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Abstract

Let T be a tree with a vertex set {1,2,...,N}. Denote by d;; the distance
between vertices 7 and j. In this paper, we present an explicit combinatorial formula
of principal minors of the matrix (%), and its applications to tropical geometry,
study of multivariate stable polynomials, and representation of valuated matroids.
We also give an analogous formula for a skew-symmetric matrix associated with 7.

1 Introduction

Let T'= (V,E) be a tree, where V= {1,2,...,N}. For i,j € V, denote by d;; the
number of edges of the unique path between i and j in 7. With an indeterminate ¢,
define the matrix A = (a;;) by

Q5 1= tdis (’L,] S V)

This matrix appeared in the study of the ¢-distance matrix of a tree [2]. Yan and Yeh
[27] showed that det A is given by the following simple formula:

Theorem 1.1 (Yan-Yeh [27]). det A = (1 — t2)N -1,

Our main result can be understood as an extension of Yan—Yeh’s formula to prin-
cipal minors of A. The motivation of our investigation, however, comes from study of
multivariate stable polynomials [6] [7, @], tropical geometry [IT], 25], and representation
of valuated matroids [13] [I5]. To state our result, let us introduce some notions. For
X C V, denote by A[X] the principal submatrix of A consisting of a;; for i,j € X.
We say that a forest F' = (Vp, Er) is spanned by X if X C Vp and all leaves of F
are contained in X. Note that the subtree of T spanned by X is the unique minimal
subtree including X, which is denoted by Tx = (Vx, Ex). Define ¢(F) as the number
of connected components of F. Denote by degp(v) the degree of a vertex v in F. Then
our main result is the following:

Theorem 1.2.
det A[X] = (~1)X el TT (degp(v) — 1), (1.1)
F veVrp\X

where the sum is taken over all subgraphs F of T spanned by X. In particular, the
leading term is given by

(~D)XH2IETT (degyy (v) — 1). (1.2)
veVx\X
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In the case X = V, the formula (1)) coincides with the binomial expansion of
Yan-Yah’s formula.

Our formula brings a strong consequence on the signature of A[X]. Recall that the
signature of a symmetric matrix is a pair (p,q) of the number p of positive eigenvalues
and the number ¢ of negative eigenvalues. When we substitute a sufficiently large value
for ¢, the sign of det A[X] is determined by the leading term. By (2], det A[X] > 0 if
| X| is odd, and det A[X] < 0 if | X| is even. From Sylvester’s law of inertia, the number
of sign changes of leading principal minors is equal to the number of negative eigenvalues
(see [I7, Theorem 2 in Chapter X]). Therefore the signature of A[X]is (1,|X|—1). This
argument works on the field R{t} of Puiseux series (defined in Section 2l). Thus we have
the following.

Corollary 1.3. The signature of A[X] is (1,|X| —1).

In particular, A[X] is nonsingular and defines the Minkowski inner product, i.e., a
nondegenerate bilinear form with exactly one positive eigenvalue.
We also consider a skew-symmetric matrix B = (b;;) defined by

bij = —bj =t (i < j).

Denote by B[X] the principal submatrix of B as above. In contrast with the symmetric
case, the Phaffian Pf B[X] depends on the ordering of X. We give a simple formula
for the case where X has a special ordering, though we do not know such a formula for
general case. A vertex subset X = {iq,i9,...,9x} with i3 < iy < -+ < i) is said to be
nicely-ordered (with respect to a given tree T') if the tour iy — iy — -++ — i, — i3 in
T passes through each edge in T" at most twice. An edge e of T is said to be odd (with
respect to X) if both two components obtained by the removal of e from T include an
odd number of vertices in X. Let Ox C E be the set of odd edges.

Theorem 1.4. If X is nicely-ordered and | X| is even, then
Pf B[X] = t19x], (1.3)

The both formulas are easily generalized to a tree metric, that is, a dissimilarity
matrix that can be embeddable to an edge-weighted tree. More precisely a dissimilarity
matriz is a nonnegative symmetric matrix D € Q™*"™ with zeros on diagonal, and a tree
metric is a dissimimlarity matrix D such that there are a tree T = (V, E), a positive
edge weight [ on E, and a map ¢ : {1,2,...,n} — V such that D;; is equal to the
sum of weights of edges of the unique path between (i) and ¢(7). In this case, if ¢ is
injective, then we can regard {1,2,...,n} C V, and the formula of det(¢”%) is obtained
by replacing |Er| and [Ox| by weighted sums > l(e) and ) . I(e), respectively.
(If © is not injective, then det(¢”#) = 0.) The well-known tree metric theorem [8] says
that a dissimilarity matrix D = (D;;) is a tree metric if and only if D satisfies

[4PC] D;j + Dy < maX{le + Djl7 Dy + Djk} (i,5,k,1 € {1, 2,... ,n})

This condition is called the four-point condition [4PC]. A symmetric matrix W = (w;;) €
Q<™ satisfying [4PC] (not necessarily a dissimilarity matrix) can be represented with
a tree metric D = (D;;) and a vector p = (p;) € Q" (defined by p; := w;;/2) as

wij = Dij + pi + pj- (1.4)
Then we have

det(tVis) = ¢22k=1Pk det(¢Pi5). (1.5)



Therefore our formulas are applicable to matrices with exponents satisfying [4PC].

The organization of this paper is as follows. In Section [2, we present applications
of the formulas. The space of tree metrics (called the space of phylogenetic trees in [4]),
and related spaces arise ubiquitously from the literature of tropical geometry: examples
include the tropical grassmannian of rank 2 [25], the Bergman fan of the matroid of a
complete graph [I], and the space of matrices with tropical rank 2 [I1]. In Section 2],
we present yet another appearance of the space of tree metrics from tropicalization of the
space of Hermite matrices of signature (1,n — 1). This type of matrix also has interest
from theory of multivariate stable polynomials [9 Theorem 5.3]. Recent studies [0,
[7, @] explored an interesting link between stable polynomials, matroids, and related
discrete concave functions. In Section [Z2] utilizing the formula (1], we establish a
correspondence between tree metrics (D;;) and quadratic stable polynomials 2T (¢Pi)z
in R{t}. Our formula also sheds a new insight on the dissimilarity map X — |Ex| of a
tree T'= (V, E) [23]. The dissimilarity map of a tree has a significance in phylogenetic
analysis as well as has interests from tropical geometry and representation of valuated
matroids [10, I8 20]. Observe that our leading term formula (2)) gives a new type of
representation of the dissimilarity map by the degree of principal minors of a symmetric
matrix. In Section 23] we address this subject. In Section Bl we prove Theorems
and 41

2 Applications

To describe applications of our formulas, let us recall the notion of Puiseux series. A
Puiseux series in the indeterminate ¢ and a field K (= R, C) is a formal series of the
form Z;’Z‘; a;t"/* where ig and k > 0 are integers and each coefficient a; is an element
in K. Let K{t} denote the field of all Puiseux series in the indeterminate ¢ and a field
K. Define a binary relation > on R{t} by = > y if the leading coefficient of x — y
is positive. By this relation, R{t} becomes an ordered field. Any statement in R is
naturally formulated in R{¢}. From Tarski’s principle, any true (first order) statement
in R is also true in R{t}; see Appendix[Al Hence Corollary [[3]is true in R{t}.
Let Q := QU {—oc}. The valuation val : K{t} — Q is defined by

val(z) := max{j/k | a; # 0} <w = Zaiti/k € K{t}) )

where val(0) := —oo. Namely val(z) is the degree of the leading term of z. Define
val : K{t}" — Q" as val(z) := (val(z1),...,val(z,)) for z € K{t}". Through this map,
an algebraic object V in K{t}" is transformed to a polyhedral object val(V) in Q",
and an algebraic condition cozP0 = > ¢; 2% satisfied by V is transformed to a max-plus
condition val(cg) + (bg, v) < max;{val(c;)+ (b;,v)} satisfied by val(V), which is obtained
by replacing (4, x) with (max, +) in the original condition. We will refer to this process
as a tropicalization. This is a basic idea in tropical geometry; see [25].

For # = y++/—1z € C{t} where y, 2 € R{t}, the complex conjugate T of z is defined
as T :=y —v/—1z, and 27 is denoted by |z|?>. By an Hermite matrix we mean a matrix
A= (aij) with Qi = Qj; € C{t}

2.1 Tropicalizing Hermite matrices with nonnegative diagonals and
signature (1,7 — 1)

Let M,, be the set of n x n Hermite matrices on C{t¢} having signature (1,n — 1) and
nonnegative diagonal entries. Let M, be the closure of M,,, that is, the set of Hermite



matrices having nonnegative diagonal entries and at most one positive eigenvalue. We
regard a symmetric matrix M = (m;;) of size n as a vector of dimension n(n + 1)/2.
Then the tropicalization of M,, is essentially the space of tree metrics as follows.

Theorem 2.1. For a symmetric matric W = (w;;) € Q™" t1/2) the following conditions
are equivalent:

(1) W belongs to val(M.,,).
(2) W satisfies [APC].
In particular, (t¥) € M, if and only if W satisfies [APC].

Proof. (1) = (2). Since W € val(M,,), there is a matrix M = (m;;) € M,, such that
w;j = val(m;;) for 4,5 = 1,2,...,n. Every principal submatrix M[X] has at most one
positive eigenvalue, and if M|[X] has no positive eigenvalue, then M[X] must be a zero
matrix (since all diagonal entries of M must be zero, and all 2 x 2 principal minors of
M must be nonnegative). From this we have the following:

() det M[X] > 0if |X| is odd, and det M[X] < 0 if | X| is even.
We show that W satisfies [4PC]:
(1) wi; + wg < 2wy for distinet i, k.
(il) wi; + wyy < wy + wy for distinet 4, k, 1.
(i) wyj + wiy < max{w;, + wji, wiy + wjx} for distinet i, j, k, [

(i): By (x) we have det M[{i,k}] = mimur — |mi|?> < 0. Since my; and myy, are
nonnegative, it must hold that wy; + wir = val(mgmus) < val(jm|?) = 2w
(ii): det M[{i, k,1}] is equal to

mamgrmy + (Madmamyg + mgEmamg) — ma|me|® — mpglmal® — ma|ma>. (2.1

From (i), val(mgmgrmy) < val(mgmgmy) = val(mpmgmy;). Since det M [{i, k,l}] >0
by (%), and the last three terms in (Z1]) are nonpositive, it must hold that

Val(mii\mklP) < max{val(miimkkm”), Val(mikm—umkl + m—zkmllm—kl)} < Val(mikmumkl).

Therefore we obtain (ii).

(iii): Consider the expansion of det M[{i, j, k,}]. For a term containing m;ym; in
the expansion, the term obtained by replacing mm s with T mj also appears in
the expansion and has degree at least the original by (i) and (ii). From this we see that
the degree of a term including a diagonal element m;; is no more than the degree of
mr i mypmyy for some different @/, 5, k', 1’. Observe that val(myjimjmpypmy)
is equal to (val(|my |2 |myg|?) + val(|mip|?|mjis|?)) /2. Therefore, if [4PC] is violated,
say, W;j +wy > max{w;k, + wji, wi; +w;i}, then |ml-j|2|mkl|2 becomes the unique leading
term in det M [{i, j, k,(}]. This implies that det M[{3, j, k,{}] > 0, which contradicts (x).
Thus W satisfies [4PC].

(2) = (1). It suffices to show that M := (t“#) belongs to M,,. We use the induction
on n. If n = 1, then the statement obviously holds. Suppose n > 1. If M is singular,
then some i-th column (row) can be represented as a linear combination of other column
(row). Hence the signature of M is equal to that of the matrix M’ obtained by deleting
i-th column and row; we can apply the induction. We can assume that M is nonsingular.



If w;j = —oo for distinct 4, j, then [4PC] implies wi, + wj; < wy + wjg. Exchanging
the role of k and [, we have w;, + wj; = wy + wji. This means mypmy = mym;y.
Hence the i-th row and the j-th row are linearly dependent, and this contradicts the
nonsingularity assumption of M. Thus W has —oo only on diagonals (if it exists). By
replacing —oo by a sufficiently small o € Q, we obtain W’ = (wyj;). Then W' satisfies
[4PC] (when o < min;z;{w;;}). Similarly, M’ is defined by M’ := (t“is). Then we have
IM — M'||so < t°. From Tarski’s principle, the continuity of eigenvalue also holds on
R{t}. Therefore the signatures of M and M’ must be the same. Hence it is enough to
consider the case that M is nonsingular and W has no —oo entry. Then as the equation
(T4), there are a tree metric D and a vector p such that w;; = D;; + p; + pj. The
signatures of M and (t”#) are the same. Since M is nonsingular, the embedding map
to the corresponding tree must be injective. Thus we can apply Corollary for (tPis),
and conclude that the signature of M is (1,n — 1). O

2.2 Quadratic polynomials with the half-plane property

A real multivariate polynomial P € Rz, 29, ..., 2] is said to have the half-plane property
if P has no root z = (21, 22, ..., 2,) with Re(z;) >0 (i = 1,2,...,n). Such a polynomial
is also called an HPP polynomial. Choe, Oxley, Sokal and Wagner [9] and Brandén [6), [7]
explored an interesting link between the half-plane property and matroidal convexity. A
set B of integer vectors in Z} is called M-convex [22] if B satisfies the following property:

[EXC] For u,v € B and i € {1,2,...,n} with u; < v;, there exists j € {1,2,...,n}
such that u; > v; and
u+e —ej,v+e; —e €B.

An M-convex set is nothing but the base set of an integral polymatroid [16]. In addition
if B belongs to {0,1}", then B is the set of characteristic vectors of bases of a matroid.EI
An M-convex set B lies on a hyperplane {x € R™ | > | #; = k} for some k € Z,, and
this k is called the rank of B. The support of a polynomial P(z) = a,z" is the set of

vectors u € Z7 such that a, # 0, where 2% := 2] - - 2},

Theorem 2.2 (Choe-Oxley—Sokal-Wagner [9, Theorem 7.2]). For every homogeneous
HPP polynomial P, the support of P is an M-convex set.

The converse of this theorem is not true in general: there is no HPP polynomial
having Fano matroid support [6]. In rank-2 case, however, the following is known.

Theorem 2.3 (Choe-Oxley—Sokal-Wagner [0, Corollary 5.4]). For every M-convez set
B of rank 2, the polynomial Pp(z) = Zlgijgn:ei+ejeB zizj has the half-plane property.

A key ingredient of their proof is the following.

Theorem 2.4 (Choe-Oxley—Sokal-Wagner [9 Theorem 5.3]). For a nonnegative real
symmetric matriz A, the following conditions are equivalent:

(1) 2" Az has the half-plane property.

(2) A has at most one positive eigenvalue.

'[9, Section 7.1] refers to an M-convex set as a constant sum jump system.



Brandén [7] considered HPP polynomials on the field of Puiseux series. Since R{t}
is an ordered field, the half-plane property is also defined on C{t}. Namely, P €
R{t}[z1,22,...,2,] is said to have the half-plane property if P has no root z with
Re(z;) > 0 (i = 1,2,...,n). For a polynomial P = ) a,z", define a function valp
on Z'} by

valp(u) == val(a,) (u€Z7}).

Again valp has a matroidal concavity. A function f: Z7 — Q is called M-concave [22]
if

[M-EXC] for u,v € Z} and i € {1,2,...,n} with u; < v;, there exists j € {1,2,...,n}
such that u; > v; and

fu)+ f(v) < flute —ej) + f(v; + e —e).

Note that if f is an M-concave function, then the domain of f is the M-convex set [22,
Proposition 6.1], where the domain is the set of elements u such that f(u) > —oc.
Therefore we define the rank of an M-concave function as the rank of the domain. If the
domain of f is contained by {0,1}", then f is a valuated matroid [15]; see Section

Theorem 2.5 (A corollary of Brandén [7, Theorem 4]). For every homogeneous HPP
polynomial P, valp is an M-concave function.

We consider the rank-2 case. A function f on {e; +¢; | 1 <i,j < n} is identified
with a symmetric matrix (f;;) by the correspondence

f(ei + ej) — fzj

By this correspondence, the condition [M-EXC] for f is equivalent to [4PC] for (f;;).
This fact was observed by Dress and Terhalle [I3], Hirai and Murota [19]. Thus Theorem
20 implies that A := (tf7) has at most one positive eigenvalue. Theorem 24 is true in
R{t} by Tarski’s principle (Appendix [Al). Therefore we have the following.

Corollary 2.6. For every M-concave function f of rank 2, the polynomial P¢(z) =
o tfeitei)) 22 has the half-plane property.
1,J€[n] J

Remark 2.7. For a valuated matroid f of rank 2, the existence of an HPP polynomial P
with valp = f can also be derived from a combination of the following two facts: (i) every
valuated matroid of rank 2 is representable in R{t} [25], and (ii) for a reprensentable
valuated matroid f represented by a k xn matrix M, the polynomial Q(z) = det M ZM T
is an HPP polynomial with valg = f, where Z = diag(z1, 22,...,.2,) [9, Theorem 8.2[;
see Section for a valuated matroid and its representability.

2.3 Valuated matroid and dissimilarity map on tree

Our formulas shed some insights on valuated (A-)matroids arising from weights of sub-
trees in a tree. Denote by (‘g) the set of all subsets of V' with cardinality k. For a matrix
M, denote by Mx the submatrix of M consisting of the i-th columns over i € X, and
by Mx 7 the submatrix consisting of the i-th rows and the j-th column over ¢ € X and
jEeZ.

A wvaluated matroid of rank k is a map w : (Z) — Q satisfying

w(X) +w(Y) < jg@{W(X VU UD e\ Ui} (XY e (). ie X\Y).



This condition is the tropicalization of the Grassmann-Pliicker relation of the Pliicker
coordinate vy := val(det Mx) for a k x n matrix M:

VY - Vy = Z Oij " UX\{i}u{j} * UV \{5}u{i} (X,Y S (‘g), 1€ X \ Y),
JeEY\X

where o;; € {1, -1} depends on the ordering of the elements 7, j. In particular for any
k x n matrix M, the map X +— val(det My) is a valuated matroid. Such a valuated
matroid is called representable. In tropical geometry, a representable valuated matroid
is a point of the tropical grassmannian [25].

In study on phylogenetic trees, Pachter and Speyer [23] found that weight of subtrees
in a tree yields a class of valuated matroids. Let T'= (V, E) be a tree with a positive
edge weight [. For a vertex set Y, define the dissimilarity D(Y") of Y by the sum of edge
weights [(e) over edges e in the minimal subtree in T containing Y. Let X = {1,2,...,n}
be the set of leaves of T. The k-dissimilarity map D" is a function on the k-leaf set (ig)
defined by D*(Y) := D(Y).

Theorem 2.8 (Pachter—Speyer [23]). The k-dissimilarity map is a valuated matroid.

Pachter and Speyer [23] asked whether a k-dissimilarity map is in the tropical grass-
mannian, or equivalently, is a representable valuated matroid (in our terminology). Re-
cently this problem was affirmatively solved:

Theorem 2.9 (Cools [10], Giraldo [I8], Manon [20]). The k-dissimilarity map is a
representable valuated matroid.

Compared with this theorem, our formula (II]) gives another type of a representation
of the dissimilarity map D — a representation by the degree of principal minors of
a symmetric matrix. Combinatorial properties of the map X ~— val(det A[X]) for a
symmetric matrix A are not well-studied and not well-understood, though it is known
that the nonzero support {X | det A[X] # 0} forms a A-matroid [5, 12]. A natural
question is: does the map X +— val(det A[X]) have a kind of a matroidal concavity?
We hope that our new representation of dissimilarity maps will stimulate this line of
research.

Giraldo [18] proved Theorem by showing that the total length of a tree is repre-
sented as the degree of the determinant of a certain matrix associated with the tree. His
formula is somewhat similar to our formula, although we could not find a relationship
between them.

Representation of rooted k-dissimilarity map. Nevertheless our formula gives a
linear representation for a special class of dissimilarity maps. Fix a root vertex 0 € V'\ X.
The rooted k-dissimilarity map DF is a function on ()k() defined by D§(Y) := D(Y U{0}).
A linear representation of D} is constructed as follows.

Define an n x n matrix M = (m;;) by m;; = t%i — tdoitdoi Namely M is the Schur
complement of the 0-th diagonal element in A[X U {0}] = (¢t%4). Hence we have

(1) det M[Y] =det A[Y U{0}] for Y C X, and
(2) M is negative definite.

We see (2) from the sign pattern of det M[{1,2,...,k}] = det A[{0,1,2,...,k}]. By (2)
and the Cholesky factorization, there is an n x n matrix Q with —M = Q'Q. Take



an arbitrary k x n matrix J in R whose entries have no algebraic dependence. By the
Binet—Cauchy formula we have

2val(det(JQ)y) =2 Val(z det JzdetQzy) =2 max val(det Qzy)
z

= mZaX Val((det QZ7y)2) = Val(zz:(det QZ7y)2) = Val(det(Qy)TQy)
= val(det M[Y]) = val(det A[Y U {0}]) = D§(Y),

where Z ranges all elements in ()k( ), and the second equality follows from the algebraic
independence of elements in J. Hence let R := JQ and replace t by t/2 in R. Then
DE(Y) = val(det Ry ), and we obtain a linear representation of DE.

Valuated A-matroid and odd-dissimilarity map. A wvaluated A-matroid [14], 26]
is a function w : 2V — Q satisfying

wX)+wl) < je(r)r(l?}(/)\i{w(XA{i,j}) +wYA{i,j})} (X, Y CV, ie XAY).

This is the tropicalization of the Wick relation of principal minors bx := Pf B[X] (X C
V) of a skew-symmetric matrix B:

bx-by = > 0li-bxagybyagy (XY CV,ie XAY),
JE(XAY)\i

where agj € {1,—1} depends on the ordering of the elements i,j. Hence the map
X > val(bx) is a valuated A-matroid [20]; see also [2I Section 7.3]. Such a valuated
A-matroid is called representable.

Let T = (V,E) be a tree where V. = {1,2,...,N}. For any tree T, the odd-
dissimilarity map D° € 2V is defined as follows.

o |Ox| if | X| is even,
— C
D(X) : { —oo if | X is odd, Xcv),

where Ox is the set of odd edges with respect to X, defined in Section[Il After reordering,
we suppose that V' is nicely-ordered. One can easily see that any subset X C V is also
nicely-ordered. By (IL3]), we have

D°(X) =val(Pf B[X]) (X CV).
Moreover, let BY be the matrix obtained by replacing ¢ by t~! in B. Then we have
—-D°(X) =val(Pf BY[X]) (X CV).
Therefore we obtain the following.

Corollary 2.10. The odd-dissimilarity map and its negative are both representable val-
uated A-matroids.

This theorem implies that the odd-dissimilarity map is a nontrivial example of a
valuated A-matroid whose negative is also a valuated A-matroid.

An algebraic variety determined by the Wick relation is called the spinor variety.
The spinor variety parametrizes maximal isotropic vector subspaces in a vector space
with an antisymmetric bilinear form, analogous to the grassmannian that parametrizes
vector subspaces. Rincén [24] considered the tropical spinor variety (a tropicalization of
the spinor variety). A representable valuated A-matroid is nothing but a point of the
tropical spinor variety in his sense. Corollary is therefore an isotropic analogue of
Theorem



3 Proof

3.1 Proof of Theorem

Let T'= (V, E) be a tree, and X C V. Let us recall the formula for the determinant of
A[X]. Without loss of generality, we can assume that X = {1,2,...,n}.

det A[X] = Z sign(o) H“w(i)’
gESH 1=1

where S, is the symmetric group of degree n. Our first step is to identify each permu-
tation of this formula with a path on the corresponding tree. Let us define following

terminology.
e A cycleof X is a cyclic sequence (z1,x2,...,x) (k > 1) of asubset {1, x9,..., 25} C
X, where we do not distinguish (z1,xo,...,x;) and (g, z1,z2,...,2_1), and in-

dices are considered modulo k.

e A cycle partition W of X is a set of cycles of X such that every element of X
belongs to exactly one cycle.

e The support supp(C) of a cycle C = (z1,x2,...,2k) is a function on E defined
by: supp(C)(e) is the number of indices i such that e belongs to the unique path
between z; and ;41 in T. The support supp(W) of a cycle partition W is defined
as ) ey Supp(C). Note that the support is even-valued.

o sign(W) := [[oep (-1
o W]l =2 e supp(W)(e).

For a cycle C' = (iy,19,...,ik), this definition means that
k
Z dijij+1 = Z supp(C)(e). (3'1)
j=1 eck

By using these notions, the formula of the determinant can be rephrased as follows.

Lemma 3.1.
det A[X] = Z {sign(W)t”W” | W: cycle partition of X} . (3.2)

Proof. Observe that there is a one-to-one correspondence between permutations and
cycle partitions: a permutation is uniquely represented as the product of (disjoint)
cyclic permutations, and each cyclic permutation (i1,42,...,7;) is naturally identified
with a cycle in our sense. In this correspondence, the sign of a permutation o is equal
to sign(W) of the corresponding W, and by the equation ([B.I]), we have

H (i) = 12oiex dioc(iy — W1l
ieX
Hence we have

det A[X] = Z sign(o) H Ui (i) = Zsign(W)t”W”.

o€Sn 1€X w



A cycle partition W of X is said to be tight if the support of W is {0, 2}-valued. In
fact, non-tight cycle partitions vanish in (3.2)).

Lemma 3.2.
det A[X] = Z {sign(W)t”W” | W: tight cycle partition of X} .

Proof. Let us first introduce an operation on cycle partitions, called a flip. Let W be a
cycle partition of X, and let e = xy be an edge of T'. Suppose that supp(W)(xzy) > 4.
Then (i) there are two cycles C, C’ passing through e in order x — y, or (ii) there is a
single cycle C” passing through in order x — y twice. For the case (i), suppose that
C = (v1,v2,...,0t), C" = (u1,us,...,u), the unique path from v; to v;+1 passes through
xy in order v; — x — y — v;41, and the unique path from u; to u;41 passes through xy
in order u; —  — y — u;41. Replace C' and C’ by

C” = (?}1,. sy Uiy Ujqdy oo o s U UL v ooy Uy Vg1 - - ,Uk). (33)

Then we obtain a cycle partition W/ = W \ {C,C’} U{C"”}. Similarly, for the case (ii),
there is a single cycle C” as in (3.3). By reversing the operation above, we obtain two
cycles C,C’. Replacing C” by C and C’, we obtain a cycle partition W' =W \ {C"} U
{C,C"}. In this way, we obtain an operation W — W’ on cycle partitions, which we call
a flip.

If a cycle partition W’ is obtained by applying a flip to another cycle partition W,
then supp(W') = supp(W) and sign(W') = —sign(WW). The former equation is obvious
from the definition of a flip. The latter equation holds since |W| — |[W'| € {1, -1} and

sign(W) = [ (D)9 = (—p)HwL
ceWw

For | : E — 2Z,, let W, be the set of all cycle partitions W with supp(W) = [. Let
Wfr denote the set of cycle partitions W in W, with sign(W) = 1, and let W, := V\/l\VVlJr .
Then, from ([B.2]), we have

det ALX] = 3" (W[ — Wy i, (3.4)
1:E—27

where ||I|| := > .cpl(e). It suffices to show that if there is an edge e € E with I(e) > 4,
then [W;"| = W, |.

Let T’ be the graph on W, such that two vertices W, W’ € W, are adjacent if and
only if W can be obtained from W’ by a single flip on e. The graph I' is a bipartite
graph of bipartition {V\/lJr , W, }, since a flip operation changes the sign, and I" cannot
have an edge joining vertices of the same sign. Moreover I' is a regular graph, since the
number of different flips on e is determined only by i(e) (, which is equal to 2(“63/ 2)),
and different flips yield different cycle partitions. Thus I' is a regular bipartite graph
with bipartition {W,", W, }, which implies [W;"| = W, |. O

For any set W of cycle partitions, define the number (W) by
(W) = Z sign(W).
wew

For a forest F' (not necessarily a subgraph of T') spanned by X, define Wy p by the
set of cycle partitions W on X such that each cycle C' € W belongs to some connected
component of I, and each edge in F' is traced by cycles in W exactly twice. By using
this notation, we have the following.

10



Lemma 3.3.
det A[X] = (Wi p)t*F7], (3.5)
F
where F' ranges all subgraphs in T spanned by X.

Proof. This immediately follows from Lemma and the fact that for any tight cycle
partition W the forest formed by edges e with supp(WW)(e) = 2 is spanned by X. O

Hence, to prove Theorem [L2] it suffices to show the following:

Lemma 3.4.

Wrx) = ()P T (degp(v) — 1),
veVE\X

This lemma is an easy corollary of the following properties of (Wx ).

Lemma 3.5. (i) Suppose that F is the vertez-disjoint union of two forests H,H'.
Then we have

Wrx) = W, xovy) Wi xav,,)-

(ii) Fore =uzy € Ep, let F' be the forest obtained from F by adding new vertices x’, 1y’
and by replacing e by new edges xy',x'y. Then F' is spanned by X U{2',y'}, and
we have

Wrx) = =Wpr xUtaryy)-
(i) If F is a star with the center vertex v, then

W >:{ (~1)XIH if ve X,
Fx (—=1)XI*1(degp(v) — 1) otherwise.
Proof of Lemma[3.4] By Lemma (i), it suffices to prove the formula for the case
where F' is connected. We use the induction on the number k of non-leaf vertices. If
k =0or 1, then F is a star, and the corresponding formula follows from (iii). Let k& > 1.
Since F' is connected, there exists an edge e joining two non-leaf vertices. Applying (ii)
for e, we have (W x) = —(Wpr xUfary}), Where ' has two connected components H,
H', each of which has less non-leaf vertices than F has. Let Y := (X U {2/,y'}) N Vg,
and Y/ := (X U{2/,y'}) N V. From (i) and inductive hypothesis, we get

Wrx) = —Wp xUge y)) = —Way) War yr)
— (= 1) XY HH WV [+ Vi [+ B+ E | H (degp(v) — 1)
veV \(XU{z',y'})

= (_1)\X|+\VF\—IEF| H (degp(v) — 1),
veEVR\X

where |Vi| + V| = |Vp| + 2 and |Eg| + |Eg/| = |Ep| + 2. Since ¢(F) = |Vr| — |EF|,
we have the desired equation. O

Proof of Lemma[324. (i) Since every cycle partition W € Wy x is uniquely decomposed
into cycle partitions Z € Wy xnv, and Z' € Wy xnv,, with W = Z U Z’, and vice
versa, we have

Wex)= Y sign(W)= > Y. (sign(2))(sign(2"))

WEWF,X ZGW}LXQVH ZIEWH’,XOVH/

= Wh,xvy) Wi xav,,,)-

11



(ii) For every cycle partition W € Wp x, there is the unique cycle
C = (u,v,al,...,ai,v',u',ﬂl,...,ﬁj) ceWw

such that the path between w,v and the path between v',u’ include xy in order u —
x,y — v and v — y, 2 — o/, respectively. Define two cycles C’, C" by

C" = (u,y v, B, ... . Bi), C" =W, 2 v,a1,...,q;). (3.6)

Let W' := W\ {C} U {C',C"}. Then W’ is a cycle partition in Wpgs xy(er,) with
sign(W) = —sign(WW’). Thus we obtain a map from Wg x to Wgs xUgar,y such that
W — W'. Observe that this map is a bijection; any cycle partition W' € Wgr xgar 1y
includes cycles C, C’ with property (3.6), and the reverse operation is definable on every
cycle partition. Hence we obtain

<WF,X0VF> = Z SlgH(W) = - Z sign(W') = _<WF’7XU{x’,y’}>-
WeWr x WIEWF’,XU{x’,y’}

(iii) Let & := | X]|. In the both cases, (Wp x) depends only on the cardinality of X.
We may denote W x by A, if v ¢ X, and denote W x by By, if v € X. We will prove
the following two claims.

(1) (Ak) = —(k = D({(Ag—1) + (Ar—2)), (k> 3).
(*2) (Br) = (Ag) + (Ap-1), (k>2).
By (As) = —1, (A3) = 2, and the recursion (1), we have
(Ap) = (=1)F 1 (k = 1) = (=1) X (degp(v) — 1).

Also we have (By) = 1, (By) = —1, and from (¥2), (Bi) = (Ai) + (Ap_1) = (—1)X I+,

For (1), fix an arbitrary vertex u € X. Let A} denote the set of cycle partitions W
in Ay such that the unique cycle in W containing u has length at least three. We will
show that

(Ap) = = (k = D(Ap-1), (3.7)
((Ar) = (Ap) =) (A \ Ap) = —(k — 1){Ag—2). (3.8)

To see ([B.1), for a cycle partition W € Aj_1, take a consecutive pair x,y in some
cycle C'in W. Replace z,y by z,u,y in C. Then we get a cycle partition W’ in A} with
sign change. There are k — 1 ways of choosing a consecutive pair in each cycle partition.
Also every cycle partition in A}, is obtained in this way. Hence we have 7).

To see (B8], observe that Ay \ Aj is the disjoint union, over z € X \ u, of the
sets W, of cycle partitions including (u,z). Delete (u,z) from each cycle partition
of W,. Then we get a cycle partition in A, 5 with sign change. Also, every cycle
partition in W, is obtained by adding the cycle (u, z) to cycle partitions in Ay_o. Hence
(A \ AL =2 e x\uWa) = —(k — 1)(Ak—2), and we have B.J).

Consider (#2). Let B), denote the set of cycle partitions W in By, such that W includes
the singleton cycle (v). It suffices to show that (B) = (Ax_1) and (B \ B},) = (Ax).

The first equation follows from the observation that the deletion of (u) from cycle
partitions in BB, makes a one-to-one correspondence between B) and Ay_;. For the latter
equation, add a new leaf v’ to F, and replace v by v in each cycle partition in By, \ By
This procedure maps cycle partitions in By \ B}, to ones in Ay, bijectively, and thus we
have the latter equation. O
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3.2 Proof of Theorem [1.4]

Suppose that X = {1,2,...,2n} and X is nicely-ordered with respect to 7. We denote
Pf B[X] by Pf[X] for simplicity. Let us recall the recursive definition of Pfaffian:

PHX] =Y (=) by PHX \ (i, j}] (i € X). (3.9)
jeX

Since the deletion of an element in X only omits paths of the corresponding tour, we
have the following lemma.

Lemma 3.6. If X is nicely-ordered, then every subset Y of X is nicely-ordered.

In the following, we tacitly use this lemma. For distinct 7,5 € X, define P;; C F as
the set of edges which belong to the unique path from 7 to j.

Lemma 3.7. OX\{i,j} = Oxﬁpl'j.

Proof. Let e € E, and let T”, T” be the two components obtained by the removal of e. If
e ¢ Pij, then either 7" or T" must include both i and j, and hence e € Ox\(; ;3 < ¢ € Ox.
If e € P;;, then 7" must include just one of ¢ and j, and hence e € Ox\fijy € € € Ox.
These imply the statement. O

The following lemma gives a pairing of elements of X via odd edges.
Lemma 3.8. There is a partition {{i1, j1},{i2, 52}, {in,Jn}t} of X such that
() ik + ji is odd for all k =1,...,n, and
(ii) Ox is the disjoint union of P j,,...,P; .. In particular, it follows that

P, \Ox =Py,;, \Ox (veX, k=1,2,...,n).

Proof. We first show that there exists ¢ with P;; ;1) € Ox, where the indices are con-
sidered modulo 2n. We may assume that all leaves of T" belong to X. Consider the
subgraph H of T' formed by Ox. There exists a connected component 77 of H incident
to (at most) one edge e € F'\ Ox in T. Necessarily T’ contains at least two vertices
7,7 in X. Then 7 — 1 or 7 + 1 also belongs to T”; otherwise the edge e is traced at least
four times by the tour 1 — 2 — --- — 2n — 1; contradiction to the fact that X is
nicely-ordered. This implies F;_1); € Ox or Py;11) C Ox.

We prove the statement of this lemma by induction on the cardinality of X. Pick a
vertex 7 with P11y € Ox. Let {i1,j1} := {i,7 + 1}. Then Ox is the disjoint union of
Pi(i11y and Ox\ 4,41}, and i1 +71 is odd. We can renumber X\ {i,i+ 1} with keeping the
parity of the indices. By induction, X \ {i,7 4+ 1} has a partition {{i2,j2},.. ., {in,Jn}}
such that ix + ji is odd for all k = 2,...,n and Ox\ (41} is the disjoint union of
Piyjoy--y Pijgn. Then {{i1, j1}, {2, j2}, ..., {in,dn}} is a desired partition of X, and the
proof is complete. O

We are ready to prove Theorem [L4]

Proof of Theorem [1.4} We prove the statement by the induction on the cardinality of X.
If X = {1,2}, then Pf[{1,2}] = byp = t412 = ¢%02] Suppose |X| > 2. Fix a partition
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{{i1 71}, s {in, Jn}} of X satisfying the condition in Lemma[B:8 We can assume that
i1 = 1. Since j; is even and i + ji is odd for all k, from the formula (3.9) we have

PEXT] =byj, PEX A\ {1, j1}]

+ 301 (b, PIX {1, 36}] = by, PEX A\ {1 5i}]). (3.10)
k=2

Since Ox is the disjoint union of Py;, and Ox\ 1,5}, by inductive hypothesis we have

b1j1 Pf[X \ {1,j1 }] = t‘P1j1|+‘OX\{17]'1}‘ = t‘OX|7
buiy, PELX \ {1, 35 }] = et O 0]
buse PHX\ {1, i} = 67 F10 |
From Lemmal3.7, we have [ Pri, [+]0x\ 11,5, 3| = [P1i, [ +|Ox APy, | = [Ox[+2[P, \Ox| =

|Ox |+2[P1j, \Ox| = |P1j, | +]0x\{1,5,3 - Hence the sum of the equation (3.I0) vanishes,
and we have (L3). O
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A Tarski’s principle for real closed fields

A field K is a real closed field if K is an ordered field such that every positive element is
a sum of squares in K, and every polynomial on K of odd degree has at least one root
in K (see [3, p. 34]). It is known that R{t¢} is a real closed field (see [3, Theorem 2.91}).
An important fact in a real closed field is the following:

Theorem A.1 (Tarski’s principle (see [3| Theorems 2.80, 2.81])). A first-order statement
is true in a real closed field if and only if it is true in every real closed field.

Here a first-order statement is a predicate constructed from addition, multiplication,
equality, inequality, and the standard logical connectives and quantifiers. Hence any
true first order statement in R is also true in R{t¢}. For example, the statement “a
polynomial P(z) in R{t} is HPP” can be written as a first-order statement in R{t} as
follows. Substitute u+iv to z in P(z), and represent P as P(u+iv) = Q(u,v)+iR(u,v),
where @, R are polynomials in R{¢}. Then the HPP statement is equivalent to

Vuvv(Q(u,v) = 0A R(u,v) =0 — —(u > 0)).

In this way, any polynomial relation in C{t} can be written in polynomial relations
in R{t}. Therefore the statement “an Hermite matrix has real eigenvalues only” and
Sylvester’s law hold in C{t}, which were used in Section [ZI1 Also Theorem 24 in
Section 2.2 holds in R{t}.
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