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Abstract

We call a subalgebra U of a Lie algebra L a C'AP-subalgebra of
L if for any chief factor H/K of L, we have HNU = KNU or
H + U = K+ U. In this paper we investigate some properties of such
subalgebras and obtain some characterizations for a finite-dimensional
Lie algebra L to be solvable under the assumption that some of its
maximal subalgebras or 2-maximal subalgebras be C'AP-subalgebras.
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1 The covering and avoidance property

Throughout, L will denote a finite-dimensional Lie algebra over a field F'.
Let
0=ACcAC...CA, =L (1)

be a chief series for L. The subalgebra U avoids the factor algebra A;/A;_;
ifUNA; =UnNA;_1; likewise, U covers A;JA;—1 f U+ A; =U+ A;j—1. We
say that U has the covering and avoidance property of L if U either covers or
avoids every chief factor of L. We also say that U is a C'AP-subalgebra of L.
The corresponding concepts in group theory have been studied extensively
and have proved useful in characterising finite solvable groups and some of
their subgroups (see, for example, [10], [13] and [6]). In Lie algebras, some
parallel results have been obtained by a number of authors, and this paper
is intended to be a further contribution to that work.

There are a number of ways in which C AP-subalgebras arise. We say
that A;/A;—1 is a Frattini chief factor if A;/A;—1 C ¢(L/A;—1); it is comple-
mented if there is a maximal subalgebra M of L such that L = A; + M and
A; N M = A;_1. When L is solvable it is easy to see that a chief factor is
Frattini if and only if it is not complemented. For a subalgebra B of L we
denote by [B : L] the set of all subalgebras S of L with B C S C L, and
by [B : L]z the set of maximal subalgebras in [B : L]; that is, the set of
maximal subalgebras of L containing B. We define the set Z by i € Z if and
only if A;/A;_1 is not a Frattini chief factor of L. For each i € Z put

Mi = {M € [Ai—laL]ma:c: Az Z M}
Then U is a prefrattini subalgebra of L if

U= ﬂ M; for some M; € M,;.
i€

It was shown in [I1] that, when L is solvable, this definition does not de-
pend on the choice of chief series, and that the prefrattini subalgebras of L
cover the Frattini chief factors and avoid the rest; that is, they are CAP-
subalgebras of L.

Further examples were given by Stitzinger in [8], where he proved the
following result (see [8] for definitions of the terminology used).

Theorem 1.1 ([8, Theorem 2] Let F be a saturated formation of solvable
Lie algebras, and let U be an F-normaliser of L. Then U covers every
F-central chief factor of L and avoids every F-eccentric chief factor of L.



The chief factor A;/A;—; is called central if [L, A;] C A;—1 and eccentric
otherwise. A particular case of the above result is the following theorem,
due to Hallahan and Overbeck.

Theorem 1.2 ([3, Theorem 1]) Let L be a metanilpotent Lie algebra. Then
C is a Cartan subalgebra of L if and only if it covers the central chief factors
and avoids the eccentric ones.

In group theory an important class of C'AP-subgroups is given by the
normally embedded (also called strongly pronormal) subgroups (see [4, page
251]). In a sense, the natural analogue of this concept in Lie algebras is
to call a subalgebra U of L strongly pronormal if every Cartan subalgebra
of U is also a Cartan subalgebra of UL, the ideal closure of U in L. Such
subalgebras satisfy a number of the same properties as those of their group-
theoretic counterparts. However, they are not necessarily C' A P-subalgebras,
even when L is metabelian, as the following example shows.

EXAMPLE 1.1 Let L be the four-dimensional real Lie algebra with basis ey,
€9, es, eq and multiplication [e1,e3] = e1, [ea,e3] = ea, [e1,e4] = —eq and
[ea, e4] = e1, other products being zero. Then A = Re; + Reg is a minimal
abelian ideal of L and U = Rej + Reg is strongly pronormal in L (since the
Cartan subalgebras of U are of the form R(ae; + e3) (o € R) and these are
also Cartan subalgebras of UY = Rey +Rea+Res). However, UNA = Re; #
UN0 and U+ A =Rey+Res+Reg # U +0, so U is not a CAP-subalgebra
of L.

An alternative approach which does yield examples of C'A P-subalgebras
will be given in the next section.

2 Elementary results

In this section we collect together some properties of C'A P-subalgebras and
give characterisations of simple and of supersolvable Lie algebras in terms
of them. If U is a subalgebra of L, the core of U, denoted Uy, is the largest
ideal of L contained in U.

Lemma 2.1 Let B be a subalgebra of L and H/K a chief factor of L. Then

(i) B covers H/K if and only if BNH + K = H; and



(i) B avoids H/K if and only if (K + B)N H = K.

(ii) If BN H + K is an ideal of L, then B covers or avoids H/K. In
particular, ideals are C AP-subalgebras.

(iv) The non-trivial Lie algebra L is simple if and only if it has no non-
trivial proper C AP-subalgebras.

(v) B covers or avoids H/K if and only if there exists an ideal N with
N C BN K and B/N covers or avoids (H/N)/(K/N) respectively.
Furthermore, B is a CAP-subalgebra of L if and only if there exists
an ideal N of L such that N C B and B/N is a C AP-subalgebra of
L/N.

(vi) Let C be a subalgebra containing B. If H/K is covered (respectively,
avoided) by B, then so is (HNC)/(KNC).

Proof. (i), (ii) These are straightforward.

(iii) Since BN H + K is an ideal of L, we have that BN H + K = H or
BN H+ K = K. The former implies that B covers H/K, by (i); the latter
yields that (K + B)NH = (BN H)+ K = K, whence B avoids H/K, by
(ii).

(iv) This is straightforward.

(v) Let N = (BN K)r. Then

B H
B+H=B+K& =+ ==
* * NTN

BNH=BNK <&

(vi) This is straightforward. OJ

A subalgebra U of L will be called ideally embedded in L if I1,(U) contains
a Cartan subalgebra of L, where I (U) = {x € L : [z,U] C U} is the
tdealiser of U in L . Clearly, any subalgebra containing a Cartan subalgebra
of L and any ideal of L is ideally embedded in L. Then we have the following
extension of Theorem

Theorem 2.2 Let L be a metanilpotent Lie algebra and let U be ideally
embedded in L. Then U is a C AP-subalgebra of L.



Proof. Let C C IL(U) be a Cartan subalgebra of L and let N be the
nilradical of L. Then (C + N)/N is a Cartan subalgebra of L and L/N is
nilpotent, so L = C'+ N. Let H/K be a chief factor of L. Then [N, H] C K
so UNH + K is an ideal of L. The result now follows from Lemma 2.1] (iii)
(]

We define the nilpotent residual, (L), of L to be the smallest ideal of L
such that L/vs (L) is nilpotent. Clearly this is the intersection of the terms
of the lower central series for L. Then the lower nilpotent series for L is the
sequence of ideals N;(L) of L defined by No(L) = L, Nij+1(L) = Yoo (Ni(L))
for 4 > 0. Then we have the following extension of Theorem

Corollary 2.3 Let L be any solvable Lie algebra and let U be an ideally em-
bedded subalgebra of L with K = No(L) C U. Then U is a C AP-subalgebra
of L.

Proof. Let C' C I (U) be a Cartan subalgebra of L. Then (C+ K)/K is a
Cartan subalgebra of L/ K, and I /x(U/K) 2 (IL(U)+K)/K 2 (C+K)/K,
so U/K is ideally embedded in L/K. Moreover, L/K is metanilpotent. It
follows from Theorem 22 that U/K is a C AP-subalgebra of L/K. But now
Lemma 2.1] (v) yields that U is a C AP-subalgebra of L. J

Let U be a subalgebra of L and B an ideal of L. Then U is said to
be a supplement to B in L if L = U + B. Another set of examples of
C AP-subalgebras, which don’t require L to be solvable, is given by the next
result.

Theorem 2.4 Let L be any Lie algebra, let U be a supplement to an ideal
B in L, and suppose that B¥ C U for some k € N. Then U is a CAP-
subalgebra of L.

Proof. Let L = B+U and let H/K be a chief factor of L. Then K+[B, H] =
H or K. Suppose first that K + [B, H] = H. Then [B,H| C K +[B,[B, H|
and a simple induction argument shows that H C K + B* for all k > 1.
Hence H C K + U, which yields that H +U = K + U.

So suppose now that K + [B,H| = K, whence [B,H| C K. Then
K+ UnNH is an ideal of L, and the result now follows from Lemma [ZT] (iii).
U

Lemma 2.5 Let U be a CAP-subalgebra of L and let B be an ideal of L.
Then B + U is a CAP-subalgebra of L.



Proof. Let H/K be a chief factor of L. If U+ H = U+ K then B+U+H =
B+ U + K, so suppose that U N H = U N K. Similarly, since B is a CAP-
subalgebra, by Lemma [2.1] (iii), we can suppose that BN H = BN K. Then

B+H _(B+H)/B _H/BNH _H
B+K (B+K)/B K/BNK K

is a chief factor of L. If U + B+ H = U + B + K the result is clear, so
suppose that UN (B+ H) =UN (B + K).

Let x € (B4+U)NH. Then z = b+ u for some b € B, u € U,
and x € H. It follows that u € (B+ H)NU = (B+ K)NU, so that
r€(B+K)NH=K+BNH=K. Thus( B+U)NHC(B+U)NK.
But the reverse inclusion is clear and the result follows. [

The next result gives the dimension of C'AP-subalgebras in terms of the
chief factors that they cover.

Lemma 2.6 Let U be a CAP-subalgebra of L, let 0 = Ag < A1 < ... <
A, = L be a chief series for L and letT = {i: 1 <i <n,U covers A;/A;_1}.
Then dimU = ZiEI(dim Az — dim Ai—l)-

Proof. We use induction on n. The result is clear if n = 1. So suppose it
holds for all Lie algebras with chief series of length < n, and let L have a
chief series of length n. Then U + A;/A; is a C AP-subalgebra of L/A;, by
Lemmas and [2.1] (v). Moreover,

dim(U + Ay /A1) = > (dim A; — dim A;_y),
i€Ti#1

by the inductive hypothesis. If U covers A; /A, then

dimU = dim(U+A;) = dim(U+A; /A1) +dim Ay = Y (dim A;—dim 4;_4).
i€l
If U avoids Aj/Ag then
dimU = dim(U/U N Ay) = dim(U + A1 /A;) =) (dim A; — dim 4; _1).
1€T
U

Finally in this section we consider supersolvable Lie algebras, that is, Lie
algebras all of whose chief factors are one-dimensional.



Proposition 2.7 Let H/K be a chief factor of L. Then every one-dimensional
subalgebra of L covers or avoids H/K if and only if dim(H/K) = 1.

Proof. If x € K then Fo = FxNH = FxNK,so Fx avoids H/K. If x ¢ H
then 0 = Fx N H = Fx N K, so again Fx avoids H/K. If x € H \ K then
Fx does not avoid H/K, and Fx covers H/K if and only if H = K + Fz,
whence the result. [

Corollary 2.8 Every one-dimensional subalgebra of L is a C' AP-subalgebra
of L if and only if L is supersolvable.

Proposition 2.9 If L is supersolvable then every subalgebra of L is a CAP-
subalgebra.

Proof. Let U be a subalgebra of L and let H/K be a chief factor of L.
Suppose first that UNH C K. Then UNH CUNK C UN H, whence
UNH =UNK. Sosuppose now that UNH ¢ K. Then, since dim(H/K) =
1, we have that H = K +UNH, whence H+U =K 4+ U. [J

3 Some characterisations of solvable algebras

In this section we are seeking characterisations of solvable Lie algebras in
terms of C'AP-subalgebras. The results are analogues of those for groups as
obtained in [I3] Section 3], but the proofs are different. A subalgebra U of
a Lie algebra L is called a c-ideal of L if there is an ideal C' of L such that
L=U+C and UNC < Uyg; c-ideals were introduced in [12]. First we need
the following result.

Proposition 3.1 Let L be a Lie algebra over a field F' which has character-
istic zero, or is algebraically closed and of characteristic greater than 5, with
manimal ideal A and maximal subalgebra M. If M is solvable and MNA =0
then L is solvable.

Proof. Clearly L = M & A. But now M is a c-ideal of L and it follows
from [12, Theorems 3.2 and 3.3| that L is solvable, a contradiction again. [J

Corollary 3.2 Let L be a Lie algebra over a field F which has characteristic
zero, or is algebraically closed field and of characteristic greater than 5. Then
L is solvable if and only if there is a maximal subalgebra M of L such that
M is a solvable C'AP-subalgebra of L.



Proof. If L is solvable it is easy to see that every maximal subalgebra of
L is a CAP-subalgebra of L. So suppose now that L is the smallest non-
solvable Lie algebra which has a solvable maximal subalgebra M that is a
C AP-subalgebra of L. If My # 0 then L/M must be solvable, whence L
is solvable, a contradiction. Hence My = 0. Now L cannot be simple, by
Lemma 2] (iv), so let A be a minimal ideal of L with A € M. Since M is a
C AP-subalgebra we have M N A = 0. But then L is solvable, by Proposition
B.Il a contradiction. [J

The Lie algebra L is called monolithic with monolith A if A is the unique
minimal ideal of L. We denote by ¢(L) the Frattini ideal of L. If all of
the maximal subalgebras of L are C'AP-subalgebras of L we can deduce
solvability without any restrictions on the field F'.

Theorem 3.3 Let L be a Lie algebra over any field F'. Then L is solvable
if and only if all of its maximal subalgebras are C AP-subalgebras.

Proof. If L is solvable it is easy to see that every maximal subalgebra of L
is a C AP-subalgebra of L. So suppose that L is the smallest non-solvable
Lie algebra all of whose maximal subalgebras are C AP-subalgebras. Then
L is not simple, by Lemma[ZT] (iv), so let A be a minimal ideal of L. By the
minimality of L, L/A is solvable. If L has two different minimal ideals A;
and Ag, then L/A;, L/Ay and hence L = L/(A; N Ag) is solvable. It follows
that L is monolithic with monolith A.

Let M be any maximal subalgebra of L. Since M is a C'AP-subalgebra
of L we have that either M + A = M, whence A C M, or M N A =0. If the
former holds for every maximal subalgebra M, then A C ¢(L), whence A
is abelian and L is solvable. Thus, the latter must hold for some maximal
subalgebra K. But, for any such maximal subalgebra K, L = K & A and
K = L/A is a solvable c-ideal of L. Moreover, if M is a maximal subalgebra
of L with A C M, then M/A is a maximal subalgebra of L/A and so is
a c-ideal of L/A, by [12, Theorem 3.1]. It follows that M is a c-ideal of
L, by [12, Lemma 2.1]. Hence L is solvable, by [12] Theorem 3.1]. This
contradiction establishes the result. [J

Let M be a maximal subalgebra of L and let K be a maximal subalgebra
of M. Then we call K a 2-mazimal subalgebra of L. Next we consider Lie
algebras in which every 2-maximal subalgebra is a C'AP-subalgebra of L. If
x € Lweput Cp(z) ={y € L: [y,z] = 0}, the centraliser of x in L. We
say that L has the one-and-a-half generation property if, given any x € L,



there exists y € L such that the subalgebra generated by x and y, (z,v), is
L. First we need the following result concerning simple Lie algebras with a
one-dimensional maximal subalgebra.

Theorem 3.4 Let L be a simple Lie algebra over a perfect field F' of char-
acteristic zero or p > 3. Then L has a one-dimensional mazximal subalgebra
if and only if L is three-dimensional simple and VF ¢ F.

Proof. Suppose that L has a one-dimensional maximal subalgebra Fz.
Clearly L has rank one and Fz is a Cartan subalgebra of L. Let I'" denote
the centroid of L. Since I'z is an abelian subalgebra of L, we have that
I'c < Cp(x) = Fz. SoT' = F, and L is central-simple. Suppose that
dimL > 3. It follows from [I] that L is a form of an Albert-Zassenhaus
algebra. Moreover, L has the one-and-a-half generation property. For, given
any y € L, either y = ax for some o € F', in which case (y,z) = L for any
z & Fx, or else y ¢ Fx, and then (y,z) = L. Thus, L is a form of a
Zassenhaus algebra, by [2].

Let K be a splitting field for the minimal polynomial of ad « over F', and
let G be the Galois group of K over F. Let 0 € G. Then ¢/ = 1® 0 is a
Lie automorphism of L @ p K = L. As K is a Galois extension of F, an
element of Ly lies in L if and only if it is fixed by ¢’ for every o € G. Now
Ly has a unique maximal subalgebra M containing Kz of codimension one
in Lx and o' must fix M. Tt follows that (M N L)x = M (see [3, p. 54])
and so M N L is a subalgebra of L of codimension one in L. We must have
M N L = Fx, which is impossible. Hence L is three-dimensional simple and,
as is well known, has a one-dimensional maximal subalgebra if and only if
VF¢F.

The converse is easy. [J

Theorem 3.5 Let L be a Lie algebra over any field F', in which every 2-
maximal subalgebra of L is a CAP-subalgebra. Then either

(i) L is solvable, or

(ii) L is simple and every mazimal subalgebra of L is one-dimensional; in
particular, if F' is perfect and of characteristic zero or p > 3, L is
three-dimensional simple and VF Z F.

Proof. Suppose first that L is simple. Then every 2-maximal is 0 and so
every maximal subalgebra of L is one-dimensional, which is case (ii). So let
A be a minimal ideal of L. Suppose first that A is a maximal subalgebra of



L. Then every maximal subalgebra of A is a 2-maximal subalgebra of L and
so is a C'AP-subalgebra of L. It follows that every maximal subalgebra of A
is 0 and hence that dim A = 1. Also, by the maximality of A, dim(L/A) =1
and L is solvable.

So now assume that A is not a maximal subalgebra of L and that L
is a minimal counter-example. Suppose first that L/A is as in (ii). Let
Fz+ A be a maximal subalgebra of L and let K be a 2-maximal subalgebra
of L with Fx C K C Fx+ A. Clearly A € K, so KN A = 0, since K
is a C' AP-subalgebra of L. Now L/A is a chief factor of L and K # 0, so
L=K&A=Fz+ A, a contradiction.

Thus L/A is solvable and L is monolithic, as in TheoremB.3l If A C ¢(L)
then A is solvable and hence so is L. Thus, ¢(L) = 0 and L = M+ A for some
maximal subalgebra M of L. Suppose that M N A # 0. Let K be a maximal
subalgebra of M with M N A C K. Then K is a 2-maximal subalgebra of
L and so either K + A = K, yieldng AC K CM,or MNACKNA=0,
both of which are contradictions. It follows that M = L/A is a solvable
c-ideal, as is any maximal subalgebra of L not containing A. But every
maximal subalgebra containing A is a c-ideal, as in Theorem B.3], and the
result follows similarly. [J

EXAMPLE 3.1 Note that there are solvable Lie algebras with 2-maximal sub-
algebras which are not C AP-subalgebras. For example, let L = Req1+ Reo+
Res with [e1,e3] = —[es,e1] = eq, [ea,e3] = —[es,ea] = —e1 and all other
products zero. Then A = Rey + Regy is a minimal ideal of L and U = Rey
is a 2-mazimal subalgebra of L. However, A+ U = A # U =0+ U and
ANU=U#0=0NU, so U is not a CAP-subalgebra of L.

Lemma 3.6 Let L be a solvable Lie algebra. Then there is a 2-maximal
subalgebra K of L which is an ideal of L, and hence a C AP-subalgebra of
L.

Proof. If dim(L/L?) > 1 there is clearly a 2-maximal subalgebra of L
containing L?, so suppose that dim(L/L?) = 1. Let L = L? 4+ Fz, and let
L?/K be a chief factor of L. Suppose that K + Fx C U, where U is a
subalgebra of L. Then [UN L% L] = [UNL? L)+ [UNL? Fx] CUNL?,
since L®) = [L2,L?] C K. It follows that L? C U N L?, whence K + Fz is a
maximal subalgebra and K a 2-maximal subalgebra of L. [J

Finally we seek to characterise Lie algebras having a solvable 2-maximal
subalgebra which is a C AP-subalgebra of L.

10



Theorem 3.7 Let L be a Lie algebra over a field F' which has characteristic
zero. Then L has a solvable 2-maximal subalgebra K of L that is a CAP-
subalgebra of L if and only if either

(i) L is solvable, or

(ii) L = R® S, where R is the (solvable) radical of L (possibly 0), S is
three-dimensional simple and VF Z F.

Proof. Suppose that K is a solvable 2-maximal subalgebra of L that is
a CAP-subalgebra of L, and that R is the radical of L. Then R + K is
a solvable subalgebra of L. If R + K = L we have case (i). So suppose
that R+ K # L. Let L= R® S where S =51 ® ... 8 5,, S; is a simple
ideal of S and put J; = R+ S1®...®S; for i =0,...,n (where Jy = R).
Suppose that K C J;. Since J;/J;—1 is a chief factor of L we have that
J=K+J,=K+J_10or K=KnNnJ;, = KnJ;_1. The former implies
that J;/J;—1 = K/K N J;—1, which is impossible as J;/J;_1 is simple and
K/K N J;_ is solvable. It follows that K C J;_1, from which K C R, since
K C J,.

Let M be a maximal subalgebra of L containing K as a maximal subal-
gebra. Suppose that R ¢ M, so that L=R+ M. Then K C M NRC M,
so either MNR = M or MNR = K. The former implies that M C R, which
is impossible; the latter is also impossible, since S =2 L/R = M /M N R and
M N R is not maximal in M. Hence K C R C M. It follows that K = R,
from which (ii) easily follows.

It is easy to see that algebras as in (i) and (ii) have a solvable 2-maximal
subalgebra which is a C'AP-subalgebra. [
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