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MACKEY’S THEORY OF τ-CONJUGATE REPRESENTATIONS FOR
FINITE GROUPS

TULLIO CECCHERINI-SILBERSTEIN, FABIO SCARABOTTI, AND FILIPPO TOLLI

Abstract. The aim of the present paper is to expose two contributions of Mackey,
together with a more recent result of Kawanaka and Matsuyama, generalized by Bump
and Ginzburg, on the representation theory of a finite group equipped with an involutory
anti-automorphism (e.g. the anti-automorphism g 7→ g−1). Mackey’s first contribution is
a detailed version of the so-called Gelfand criterion for weakly symmetric Gelfand pairs.
Mackey’s second contribution is a characterization of simply reducible groups (a notion
introduced by Wigner). The other result is a twisted version of the Frobenius-Schur
theorem, where “twisted” refers to the above-mentioned involutory anti-automorphism.
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1. Introduction

Finite Gelfand pairs not only constitute a useful tool for analyzing a wide range of prob-
lems ranging from combinatorics, to orthogonal polynomials and to stochastic processes,
but may also be used to shed light into theoretical problems of representation theory.
The simplest example is provided by the possibility to recast the decomposition of the
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group algebra of a given finite group G, together with the associated harmonic analysis,
by using the action on G of the direct product G×G. Another example comes from the
application of Gelfand pairs in the theory of multiplicity free groups, a key tool in the
recent approach of Okounkov and Vershik to the representation theory of the symmetric
groups [61, 62] (see also [16]).

Let G be a finite group. Recall that the conjugate of a (unitary) representation (ρ, V ) of
G, is the G-representation (ρ′, V ′) where V ′ is the dual of V and [ρ′(g)v′](v) = v′[ρ(g−1)v]
for all g ∈ G, v ∈ V , and v′ ∈ V ′. One then says that ρ is self-conjugate provided ρ ∼ ρ′;
this is in turn equivalent to the associated character χρ being real-valued. When ρ is not
self-conjugate, one says that it is complex. The class of self-conjugate G-representations
splits into two subclasses according to the associated matrix coefficients of the represen-
tation ρ being real-valued or not: in the first case, one says that ρ is real, in the second
case ρ is termed quaternionic.

Now letK ≤ G be a subgroup and denote byX = G/K the corresponding homogeneous
space of left cosets of K in G. Setting L(X) = {f : X → C}, denote by (λ, L(X))
the corresponding permutation representation defined by [λ(g)f ](x) = f(g−1x) for all
g ∈ G and f ∈ L(X). Recall that (G,K) is a Gelfand pair provided the permutation
representation λ decomposes multiplicity-free, that is,

(1.1) λ =
⊕

i∈I

ρi

with ρi 6∼ ρj for i 6= j. It is well known that if g−1 ∈ KgK for all g ∈ G, then (G,K) is a
Gelfand pair; in this case all representations ρi in (1.1) are real, and one then says that
(G,K) is symmetric. This last terminology is due to the fact that the G-orbits on X×X
under the diagonal action are symmetric (with respect to the flip (x1, x2) 7→ (x2, x1),
x1, x2 ∈ X).

A remarkable classical problem in representation theory is to determine the decompo-
sition of the tensor product of two (irreducible) representations. In particular, one says
that G is simply reducible if (i) ρ1 ⊗ ρ2 decomposes multiplicity free for all irreducible
G-representations ρ1 and ρ2 and (ii) every irreducible G-representation is self-conjugate.

The class of simply reducible groups was introduced by E. Wigner [77] in his research
on group representations and quantum mechanics. This notion is quite useful since many
of the symmetry groups one encounters in atomic and molecular systems are simple re-
ducible, and algebraic manipulations of tensor operators become much easier for such
groups. Wigner wrote:“The groups of most eigenvalue problems occurring in quantum
theory are S.R” (where “S.R.” stands for “simply reducible”) having in mind the study of
“small perturbation” of the “united system” of two eigenvalue problems invariant under
some group G of symmetries. Then simple reducibility guarantees that the characteristic
functions of the eigenvalues into which the united system splits can be determined in “first
approximation” by the invariance of the eigenvalue problem under G. This is the case,
for instance, for the angular momentum in quantum mechanics. We mention that the
multiplicity-freeness of the representations in the definition of simply reducible groups is
the condition for the validity of the well known Eckart-Wigner theorem in quantum me-
chanics. Also, an important task in spectroscopy is to calculate matrix elements in order
to determine energy spectra and transition intensities. One way to incorporate symmetry
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considerations connected to a group G or rather a pair (G,H) of groups, where H ≤ G,
is to use the Wigner-Racah calculus associated with the inclusion under consideration:
this is generally understood as the set of algebraic manipulations concerning the coupling
and the coupling coefficients for the group G. The Wigner-Racah calculus was originally
developed for simply reducible groups [64, 65, 78, 79] and, later, for some other groups of
interest in nuclear, atomic, molecular, condensed matter physics [35, Chapter 5] as well
as in quantum chemistry [33].

Returning back to purely representation theory, Wigner [77] listed the following exam-
ples of simply reducible groups: the symmetric groups S3 (∼= D3) and S4 (∼= Th), the
quaternion group Q8 and the rotational groups O(3), SO(3) or SU(2). More generally, it
is nowdays known (cf. [68, Appendix 3.A]) that most of the molecular symmetry groups
such as (using Schoenflies notation) D∞h, C∞v, C2v, C3,v, C2h, D3h, D3d, D6h, Td and Oh are
simply reducible. On the other hand, the icosahedral group Ih is not simply reducible,
although it possesses only real characters.

In the automorphic setting, Prasad [63] implicitly showed that if k is a local field then
the (infinite) group G = GL(2, k) is simply reducible. Indeed, he proved that the number
of G-invariant linear forms on the tensor product of three admissible representations of G
is at most one (up to scalars). This is also discussed in Section 10 of the survey article by
Gross (Prasad’s advisor) [34], on Gelfand pairs and their applications to number theory.

We also mention that simply reducible groups are of some interest also in the theory of
association schemes (see [3, Chapter 2]).

As pointed out by A.I. Kostrikin in [52], there is no complete description of all simply
reducible groups. Strunkov investigated simple reducibility in [73] and suggested (cf. [53,
Problem 11.94] in the Kourovka notebook) that the simply reducible groups must be
solvable. After some partial results by Kazarin and Yanishevskĭı [49], this conjecture was
settled by Kazarin and Chankov [47].

Wigner [77] gave a curious criterion for simply reducibility. He showed that, denoting
by v(g) = |{h ∈ G : hg = gh}| (resp. ζ(g) = |{h ∈ G : h2 = g}|) the cardinality of the
centralizer (resp. the number of square roots) of an element g ∈ G, then the equality

(1.2)
∑

g∈G

ζ(g)3 =
∑

g∈G

v(g)2

holds if and only if G is simply reducible.
A fundamental theorem of Frobenius and Schur [27] provides a criterion for determining

the type of a given irreducible representation ρ, namely

(1.3)
1

|G|

∑

g∈G

χρ(g
2) =





1 if ρ is real

−1 if ρ is quaternionic

0 if ρ is complex

see, for instance, [13, Theorem 9.7.7]. Moreover, the number h of pairwise inequivalent
irreducible self-conjugate G-representations is given by

(1.4) h =
1

|G|

∑

g∈G

ζ(g)2

(cf. [13, Theorem 9.7.10]).
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In this research-expository paper, following Mackey [58], Kawanaka and Matsuyama
[46], and Bump and Ginzburg [11], we endow G with an involutory anti-automorphism
τ : G → G. Mackey in [57] originally analyzed only the case when τ is the anti-automorphism
g 7→ g−1 and then, in [58], generalized his results by considering any involutory anti-
automorphism. The proofs are even simpler but heavily rely on [57] (the reader cannot
read the second paper without having at hand the first one). Here we give a complete and
self-contained treatment of all principal results in [58], providing more details and using
modern notation.

We then present in Theorem 8.2 (Twisted Frobenius-Schur theorem) the main result
of Kawanaka and Mastuyama in [46]. Our proof follows the lines indicated in Bump’s
monograph [7, Exercise 4.5.1] but also heavily uses the powerful machinery of A.H. Clifford
theory specialized for subgroups of index two (see, for instance, [15, Section 3]). Note that
Bump and Ginzburg [11] consider further generalizations involving anti-automorphisms
of finite order (i.e. not necessarily involutive).

Let τ : G → G be an involutory anti-automorphism.
Given a G-representation (ρ, V ), we then define its τ -conjugate as the G-representation

(ρτ , V ′) defined by setting [ρτ (g)v′](v) = v′[ρ(τ(g))v] for all g ∈ G, v ∈ V , and v′ ∈ V ′.
Then we introduce (cf. [46]) the associated τ -Frobenius-Schur number (or τ -Frobenius-
Schur indicator) Cτ (ρ) defined by

Cτ (ρ) = dimHomSym
G (ρτ , ρ)− dimHomSkew

G (ρτ , ρ)

where HomSym
G (resp. HomSkew

G ) denotes the space of symmetric (resp. antisymmetric)
intertwining operators, and show that, if ρ is irreducible, it may take only the three values
1, −1, and 0.

Given a subgroup K, we consider the τ -conjugate λτ of the associated permutation
representation. Suppose that λτ ∼ λ (note that this is always the case if K is τ -invariant,
i.e., τ(K) = K), then we present a characterization (the Mackey-Gelfand criterion, see
Theorem 4.5) of the corresponding analogue of “symmetric Gelfand pair” that we recover
as a particular case.

We say that G is τ -simply reducible provided (i) ρ1 ⊗ ρ2 is multiplicity-free and (ii)
ρτ ∼ ρ, for all irreducible G-representations ρ1, ρ2 and ρ. We then present the Mackey
criterion (Theorem 5.3) and the Mackey-Wigner criterion (Corollary 6.6) for τ -simple
reducibility, a generalization of Wigner’s original criterion we alluded to above (cf. (1.2));
the latter is expressed in terms of the equality

∑

g∈G

ζτ (g)
3 =

∑

g∈G

v(g)2.

As an application of both the Mackey criterion and the Mackey-Wigner criterion, we
present new examples of τ -simply reducible groups: in Section 7 we show that the (W.K.)
Clifford groups CL(n) are τ -simply reducible (where the involutive anti-automorphism τ
of CL(n) is suitably defined according to the congruence class of n modulo 4).
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Generalizing the characterization (1.3), we show (the Kawanaka and Matsuyama the-
orem (Theorem 8.2)) that

Cτ (ρ) =
1

|G|

∑

g∈G

χρ(τ(g)
−1g).

Finally, in the last section, we present a twisted Frobenius-Schur type theorem in the
context of Gelfand pairs (Theorem 9.1). This result, together with the ones on τ -simple
reducibility of the Clifford groups we alluded to above, constitutes our original contribu-
tion to the theory.

2. Preliminaries and notation

2.1. Linear algebra. In order to fix notation, we begin by recalling some elementary
notions of linear algebra. Let V,W be finite dimensional complex vector spaces and
denote by V ′,W ′ their duals. We denote by Hom(V,W ) the space of all linear operators
A : V → W .

If A ∈ Hom(V,W ) its transpose is the linear operator AT : W ′ → V ′ defined by setting

(ATw′)(v) = w′(Av)

for all w′ ∈ W ′ and v ∈ V . Let Z be another finite dimensional complex vector space
and suppose that B ∈ Hom(V,W ) and A ∈ Hom(W,Z). Then, it is immediate to check
that (AB)T = BTAT . Moreover, modulo the canonical identification of V and its bidual
V ′′ = (V ′)′ (this is given by v ↔ v′′ where v′′ ∈ V ′′ is defined by v′′(v′) = v′(v) for
all v′ ∈ V ′), we have (AT )T = A. Given a basis {v1, v2, . . . , vn} in V , we denote by
{v′1, v

′
2, . . . , v

′
n} the corresponding dual basis of V ′ which is defined by the conditions

v′j(vi) = δi,j for i, j = 1, 2, . . . , n. Let now {w1, w2, . . . , wm} be a basis for W . Let
MA = (aki)k=1,2,...,m

i=1,2,...,n
the matrix associated with the linear operator A, that is, Avi =

∑m
k=1 akiwk, for all i = 1, 2, . . . , n. Then aki = w′

k(Avi) and ATw′
k =

∑n
i=1 akiv

′
i; in other

words, the matrix MAT associated with the transpose operator AT equals the transpose
(MA)

t = (aik) i=1,2,...,n
k=1,2,...,m

of the matrix MA associated with A.

Suppose now that V is endowed with a hermitian scalar product denoted 〈·, ·〉V . The
associated Riesz map is the antilinear bijective map θV : V → V ′ defined by setting

(θV v)(u) = 〈u, v〉V

for all u, v ∈ V . Moreover, the adjoint of A ∈ Hom(V,W ) is the (unique) linear operator
A∗ ∈ Hom(W,V ) such that

〈Av, w〉W = 〈v, A∗w〉V
for all v ∈ V and w ∈ W . Observe that (A∗)∗ = A. Also, the matrix MA∗ associated
with the adjoint operator A∗ equals the adjoint (MA)

∗ = (aik) i=1,2,...,n
k=1,2,...,m

of the matrix MA

associated with A. Moreover, we say that A is unitary if A∗A = IV and AA∗ = IW , where
IV ∈ Hom(V, V ) denotes the identity map (note that a necessary condition for A to be
unitary is that dim(V ) = dim(W ), i.e., n = m).

Lemma 2.1. Let A ∈ Hom(V,W ). Then AT θW = θVA
∗.
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Proof. For all v ∈ V and w ∈ W we have:

(AT θWw)(v) = (θWw)(Av) = 〈Av, w〉W = 〈v, A∗w〉V = (θVA
∗w)(v).

�

We now define the conjugate of A ∈ Hom(V,W ) as the linear operator A = (A∗)T ∈
Hom(V ′,W ′). Then, the associated matrix MA equals the conjugate MA = (aki)k=1,2,...,m

i=1,2,...,n

of the matrix associated with A. Note that A = A and A∗ = A
T
(here we implicitly use

the canonical identification of V with its bidual V ′′). As a consequence, A is unitary if
and only if ATA = IV ′ and AAT = IW ′.

Suppose now that A ∈ Hom(V ′, V ). Then, again modulo the canonical identification
of V and V ′′, we have

AT ∈ Hom(V ′, V ) and u′(ATv′) = v′(Au′)

for all u′, v′ ∈ V ′. We then say that A ∈ Hom(V ′, V ) is symmetric (resp. antisymmet-
ric or skew-symmetric) if AT = A (resp. AT = −A). We denote by HomSym(V ′, V )
(resp. HomSkew(V ′, V )) the space of all symmetric (resp. antisymmetric) operators in
Hom(V ′, V ). We have the elementary identity

A =
A+ AT

2
+

A− AT

2
,

where A+AT

2
is symmetric and A−AT

2
is antisymmetric: note that this is the unique de-

composition of A as a sum of a symmetric operator and an antisymmetric operator. This
yields the direct sum decomposition

(2.1) Hom(V ′, V ) = HomSym(V ′, V )⊕ HomSkew(V ′, V ).

Let now A ∈ Hom[(V ⊕ W )′, V ⊕ W ]. Then there exist A1 ∈ Hom(V ′, V ), A2 ∈
Hom(W ′,W ), A3 ∈ Hom(W ′, V ) and A4 ∈ Hom(V ′,W ) such that

(2.2) A(v′ + w′) = (A1v
′ + A3w

′) + (A4v
′ + A2w

′),

for all v′ ∈ V ′, w′ ∈ W ′. In other words, identifying A with the operator matrix(
A1 A3

A4 A2

)
, we may express (2.2) in matrix form

(2.3)

(
A1 A3

A4 A2

)(
v′

w′

)
=

(
A1v

′ + A3w
′

A4v
′ + A2w

′

)
.

Since (
A1 A3

A4 A2

)T

=

(
AT

1 AT
4

AT
3 AT

2

)

we have that A = AT if and only if A1 = AT
1 , A2 = AT

2 , A3 = AT
4 and A4 = AT

3 and this
proves the first statement of the following lemma (the proof of the second statement is
similar).
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Lemma 2.2. (1) The map
(
A1 A3

AT
3 A2

)
7−→ (A1, A2, A

T
3 )

yields the isomorphism

HomSym [(V ⊕W )′, V ⊕W ] ∼= HomSym(V ′, V )⊕HomSym(W ′,W )⊕ Hom(V ′,W ).

(2) The map (
A1 A3

−AT
3 A2

)
7−→ (A1, A2, A

T
3 )

yields the isomorphism

HomSkew [(V ⊕W )′, V ⊕W ] ∼= HomSkew(V ′, V )⊕HomSkew(W ′,W )⊕Hom(V ′,W ).

2.2. Representation theory of finite groups. We now recall some notions from the
representation theory of finite groups. We refer to our monographs [13, 16] for a complete
exposition and detailed proofs.

Let G be a finite group. We always suppose that all G-representations (ρ,W ) are uni-
tary: the representation space W is finite dimensional hermitian and ρ(g) ∈ Hom(W,W )
is unitary for every g ∈ G (it is well known that every representation of a finite group
over a complex vector space is unitarizable (cf. [13, Proposition 3.3.1])). We denote by

Ĝ a complete set of pairwise inequivalent irreducible G-representations.
Given two G-representations (ρ,W ) and (σ, V ), we denote by HomG(W,V ) (sometimes

we shall also use the notation HomG(ρ, σ)) the space of all linear operators A : W → V ,
called intertwiners of ρ and σ, such that Aρ(g) = σ(g)A for all g ∈ G.

Let (ρ,W ) be a G-representation. We denote by χρ : G → C its character and, in the
notation from Subsection 2.1, we denote by (ρ′,W ′) the conjugate representation defined
by setting

(2.4) ρ′(g) = ρ(g−1)T

for all g ∈ G. We have χρ′ = χρ (complex conjugation). Suppose now that (ρ,W ) is
irreducible. Then ρ is said to be complex if χρ 6= χρ′ , that is, ρ and ρ′ are not (unitarily)
equivalent; on the other hand, ρ is called self–conjugate if χρ = χρ′ , that is, ρ and ρ′ are
(unitarily) equivalent. Clearly, ρ is self–conjugate if and only if χρ is real valued. The class
of self–conjugate representations in turn may be splitted into two subclasses. Let (ρ,W )
be a self–conjugate G-representation and suppose that there exists an orthonormal basis
{w1, w2, . . . , wd} in W such that the corresponding matrix coefficients are real valued:
ui,j(g) = 〈ρ(g)wj, wi〉 ∈ R for all g ∈ G and i, j = 1, 2, . . . , d. Then ρ is termed real.
Otherwise, ρ is said to be quaternionic.

Lemma 2.3. Let (ρ,W ) be an irreducible, self–conjugate G-representation and let A ∈
HomG(W,W ′) be a unitary operator. Then, if ρ is real one has AA = IW ′ (equivalently,
A = AT ), while if ρ is quaternionic one has AA = −IW ′ (equivalently, A = −AT ).

Proof. See [13, Lemma 9.7.6] �
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Let n be a positive integer, and consider the diagonal subgroup G̃n = {g, g, . . . , g) : g ∈
G} of Gn = G×G× . . .×G︸ ︷︷ ︸

n times

. Given G-representations (ρi, Vi), i = 1, 2, . . . , n, following

our monograph, we denote by (ρ1 ⊠ ρ2⊠ · · ·⊠ ρn, V1⊗ V2⊗ · · ·⊗Vn) their external tensor
product which is a Gn-representation. Moreover we denote by (ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, V1 ⊗
V2 ⊗ · · · ⊗ Vn) the Kronecker product of the ρi’s, that is the G-representation defined by
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn = ResG

n

G̃n(ρ1 ⊠ ρ2 ⊠ · · ·⊠ ρn).

3. The τ-Frobenius-Schur number

In what follows, τ : G → G is an involutory anti-automorphism of G, that is a bijection
such that

τ(g1g2) = τ(g2)τ(g1) and τ 2(g) = g

for all g1, g2, g ∈ G. In particular, τ(1G) = 1G and τ(g−1) = τ(g)−1, for all g ∈ G.
Let (ρ,W ) be a G-representation. Then the associated τ -conjugate representation is the
G-representation (ρτ ,W ′) defined by setting

(3.1) ρτ (g) = ρ[τ(g)]T ,

that is

(3.2) [ρτ (g)w′] (w) = w′[ρ(τ(g))w],

for all g ∈ G, w′ ∈ W ′ and w ∈ W . Note that if τinv : G → G is the involutory anti-
automorphism of G defined by τinv(g) = g−1 for all g ∈ G, then ρτinv = ρ′ (cf. (2.4)).

Remark 3.1. Let g0 ∈ G and denote by τg0 the inner involutory anti-automorphism of
G given by composing conjugation by g0 and τinv, that is, τg0(g) = g0g

−1g−1
0 for all g ∈ G.

Then, given a G-representation (ρ,W ) we have, for all g ∈ G, w′ ∈ W ′ and w ∈ W ,

[ρτg0 (g)w′] (w) = w′[ρ(τg0(g))w] = w′[ρ(g0g
−1g−1

0 )w]

= w′[ρ(g0)ρ(g
−1)ρ(g0)

−1w]

=
[
(ρ(g0)ρ(g

−1)ρ(g0)
−1)Tw′

]
(w)

=
[
ρ(g−1

0 )Tρτinv(g)ρ(g0)
Tw′
]
(w)

yielding ρτg0 (g) = (ρ(g0)
T )−1ρτinv(g)ρ(g0)

T , so that

ρτg0 ∼ ρτinv .

Proposition 3.2. (1) The G-representation (ρτ ,W ′) is irreducible if and only if (ρ,W )
is irreducible.

(2) If A ∈ HomG(ρ
τ , ρ) then also AT ∈ HomG(ρ

τ , ρ) and we have the direct sum decom-
position

HomG(ρ
τ , ρ) = HomSym

G (ρτ , ρ)⊕ HomSkew
G (ρτ , ρ),

where HomSym
G = HomSym ∩ HomG and HomSkew

G = HomSkew ∩ HomG (compare with
(2.1)).
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Proof. (1) Suppose first that ρ is reducible and let U ≤ W be a nontrivial ρ-invariant
subspace. Then Z = {w′ ∈ W ′ : w′(u) = 0 for all u ∈ U} ≤ W ′ is nontrivial and ρτ -
invariant, thus showing that ρτ is also reducible. Since (ρτ )τ = ρ, by applying the previous
argument we also deduce the converse.

(2) Let A ∈ HomG(ρ
τ , ρ) and g ∈ G. Then, by transposing the identity Aρτ (g) = ρ(g)A

we get ρτ (g)TAT = ATρ(g)T which, by (3.1), becomes ρ[τ(g)]AT = ATρτ [τ(g)]. Since τ
is bijective, by replacing τ(g) with g, we finally obtain ρ(g)AT = ATρτ (g), thus showing
that AT ∈ HomG(ρ

τ , ρ). The direct sum decomposition is obvious. �

Lemma 3.3. Let (ρ,W ) and (σ, V ) be two G-representations. Then the following iso-
morphisms hold:

(3.3) HomG(σ
τ , ρ) ∼= HomG(ρ

τ , σ),

(3.4) HomSym
G [(σ ⊕ ρ)τ , σ ⊕ ρ] ∼= HomSym

G (στ , σ)⊕ HomSym
G (ρτ , ρ)⊕ HomG(σ

τ , ρ)

and

(3.5) HomSkew
G [(σ ⊕ ρ)τ , σ ⊕ ρ] ∼= HomSkew

G (στ , σ)⊕HomSkew
G (ρτ , ρ)⊕ HomG(σ

τ , ρ).

Proof. The isomorphism (3.3) is realized by the map A 7→ AT . The isomorhism (3.4)
(resp. (3.5)) is realized by the map in Lemma (2.2).(1) (resp. Lemma (2.2).(2)), keeping
into account that in the matrix notation (2.3) A is an intertwining operator if and only if
A1, A2, A3, A4 are intertwining operators. �

Definition 3.4. The τ -Frobenius-Schur number of a G representation (ρ,W ) is the integer
number Cτ (ρ) defined by

Cτ (ρ) = dimHomSym
G (ρτ , ρ)− dimHomSkew

G (ρτ , ρ).

We also set C(ρ) = dimHomSym
G (ρ′, ρ)−dimHomSkew

G (ρ′, ρ), that is C(ρ) = Cτinv(ρ). We
start by examining Cτ (ρ) and C(ρ) when ρ is irreducible.

Theorem 3.5. Suppose that ρ is irreducible. Then

(1) Cτ (ρ) ∈ {−1, 0, 1}. Moreover, Cτ (ρ) = 0 (resp. Cτ (ρ) = ±1) if and only if ρτ 6∼ ρ
(resp. ρτ ∼ ρ).

(2) In particular,

C(ρ) =





1 if ρ is real

0 if ρ is complex

−1 if ρ is quaternionic.

Proof. (1) If ρτ 6∼ ρ then dimHomG(ρ
τ , ρ) = 0 and therefore Cτ (ρ) = 0. Now suppose

that ρ ∼ ρτ . If A ∈ HomG(ρ
τ , ρ), A 6= 0, then also AT ∈ HomG(ρ

τ , ρ) and therefore,
by Proposition 3.2 and Schur’s lemma, there exists λ ∈ C such that AT = λA. By
transposing we get A = λAT = λ2A, which implies that λ = ±1. If λ = 1 then A is
symmetric and Cτ (ρ) = dimHomSym

G (ρτ , ρ)− dimHomSkew
G (ρτ , ρ) = 1− 0 = 1; similarly, if

λ = −1 then Cτ (ρ) = −1.
(2) If ρ is complex then ρ′ 6∼ ρ and therefore dimHomG(ρ

′, ρ) = 0 and C(ρ) = 0. If ρ is
self–adjoint then dimHomG(ρ

′, ρ) = 1 and this space is spanned by a unitary matrix A as
in Lemma 2.3, which is symmetric if ρ is real and antisymmetric if ρ is quaternionic. �
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We now examine the behaviour of Cτ with respect to direct sums and tensor products.

Proposition 3.6. Let (ρ,W ) and (σ, V ) be two G-representations. Then

Cτ (σ ⊕ ρ) = Cτ (σ) + Cτ (ρ).

Proof. It is an immediate consequence of (3.4) and (3.5). �

Proposition 3.7. Suppose that G = G1 × G2 and that τ satisfies τ(G1 × {1G2}) =
G1 × {1G2} and τ({1G1} × G2) = {1G1} × G2. Let (ρi,Wi) be a Gi-representation for
i = 1, 2. Then

(3.6) Cτ (ρ1 ⊠ ρ2) = Cτ (ρ1)Cτ (ρ2).

Proof. We first prove (3.6) under the assumption that both ρ1 and ρ2 are irreducible.
The representation (ρ1 ⊠ ρ2)

τ ∼ ρτ1 ⊠ ρτ2 is equivalent to ρ1 ⊠ ρ2 if and only if ρ1 ∼ ρτ1
and ρ2 ∼ ρτ2. Therefore Cτ (ρ1 ⊠ ρ2) = 0 if and only if Cτ (ρ1) = 0 or Cτ (ρ2) = 0. On
the other hand, if ρ1 ∼ ρτ1, ρ2 ∼ ρτ2 and Ai spans HomGi

(ρτi , ρi), for i = 1, 2, then
HomG [(ρ1 ⊠ ρ2)

τ , ρ1 ⊠ ρ2] is spanned by A1 ⊗ A2. It is easy to check that (A1 ⊗ A2)
T =

AT
1 ⊗ AT

2 so that A1 ⊗ A2 is symmetric if and only if A1 and A2 are both symmetric or
antisimmetric, while A1 ⊗A2 is antisymmetric if and only if one of the operators A1 and
A2 is symmetric and the other is antisymmetric. In both cases, (3.6) follows.

Now we remove the irreducibility assumption and we suppose that

ρ1 =
n⊕

i=1

miσi and ρ2 =
k⊕

j=1

hjθj

are the decompositions of ρ1 and ρ2 into irreducible representations. Then

Cτ (ρ1 ⊠ ρ2) =Cτ

[
n⊕

i=1

k⊕

j=1

mihj(σi ⊠ θj)

]

(by Proposition 3.6) =

n∑

i=1

k∑

j=1

mihjCτ (σi ⊠ θj)

(by the first part of the proof) =

n∑

i=1

k∑

j=1

mihjCτ (σi)Cτ(θj)

=

[
n∑

i=1

miCτ (σi)

][
k∑

j=1

hjCτ (θj)

]

(again by Proposition 3.6) =Cτ (ρ1)Cτ (ρ2).

�

Note that when τ = τinv the first part of the proof of the preceding proposition may be
also deduced from Theorem 3.5.(2).

Let now ω : G → G be another involutory anti-automorphism of G commuting with
τ : ωτ = τω. Clearly, the composition ωτ is now an (involutory) automorphism of G.
Moreover we have

(ρτ )ω(g) = (ρτ (ω(g))T = ρ(τ(ω(g))) = ρ(ω(τ(g))) = (ρω)τ (g)
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for all g ∈ G, that is,

(3.7) (ρτ )ω = (ρω)τ .

Lemma 3.8. Let ω, τ and (ρ,W ) (not necessarily irreducible) be as above. Then

Cτ (ρ
ω) = Cτ (ρ).

Proof. By virtue of Proposition 3.6 it suffices to examine the case when ρ is irreducible.
If Cτ (ρ) = 0 then ρτ 6∼ ρ and therefore (ρω)τ = (ρτ )ω 6∼ ρω (recall that ω is involutory).
We deduce that Cτ (ρ

ω) = 0 as well.
Suppose now that ρτ ∼ ρ and let A ∈ HomG(ρ

τ , ρ) be a nontrivial unitary intertwiner.
Then, for all g ∈ G we have ρ(g)A = Aρτ (g) so that

(ρτ )ω(g)AT = (ρτ (ω(g)))T AT = (Aρτ (ω(g)))T = (ρ(ω(g))A)T = ATρω(g).

This shows that HomG(ρ
ω, (ρω)τ ) ≡ HomG(ρ

ω, (ρτ )ω) is spanned by AT , so that HomG((ρ
ω)τ , ρω)

is spanned by (AT )−1 ≡ (AT )∗ = A. Thus since A is symmetric (resp. antisymmetric)
if and only if A is symmetric (resp. antisymmetric), we deduce that Cτ(ρ

ω) = 1 (resp.
Cτ (ρ

ω) = −1) if and only if Cτ (ρ) = 1 (resp. Cτ (ρ) = −1). �

By taking ω = τ we deduce the following

Corollary 3.9. Cτ (ρ
τ ) = Cτ (ρ). �

Let now K ≤ G be a τ -invariant (that is τ(K) = K) subgroup. It is clear that
if (ρ,W ) is a G-representation, then ResGK(ρ

τ ) = (ResGKρ)
τ . Conversely, suppose now

that (σ, V ) is a K-representation and let us show that IndG
K(σ

τ ) ∼ (IndG
Kσ)

τ . We set
IndG

KV = {F ∈ V G : F (gk) = σ(k−1)F (g), for all g ∈ G, k ∈ K}, ρ = IndG
Kσ, so that

(cf. [16, Definition 1.6.1]) [ρ(g0)F ](g) = F (g−1
0 g) for all g, g0 ∈ G and F ∈ IndG

KV , and
IndG

KV
′ = {F ′ ∈ (V ′)G : F ′(gk) = στ (k−1)F ′(g), for all g ∈ G, k ∈ K}, ρ̃ = IndG

Kσ
τ , so

that [ρ̃(g0)F
′](g) = F ′(g−1

0 g) for all g, g0 ∈ G and F ′ ∈ IndG
KV

′.

Lemma 3.10. The linear map ξ : IndG
KV

′ → (IndG
KV )′ defined by setting

(ξF ′)(F ) =
1

|K|

∑

g∈G

F ′(g)(F (τ(g−1)))

for all F ∈ IndG
KV , F ′ ∈ IndG

KV
′, yields an isomorphism between IndG

Kσ
τ and (IndG

Kσ)
τ .
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Proof. Let S ⊆ G be a complete system of representatives for the set G/K of left cosets
of K in G, so that G =

∐
s∈S sK. On the one hand:

(ξF ′)(F ) =
1

|K|

∑

g∈G

F ′(g)(F (τ(g−1)))

=
1

|K|

∑

s∈S

∑

k∈K

F ′(sk)(F (τ((sk)−1)))

=
1

|K|

∑

s∈S

∑

k∈K

[στ (k−1)F ′(s)]
(
σ(τ(k))F (τ(s)−1)

)

(by (3.2)) =
1

|K|

∑

s∈S

∑

k∈K

F ′(s)
(
σ(τ(k−1))σ(τ(k))F (τ(s)−1)

)

=
∑

s∈S

F ′(s)
(
F (τ(s)−1)

)
.

Since F ′ is uniquely determined by (F ′(s))s∈S, we deduce that ξ is injective. Moreover,
as dimIndG

KV
′ = dim(IndG

KV )′ we deduce that ξ is indeed bijective. On the other hand,
for g0 ∈ G, we have

[ρτ (g0)ξF
′](F ) = [ξF ′](ρ(τ(g0))F ) (by (3.2)

=
1

|K|

∑

g∈G

F ′(g)
(
F (τ(g0)

−1τ(g)−1)
)

(setting g1 = g0g) =
1

|K|

∑

g1∈G

F ′(g−1
0 g1)

(
F (τ(g1)

−1)
)

=
1

|K|

∑

g1∈G

{[ρ̃(g0)F
′](g1)}

(
F (τ(g1)

−1)
)

= {ξ[ρ̃(g0)F
′]} (F ).

This shows that ρτ (g0)ξ = ξρ̃(g0) for all g0 ∈ G so that ξ ∈ HomG

(
IndG

Kσ
τ , (IndG

Kσ)
τ
)
,

completing the proof. �

Theorem 3.11. Let K ≤ G be a τ -invariant subgroup. Let also (ρ,W ) be an irreducible
G-representation whose restriction ResGKρ is multiplicity-free, that is, ResGK(ρ,W ) =⊕m

i=1(σi, Vi), with σi irreducible and σi 6∼ σj for 1 ≤ i 6= j ≤ m. Suppose that ρτ ∼ ρ and
στ
i ∼ σi for i = 1, 2, . . . , m. Then

Cτ (σi) = Cτ (ρ)

for all i = 1, 2, . . . , m.

Proof. Let us set, for i = 1, 2, . . . , m,

W ′
i =

{
w′ ∈ W ′ : kerw′ =

(
i−1⊕

j=1

Vj

)⊕(
m⊕

j=i+1

Vj

)}
∼= V ′

i .
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If we identify V ′
i with W ′

i then (ResGKρ
τ )|W ′

i
= στ

i : indeed

[ρτ (k)w′](v) = w′[ρ(τ(k))v] = w′[σi(τ(k))v] = [στ
i (k)w

′](v),

for all w ∈ W ′
i , v ∈ Vi, and k ∈ K (clearly W ′

i is K-invariant).
Now, if A ∈ HomG(ρ

τ , ρ), that is, Aρτ (g) = ρ(g)A for all g ∈ G, we deduce that

Aστ
i (k)w

′ = Aρτ (k)w′ = ρ(k)Aw′

for all w′ ∈ W ′
i and k ∈ K. It follows that A|W ′

i
: W ′

i → Vi (recall that στ
i ∼ σi and

στ
i 6∼ σj for 1 ≤ i 6= j ≤ m). Thus, setting Ai = A|W ′

i
we have A = A1 ⊕ A2 ⊕ · · · ⊕ Am,

AT = AT
1 ⊕ AT

2 ⊕ · · · ⊕ AT
m, and A is symmetric (resp. antisymmetric) if and only if

A1, A2, . . . , Am are all symmetric (resp. antisymmetric). �

Lemma 3.12. Let ρ be a G-representation and denote by ρ =
⊕n

j=1 ρj a decomposi-

tion into irreducibles (now the sub-representations ρj need not be pairwise inequivalent).
Then dimHomSkew

G (ρτ , ρ) = 0 if and only if for every j = 1, 2, . . . , n one of the following
conditions holds:

(i) Cτ (ρj) = 1 and ρj 6∼ ρk for all k 6= j;
(ii) Cτ (ρj) = 0 and ρτj 6∼ ρk for all k 6= j.

Different j’s may satisfy different conditions.

Proof. Let us set σi =
⊕n

j=i ρj for i = 1, 2, . . . , n. By repeatedly applying Lemma 3.3, we
deduce that

dimHomSkew
G (ρτ , ρ) = dimHomSkew

G ((ρ1 ⊕ σ2)
τ , ρ1 ⊕ σ2)

= dimHomSkew
G (ρτ1 , ρ1) + dimHomSkew

G (στ
2 , σ2) + dimHomG(ρ

τ
1, σ2)

· · ·

=
n∑

j=1

dimHomSkew
G (ρτj , ρj) +

n−1∑

j=1

dimHomG(ρ
τ
j , σj+1).

Thus dimHomSkew
G (ρτ , ρ) = 0 if and only if dimHomSkew

G (ρτj , ρj) = 0 for all j = 1, 2, . . . , n
and dimHomG(ρ

τ
j , σj+1) = 0 for all j = 1, 2, . . . , n − 1. It follows that if ρτj ∼ ρj we

necessarily have Cτ (ρj) = 1 and ρj 6∼ ρk for all j < k ≤ n, while if ρτj 6∼ ρj we necessarily
have Cτ (ρj) = 0 and ρτj 6∼ ρk for all j < k ≤ n. Now, in both cases, the condition k > j
can be replaced by k 6= j: since the order in ρ =

⊕n
j=1 ρj is arbitrary, we may always

suppose j = 1. �

4. Multiplicity-free permutation representations: the Mackey-Gelfand

criterion

Let G be a finite group and suppose we are given a transitive action π : G → Sym(X)
of G on a (finite) set X . Fix x0 ∈ X and denote by K = Stabπ

G(x0) = {g ∈ G : π(g)x0 =
x0} ≤ G its G-stabilizer. Then we identify the homogeneous space X with the set G/K
of left cosets of K in G. This way, the action is given by π(g)x = (gg′)K for all g ∈ G
and x = g′K ∈ X (note that, in particular, x0 ≡ K). We also denote by Oπ

G(X) the
corresponding set of G-orbits in X .
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Let also τ : G → G be an involutory anti-automorphism of G which does not necessarily
preserve K. Let Y = G/τ(K) denote the corresponding homogeneous space and by
y0 = τ(K) ∈ Y the corresponding τ(K)-fixed point.

We denote by L(X) the vector space of all functions f : X → C and denote by
(λπ, L(X)) the permutation representation associated with the action π, that is, the G-
representation defined by

[λπ(g)f ](x) = f(π(g−1)x)

for all g ∈ G, f ∈ L(X) and x ∈ X . Also, we denote by γ : G → Sym(Y ) the action of
G on Y : γ(g)y = gg′τ(K) for all g ∈ G and y = g′τ(K) ∈ Y . We then define a map
θ : X → Y by setting, for every x ∈ X ,

(4.1) θ(x) = γ(τ(g−1))y0 where g ∈ G satisfies π(g)x0 = x.

Note that the map is well defined: if g1, g2 ∈ G satisfy π(g1)x0 = π(g2)x0, then there
exists k ∈ K such that g2 = g1k and therefore

γ(τ(g−1
2 ))y0 = γ(τ(k−1g−1

1 ))y0 = γ(τ(g−1
1 ))γ(τ(k−1))y0 = γ(τ(g−1

1 ))y0.

It is clear that θ is a bijection and that θ(x0) = y0.
We now define a second action πτ : G → Sym(X) by setting

πτ (g)x = π(τ(g−1))x

for all g ∈ G and x ∈ X . The associated permutation representation (λπτ , L(X)) is then
given by

[λπτ (g)f ](x) = f(π(τ(g))x)

for all g ∈ G, f ∈ L(X) and x ∈ X .
The τ -conjugate representation (cf. Section 3) (λτ

π, L(X)′) of λπ is then given by
[λτ

π(g)ϕ
′](f) = ϕ′(λπ(τ(g))f) for all g ∈ G, ϕ′ ∈ L(X)′ and f ∈ L(X). In the following,

we identify the dual L(X)′ with L(X) via the bijective linear map

(4.2)
L(X) → L(X)′

ϕ 7→ ϕ′

where

ϕ′(f) =
∑

x∈X

ϕ(x)f(x)

for all f ∈ L(X).
Finally, we fix S ⊆ G a complete set of representatives of the double τ(K)\G/K-cosets,

so that

G =
∐

s∈S

τ(K)sK.

Observe that τ(τ(K)sK) = τ(K)τ(s)K and therefore τ(S) is also a system of represen-
tatives of the double cosets. Let also πτ × π : G → Sym(X × X) be the action defined
by

(πτ × π)(g)(x1, x2) = (πτ (g)x1, π(g)x2)

for all g ∈ G and x1, x2 ∈ X . Also, we denote by ♭ ∈ Sym(X ×X) the involution defined
by (x1, x2)

♭ = (x2, x1) for all x1, x2 ∈ X .
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Lemma 4.1. (1) The bijective map θ in (4.1) satisfies θπτ (g) = γ(g)θ for all g ∈ G.
Thus Stabπτ

G (x0) = τ(K).
(2) We have

(4.3) (λτ
π, L(X)′) ∼ (λπτ , L(X))

via the bijective map (4.2).
(3) The maps

ΨS : S −→ Oπ
τ(K)(X) ≡ Oπτ

K (X)

s 7→ {π(τ(k)s)x0 : k ∈ K}

and
ΞS : S −→ Oπτ×π

G (X ×X)
s 7→ {(πτ (g)x0, π(gs)x0) : g ∈ G}

are bijective. Moreover, Ξτ(S)(τ(s)) = (ΞS(s))
♭ for all s ∈ S, where Ξτ(S)(τ(s)) =

{(πτ (g)x0, π(gτ(s))x0) : g ∈ G}.

Proof. (1) Let x ∈ X and g0 ∈ G be such that x = π(g0)x0. Then for all g ∈ G we have

θ(πτ (g)x) = θ(π(τ(g−1))π(g0)x0)

= θ(π(τ(g−1)g0)x0)

(by (4.1)) = γ(gτ(g−1
0 ))y0

(since γ is an action) = γ(g)γ(τ(g−1
0 ))y0

(again by (4.1)) = γ(g)θ(π(g0)x0)

= γ(g)θ(x).

(2) Let now ϕ, f ∈ L(X) and g ∈ G. Then we have

[λτ
π(g)ϕ

′](f) = ϕ′ (λπ(τ(g))f)

=
∑

x∈X

ϕ(x)f(π(τ(g−1))x)

(setting z = π(τ(g−1))x) =
∑

z∈X

ϕ(π(τ(g))z)f(z)

=
∑

z∈X

[λπτ (g)ϕ](z)f(z)

= (λπτ (g)ϕ)′ (f),

so that λτ
π(g)ϕ

′ = (λπτ (g)ϕ)′. In other words, the bijective map (4.2) yields the equivalence
(4.3).

(3) By definition of S, ΨS is well defined and bijective. As for ΞS, let x1, x2 ∈ X . Since
the action πτ (resp. π) is transitive, we can find g1 ∈ G (g2 ∈ G) such that πτ (g1)x0 = x1

(resp. π(g2)x0 = x2). Let k1, k2 ∈ K and s ∈ S be such that τ(k1)sk2 = g−1
1 g2. Setting

g = g1τ(k1), we then have

(πτ (g)x0, π(gs)x0) = (πτ (g1)π(k
−1
1 )x0, π(g1)π(τ(k1)sk2)x0) = (x1, x2).
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This shows that ΞS is surjective. Now we show that it is injective: if ΞS(s1) = ΞS(s2) for
s1, s2 ∈ S then there exists g ∈ G such that (πτ (g)x0, π(gs2)x0) = (x0, π(s1)x0), and this
implies that g ∈ τ(K) and s−1

1 gs2 ∈ K, so that s1 ∈ τ(K)s2K and necessarily s1 = s2
Finally, let s ∈ S and g ∈ G and set g′ = τ(g−1)s−1. It is then immediate to check that

(πτ (g)x0, π(gτ(s))x0) = (π(g′s)x0, π
τ (g′)x0) = (πτ (g′)x0, π(g

′s)x0)
♭.

�

Corollary 4.2. Suppose that K = τ(K). Then π ≡ γ, so that θπτ (g) = π(g)θ for all
g ∈ G and λτ

π ∼ λπ.

Proof. Just note that defining T : L(X) → L(X) by setting (Tf)(x) = f(θ(x)) for all
f ∈ L(X), x ∈ X , we get a linear bijection such that Tλπ(g) = λπτ (g)T , for all g ∈ G. �

Remark 4.3. Lemma 4.1 generalizes the well known facts that the maps s 7→ {π(ks)x0, k ∈
K} and s 7→ {(π(g)x0, π(gs)x0) : g ∈ G} are bijections respectively between S and Oπ

K(X)
and between S and Oπ×π

G (X ×X). See [13, Section 3.13 ] and [16, Section 1.5.3].

We shall say that a (πτ×π)-orbit of G onX×X is τ -symmetric (resp. τ -antisymmetric)
provided it is (resp. is not) invariant under the flip ♭ : (x1, x2) 7→ (x2, x1). We then denote
by m1 (resp. m2) the number of such τ -symmetric (resp. τ -antisymmetric) orbits. From
Lemma 4.1.(3) we then have m1 (resp. m2) equals the number of s ∈ S such that
τ(s) ∈ τ(K)sK (resp. τ(s) 6∈ τ(K)sK). Note that m1 +m2 = |S| and that m2 is even.

Theorem 4.4. We have

(4.4) dimHomSym
G (λτ

π, λπ) = m1 +
1

2
m2;

(4.5) dimHomSkew
G (λτ

π, λπ) =
1

2
m2.

Proof. Denoting, as in (4.2) , by ϕ 7→ ϕ′ the identification of L(X) and its dual L(X)′

and recalling that λτ
π ∼ λπτ (cf. (4.3)), with every A ∈ HomG(λ

τ
π, λπ) ∼= HomG(λπτ , λπ)

we associate a complex matrix (a(x1, x2))x1,x2∈X such that

[Aϕ](x2) =
∑

x1∈X

a(x1, x2)ϕ(x1)

for all x1 ∈ X . Then A is an intertwiner if and only if

a(πτ (g)x1, π(g)x2) = a(x1, x2)

for all g ∈ G and x1, x2 ∈ X , that is, if and only if a(x1, x2) is constant on the (πτ × π)-
orbits of G on X × X . Now, if A is symmetric, a(x1, x2) must assume the same values
on coupled antisymmetric orbits and therefore (4.4) follows. On the other hand, if A is
antisymmetric, a(x1, x2) must vanish on all symmetric orbits and assume opposite values
on coupled antisymmetric orbits. Thus (4.5) follows as well. �

Theorem 4.5 (Mackey-Gelfand criterion). Suppose that λτ
π ∼ λπ. Then the following

conditions are equivalent.

(a) dimHomSkew
G (λτ

π, λπ) = 0;
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(b) every (πτ × π)-orbit of G on X ×X is symmetric;
(c) every double coset τ(K)sK is τ -invariant;
(d) (G,K) is a Gelfand pair and Cτ (σ) = 1 for every irreducible representation σ con-

tained in λπ.

Proof. The equivalences (a) ⇔ (b) and (b) ⇔ (c) immediately follow from Theorem 4.4
and Lemma 4.1, respectively. Finally, the equivalence (a) ⇔ (d) follows from Lemma 3.12:
indeed, the hypothesis λτ

π ∼ λπ guarantees that condition (2) therein cannot hold. �

Corollary 4.6. If τ(K) = K then the conditions (a) - (d) in Theorem 4.5 are all equiv-
alent.

Proof. This follows immediately from Corollary 4.2 and Theorem 4.5 since if K is τ -
invariant then λτ

π ∼ λπ. �

In particular, if τ = τinv, then one has πτ = π and the following result due to A. Garsia
[28] (see also [13, Section 4.8] and [12, Lemma 2.3]) is an immediate consequence.

Corollary 4.7 (Symmetric Gelfand pairs: Garsia’s criterion). The following conditions
are equivalent:

(a) every (π × π)-orbit of G on X ×X is symmetric;
(b) every double coset KsK is τinv-invariant;
(c) (G,K) is a Gelfand pair and every irreducible subrepresentation of λπ is real.

Corollary 4.8 (Weakly symmetric Gelfand pairs). Suppose that

(4.6) g ∈ Kτ(g)K

for all g ∈ G. Then τ(K) = K, λτ
π ∼ λπ and the conditions (a), (b), (c), and (d) in

Theorem 4.5 are verified.

Proof. For k ∈ K, (4.6) becomes k ∈ Kτ(k)K, which implies τ(k) ∈ K and that K is
τ -invariant. Then λτ

π ∼ λπ by Corollary 4.2 and (4.6) yields (c) in Theorem 4.5. �

5. Simply reducible groups I: Mackey’s criterion

Let G be a finite group. We recall that for n ∈ N we denote by G̃n = {g, g, . . . , g) : g ∈
G} the diagonal subgroup of Gn = G×G× . . .×G︸ ︷︷ ︸

n times

. Let τ : G → G be an involutive anti-

automorphism, as before. We extend it to an involutive anti-automorphism τn : G
n → Gn

in the obvious way, namely by setting τn(g1, g2, . . . , gn) = (τ(g1), τ(g2), . . . , τ(gn)) for all

g1, g2, . . . , gn ∈ G. Observe that τn(G̃
n) = G̃n.

Lemma 5.1. Let (σi, Vi), i = 1, 2, be G-representations and denote by (ιG,C) the trivial

representation of G. For T : V1 → V ′
2 define T̃ : V1 ⊗ V2 → C by setting T̃ (v1 ⊗ v2) =

T (v1)(v2) for all vi ∈ Vi, i = 1, 2. Then the map

HomG(σ1, σ
′
2) −→ HomG(σ1 ⊗ σ2, ιG)

T 7→ T̃

is a linear isomorphism. In particular,

dimHomG(σ1, σ
′
2) = dimHomG(σ1 ⊗ σ2, ιG)
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so that, if σ2 is irreducible, the multiplicity of σ′
2 in σ1 equals the multiplicity of ιG in

σ1 ⊗ σ2.

Proof. We leave the simple proof to the reader. �

Definition 5.2 (Mackey-Wigner). One says that G is τ -simply reducible provided the
following two conditions are satisfied:

(i) ρ1 ⊗ ρ2 is multiplicity-free for all ρ1, ρ2 ∈ Ĝ;

(ii) ρτ ∼ ρ for all ρ ∈ Ĝ.

When τ = τinv condition (ii) becomes

(ii’) ρ′ ∼ ρ for all ρ ∈ Ĝ

and, provided that condition (i) and (ii’) are both satisfied, one simply says that G is
simply reducible.

Theorem 5.3 (Mackey’s criterion for τ -simply reducible groups). G is τ -simply reducible

if and only if every double coset of G̃3 in G3 is τ3-invariant. In particular, G is simply

reducible if and only if every double coset of G̃3 in G3 is invariant under the inverse
involution (τinv)3.

Proof. We use the Mackey-Gelfand criterion (Theorem 4.5) with G3 (resp. G̃3) in place

of G (resp. K). Actually, we may apply Corollary 4.6 because τ3(G̃
3) = G̃3. We now

show that the present theorem is a particular case of the equivalence between (c) and (d)
in the Mackey-Gelfand criterion. First of all, observe that condition (c) of Theorem 4.5,

in the present setting, reads that every double coset of G̃3 in G3 is τ3-invariant. Similarly,

denoting by ιG̃3 the trivial representation of G̃3, the first part of the equivalent condition

(d) of the same theorem, reads that IndG3

G̃3(ιG̃3), which (cf. [16, Example 1.6.4]) coincides

with the permutation representation λ of G3 on L(G3/G̃3), is multiplicity free. Let then

ρ1, ρ2, ρ3 ∈ Ĝ. Consider the representation ρ1 ⊠ ρ2 ⊠ ρ3 ∈ Ĝ3. By virtue of Frobenius’

reciprocity (cf. [16, Theorem 1.6.11]) the multiplicity of ρ1 ⊠ ρ2 ⊠ ρ3 in IndG3

G̃3(ιG̃3) equals

the multiplicity of ιG̃3 in ρ1⊗ρ2⊗ρ3 = ResG
3

G̃3(ρ1⊠ρ2⊠ρ3). By virtue of Lemma 5.1 (with
σ1 (resp. σ2) now replaced by ρ1 ⊗ ρ2 (resp. ρ3)) the latter equals the multiplicity of ρ′3
in ρ1 ⊗ ρ2. Therefore IndG3

G̃3(ιG̃3) is multiplicity free if and only if ρ1 ⊗ ρ2 is multiplicity

free for all ρ1, ρ2 ∈ Ĝ. This shows that condition (i) in Definition 5.2 is equivalent to the
first part of (d).

Since Cτ (ρ1 ⊠ ρ2 ⊠ ρ3) = Cτ (ρ1)Cτ (ρ2)Cτ (ρ3) (cf. Proposition 3.7), the second part of
condition (d) in Theorem 4.5 holds if and only if Cτ (ρ1)Cτ (ρ2)Cτ (ρ3) = 1 whenever ρ′3 is

contained in ρ1⊗ρ2 (in particular, by Theorem 3.5.(1), we also have ρ ∼ ρτ for all ρ ∈ Ĝ).

Now, if ρ1⊗ρ2 = ResG
2

G̃2(ρ1⊠ρ2) is multiplicity free, then by virtue of Theorem 3.11 we
have that Cτ (ρ1)Cτ (ρ2) = Cτ (ρ1 ⊠ ρ2) equals Cτ (ρ

′
3) whenever ρ

′
3 is contained in ρ1 ⊗ ρ2.

Since by Lemma 3.8 Cτ(ρ3) = Cτ (ρ
′
3), we deduce that the condition

Cτ (ρ1 ⊠ ρ2 ⊠ ρ3) = 1 whenever ρ′3 � ρ1 ⊗ ρ2

is equivalent to
Cτ (ρ3)

2 = 1 whenever ρ3 � ρ1 ⊗ ρ2.
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Now, Cτ (ρ3)
2 = 1 if and only if Cτ (ρ3) = ±1 which in turn is equivalent to the condition

ρτ3 ∼ ρ3, by virtue of Theorem 3.5.(1). Since the latter is nothing but condition (ii) in
Definition 5.2, this ends the proof. �

6. Simply reducible groups II: Mackey’s generalizations of Wigner’s

criterion

Let G be a finite group and π : G → Sym(X) a (not necessarily transitive) action of
G on a finite set X . As usual, we denote by Oπ

G(X) the set of all G-orbits of X . Let
α ∈ Sym(X) and suppose that Oπ

G(X) is α-invariant, that is, α(Ω) ∈ Oπ
G(X) for all

Ω ∈ Oπ
G(X). Note that this condition is always satisfied whenever α commutes with π,

namely, απ(g) = π(g)α for all g ∈ G. Indeed, in this case, denoting by Ωx = {π(g)x :
g ∈ G} ∈ Oπ

G(X) the orbit of a point x ∈ X , we have α(Ωx) = Ωαx. We denote by
Oπ

G(X)α = {Ω ∈ Oπ
G(X) : α(Ω) = Ω} the set of orbits which are (globally) fixed by α.

The following generalization of the classical Cauchy-Frobenius-Burnside lemma (cf. [13,
Lemma 3.11.1]) is due to Mackey.

Lemma 6.1. Setting p(g) = |{x ∈ X : π(g)x = αx}| for all g ∈ G, we have

1

|G|

∑

g∈G

p(g) = |Oπ
G(X)α|.

Proof. Let x ∈ X and set q(x) = |{g ∈ G : π(g)x = αx}|. Note that if Ωx 6∈ Oπ
G(X)α,

then q(x) = 0. Indeed, since α(Ωx) ∩ Ωx = ∅, there is no g ∈ G such that π(g)x ∈ Ωx

equals αx ∈ α(Ωx). On the other hand, suppose that Ωx ∈ Oπ
G(X)α. If g ∈ G satisfies

π(g)x = αx, then gk satisfies the same condition for all k ∈ Stabπ
G(x); also if g1, g2 ∈ G

satisfy π(g1)x = αx = π(g2)x we deduce that g−1
1 g2 ∈ Stabπ

G(x). This shows that q(x) =

|Stabπ
G(x)| =

|G|
|Ωx|

. We then have
∑

g∈G

p(g) = |{(x, g) ∈ X ×G : π(g) = αx}|

=
∑

x∈X

q(x)

=
∑

Ω∈Oπ
G(X)α

∑

x∈Ω

|G|

|Ω|

= |G| · |Oπ
G(X)α|.

�

The classical Cauchy-Frobenius-Burnside lemma corresponds to the case when α is the
identity map (so that, in this case, p(g), g ∈ G, equals the number of fixed points of π(g)).

Let n ≥ 1 and denote by πn+1 : G
n+1 → Sym(Gn) the action defined by

πn+1(g1, g2, . . . , gn, gn+1)(h1, h2, . . . , hn) = (g1h1g
−1
n+1, g2h2g

−1
n+1, . . . , gnhng

−1
n+1)

for all g1, g2, . . . , gn, gn+1, h1, h2, . . . , hn ∈ G. Note that πn+1 is transitive and that the
stabilizer of (1G, 1G, . . . , 1G) ∈ Gn is given by

Stab
πn+1

Gn+1(1G, 1G, . . . , 1G) = G̃n+1.
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It follows that

(6.1) Gn+1/G̃n+1 ∼= Gn

as homogeneous spaces. We also denote by γn : G → Sym(Gn) the conjugacy action of G
on Gn given by

γn(g)(g1, g2, . . . , gn) = (gg1g
−1, gg2g

−1, . . . , ggng
−1)

for all g, g1, g2, . . . , gn ∈ G. Denoting by εn+1 : G → G̃n+1 the natural bijection given by
εn+1(g) = (g, g, . . . , g), we have

γn = πn+1|G̃n+1 ◦ εn+1.

In other words, γn coincides with the action of G̃n+1 on Gn and therefore (see Remark
4.3) the map

(6.2)
G̃n+1\Gn+1/G̃n+1 −→ Oγn

G (Gn)

G̃n+1(g1, g2, . . . , gn, gn+1)G̃
n+1 7→ Ω(g1g

−1
n+1,g2g

−1
n+1,...,gng

−1
n+1)

is well defined and bijective. Indeed, the orbit corresponding to the double coset of
(g1, g2, . . . , gn, gn+1) ∈ Gn+1 contains the element πn+1(g1, g2, . . . , gn+1)(1G, 1G, . . . , 1G) =
(g1g

−1
n+1, g2g

−1
n+1, . . . , gng

−1
n+1).

For every g ∈ G, we now denote by v(g) the cardinality of the centralizer of g in G,
that is, the number of elements h ∈ G such that hg = gh. We then have

Theorem 6.2. Let n ≥ 1. The following quantities are all equal:

(a) 1
|G|

∑
g∈G v(g)n

(b) the number of double G̃n+1 cosets in Gn+1

(c) the number of G-orbits on Gn with respect to the action γn.

Proof. We first observe that the cardinality of the centralizer of (g, g, . . . , g) ∈ G̃n in Gn

is v(g)n. Moreover, this is equal to the cardinality of the set of fixed points of γn(g) in

Gn. Then, applying Lemma 6.1 with X = Gn, G = G̃n, π = γn, and α = IdGn , we deduce
the equality between (a) and (c) (actually, we have used the classical Cauchy-Frobenius-
Burnside formula). Finally, the equality between (b) and (c) directly follows from the
bijection (6.2). �

Let τ be, as usual, an involutory anti-automorphism of G. For every g ∈ G, we denote
by ζτ (g) the number of elements h ∈ G such that τ(h−1)h = g; in formulæ

(6.3) ζτ (g) = |{h ∈ G : τ(h−1)h = g}|

Note that if τ = τinv then, simply writing ζ(g) instead of ζτinv(g), we have that ζ(g) =

|{h ∈ G : h2 = g}|. As before, we denote by τn : G
n → Gn its natural extension. Since G̃n

is τn- invariant, the set G̃
n\Gn/G̃n of double G̃n cosets in Gn is also τn invariant. Indeed,

τn(G̃
n(g1, g2, . . . , gn)G̃

n) = G̃n(τ(g1), τ(g2), . . . , τ(gn))G̃
n, for all g1, g2, . . . , gn ∈ G. As a

consequence, τn induces a permutation of the double G̃n cosets in Gn; we shall call the
corresponding fixed points τn -invariant double cosets. Similarly, the set Oγn

G (Gn) of all

γn orbits of G ∼= G̃n on Gn is τn invariant. Therefore, τn induces a permutation of such
orbits whose fixed points we shall call τn- invariant γn-orbits.
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Theorem 6.3. Let n ≥ 1. The following quantities are all equal:

(a) 1
|G|

∑
g∈G ζτ (g)

n+1

(b) the number of τn-invariant double G̃n+1 cosets in Gn+1

(c) the number of τn-invariant γn-orbits on Gn.

Proof. We start by proving the equality between (b) and (c). It suffices to show that
the bijective correspondence (6.2) transforms τn-invariant double cosets into τn-invariant
orbits. Now, the double coset containing the element (g1, g2, . . . , gn) is τn-invariant if and
only if

(6.4) ∃h1, h2 ∈ G such that τ(gi) = h1gih2 for all i = 1, 2, . . . , n+ 1

while, the orbit containing (g1g
−1
n+1, g2g

−1
n+1, . . . , gng

−1
n+1) is τn-invariant if and only if

(6.5) ∃h3 ∈ G such that τ(gn+1)
−1τ(gi) = h3gig

−1
n+1h

−1
3 for all i = 1, 2, . . . , n.

Let us show that conditions (6.4) and (6.5) are both equivalent to

(6.6) ∃h4 ∈ G such that τ(gn+1)
−1τ(gi) = h4g

−1
n+1gih

−1
4 for all i = 1, 2, . . . , n.

Indeed, (6.4) implies (6.6) by taking h4 = h−1
2 , while if (6.6) holds we have

τ(g1)h4g
−1
1 = τ(g2)h4g

−1
2 = · · · = τ(gn+1)h4g

−1
n+1

and therefore (6.4) holds with h1 = τ(gn+1)h4g
−1
n+1 and h2 = h−1

4 . Finally the equivalence
between (6.5) and (6.6) trivially follows from the identity

h4g
−1
n+1gih

−1
4 = (h4g

−1
n+1)gig

−1
n+1(h4g

−1
n+1)

−1

which shows that the relation between h3 and h4 is simply given by h3 = h4g
−1
n+1. This

completes the proof of the equality of (b) and (c).
We now turn to prove that (a) equals (c). For g ∈ G let us set

pn(g) = |{(g1, g2, . . . , gn) ∈ Gn : γn(g)(g1, g2, . . . , gn) = τn(g1, g2, . . . , gn)}|

so that, in particular, p1(g) = |{h ∈ G : ghg−1 = τ(h)}|. It is obvious that pn(g) = p1(g)
n.

Moreover, we have ghg−1 = τ(h) if and only if τ(g)−1g = τ(gh−1)−1gh−1 and the number
of elements h ∈ G satisfying the latter identity equals the number of elements u ∈ G
such that τ(g)−1g = τ(u)−1u (just take u = gh−1). In other words, we have p1(g) =
ζτ (τ(g)

−1g). Thus
∑

g∈G

pn(g) =
∑

g∈G

p1(g)
n

=
∑

g∈G

ζτ (τ(g)
−1g)n

=
∑

t∈G

ζτ (t)
n|{g ∈ G : τ(g)−1g = t}|

=
∑

t∈G

ζτ (t)
n+1.

Then the equality of (a) and (c) follows from Lemma 6.1 with X = Gn, G = G̃n, π = γn,
α = τn and, obviously, p = pn. �
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Recall that a conjugacy class is ambivalent when it is invariant with respect to τinv.
Moreover the group is ambivalent when every conjugacy class is ambivalent, equivalently,
every element is conjugate to its inverse. Then with the above notation, when n = 1 we
have:

Corollary 6.4. 1
|G|

∑
g∈G ζτ (g)

2 equals the number of τ -invariant conjugacy classes of G.

In particular (when τ = τinv),
1
|G|

∑
g∈G ζ(g)2 equals the number of ambivalent conjugacy

classes of G.

A more complete formulation of Corollary 6.4 will be given in Theorem 8.4.
Also, from Theorem 6.2 and Theorem 6.3 we deduce:

Corollary 6.5. We have ∑

g∈G

ζτ (g)
n+1 ≤

∑

g∈G

v(g)n.

Moreover equality holds if and only if every double G̃n+1 coset in Gn+1 is τn-invariant
(equivalently, if and only if every γn-orbit of G on Gn is τn-invariant).

When n = 2 Theorem 5.3 yields the following remarkable criterion.

Corollary 6.6 (Mackey-Wigner criterion for simple reducibility). The group G is τ -
simply reducible if and only if

(6.7)
∑

g∈G

ζτ (g)
3 =

∑

g∈G

v(g)2.

In particular (Wigner’s criterion), G is simply reducible if and only if
∑

g∈G ζ(g)3 =∑
g∈G v(g)2. �

We now examine in detail the case n = 1.

Theorem 6.7. The following conditions are equivalent:

(a)
∑

g∈G ζτ (g)
2 =

∑
g∈G v(g);

(b) every conjugacy class of G is τ -invariant;
(c) ρ ∼ ρτ for every irreducible representation ρ of G.

Proof. The equivalence (a) ⇔ (b) is a particular case of Corollary 6.4 since 1
|G|

∑
g∈G v(g)

equals the number of conjugacy classes of G (cf. Theorem 6.2).

Recall that the permutation representation L(G) = L(G2/G̃2) equals the induced rep-

resentation IndG2

G̃2ιG̃2 . Moreover this representation is multiplicity free (i.e. (G2, G̃2) is a
Gelfand pair) and its decomposition into irreducibles is:

(6.8) IndG2

G̃2ιG̃2 ∼
⊕

ρ∈Ĝ

(ρ′ ⊠ ρ);

see [13, Section 9.5] and [16, Corollary 2.16]. We now observe that (ρ′)τ = (ρτ )′: indeed

ρ′ = ρτinv and since τ and τinv commute, (3.7) holds. Moreover since Ĝ = {ρτ : ρ ∈ Ĝ},
from (6.8) we deduce

(6.9) IndG2

G̃2ιG̃2 ∼
⊕

ρ∈Ĝ

((ρ′)τ ⊠ ρτ ) .



MACKEY’S THEORY OF τ -CONJUGATE REPRESENTATIONS FOR FINITE GROUPS 23

By virtue of Proposition 3.7 and Lemma 3.8 we have

Cτ((ρ
′)τ ⊠ ρτ ) = Cτ ((ρ

′)τ )Cτ (ρ
τ ) = Cτ (ρ)

2.

Since by Theorem 3.5 ρ ∼ ρτ if and only if Cτ (ρ) = ±1, we deduce that this holds if
and only if Cτ ((ρ

′)τ ⊠ ρτ ) = 1. As a consequence, the equivalence (b) ⇔ (c) follows from
the Mackey-Gelfand criterion (Theorem 4.5) applied to (6.9), also taking into account the
equality of the quantities (b) and (c) in Theorem 6.3. �

The remaining part of this section is devoted to the analysis of the consequences when
equality occurs in Corollary 6.5 for n ≥ 3. We need two auxiliary lemmas.

Lemma 6.8. If there exists a positive integer n0 such that
∑

g∈G ζτ (g)
n0+1 =

∑
g∈G v(g)n0

then we also have
∑

g∈G ζτ (g)
n+1 =

∑
g∈G v(g)n for all n ≤ n0.

Proof. By Theorem 6.2 and Theorem 6.3 we have
∑

g∈G ζτ (g)
n0+1 =

∑
g∈G v(g)n0 if and

only if every γn0-orbit on Gn0 is τn0-invariant. This is equivalent to saying that for
each choice of g1, g2, . . . , gn0 ∈ G there exists g ∈ G such that τ(gi) = ggig

−1, i =
1, 2, . . . , n0. But this implies the τn-invariance of the γn-orbits also for all n ≤ n0 and
another application of the two above mentioned theorems completes the proof. �

Lemma 6.9. Let σ be a representation. Suppose that σ ⊗ σ′ contains the trivial repre-
sentation exactly once. Then σ is irreducible.

Proof. Let σ = ⊕m
i=1ρi denote the decomposition into irreducibles of σ. By applying

Frobenius reciprocity to (6.8) we deduce that each ρi⊗ρ′i contains the trivial representation
exactly once. Then σ ⊗ σ′, which contains ρi ⊗ ρ′i for all i = 1, 2, . . . , m, also contains
at least m copies of the trivial representation. By our assumptions, this forces m = 1,
yielding the irreducibility of σ. �

Theorem 6.10. The following conditions are equivalent:

(a) There exists an integer n ≥ 3 such that
∑

g∈G ζτ (g)
n+1 =

∑
g∈G v(g)n for all g ∈ G.

(b) For all n ≥ 1 and g ∈ G we have
∑

g∈G ζτ (g)
n+1 =

∑
g∈G v(g)n.

(c) The group G is abelian and τ is the identity.

Proof. Clearly, (b) implies (a) and, by Corollary 6.5, (c) implies (b). Now assume (a). By
Lemma (6.8) the identity is verified also for n = 3 and therefore Corollary 6.5 ensures that

the double G̃4 cosets in G4 is τ3-invariant. Then we may apply the Mackey-Gelfand crite-

rion (Theorem 5.3) deducing that (G4, G̃4) is a Gelfand pair. It follows that if ρ, σ, θ, ξ ∈ Ĝ

then ρ ⊠ σ ⊠ θ ⊠ ξ is G4-irreducible and its multiplicity in IndG4

G̃4ιG̃4 is either 0 or 1. In
particular, the representation

(6.10) ResG
4

G̃4 [(ρ⊠ σ)⊠ (ρ′ ⊠ σ′)]

(which, modulo the identification of G̃4 and G, is equivalent to the G-representation
ρ ⊗ σ ⊗ ρ′ ⊗ σ′) contains the trivial representation at most once. Therefore, by Lemma

6.9, ρ ⊗ σ is G-irreducible. Note that this holds for all ρ, σ ∈ Ĝ. In particular, ρ ⊗ ρ′

is irreducible and contains the trivial representation. Thus ρ ⊗ ρ′ ∼ ιG forcing ρ to be
one-dimensional. It follows that G is abelian (see [13, Exercise 3.9.11 or Section 9.2]).



24 TULLIO CECCHERINI-SILBERSTEIN, FABIO SCARABOTTI, AND FILIPPO TOLLI

Moreover, by (6.8) (with G2 in place of G, so that G̃2
2
= {(g, h, g, h) : g, h ∈ G}), the

representation

ResG
4

G̃2
2[(ρ⊠ σ)⊠ (ρ′ ⊠ σ′)]

contains the trivial G̃2
2
-representation exactly once. By further restricting to the subgroup

G̃4 we deduce that (6.10) contains the trivial G̃4-representation exactly once.

By Frobenius reciprocity, this implies that (ρ⊠ σ)⊠ (ρ′ ⊠ σ′) is contained in IndG4

G̃4ιG̃4

(with multiplicity one). Then Theorem 4.5.(d) ensures that

1 = Cτ ((ρ⊠ σ)⊠ (ρ′ ⊠ σ′)) = Cτ (ρ)
2Cτ (σ)

2,

where the second equality follows from Proposition 3.7 and Corollary 3.9. This implies

Cτ (ρ) = ±1 so that Theorem 3.5.(1) ensures the equivalence ρ ∼ ρτ , for all ρ ∈ Ĝ. Since
all these representations are one-dimensional, the latter means exactly that ρ(g) = ρ(τ(g))

for all g ∈ G and ρ ∈ Ĝ. Since G is abelian (so that Ĝ separates the elements in G), this
in turn gives τ = IdG. �

Note that if in the preceding theorem τ is the inversion, then Gmust be a direct product
of cyclic groups of order two.

7. An example: the Clifford groups

In this section, as an application of Mackey’s criterion (Theorem 5.3) and, indepen-
dently, of the Mackey-Wigner criterion (Corollary 6.6), we show that the Clifford groups
CL(n) are τ -simply reducible (where the involutive anti-automorphism τ of CL(n) is
suitably defined according to the congruence class of n modulo 4).

The Clifford group CL(n), n ≥ 1, is the group generated by the elements ε, γ1, γ2, . . . , γn
with defining relations (called Clifford relations)

ε2 = 1

γ2
i = 1

γiγj = εγjγi

(7.1)

for all i, j = 1, 2, . . . , n such that i 6= j. For n = 1 one should also add the relation

εγ1 = γ1ε.

(Note that for n ≥ 2 the relations εγi = γiε, i = 1, 2, . . . , n, are easily deduced from
(7.1)).

The Clifford-Littlewood-Eckmann group Gs,t, s, t ∈ N, is the group with generators
ε, a1, a2, . . . , as, b1, b2, . . . , bt and the following defining relations: ε2 = 1; a2i = ε, b2j = 1,
bjε = εbj , and aibj = εbjai for all i, j; and aiaj = εajai and bibj = εbjbi for all i 6= j
(see [54]). It can be easily shown that Gs,t is a finite group of order 2s+t. Note also that
G0,n = CL(n) for all n ∈ N.

The groups Gs,t are implicit in W.K. Clifford’s work on “geometric algebra” [18]. In-
deed, Gs,t appears naturally as a subgroup of the group of units of the Clifford algebra
C(ϕs,t) of the quadratic form ϕs,t := s〈−1〉 ⊥ t〈1〉 over any field of characteristic 6= 2.
They where explicitly defined by D.E. Littlewood [55] in 1934. These groups are of great
interest to theoretical physicists. For example, G0,3 = CL(3) is the group generated by the
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three (Hermitian) Pauli spin matrices (coming from the commutation relations between
angular momentum operators in the study of the spin of the electron) and G0,4 = CL(4) is
the Dirac group, generated by the four (Hermitian) Dirac matrices (defined by Dirac [21]
in his study of the relativistic wave equation). More generally, the groups G0,2n = CL(2n),
n ≥ 1, arise naturally in quantum field theory (e.g. in the theory of Fermion fields): orig-
inally they were introduced by Jordan and Wigner in their paper on Pauli’s Exclusion
Principle [43]. Using Frobenius-Burnside theory of finite group representations (cf. [13,
Section 3.11]) they determined all irreducible representations of these groups: apart the
2n one-dimensional representations, G0,2n has only one irreducible representation (of di-
mension 2n).

For the sake of completeness, we mention that the groups Gs,0, s ≥ 1, are also important
to physicists. For instance, they were studied by Jordan, von Neumann and Wigner
[44] in connection with their algebraic formalism for the mathematical foundations of
quantum mechanics. Eddington [23, 24], in his studies in astrophysics, considered sets of
anticommuting matrices and complex representations of the groupG5,0. Note also that the
groups Gs,0 play an important role in connection with the Hurwitz problem of composition
of quadratic forms [36, 37, 67]. Indeed, Eckmann [22] rediscovered these groups and
observed that a set of solutions to the Hurwitz equations over a field F corresponds
to an n-dimensional orthogonal representation ρ of Gs,0 satisfying ρ(ε) = −In. Then,
Eckmann determined all irreducible orthogonal representations of Gs,0 over the real field
R and deduced a purely group theoretical proof of the Hurwitz-Radon theorem on the
composition of sums of squares.

Returning back to our investigations, we shall make use of the following alternative
description of the Clifford groups (cf. [72, Chapter 4]). Setting X = {1, 2, . . . , n}, we
have CL(n) = {±γA : A ⊆ X} with multiplication given by

(7.2) ε1γA · ε2γB = ε1ε2(−1)ξ(A,B)γA△B

where △ denotes the symmetric difference of two sets and ξ(A,B) equals the number of
elements (a, b) ∈ A × B such that a > b, for all ε1, ε2 ∈ {1,−1} and A,B ⊆ X . Notice

that the identity element is given by 1CL(n) = γ∅ and that (εγA)
−1 = ε(−1)

|A|(|A|−1)
2 γA for

all ε = ±1 and A ⊆ X .
Consider now the map τ ′ : CL(n) → CL(n) defined by

(7.3) τ ′(εγA) = ε(−1)
|A|(|A|+1)

2 γA

and note that τ ′ = τinv ◦ τ
′′ where

τ ′′(εγA) = ε(−1)|A|γA

for all ε = ±1 and A ⊆ X . It is straightforward to check that τ ′′ is an involutive
automorphism of CL(n) so that τ ′ is an involutive anti-automorphism of CL(n). We then
set

τ =

{
τ ′ if n ≡ 3 mod 4

τinv otherwise.

Theorem 7.1. The group CL(n) is τ -simply reducible.
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Proof. We present two different proofs: the first one making use of the Mackey criterion
(Theorem 5.3) and the second one based on the Mackey-Wigner criterion (Corollary 6.6).

First proof. Set G = CL(n) and let us check that every double coset of G̃3 in G3 is
τ3-invariant. Consider the action π of G3 on G2 given by

π(g1, g2, g3)(h1, h2) = (g1h1g
−1
3 , g2h2g

−1
3 )

for all g1, g2, g3, h1, h2 ∈ G. Then the stabilizer of the element (1G, 1G) ∈ G2 is exactly G̃3

and the double cosets of G̃3 in G3 coincide with the G̃3-orbits of G2 under the action π.
Let A,C ⊆ X . Then

γ−1
C γAγC = (−1)

|C|(|C|−1)
2

+ξ(A,C)+ξ(C,A△C)γC△(A△C)

= (−1)
|C|(|C|−1)

2
+ξ(A,C)+ξ(C,A)+ξ(C,C)γA

=∗ (−1)|A||C|−|A∩C|γA

(7.4)

where =∗ follows from the fact that ξ(C,C) = |C|(|C|−1)
2

. From (7.4), a case-by-case

analysis yields the τ3-invariance of all G̃
3-orbits. As an example, consider the G̃3-orbit of

the element (γX , γX). Suppose first that n is odd. Then

π(γC , γC, γC)(γX , γX) = ((−1)(n−1)|C|γX , (−1)(n−1)|C|γX) = (γX , γX)

for all C ⊆ X . Therefore the G̃3-orbit of (γX , γX) reduces to one point. Now, if n ≡ 1
mod 4 we have τ(γX) = γ−1

X = γX , while if n ≡ 3 mod 4 we have τ(γX) = −γ−1
X = γX .

Similarly, when n is even we have that the G̃3-orbit of (γX , γX) is {(γX , γX), (−γX ,−γX)}

and τ(γX) = γ−1
X = (−1)

n(n−1)
2 γX .

Thus, since all double cosets of G̃3 in G3 are τ3-invariant, from the Mackey criterion
(Theorem 5.3) we deduce that CL(n) is τ -simply reducible.

Second proof. We start by computing the Right Hand Side in (6.7) where G = CL(n).
First note that for A ⊆ X we have,

(7.5) v(γA) = 2n.

Indeed, by virtue of (7.4), we have

v(γA) = |{εγC : ε = ±1, |C ∩ A| is even}| = 2 · 2|A|−1 · 2n−|A| = 2n

if |A| is even, and

v(γA) = |{εγC : ε = ±1, |C ∩ A| is even and |C| is even}|

+ |{εγC : ε = ±1, |C ∩ A| is odd and |C| is odd}|

= 2 · 2|A|−1 · 2n−|A|−1 + 2 · 2|A|−1 · 2n−|A|−1

= 2n
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if |A| is odd. We then have
∑

g∈G

v(g)2 =
∑

A⊆X

v(γA)
2 +

∑

A⊆X

v(−γA)
2

(since v(−γA) = v(γA)) = 2
∑

A⊆X

v(γA)
2

(by (7.5)) = 2
∑

A⊆X

22n

= 23n+1.

(7.6)

We now compute the Left Hand Side in (6.7). First observe that by (7.2) we have that
ζτ (g) = 0 if (and only if) g 6= ±1G. Suppose first that n ≡ 3 mod 4. Then we have

ζτ(1G) = |{εγC : ε = ±1 and τ(εγC)
−1εγC = 1G}|

= 2|{γC : τ(γC)
−1γC = 1G}|

= 2|{γC : (−1)|C|γCγC = 1G}|

= 2|{γC : (−1)
|C|(|C|+1)

2 1G = 1G}|

= 2|{γC : |C|(|C|+ 1) ≡ 0, 3 mod 4}|

= 2 · 2n−1 = 2n.

Analogously, one has

ζτ (−1G) = 2|{γC : |C|(|C|+ 1) ≡ 1, 2 mod 4}| = 2n

so that, alltogether,

(7.7)
∑

g∈G

ζτ (g)
3 = ζτ(1G)

3 + ζτ(−1G)
3 = 23n+1

On the other hand, if n ≡ 0, 1, 2 mod 4 we have

ζτ (1G) = 2|{γC : |C|(|C| − 1) ≡ 0, 1 mod 4}| = 2n

and

ζτ (−1G) = 2|{γC : |C|(|C| − 1) ≡ 2, 3 mod 4}| = 2n

thus showing that (7.7) holds also in this case. Comparing (7.6) and (7.7), from the
Mackey-Wigner criterion (Corollary 6.6) we deduce that CL(n) is τ -simply reducible. �

Remark 7.2. Let ρ, σ ∈ ĈL(n). In [17] we give an explicit decomposition of the tensor
product ρ⊗ σ. According to Theorem 7.1, this is multiplicity free and, moreover, ρ ∼ ρτ .

8. The twisted Frobenius-Schur theorem

Let N be a finite group, τ : N → N an involutory anti-automorphism, and denote
by α ∈ Aut(N) the involutory automorphism defined by α(n) = τ(n−1) for all n ∈ N .
Consider the semi-direct product

(8.1) G = N ⋊α 〈α〉.
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In other words, G = {(n, αε) : n ∈ N, ε ∈ {0, 1}} and

(n, αε)(n′, αε′) = (nαε(n′), αε+ε′)

for all n, n′ ∈ N and ε, ε′ ∈ {0, 1}. If we identify N with the normal subgroup {(n, α0) :
n ∈ N} and we set h = (1N , α), then G is generated by N and h and the following relations
hold: h2 = 1 and hnh = τ(n)−1, for all n ∈ N . We then have the coset decomposition
G = N

∐
hN . Moreover, we can define the alternating representation of G (with respect

to N) as the one–dimensional representation (ε,C) defined by

ε(g) =

{
1 if g ∈ N

−1 otherwise.

We define two actions of C2 = {1,−1} on N̂ and Ĝ as follows: 1 acts trivially in both

cases; −1 acts on N̂ by N̂ ∋ σ 7→ hσ ∈ N̂ where

hσ(n) = σ(h−1nh)

for all n ∈ N ; finally, −1 acts on Ĝ by Ĝ ∋ θ 7→ θ ⊗ ε ∈ Ĝ. Clearly, both N̂ and Ĝ
are partitioned into their C2-orbits. Moreover every such an orbit consists of one or two
representations. Let also

IG(σ) = {g ∈ G : gσ ∼ σ}

be the inærtia group of σ ∈ N̂ with respect to G (again, gσ(n) = σ(g−1ng)) and

Ĝ(σ) = {θ ∈ Ĝ : σ � ResGNθ} ≡ {θ ∈ Ĝ : θ � IndG
Nσ}.

The following theorem yields a very natural bijection between the orbits of C2 on N̂ and
those on Ĝ. For the proof we refer to [15, Theorem 3.1] and [72, Section III.11].

Theorem 8.1. (1) If IG(σ) = N , then θ := IndG
Nσ ∈ Ĝ, θ ⊗ ε = θ and ResGNθ = σ ⊕hσ,

with σ and hσ not equivalent.

(2) If IG(σ) = G, then, taking θ ∈ Ĝ(σ) we have IndG
N(σ) = θ ⊕ (θ ⊗ ε) with θ 6∼ θ ⊗ ε

and ResGNθ = ResGN (θ ⊗ ε) = σ.
(3) The map

{σ,hσ} 7→ Ĝ(σ) when IG(σ) = N

and

{σ} 7→ Ĝ(σ) when IG(σ) = G

yields a one–to–one correspondence between the C2-orbits on N̂ and on Ĝ. In particu-

lar, to each single–element orbit on N̂ (resp. on Ĝ) there corresponds a two–elements

orbit on Ĝ (resp. on N̂).

In the following, given an irreducible representation σ of N , we denote by στ and Cτ (σ)
the associated τ -conjugate representation and the τ -Frobenius-Schur indicator of σ (as
in (3.1) and Definition 3.4; recall that C = Cτinv). As remarked in the Introduction, the
following result goes back to Kawanaka and Mastuyama [46] but the proof follows the
lines in [7, Exercise 4.5.1].
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Theorem 8.2 (Twisted Frobenius-Schur theorem). Let σ be an irreducible representation
of N and denote by χσ its character. Then

(8.2)
1

|N |

∑

n∈N

χσ(τ(n)
−1n) = Cτ (σ).

Proof. Let G be as in (8.1). We distinguish two cases.
hσ ∼ σ. In this case, for θ ∈ Ĝ(σ), by Theorem 8.1.(2) we have θ 6∼ θ⊗ε and ResGNθ = σ,

so that χθ(n) = χσ(n) for all n ∈ N . since g2 ∈ N for all g ∈ G, we have
∑

g∈G

χθ(g
2) =

∑

n∈N

χσ(n
2) +

∑

n∈N

χσ((hn)
2)

=
∑

n∈N

χσ(n
2) +

∑

n∈N

χσ(τ(n)
−1n).

By the classical Frobenius-Schur theorem [13, Theorem 9.7.7], we have

C(θ) =
1

|G|

∑

g∈G

χθ(g
2)

and

C(σ) =
1

|N |

∑

n∈N

χσ(n
2).

Therefore, since |G| = 2|N |, we deduce that

(8.3) C(θ) =
1

2
C(σ) +

1

2|N |

∑

n∈N

χσ(τ(n)
−1n).

Suppose that σ is self-conjugate.
Denote by A(n) (resp. Aτ (n)), with n ∈ N , a matrix realization of σ (resp. στ ). Note

that hA(n) := A(h−1nh), with n ∈ N , is a matrix realization of hσ (cf. [15, Lemma 3.1]).
Moreover,

(8.4) Aτ (n) = hA(n)

for all n ∈ N . Indeed, for all n ∈ N we have hσ(n) = σ(τ(n)−1) and therefore

(8.5) στ (n) = σ[τ(n)]T =hσ(n−1)T = (hσ)′(n)

so that Aτ (n) = hA(n−1)T = hA(n). Let also M(g), g ∈ G, denote a matrix realization of
θ such that M(n) = A(n) for all n ∈ N . Then, the unitary matrix V = M(h) satisfies
M(nh) = A(n)V for all n ∈ N , V 2 = M(h2) = M(1G) = I so that

(8.6) V ∗ = V and V T = V

and

(8.7) hA(n) = V ∗A(n)V = V A(n)V

for all n ∈ N . Since σ is self-conjugate, we can find a unitary matrix W such that

(8.8) A(n) = WA(n)W ∗
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for all n ∈ N . We therefore obtain

Aτ (n) = hA(n) (by (8.4))

= V A(n)V (by (8.7))

= V T A(n)V T (by (8.6))

= V TWA(n)W ∗V T (by (8.8))

that is,

(8.9) W ∗V TAτ (n) = A(n)W ∗V T

for all n ∈ N . Since W ∗VW = ±V (cf. [15, Theorem 3.4)]), and applying also (8.6), we
get

(8.10) (W ∗V T )T = VW = ±WV = ±WV T .

¿From Lemma 2.3, it follows that WW = ±I. More precisely, WW = I (resp. WW =
−I) if σ is real (resp. quaternionic). Combining with Theorem 3.5, this is equivalent to

(8.11) W = C(σ)W ∗.

¿From (8.10) and (8.11) we obtain

(8.12) (W ∗V T )T = ±C(σ)W ∗V T

where the sign is the same as in W ∗VW = ±V . Thus, from (8.9) (W ∗V T intertwines Aτ

and A) and (8.12) (W ∗V T is symmetric/antisymmetric) with the same sign therein, we
obtain

(8.13) Cτ (σ) = ±C(σ).

Now, if in (8.13) the sign is +, then by [15, Theorem 3.4.(2)] we have C(θ) = C(σ) and
therefore from (8.3) and (8.13) we deduce that (8.2) is satisfied. On the other hand, if in
(8.13) the sign is −, then θ is complex, C(θ) = 0 and Cτ (σ) = −C(σ) and from (8.3) we
again deduce (8.2). This completes the proof in the case σ is selfconjugate.

Suppose now that σ is complex. Then by [15, Theorem 3.4.(1)] we have that θ is
complex as well. Moreover σ′ 6∼ σ and hσ ∼ σ imply that στ ≡ hσ′ ∼ σ′ 6∼ σ (recall (8.5))
and therefore Cτ (σ) = 0. Again, from (8.3) we deduce (8.2). This completes the proof
in the case σ is complex and, together with the previous step completes the proof for the
case hσ ∼ σ.

We now discuss the remaining case.
hσ 6∼ σ. From Theorem 8.1.(1) we deduce that ResGNθ = σ ⊕hσ and therefore
∑

g∈G

χθ(g
2) =

∑

n∈N

χθ(n
2) +

∑

n∈N

χθ(τ(n)
−1n)

=
∑

n∈N

χσ(n
2) +

∑

n∈N

χhσ(n
2) +

∑

n∈N

χσ(τ(n)
−1n) +

∑

n∈N

χhσ(τ(n)
−1n).

As

χhσ(n
2) = χσ(hn

2h) = χσ(τ(n)
−2)
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and
χhσ(τ(n)

−1n) = χσ(hτ(n)
−1nh) = χσ

(
τ((τ(n)−1n)−1)

)
= χσ(nτ(n)

−1)

from the fact that n 7→ τ(n)−1 is an automorphism, we deduce that

(8.14) C(θ) = C(σ) +
1

|N |

∑

n∈N

χσ(τ(n)
−1n).

Suppose that σ is real (resp. quaterionionic). Then, by virtue of [15, Theorem 3.3.(1)]
θ is real (resp. quaterionionic) as well and therefore C(σ) = C(θ). Now, if σ ∼ σ′, since
by hypothesis hσ 6∼ σ, and (8.5) holds also in this case, we have στ ≡ hσ′ 6∼ σ′ ∼ σ, and
therefore Cτ (σ) = 0. Then (8.2) follows from (8.14).

Suppose now that σ is complex. If σ′ 6∼ hσ, from [15, Theorem 3.3.(2)] we deduce that
θ is complex as well. Moreover, στ ≡ hσ′ 6∼ σ and therefore C(σ) = C(θ) = Cτ (σ) = 0
and (8.2) follows again from (8.14).

Finally, if σ is complex and σ′ ∼ hσ, then [15, Theorem 3.3.(3)] ensures that θ is
selfconjugate. Moreover, στ ≡ hσ′ ∼ σ. We then denote by U an intertwining unitary
matrix such that

(8.15) UAτ (n) = A(n)U

for all n ∈ N (A(n) is as in (8.4)). Since h2 = 1G, from [15, Theorem 3.3.(3)] we deduce
that UU = ±I, that is,

(8.16) U = ±UT .

Now, if in (8.16) the sign is +, [15, Theorem 3.3.(3)] ensures that θ is real, while (8.15)
and (8.16) give Cτ (σ) = 1. In other words, C(σ) = 0, Cτ (σ) = C(θ) = 1 and, once more,
(8.2) follows from (8.14). Similarly if the sign in (8.16) is −. �

Recall that ζτ (n), n ∈ N , denotes the number of elements m ∈ N such that τ(m−1)m =
n (cf. (6.3)).

Corollary 8.3. For all n ∈ N we have

(8.17) ζτ (n) =
∑

σ∈N̂

Cτ(σ)χσ(n).

In particular,

ζτ (1N) =
∑

σ∈N̂ :
Cτ (σ)=1

dσ −
∑

σ∈N̂ :
Cτ (σ)=−1

dσ.

Proof. We observe that ζτ is a central function. Indeed, if m,n, s ∈ N and τ(m−1)m = n,
then

sns−1 = sτ(m−1)τ(s)τ(s−1)ms−1 = τ [τ(s−1)ms−1]−1τ(s−1)ms−1.

Therefore the map m 7→ τ(s−1)ms−1 yields a bijection between the set of solutions of
τ(m−1)m = n and the set of solutions of τ(m−1

s )ms = sns−1. ¿From the Frobenius-Schur
twisted formula (8.2) we deduce

(8.18)
1

|N |

∑

n∈N

χσ(n)ζτ (n) = Cτ (σ)
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(observe that ζτ (n) and Cτ(σ) are both real). Since ζτ is central, by the orthogonality
relation for characters (cf. [13, Equation (3.21)]) (8.17) immediately follows from (8.18).

�

We are now in position to complete Corollary 6.4 by adding a third representation
theoretic quantity.

Theorem 8.4. The following quantities are equal:

(a) the number of σ ∈ N̂ such that σ ∼ στ ;
(b) the number of τ -invariant conjugacy classes of N ;
(c) 1

|N |

∑
n∈N ζτ (n)

2.

Proof. The equality between the numbers in (b) and (c) corresponds to Corollary 6.4. On
the other hand, ¿From Corollary 8.3 we also have

1

|N |

∑

n∈N

ζτ(n)
2 =

1

|N |

∑

n∈N

ζτ (n)ζτ (n)

=
∑

σ,ρ∈N̂

Cτ (σ)Cτ (ρ)
1

|N |

∑

n∈N

χσ(n)χρ(n)

=∗

∑

σ,ρ∈N̂

Cτ (σ)Cτ (ρ)δσ,ρ

= |{σ ∈ N̂ : Cτ (σ) 6= 0}|

≡ |{σ ∈ N̂ : στ ∼ σ}|

where =∗ follows from the orthogonality relations for the characters, and therefore we get
the equality between (a) and (c). �

9. The twisted Frobenius-Schur theorem for a Gelfand pair

In this section we specialize the results of the previous section to the context of Gelfand
pairs.

Let (G,K) be a Gelfand pair, X and x0 as in Section 4 and

L(X) =
⊕

ρ∈I

Vρ.

the corresponding multiplicity free decomposition. By virtue of Frobenius reciprocity, for
each ρ ∈ I, there exists a unique (modulo a complex factor of modulus 1) unit vector
v ∈ Vρ such that ρ(k)vρ = vρ for all k ∈ K. The spherical function associated with vρ is
the complex valued function φρ on G defined by

φρ(g) = 〈vρ, ρ(g)vρ〉Vρ

for all g ∈ G. We observe that the spherical function φρ is bi-K-invariant (φρ(k1gk2) =
φρ(g) for all k1, k2 ∈ K and g ∈ G) and recall the following relations between φρ and the
corresponding character χρ (cf. [13, Exercise 9.5.8]):

(9.1) φρ(g) =
1

|K|

∑

k∈K

χρ(gk)
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and

(9.2) χρ(g) =
dρ
|G|

∑

h∈G

φρ(h−1gh)

for all g ∈ G, where dρ = dimVρ.

Theorem 9.1 (Twisted Frobenius-Schur for a Gelfand pair). Let τ : G → G be an
involutory anti-automorphism. Then we have

(1) For every ρ ∈ I

dρ
|G|

∑

g∈G

φρ(τ(g)
−1g) = Cτ (ρ).

(2) For x ∈ X we set ζτ (x) = |{g ∈ G : τ(g)−1gx0 = x}|. Then we have

1

|G|

∑

x∈X

ζτ (x)
2 = |K|

∑

ρ∈I:
ρ∼ρτ

1

dρ
.

Proof. (1) From Theorem 8.2 we obtain (Cτ (ρ) is real)

Cτ (ρ) =
1

|G|

∑

g∈G

χρ(τ(g)−1g)

(by (9.2)) =
dρ
|G|2

∑

g,h∈G

φρ(h
−1τ(g)−1gh)

=
dρ
|G|2

∑

g,h∈G

φρ(τ(τ(h)gh)
−1 · τ(h)gh)

by setting s = τ(h)gh)) =
dρ
|G|

∑

s∈G

φρ(τ(s)
−1s).

(2) From the previous fact (by setting ϕρ(x) = φρ(g) if gx0 = x: note that this is well
defined by virtue of the bi-K-invariance of φρ) we get

Cτ (ρ) =
dρ
|G|

∑

x∈X

ζτ (x)ϕρ(x).

Then the spherical Fourier inversion formula [13, Equation (4.15)] yields

ζτ (x) = |K|
∑

ρ∈I

ϕρ(x)Cτ (ρ).
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Therefore, from the orthogonality relations for spherical functions [13, Proposition 4.7.1]
we have

1

|G|

∑

x∈X

ζτ(x)
2 =

1

|G|

∑

x∈X

ζτ (x)ζτ (x)

=
∑

ρ∈I

Cτ (ρ)
2 |K|2

|G|
·
|X|

dρ

= |K|
∑

ρ∈I:
ρτ∼ρ

1

dρ
.

�

If τ(K) = K then τ induces an involution (that we keep denoting by τ) on the set
K\G/K of double cosets and therefore on the set K\X of K-orbits on X . This way, if
g ∈ G and Ωgx0 is the K-orbit containing gx0, then τ(Ωgx0) is the K-orbit containing
τ(g)x0.

Theorem 9.2 (Twisted Frobenius-Schur for a Gelfand pair II). Suppose that τ(K) = K.

(1) If ρ ∈ I then also ρτ ∈ I and the number of ρ ∈ I such that ρτ ∼ ρ is equal to the
number of τ -invariant K-orbits on X.

(2) If ρ ∈ I and ρτ ∼ ρ then Cτ (ρ) = 1.

Proof. (1) Let us define fρ ∈ V ′
ρ by setting

(9.3) fρ(v) = 〈v, vρ〉Vρ

for all v ∈ Vρ. Then we have

φρ(g) = fρ[ρ(g
−1)vρ].

Moreover, ρτ (k)fρ = fρ for all k ∈ K. Indeed, for all k ∈ K and v ∈ Vρ, we have:

[ρτ (k)fρ]v = fρ[ρ(τ(k))v]

= 〈ρ(τ(k))v, vρ〉

= 〈v, ρ(τ(k))−1vρ〉

(since τ(K) = K and vρ is K-invariant) = 〈v, vρ〉.

This shows that ρτ ∈ I because fρ is a non-trivial K-invariant vector. Then, we equip
V ′
ρ with the scalar product given by duality so that 〈f, fρ〉V ′

ρ
= f(vρ) for all f ∈ V ′

ρ and,
recalling (9.3), we deduce that the spherical function φρτ is given by

φρτ (g) = [ρτ (g−1)fρ](vρ) = fρ[ρ(τ(g))
−1vρ] = 〈vρ, ρ(τ(g))vρ〉Vρ ≡ φρ(τ(g))

for all g ∈ G. Thus,

1

|G|

∑

g∈G

φρ(g)φρ(τ(g)) =
1

|G|

∑

g∈G

φρ(g)φρτ (g)

=

{
0 if ρ 6∼ ρτ

1
dρ

if ρ ∼ ρτ .

(9.4)
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On the other hand, by virtue of the dual orthogonality relations for spherical functions
(follow from [13, Proposition 4.7.1]), we get

(9.5)
∑

ρ∈I

dρφρ(g)φρ(τ(g)) =

{
|X|

|Ωgx0 |
if τ(g)x0 ∈ Ωgx0

0 otherwise.

¿From (9.4) and (9.5) we deduce

|{ρ ∈ I : ρ ∼ ρτ}| =
∑

ρ∈I

1

|G|
dρ
∑

g∈G

φρ(g)φρ(τ(g))

=
1

|G|

∑

Ω∈K\X:
τ(Ω)=Ω

∑

g∈G:
gx0∈Ω

|X|

|Ω|

=
∑

Ω∈K\X:
τ(Ω)=Ω

1

|G|
|K| · |X|

= |{Ω ∈ K\X : τ(Ω) = Ω}|.

(2) Consider the permutation representation (λ, L(X)). By Theorem 4.4 and Lemma
4.1.(3) we know that Cτ (λ) = m1 = |{Ω ∈ K\X : τ(Ω) = Ω}|. By Proposition 3.6 and
Theorem 3.5.(1) we have that Cτ (λ) =

∑
ρ∈I:
ρ∼ρτ

Cτ (ρ). Taking into account that, by the

previous facts, Cτ (λ) = |{ρ ∈ I : ρ ∼ ρτ}|, we conclude that Cτ (ρ) = 1 for all ρ ∈ I such
that ρ ∼ ρτ . �

10. Examples

In this section we review some examples related to our investigations. Note that all the
examples discussed below refer to involutive automorphisms of the given finite group G
while our treatement concerns involutive anti -automorphisms. Modulo the composition
with the inverse map τinv : g 7→ g−1, the two approaches are clearly equivalent.

Let us recall that, given a finite group G, a Gelfand model, briefly a model, for G (a
notion introduced by I.N. Bernstein, I.M. Gelfand and S.I. Gelfand in [6]) is a repre-
sentation containing every irreducible representation with multiplicity one. Models for
the finite symmetric and general linear groups were described by A.A. Klyachko [48, 51].
In [39] Inglis, Richardson and Saxl presented a brief and elegant construction of an ex-
plicit involution model for Sn (the term “involution” refers to the fact that the model is
obtained by summing up induced representations of subgroups which are centralizers of
certain involutions). Their work was continued by Baddeley [2] who showed that if a finite
group H has an involution model, then the wreath product H ≀ Sn also has an involution
model for any n ∈ N. As a byproduct, he obtained involution models for Weyl groups of
type An, Bn, Cn and D2n+1 for all n ∈ N. Note that the theorem of Frobenius-Schur (cf.
Corollary 8.3 with n = 1G and τ = τinv) imposes an obstruction for a group G to have an
involution model: G admits an involution model only if G has only real representations.

In the spirit of the present paper, Bump and Ginzburg [11] considered generalized
involution models : these consist in replacing the involutions (resp. their centralizers)
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with twisted-involutions (resp. their twisted-centralizers) with respect to some involutive
automorphism τ of the ambient group (thus a model for G is a generalized involution
model for G with τ equal to the identity automorphism of G). In analogy with the
standard involution models, we have the following obstruction: G admits a generalized

involution model (with respect to τ) only if Cτ (σ) = 1 for all σ ∈ Ĝ. We remark that
the only abelian groups with involution models are (Z2)

n, n ∈ N, but every abelian group
has generalized involution models. On the other hand, a Coxeter group has an involution
model if and only if it has a generalized involution model. More recently, Marberg [59]
proved that if a finite group H has a generalized involution model, then, in analogy to
Baddley’s main result, the wreath product H ≀Sn also has a generalized involution model
for any n ∈ N. As an application, it is shown that when H is abelian, then H ≀ Sn has a
model: when H = Zr, r ∈ N, this recovers a result previously obtained by Adin, Postnikov
and Roichman [1] (see below).

• R.Gow [31] considers the general linear group G = GL(n, k), where k is a field,
equipped with the involutory automorphism which sends each matrix x ∈ G into
its transposed inverse (xT )−1 (in our setting, this corresponds to the involutory
anti-automorphism τ which sends each x ∈ G into its transposed xT ) and the
corresponding semi-direct product denoted G+. It is first shown that every element
of G+ is a product of two involutions (Theorem 1) and therefore it is conjugate
to its inverse, so that G+ is ambivalent and all its irreducible representations are
self-conjugate.
Let now k = Fq be the field with q elements. Suppose q is odd. In Theorem 2,

Gow shows that every irreducible representation of G+ is indeed real. From this
result the author deduces (Theorem 3) the formula

(10.1)
∑

σ∈Ĝ

χσ(g) = ζτ (g)

for all g ∈ G. Comparing (10.1) and (8.17) one deduces that Cτ (σ) = 1 for all

σ ∈ Ĝ. Note that by taking g = 1G, the left hand side in (10.1) gives the sum of
dimensions of all irreducible representations of G, equivalently the dimension of a
model of G, while the right hand side gives the number of symmetric matrices in
G (Theorem 4). One may remark that Theorem 2 can be derived from Theorem
4 using Theorem 1. Moreover, Theorems 2 and 4 are both valid also for even
q. In fact, Theorem 4 has been proved independently, for even as well as odd q,
both by A. A. Klyachko [51, Theorem 4.1] and by I. G. Macdonald (unpublished
manuscript).

• In [32], Gow considers the general linear group G = GL(n,Fq2), q a prime power,
and its subgroups U = GU(n,Fq2) (the unitary group of degree n over Fq2) and
M = GL(n,Fq). The Frobenius automorphism c 7→ cq of Fq2 extends to an invo-
lutory automorphism F of G (leaving U and M invariant) by raising the entries
of a matrix in G to the qth power. Then also F ∗, the composition of F and
the transposed inverse, is an involutory automorphism of G (so that U is the G-
subgroup consisting of F ∗-fixed elements). By using these two automorphisms,
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it is then shown that (G,U) (resp. (G,M)) is a Gelfand pair and that the irre-
ducible subrepresentations of L(G/U) (resp. of L(G/M)) are precisely the F -fixed
(resp. F ∗-fixed) irreducible representations of G. We mention that the F ∗-fixed
representations of G were used by Kawanaka [45] to give a parameterization of the
irreducible representations of U .

• Inglis, Liebeck and Saxl in [38] consider the group G0 = PSL(n,Fq) (the projective
special linear group of degree n over Fq), with n ≥ 8. Let G be a group with socle
G0, that is such that G0 ⊳ G ≤ Aut(G0). Then a description of all Gelfand pairs
(G,H) with H maximal subgroup of G not containing G0 is given. Moreover, in
[40] the authors finds a new model of the general linear group over a finite field
(this construction can also be obtained from a result of Bannai, Kawanaka and
Song [4] but the methods in [40] are independent of and different from theirs).

• Vinroot [75] considers the group G = Sp(2n,Fq) equipped with the involutive
automorphism

g 7→

(
−In 0
0 In

)
g

(
−In 0
0 In

)
.

Let us denote by τ the composition of the above automorphism and τinv, so that

τ(g) =

(
−In 0
0 In

)
g−1

(
−In 0
0 In

)
.

Observe that when q ≡ 1 (mod 4) then τ is inner and every irreducible rep-
resentation of G is self-conjugate. Moreover, when q ≡ 3 (mod 4) then τ is not
inner, there exist irreducible representations of G which are not self-conjugate,

but Cτ (σ) = 1 for all σ ∈ Ĝ (cf. [75, Theorem 1.3]). As a byproduct, from the
analogous formula (10.1) which holds in the present setting, Vinroot determines
explcitly the dimension of any model of Sp(2n,Fq).
In [76] Vinroot uses Klyachko’s construction of a model for the irreducible com-

plex representations of the finite general linear group GL(n,Fq) we alluded to
above to establish, by determining the corresponding Frobenius-Schur number,
whether a given irreducible self-conjugate representation of SL(n,Fq), the finite
special linear group of degree n over Fq, is real or quaternionic.

• Adin, Postnikov and Roichman [1] study Gelfand models for wreath products of
the form G = Zr ≀ Sn. Any element g of G can be expressed uniquely as g = σv,
where σ ∈ Sn and v ∈ Zr

n. Consider the map τ : G → G given by τ(g) = σ(−v)
for all g = vσ ∈ G.
An element g ∈ G is said to be an absolute square root of another element h ∈ G

provided gτ(g) = h. Then the main result of this paper asserts that the value of
the character associated to the Gelfand model of G on h equals the number ζτ(h)
of absolute square roots of h (cf. (6.3)). This generalizes a result concerning
groups possessing only real characters, e.g. Sn (in this case, absolute square roots
coincide with square roots).

• Bannai and Tanaka [5] consider a finite group G, an automorphism σ and the
corresponding centralizer K := CG(σ) in G, i.e. the subgroup consisting of all
elements fixed by σ. It is well known and easy to see that for g, h ∈ G the double
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cosets KgK and KhK are equal if and only if the elements gσ(g) and hσ(h) are
conjugate in K. Then the authors introduce the following condition:
(⋆) If the elements gσ(g) and hσ(h) are conjugate in G then they are conjugate

in K.
and showed (Proposition 1) that if σ is an involution and condition (⋆) holds, then
(G,K) is a Gelfand pair. For instance, if H is a finite group, G = H × H , and
σ : G → G is the flip defined by σ(h1, h2) = (h2, h1), then (⋆) is satisfied and one
recovers the well known fact that (G,K) is a Gelfand pair, where K = Cσ(G) is

H̃2 = {(h, h) : h ∈ H}.
Moreover, they provided a list of other interesting examples where the above

condition is satisfied. In particular, when G is the symmetric group Sn, with n ≥ 4,
their list exhausts all possible examples. Other examples from the above mentioned
list include some sporadic groups as well as some linear groups including:
(i) G = GL(n,Fq2), K = GL(n,Fq);
(ii) G = GL(n,Fq2), K = GU(n,Fq2);
(iii) G = GL(2n,Fq), K = Sp(2n,Fq).
Moreover they leave it as an open problem to determine whether condition (⋆) is
satisfied in the case:
(iv) G = GL(2n,Fq), K = GL(n,Fq2).

11. Open problems and further comments

Here below we indicate possible extensions and generalization of the results discussed
by listing some open problems.

Comment 11.1 (Multiplicity-free induced representations). In his work on in-
duced representations, when looking for explicit criteria for multiplicity-freeness, Mackey
basically limited his investigation to permutation representations, that is, to representa-
tions obtained by inducing the trivial representation of a subgroup. In this setting, the
theory is rich and completely understood. We recall the Gelfand-Garsia criterion (Corol-
lary 4.7, cf. [13, Example 4.3.2]) for a symmetric Gelfand pair and the weak-Gelfand
criterion (Corollary 4.8, cf. [13, Exercise 4.3.3]). It is well known that there exist non-
symmetric Gelfand pairs (with the cyclic groups and the alternating groups [13, Example
4.8.3]) as well as non-weakly-symmetric Gelfand pairs ([13, Section 9.6]).

Let G be a finite group and K ≤ G a subgroup. Let also τ be an involutive antiauto-
morphism of G.

We notice that the sufficient condition in Corollary 4.8, namely Formula (4.6), is not
a necessary condition for: (i) (G,K) being a Gelfand pair and (ii) Cτ (σ) = 1 for every
irreducible representation σ contained in the permutation representation λπ.

Bump and Ginzburg [11] gave the following sufficient condition (cf. (4.6)) for IndG
Kθ

being multiplicity-free, where θ is an irreducible K-representation:

(i) τ(K) = K;
(ii) χθ(τ(g)) = χθ(g) for all g ∈ G;
(iii) KgK is τ -invariant for all g ∈ G;
(iv) τ(s) = k1sk2 for some k1, k2 ∈ K such that χθ(k1)χ

θ(k2) = 1, for all s ∈ S,
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where χθ denotes the character of θ and S is a suitable complete set of representatives for
the double cosets of K in G.

It would be interesting to find an analogue of the Mackey-Gelfand criterion (cf. Theorem
4.5) along the lines of [11] as well as to find an example of a K-representation θ 6= ιK
such that IndG

Kθ is multiplicity-free but does not satisfy the Bump and Ginzburg criterion
above.

The first step towards the first part of the above problem, should be to examine the
case dimθ = 1. In [17] we consider a Hecke algebra H(G,K, θ) and presented a sufficient
condition (a Garsia-type criterion on H(G,K, θ)) for IndG

Kθ being multiplicity-free and
we illustrate it with the following example. Let G = GL(2,Fq) denote the group of
invertible 2 × 2 matrices with coefficients in Fq, the Galois field with q elements, and

K =

{(
1 b
0 1

)
: b ∈ Fq

}
the subgroup of unipotent matrices. Then for every non-trivial

character χ of the (abelian) subgroup K the induced representation IndG
Kχ is multiplicity-

free. This is a particular case of the Gelfand-Graev representation of a simple group of
Lie type obtained by inducing a non-trivial character of the maximal unipotent subgroup.

Now we list two open problems that, together with 11.7 and 11.8, suggest that the
Mackey-Wigner theory should be a particular case of a more general theory.

Problem 11.2 (Harmonic analysis and tensor products). Let G be a finite group
and τ an involutive anti-automorphism of G. Suppose G is τ -simply reducible. What is

the relation between the spherical Fourier analysis on the homogeneous space L(G3/G̃3)
(see [13, Section 4]) and the decomposition of the tensor products?

Problem 11.3 (Decomposition of tensor products). Suppose (G3, G̃3) is not a

Gelfand pair. Is it possible to find rules that relate the decomposition of L(G3/G̃3)
into irreducible representations with the decomposition of tensor products of irreducible
G-representations? A possible strategy could be to apply, in this context, the analysis
developed in [69, 70] for permutation representations that decompose with multiplicity.
Moreover, a possible application should be to shed light to one of the major open prob-
lem in the representation theory of the symmetric group, namely the decomposition of
the tensor product of two irreducible representations (usually called Kronecker products).
See [41, Section 2.9] for an introduction, [29] as a classical reference, and [30] as a recent
interesting paper. Explicit decompositions of tensor products are also useful in the deter-
mination of the lower bound for the rate of convergence to the stationary distibution for
diffusion processes on finite groups; see [20] and [13, Section 10.7].

Problem 11.4 (Characterization of simply reducible groups). The major open
problem in the theory of simply (or τ -simply) reducible groups is to give a nice and useful
characterization of these groups. This was stated as an open problem in the famous
Kourovka notebook [53]. A great advance on this problem is in the recent paper [47]
where the authors show that all τ -simply reducible groups are soluble (this also was an
open problem in [53, Problem 11.94], posed by Strunkov (see also [73]).

Comment 11.5 (McKay correspondence). Simple reducibility is also relevant to the
McKay correspondence which we now describe.
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Let G be a finite group. Given a representation σ of G, the McKay quiver associated

with σ is the directed multi-graph defined as follows: the vertex set is Ĝ and, given
ρ1, ρ2 ∈ Ĝ, there are mσ

ρ1,ρ2
directed edges from ρ1 to ρ2, where mσ

ρ1,ρ2
is the multiplicity

of ρ2 in σ ⊗ ρ1.
Let now π : SU(2) → SO(3) denote the standard double cover and note that the only

element of even order in SU(2) is the generator −1 of the kernel of π. Therefore, any finite
subgroup of SU(2) either has even order (and is the preimage of some finite subgroup of
SO(3)) or has odd order (and is isomorphic to a finite subgroup of SO(3) of odd order,
hence a cyclic group). Now, the finite subgroups of SO(3) are: the cyclic groups Z/nZ,
the dihedral groups D2n, the tetrahedral group T (i.e. the alternating group A4), the
octahedral group O (i.e. the symmetric group S4), and the icosahedral rotation I (i.e. the
alternating group A5). It follows that the finite subgroups of SU(2) are: the cyclic groups,
the binary dihedral groups BD2n = π−1(D2n), the binary tetrahedral group BT = π−1(T ),
the binary octahedral group BO = π−1(O), and the binary icosahedral rotation group
BI = π−1(D).

Let G be any finite subgroup of SU(2) as above and let σ denote the faithful repre-
sentation of G obtained from the embedding G →֒ SU(2). Then, one can show that the

associated McKay quiver is connected and has no self-loops (mσ
ρ,ρ = 0 for all ρ ∈ Ĝ).

Moreover, simple reducibility of G implies that the McKay quiver is a simple and undi-

rected graph (i.e. mσ
ρ1,ρ2

∈ {0, 1} and mσ
ρ1,ρ2

= mσ
ρ2,ρ1

for all ρ1, ρ2 ∈ Ĝ).
The McKay correspondence, named after John McKay [60, 26], then states that the

construction of McKay quivers yields a bijection between the non-trivial finite subgroups
of SU(2) and the affine simply laced Dynkin diagrams (which appear in the A-D-E classi-
fication of simple Lie Algebras). For an overview of the correspondence and other math-
ematical structures which appear in connection with solvable models (e.g. the ice-type,
Potts, and spin models) in two-dimensional statistical physics, see [42, Section 2].

Comment 11.6 (Simple phase groups). Let G be a finite group and let (σi, Vi), i =
1, 2, . . . , n denote a list of all pairwise inequivalent irreducible representations of G. Let
di = dim(Vi) and fix an orthonormal basis {vis : s = 1, 2, . . . , di} in Vi, for all i = 1, 2, . . . , n.
By multiplicity freeness, given 1 ≤ i, j ≤ n we can find 1 ≤ i1 < i2 < · · · < ik ≤ n such
that

(11.1) σi ⊗ σj ∼
k⊕

t=1

σik .

Consider the vector space Vi ⊗ Vj and let T ∈ HomG(
⊕k

t=1 Vik , Vi ⊗ Vj) be an unitary
intertwiner (cf. (11.1)). There are two natural orthonormal bases in Vi ⊗ Vj, namely

{vis ⊗ vjt : s = 1, 2, . . . , di, t = 1, 2, . . . , dj}and {T (viℓuℓ
) : uℓ = 1, 2, . . . , diℓ, ℓ = 1, 2, . . . , k}.

Then we can express

T (viℓuℓ
) =

n∑

i=1

n∑

j=1

di∑

s=1

dj∑

t=1

C i,j,iℓ
s,t,uℓ

vis ⊗ vjt

where the complex numbers

(11.2) C i,j,iℓ
s,t,uℓ
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called the Clebsh-Gordan coefficients of Wigner coefficients constitute the unitary matrix
of change of base. As Wigner [78] showed (see also [35, Chapter 5]), the Clebsh-Gordan
coefficients can be chosen in such a way that their absolute values are invariant under every
permutation of the i, j, iℓ’s and the corresponding s, t, uℓ’s: in other words they change
only by a multiplicative phase factor. If one drops the property of ambivalence no essential
new difficulties arise in the definition and in the symmetry relations of Clebsh-Gordan
coefficients. However, if the multiplicity free condition is dropped, then a multiplicity
index enters the Clebsh-Gordan coefficients. Derome has shown [19] that these multiplicity
Clebsh-Gordan coefficients are invariant under permutations in the above sense if and only
if

(11.3)
∑

g∈G

χσ(g3) =
∑

g∈G

χσ(g)3

for all σ ∈ Ĝ. Groups for which (11.3) holds are called simple phase groups (see [19,
9, 10, 50, 74, 25]). In [74] van Zanten and de Vries derive several Mackey-Wigner type
criteria for the existence of a real representation and then derive analogues of some of
them, giving criteria for G to fail to be a simple phase group. It would be interesting to
investigate twisted versions (in terms of an involutive (anti)automorphism τ of the group
G) of their results.

Problem 11.7 (Multiplicity-free subgroups). Let G be a finite group and H ≤ G
a subgroup. We say that H is a multiplicity-free subgroup of G when ResGHρ decomposes

without multiplicity for all ρ ∈ Ĝ. See [81], our book [16] for its relations with the theory
of Gelfand-Tsetlin basis and the Okounkov-Vershik approach to the representation theory
of the symmetric group, and [70] for the not multiplicity-free case. In particular, in [16,
Theorem 2.1.10] we presented a general criterion for the subgroup H being multiplicity-
free in terms of commutativity of the algebra C(G,H) of H-conjugacy invariant functions

on G and of the Gelfand pair (G×H, H̃). Also, in [16, Proposition 2.1.12] we presented
the following sufficient condition: for all g ∈ G there exists h ∈ H such that h−1gh = g−1.
We then used this criterion to show the well known fact that Sn−1 is a multiplicity-free
subgroup of Sn, the symmetric group of degree n (cf. [16, Theorem 3.2.1 and Corollary
3.2.2]).

One of the key facts of the theory is that H is multiplicity-free if and only if (G×H, H̃)

is a Gelfand pair, where H̃ = (h, h) : h ∈ H . This is a generalization of (6.8). Then it

should be interesting to examine pairs like (G×G×H, H̃3) or (G×H×H, H̃3) and their
relations with the representation theory of G and H .

Problem 11.8. Theorem 8.4 gives a representation theoretical interpretation of the
purely group theoretical quantities in Corollary 6.4. Is there a representation theoret-
ical interpretation of the more general quantities in Theorem 6.3?
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APPENDIX: ON SOME GELFAND PAIRS AND COMMUTATIVE

ASSOCIATION SCHEMES

EIICHI BANNAI AND HAJIME TANAKA

Abstract. A pair (G,K) of a finite group G and a subgroup K of G is called a Gelfand
pair, if the permutation character π = (1K)G (of the action of G on the cosets G/K)
is multiplicity-free. This condition is equivalent to the condition that the Hecke algebra
H(K\G/K) is commutative, equivalently (the Bose-Mesner algebra of) the associated asso-
ciation scheme obtained from the action of G on the cosets G/K is commutative. Among
general commutative association schemes, those which are obtained from Gelfand pairs are
very special ones. To study what Gelfand pairs do exist, and/or what are their associated
zonal spherical functions (or equivalently what are the character tables of the associated
association schemes or Hecke algebras) are very fundamental important problems in this
research area. While, there are many open problems left yet to be answered.

We pay close attention on a special condition related to Gelfand pairs. Namely, we call
a finite group G and its automorphism σ satisfy Condition (⋆) if the following condition is
satisfied: if for x, y ∈ G, x · x−σ and y · y−σ are conjugate in G, then they are conjugate in
K = CG(σ). The main purpose of the note was to study the meanings of this condition, as
well as showing many examples of G and σ which do (or do not) satisfy Condition (⋆).

1. Condition (⋆)

Let G be a finite group, σ an automorphism of G (which may be an inner or outer auto-
morphsm), and K = CG(σ).

Fact 1.1 (Well-known). For x, y ∈ G, we have KxK = KyK if and only if x ·x−σ and y ·y−σ

are conjugate in K. (Proof is straightforward.)

Definition 1.2. We say Condition (⋆) is satisfied, if the following condition holds:
If x · x−σ and y · y−σ are conjugate in G, then they are conjugate in K.

Let Ω = {x · x−σ|x ∈ G}. Then, obviously, |Ω/conjugacy in K| ≥ |Ω/conjugacy in G|.
The equality |Ω/conjugacy in K| = |Ω/conjugacy in G| holds, if and only if Condition (⋆)
is satisfied.

Proposition 1.3. Let G and σ satisfy Condition (⋆). If σ2 = 1 (i.e., if σ is an involution),
then (G,K) becomes a Gelfand pair.

Proof. x · x−σ = x · x−σ · x · x−1 = x · x−σ · (x−σ)−σ · x−1, because σ2 = 1. Therefore, by
Condition (⋆), we have x · x−σ and x−σ · (x−σ)−σ are conjugate in K. Hence, by the above
fact, we have KxK = Kx−σK. Thus since the following Gelfand’s criterion is satisfied,
(G,K) becomes a Gelfand pair.

Criterion of Gelfand: Let σ be an automorphism of G and let Kx−1K = KxσK, ∀x ∈ G.
Then (G,K) is a Gelfand pair. (Cf. Terras [17, pp. 307–308].) �

The original version of the appendix appeared in the unofficial proceedings, “Combinatorial Number
Theory and Algebraic Combinatorics”, November 18–21, 2002, Yamagata University, Yamagata, Japan, pp.
1–8.
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Remark 1.4. It seems to be an open problem whether there is an example of G and σ
satisfying Condition (⋆), but (G,K) is not a Gelfand pair.

2. Examples

Here we consider some examples which satisfy Condition (⋆).

Example 2.1. Let G = S2n, the symmetric group on 2n letters. Let σ = (1, 2)(3, 4) . . . (2n−
1, 2n) be a fixed point free involutive element ofG, and letK = CG(σ). (ThenK is isomorphic
to the Weyl group of type Bn.) Then X = G/K is identified with the set of fixed point free
involutions of G = S2n.

Note that, (1K)
G is multiplicity-free, and (G,K) is a Gelfand pair. Moreover, ||(1K)

G|| =
p(n) and (1K)

G =
⊕

χD, where D runs all the even Young diagram D of size 2n, where
a Young diagram D = (n1, n2, . . . ) is called even if ni ≡ 0 (mod 2), ∀i, and χD is the
irreducible character of S2n corresponding to the Young diagram (=partition) D. Then
Ω = {xy|x, y ∈ X} consists of those elements of S2n whose cycle decomposition corresponds
to the Young diagram (partition) D with tD being even. That is, all the cycles in the cycle
decomposition are paired into two cycles of equal length. This is proved directly and in a
very elementary way.

Example 2.2. LetG = S2n+1, the symmetric group on 2n+1 letters. Let σ = (1, 2)(3, 4) . . . (2n−
1, 2n) be a one-fixed-point involutive element of G, and let K = CG(σ). (Then K is isomor-
phic to the Weyl group of type Bn.) Then X = G/K is identified with the set of one-fixed-
point involutions of G = S2n.

Note that, (1K)
G is multiplicity-free, and (G,K) is a Gelfand pair. Moreover, (1K)

G =
⊕

χD, where D runs all Young diagram D of size 2n + 1, where a Young diagram D =
(n1, n2, . . . ) satisfy ni ≡ 0 (mod 2), ∀i, except exactly one i. Then Ω = {xy|x, y ∈ X}
consists of those elements of S2n+1 whose cycle decomposition corresponds to the Young
diagram (partition) D with exactly one odd cycle which are not paired. This is proved
directly and in a very elementary way.

Example 2.3. Let G = Sn, the symmetric group on n letters. σ = (1, 2), and K = CG(σ).
Then Ω consists of the identity element, elements of two 2-cycles and elements of a 3-cycle.
Obviously Condition (⋆) is satisfied, and (G,K) is a Gelfand pair. Moreover, as is well
known, (1K)

G = χ(n) + χ(n−1,1) + χ(n−2,2).

It can be proved that, for n ≥ 4, the above three Examples are the only examples for which
G is a symmetric group and σ satisfies Condition (⋆).

The following is a general example.

Example 2.4. Let H be a finite group, and let G = H × H, σ : (x, y) 7−→ (y, x). Then
Condition (⋆) is satisfied, and K = {(x, x)|x ∈ H} ∼= H , and (G,K) is a Gelfand pair.

There are many more examples of G and σ. Some examples are as follows. We denote G
and subgroup K = CG(σ).

(1) G = PGL(2, q), K = D2(q−1) and G = PGL(2, q), K = D2(q+1),
(2) G = Un(q), K = Un−1(q),
(3) G = O±

2m(q), K = O2m−1(q) (classical groups acting on nonisotropic points),

etc. etc. There are many other examples of such Gelfand pairs satisfying Condition (⋆) for
appropriate σ, for example, see Inglis’ thesis [12].

Moreover, there are many sporadic examples.
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• G = M (Monster simple group), K = CG(2A) ∼= 2 ·BM (then the decomposition of
π = (1K)

G is related to the extended Dynkin diagram of type E8),
• G = Fi′24 = F3+, K = CG(2C) where σ is an outer automorphism,
• G = Fi23, K = CG(2A),
• G = Fi22, K = CG(2A),

etc. etc. There are many other examples of 3-transposition groups. We did check many
examples of G and σ do satisfy Condition (⋆) by checking ATLAS [8]. Also, we got many
examples G and σ not satisfying Condition (⋆), by looking through [8]. (The authors thank
Akihiro Munemasa for checking many examples by using MAGMA.) But, we will not go
further on these examples. Instead, we will consider the following four infinite families listed
by Inglis [12] for which G = GL(n, q):

(i) G = GL(n, q2), K = GL(n, q),
(ii) G = GL(n, q2), K = GU(n, q2),
(iii) G = GL(2n, q), K = Sp(2n, q) and
(iv) G = GL(2n, q), K = GL(n, q2).

We can see that the first three cases do satisfy Condition (⋆). (Cf. Inglis-Liebeck-Saxl
[13], Gow [9], Bannai-Kawanaka-Song [5], etc.) We conjectured that Condition (⋆) is also
satisfied for the last case (iv). Also, we conjectured those elements of G which appear in
Ω = {x · x−σ|x ∈ G} are closely related to the decomposition of the permutation charac-
ter (1GL(n,q2))

GL(2n,q) which were studied in our previous paper [7] and Henderson [11], etc.
However, the situation is not so simple as we expected. We discuss this situation in the next
section.

3. Discussions on the case G = GL(2n, q), K = GL(n, q2)

When n = 1, it is very easy to see that Condition (⋆) is satisfied. On the other hand, we
will see in this section that when n = 2 there is an automorphism σ of G = GL(4, q) with
CG(σ) = K = GL(2, q2) for which Condition (⋆) fails (but only very slightly). We note
that, unlike (i)–(iii) above, σ is not an involution.

Let Φ be the set of monic irreducible polynomials in Fq[t] other than t, and let P be the
set of all partitions. Then, it is well known that the irreducible characters of GL(n, q) can
be parametrized by the partition-valued functions µ : Φ −→ P such that

||µ|| =
∑

f∈Φ

µ(f)d(f) = n,

where d(f) is the degree of f . (Cf. Green [10] and Macdonald [14]; our parametrization
follows that of [14].)

The decomposition of the permutation character (1GL(n,q2))
GL(2n,q) is given as follows:

Theorem 3.1 ([7, 11]). (i) If q is odd, then we have (1GL(n,q2))
GL(2n,q) =

∑

χµ, summed over
µ such that ||µ|| = 2n, µ̃ = µ, and both t

µ(t+ 1) and µ(t− 1) are even.
(ii) If q is even, then we have (1GL(n,q2))

GL(2n,q) =
∑

χµ, summed over µ such that
||µ|| = 2n, µ̃ = µ, and t

µ(t+ 1) is even.
(iii) In either case, the generating function for the rank (i.e., the number of the irre-

ducible constituents of the permutation character (1GL(n,q2))
GL(2n,q)) is given by

∑

n≥0

rank(GL(2n, q)/GL(n, q2))t2n =
∏

r≥1

(1− qt2r)−1
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with the understanding that rank(GL(2 · 0, q)/GL(0, q2)) = 1. In particular we have

rank(GL(2n, q)/GL(n, q2) =
∑

ql(λ)

summed over all partitions λ with |λ| = n.

From now on we consider the case n = 2. Let α ∈ Fq2−Fq and g an element of G = GL(4, q)

with Jordan canonical form

(

α
α

αq

αq

)

. Then, the fixed-point subgroup K = CG(σ) of the

automorphism σ : x 7−→ gxg−1 is isomorphic to GL(2, q2). Using a famous formula for
an explicit expression of the structure constants of the group algebra in terms of character
values, we determined the conjugacy classes of G that intersect Ω = {x · x−σ|x ∈ G}, in the
case α = τ q−1 where τ is a primitive element of Fq2. (For other α, the computation could be
much more complicated.) The result is given in the following table.

Table 1: The Orders of the “Almost” Double Cosets /|GL(2, q2)|

Type Conditon Size









1
1

1
1









1









1 1
1

1 1
1









(q − 1)(q + 1)(q2 + 1)









−1 1
−1

−1 1
−1









q(q + 1)(q2 + 1)









−1 1
−1 1

−1 1
−1









q(q − 1)(q + 1)2(q2 + 1)









ρa

ρa

ρ−a

ρ−a









a 6≡ 0, q−1
2

(mod q − 1) q(q + 1)(q2 + 1)









−1 1
−1

1
1









q2(q + 1)(q2 + 1)









ρa 1
ρa

ρ−a 1
ρ−a









a 6≡ 0, q−1
2

(mod q − 1) q(q − 1)(q + 1)2(q2 + 1)
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Table 1: The Orders of the “Almost” Double Cosets /|GL(2, q2)|

Type Conditon Size









1
1

ρa

ρ−a









a 6≡ 0, q−1
2

(mod q − 1) q2(q + 1)(q2 + 1)









−1 1
−1

ρa

ρ−a









a 6≡ 0, q−1
2

(mod q − 1) q2(q + 1)2(q2 + 1)









ρa

ρ−a

ρa
′

ρ−a′









a, a′ 6≡ 0, q−1
2

(mod q − 1),

a 6≡ a′,−a′ (mod q − 1)
q2(q + 1)2(q2 + 1)









1
1

τ 2(q−1)

τ−2(q−1)









q2(q2 + 1)









1
1

τ b

τ bq









q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q2(q + 1)(q2 + 1)









−1 1
−1

τ 2(q−1)

τ−2(q−1)









q2(q + 1)(q2 + 1)









−1 1
−1

τ b

τ bq









q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q2(q + 1)2(q2 + 1)









ρa

ρ−a

τ 2(q−1)

τ−2(q−1)









a 6≡ 0, q−1
2

(mod q − 1) q2(q + 1)(q2 + 1)









ρa

ρ−a

τ b

τ bq









a 6≡ 0, q−1
2

(mod q − 1), q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q2(q + 1)2(q2 + 1)









τ 2(q−1)

τ−2(q−1)

τ 2(q−1)

τ−2(q−1)









q4









τ b

τ bq

τ b

τ bq









q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q(q + 1)(q2 + 1)
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Table 1: The Orders of the “Almost” Double Cosets /|GL(2, q2)|

Type Conditon Size









τ b 1

τ bq 1

τ b

τ bq









q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q(q − 1)(q + 1)2(q2 + 1)









τ 2(q−1)

τ−2(q−1)

τ b

τ bq









q − 1 | b,

b 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q2(q + 1)(q2 + 1)









τ b

τ bq

τ b′

τ b′q









q − 1 | b, b′, and b 6≡ b′, b′q (mod q2 − 1),

b, b′ 6≡ 0, q2−1
2

,±2(q − 1) (mod q2 − 1)
q2(q + 1)2(q2 + 1)









τ b

τ bq

τ−b

τ−bq









q ± 1 ∤ b q2(q − 1)(q + 1)(q2 + 1)











ωd

ωdq

ωdq2

ωdq3











q2 − 1 | d,

d 6≡ 0, q4−1
2

(mod q4 − 1)
q2(q − 1)(q + 1)(q2 + 1)

Here, ρ, τ and ω are primitive elements of Fq, Fq2 and Fq4 , respectively.

The number of the conjugacy classes that intersect Ω is q2 + q − 1 = rank(G/K) − 1. If
it was equal to rank(G/K), then Condition (⋆) would be satisfied, but this is not the
case for this particular α. Compared with the decomposition of the permutation character
given in Theorem 1, only the conjugacy class corresponding to the Jordan canonical form
(

τ2(q−1) 1
τ−2(q−1) 1

τ2(q−1)

τ−2(q−1)

)

is missing in the above table.

4. Concluding remarks

We believe that Condition (⋆) is an interesting condition on Gelfand pairs, and we believe
that we should try to classify Gelfand pairs which satisfy Condition (⋆). There are some
reasons we believe that Condition (⋆) has something to do with the facts that sometimes
the character tables of some big association schemes are controlled by the character tables of
smaller association schemes, as it was discussed in [1]. We speculate that Condition (⋆) may
be relevant to these phenomena, but we will not go further about this in this preliminary
report.
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