫγ
ǫ
µuνδU

µν . (A.52)

Hence, the coefficients of ḣ and η̇ in θ are given by the time-space projection on the

EMT indices and the space-space projection on the metric indices,

uργ
ǫ
µuνγα

πγβ
ζ
F
ρµναβ . (A.53)

We will now prove that this vanishes, meaning that there are no occurences of ḣ nor

η̇ in θ. We first use W
(1,0)µναβ = W

(1,0)(µν)(αβ), which is the coefficient of ḣ and η̇

in all fluid variables, and is defined in (A.31l). We refer to the last two indices of

W
(1,0)µναβ as the metric-indices and the first two as the EMT-indices. We will perform

an explicit (3+1) decomposition of the tensor W(1,0)µναβ ; this tensor is only a function

– 34 –



of background quantities and so is decomposed entirely into the time-like unit-vector

uµ and the space-like orthogonal metric γµν via

W
(1,0)µναβ = W

(1,0)(µν)(αβ) = AWuµuνuαuβ +BWuµuνγαβ + CWγµνuαuβ

+4DWu(µγν)(αuβ) + EWγµνγαβ + 2FWγµ(αγβ)ν ,

(A.54)

where the six coefficients {AW, . . . , FW} are background-dependant quantities. There

are no components of W(1,0)µναβ which have time-space like EMT indices and space-

space like metric indices. That is,

uµγν
ǫγα

πγβ
ζ
W

(1,0)µναβ = 0. (A.55)

This completes the proof that neither ḣ nor η̇ appear in θ: this means that κ25 = κ27 =

0. The key feature of the tensor W(1)µναβ which allowed us to do the proof in this way

is that it was formed from only background tensors – there were no occurences of the

space-like vector k̂µ. This observation is also true of (A.31a, A.31e, A.31h), so that

γα
µuνY

(0,0)µν = 0, γα
µuνY

(1,0)µν = 0. (A.56)

These expressions would have been the coefficients of δφ, ˙δφ in θ (both without preceed-

ing factors of k). Projecting these tensors (and Y
(2,0)µν) with ⊥αβ

µν also yields zero, so

that δφ, ˙δφ, δ̈φ do not appear in Πµ
ν .

Appearance of ḣ in δP We now look at the occurence of ḣ in δP , elucidated by

the naive activation matrix component (A.41q), and which we see is controlled by

γµνγαβW
(1)µναβ = uργµνγαβF

ρµναβ . (A.57)

The F-tensor is constructed from coupling tensors in the associated Lagrangian for

perturbations via (3.7f), given by

F
ρµναβ = −1

2

[

Uραβµν − Uρµναβ
]

, (A.58)

where we have also set Mǫµνραβ = 0 since there is no G-term in the expansion of Ŵ

(A.26). Using (A.58), (A.57) becomes

uργµνγαβF
ρµναβ = −1

2
γµνγαβ

[

uρUραβµν − uρUρµναβ
]

= 0. (A.59)

Therefore, we conclude that ḣ does not appear in δP , and so κ35 = 0.
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Appearance of η̇ elsewhere We now proceed to study the occurences of η̇ in the

rest of the EMT. We will start off by providing the (3+1)-decomposition of the tensor

F
ρµναβ = F

ρ(µν)(αβ),

F
ρµναβ = AFu

ρuαuβuµuν +BFu
ρuµuνγαβ + CFu

ρuαuβγµν + 2DFγ
ρ(µuν)uαuβ

+2EFγ
ρ(αuβ)uµuν + 4FFu

ρu(αγβ)(µuν) +GFu
ργαβγµν + 2HFγ

ρ(µuν)γαβ

+2IFγ
ρ(αuβ)γµν + 2JFu

ργα(µγν)β + 4KFγ
ρ(αγβ)(µuν) + 4LFγ

ρ(µγν)(αuβ).

(A.60)

The coefficient of η̇ in all fluid variables will be found from the transverse-traceless

projection on the metric indices of Fρµναβ , giving

⊥ǫπ
αβF

ρµναβ = 2⊥ǫπ
αβ

[

JFu
ργα(µγν)β + 2KFγ

ρ(αγβ)(µuν)
]

. (A.61)

Notice that there will be no occurences of η̇ in δρ (i.e. there are no time-time projections

on the EMT indices, which are “µν” of the above), and KF is the coefficient of η̇ in θ,

which we showed was zero in the proof leading up to (A.55). So, η̇ can now only appear

in δP or Π, and will only do so if JF 6= 0; we will now show that reparameterization

invariance enforces JF = 0. Earlier on, we wrote down (A.36n, A.36l), which we repeat

here, that indicate how the gauge field entered into the EMT,

Ξ(1,1)ρσα = 2(γα
(µuν)W

(0,1)ρσµν + k̂ǫγ
ǫ
(µγ

α
ν)W

(1,0)ρσµν), (A.62a)

Ξ(0,2)ρσα = 2k̂ǫγ
ǫ
µuν k̂πF

πρσµν , (A.62b)

where, repeating (A.31k, A.31l),

W
(0,1)µναβ ≡ −k̂ρF

ρµναβ , W
(1,0)µναβ ≡ uρF

ρµναβ . (A.62c)

All projections of Ξ(1,1)ρσα and Ξ(0,2)ρσα on their first two indices must vanish for

reparameterization invariance to be manifest. We now write (A.62) using the (3+1)-

decomposition (A.60), yielding

Ξ(1,1)µνλ = −2k̂ρ
[

(BF + EF)γ
ρλuµuν + (GF + IF)γ

ρλγµν + 2(JF + LF)γ
ρ(µγν)λ

]

,

(A.63a)

Ξ(0,2)µνλ = −2
[

EFk̂ργ
ρλuµuν + IFk̂ργ

ρλγµν + 2LFk̂ργ
ρ(µγν)λ

]

. (A.63b)

So, for reparameterization invariance we require, among other things,

⊥πζ
µνΞ

(0,2)µνλ = 0, ⊥πζ
µνΞ

(1,1)µνλ = 0, (A.64)

which implies that LF = 0, JF + LF = 0, and so clearly, JF = 0.

This, in conjunction with (A.61), that told us the coefficients of all occurances of

η̇ in the EMT, enables us to state that η̇ does not appear in any components of the

EMT. This means that all κIJ of the form κi7 vanish.
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A.6.4 The activation matrix

After imposing (i) second order field equations and (ii) reparameterization invariance

the naive activation matrix components κIJ simplify. In some instances, some of the

κIJ vanish and some lose all or part of their scale dependence. After applying all the

restrictions imposed by requiring reparameterization invariance, the naive perturbed

fluid variables (A.40) become

δρ− κ15ḢL = κ11δφ+ κ12
˙δφ, (A.65a)

(ρ+ P )θ = κ21δφ+ κ22
˙δφ, (A.65b)

3δP = κ31δφ+ κ32
˙δφ+ κ33δ̈φ, (A.65c)

ΠS = 0, (A.65d)

where all κIJ are scale independent. In the main body of the paper we write the

components of the activation matrix as AIJ, we identify

A11 ≡ κ11, A12 ≡ κ12, A14 ≡ κ15, (A.66a)

A21 ≡ κ21, A22 ≡ κ22, (A.66b)

A31 ≡ 1
3
κ31, A32 ≡ 1

3
κ32, A33 ≡ 1

3
κ33. (A.66c)

These are precisely the same expressions as we presented in (4.3).
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