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LOG CONCAVITY FOR MATRIX-VALUED FUNCTIONS

AND A MATRIX-VALUED PRÉKOPA THEOREM

HOSSEIN RAUFI

Abstract. We give two different definitions of what it means for a
matrix-valued function, g : Rn

→ C
r×r, to be log concave, guided by

similar notions in complex differential geometry. After discussing a few
simple examples, we proceed to develop some of the basic properties
associated with these new concepts. Finally, we prove a matrix-valued
Prékopa theorem using a weighted, vector-valued Paley-Wiener theorem,
and positivity properties of direct image bundles.

1. Introduction

In 1973 Prékopa, [P], proved the following celebrated theorem.

Theorem 1.1. Let ϕ : Rm
t × R

n
y → R be convex and define ϕ̃ : Rm → R

through

e−ϕ̃(t) =

∫

Rn

e−ϕ(t,y)dV (y).

Then ϕ̃ is convex.

Motivated by recent results in complex analysis, in this article we prove
a generalized version of this theorem in the setting where the functions
involved are matrix valued. However, before we can formulate this result,
we need to clarify what it means for a matrix-valued function g : Rn → C

r×r

to be log concave.
Let us, for simplicity, start with the scalar-valued case, and so we assume

that r = 1 and that g is of the form

g(x1, . . . , xn) = e−ϕ(x1,...,xn)

for some function ϕ. If ϕ, and hence g, is twice differentiable, then saying
that ϕ is convex is equivalent to saying that the Hessian of ϕ is positive
definite, i.e. for any u ∈ R

n

0 ≤
n∑

j,k=1

uk
∂2ϕ

∂xk∂xj
uj = −

n∑

j,k=1

uk
∂2 log g

∂xk∂xj
uj = −

n∑

j,k=1

uk
∂

∂xk

(
g−1 ∂g

∂xj

)
uj .

The point here is, of course, that the expression on the far right is well-
defined even if g is matrix-valued.

Now as already mentioned, our inspiration stems from related construc-
tions in complex analysis. In this latter setting, if we regard g as a function
g : Cn

z → R which is independent of the imaginary part of z, g = e−ϕ can
be thought of as a metric on a trivial line bundle, and then the log concav-
ity of g corresponds to requiring that this metric is positively curved. This
prompts us to make the following definition.
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Definition 1. We say that a matrix valued function g : Rn → C
r×r is a

metric if:
(i) each matrix element of g is twice differentiable,
(ii) g(x) is a hermitian, strictly positive definite matrix for all x ∈ R

n.

Furthermore, for any metric g, we let

Θg
jk :=

∂

∂xk

(
g−1 ∂g

∂xj

)
,

where differentiation should be interpreted elementwise, juxtaposition de-
notes matrix-multiplication, and g−1 denotes the matrix inverse of g, (which
is well defined as g is assumed to be strictly positively definite everywhere).

We have chosen C
r×r instead of Rr×r, since this added generality comes

for free and fits more nicely with the complex analytic correspondence. This
is not crucial at all, and one can safely replace C

r×r with R
r×r throughout

the paper.
If g : Rn → C

r×r where r ≥ 2, then g is the real-variable analogue of a
metric on a vector bundle. In the complex setting, there exists two different,
but equally important notions of curvature on vector bundles: being curved
in the sense of Griffiths, and in the sense of Nakano. These motivate us to
introduce the following corresponding notions in our real valued setting.

Definition 2. Let g : R
n → C

r×r be a metric, and for u, v ∈ C
n set

(u, v)g := v∗gu, where v∗ denotes the conjugate transpose of v.
(i) We say that g is log concave in the sense of Griffiths if for any vectors
u ∈ C

r and v ∈ C
n

n∑

j,k=1

(
Θg

jku, u
)
g
vj v̄k ≤ 0.

(ii) We say that g is log concave in the sense of Nakano if for any n-tuple
of vectors {uj}

n
j=1 ⊂ C

r

n∑

j,k=1

(
Θg

jkuj , uk
)
g
≤ 0.

Strict log concavity, log convexity and strict log convexity are defined simi-
larly.

It is clear that Nakano log concavity implies log concavity in the sense of
Griffiths, (just choose uj = uvj), and that both these conditions reduce to
the ordinary log concavity of functions when r = 1. Griffiths and Nakano log
concavity also coincide when n = 1. In section 2 we will give some examples
and develop other basic properties of metrics that are log concave in the sense
of Griffiths and Nakano. In particular, we will discuss the correspondence
between the real- and complex-variable theory in greater detail.

We are now ready to formulate our matrix-valued version of the Prekopa
theorem.

Theorem 1.2. Let g : Rn
y × R

m
t → C

r×r be a metric. Assume that g is log

concave in the sense of Nakano and define g̃ : Rn → C
r×r through,

(1.1) g̃(t) :=

∫

Rn

g(y, t)dV (y).
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Then g̃ is log concave in the sense of Nakano as well.

Here the integral should be interpreted elementwise, and we also assume
that these integrals all converge.

Unfortunately, the definition of log concavity in the sense of Nakano,
which is needed for Theorem 1.2, is not overly intuitive. However, there ex-
ists a relatively simple class of metrics that are still ’genuinly’ matrix-valued,
(in constrast to e.g. diagonal matrices). Namely, in section 2, example 3,
we prove the following corollary.

Corollary 1.3. Let g : Ry × R
m
t → C

r×r be a metric of the form

g(y, t) = e−ϕ(y,t)A(y),

where ϕ is convex and A is a metric on R, such that ΘA is negative definite.
Then

g̃(t) =

∫

R

e−ϕ(y,t)A(y)dy,

is log concave in the sense of Nakano.

Now the proof of Theorem 1.2 depends on two other theorems that are
interesting in their own right, and to which we now turn. The first of these
theorems states the following:

Theorem 1.4. Let g : Rn → C
r×r be a metric, and define g̃ : Rn → C

r×r

through,

(1.2) g̃(ξ) := (2π)n
∫

Rn

e2ξ·yg(y)dV (y),

where we interpret the right hand side as elementwise integration, and the
dot in the exponent represents the scalar product. Let furthermore

A2(g) := {F ∈ O(Cn;Cr) :

∫

Cn

‖F (z)‖2g(y)dV (z) < ∞}

where ‖F (z)‖2g(y) := F (x+ iy)∗g(y)F (x + iy), and let

L2(g̃) := {f ∈ L2
loc(R

n;Cr) :

∫

Rn

‖f‖2g̃dV < ∞}.

Then the following holds:

(i) If f ∈ L2(g̃), then the function

(1.3) F (z) :=

∫

Rn

f(ξ)e−iξ·zdV (ξ)

is in A2(g), (where once again, integration is assumed to be elementwise).

(ii) Any F ∈ A2(g) can be written as in (1.3) for some f ∈ L2(g̃).

(iii) For f ∈ L2(g̃) and F ∈ A2(g) related as in (1.3), we have that

(1.4)

∫

Cn

‖F (z)‖2g(y)dV (z) =

∫

Rn

‖f(ξ)‖2g̃(ξ)dV (ξ).

When r = 1, everything is scalar-valued, and the norms ‖F (z)‖2g(y) and

‖f(ξ)‖2g̃(ξ) correspond to |F (z)|2e−φ(y) and |f(ξ)|2e−φ̃(ξ), with the weights

φ(y) = − log g(y) and φ̃(ξ) = − log g̃(ξ). In this setting, we see that Theorem
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1.4 is reduced to a weighted version of the Payley-Wiener theorem (see e.g.
[H],[G] and [SW], Chapter III, Theorem 2.3). Thus Theorem 1.4 can be seen
as a generalization of this classic theorem to the weighted, vector-valued
setting.

The second theorem is about the curvature of infinite rank, holomorphic
vector bundles. Let D = Ω × U be a domain in C

n
z × C

m
w , where Ω is

pseudoconvex, and let h be a hermitian metric on D, i.e. h : D → C
r×r is

smooth, and such that h(z, w) is a hermitian and strictly positive-definite
matrix for each (z, w) ∈ Ω× U . Then, for each fix w ∈ U , hw(·) := h(·, w)
will be a hermitian metric on Ω, and we let

(1.5) A2
w(h) := {F ∈ O(Ω;Cr) : ‖F‖2w,h :=

∫

Ω
‖F (z)‖2hw(z)dV (z) < ∞}.

We will assume that for any two w1, w2 ∈ U , the norms ‖ · ‖w1,h and ‖ · ‖w2,h

are equivalent. Then, for different w ∈ U , the (Bergman) spaces A2
w are

then all equal as vector spaces, but their norms vary with w. Hence if we
create an infinite rank vector bundle E, by setting Ew := A2

w(h), we will get
a trivial bundle equipped with a nontrivial metric.

The theorem now states the following:

Theorem 1.5. If h is positively curved in the sense of Nakano, then the
hermitian vector bundle (E, ‖ · ‖w,h) is positive in the sense of Nakano as
well.

Infinite rank vector bundles where the fibers are Bergman spaces, like
(E, ‖ · ‖w,h), have been extensively studied, (mainly by Berndtsson), in later
years, (see e.g. [B], [MT], [LY] and the references therein). In [B], (Theo-
rem 1.1), it is shown that in the scalar-valued setting, (i.e. r = 1 so that

h(z, w) = e−ϕ(w,z)), if ϕ(w, z) = − log h(w, z) is plurisubharmonic in (z, w),
then the bundle (E, ‖ · ‖w,h) is positively curved in the sense of Nakano.
Thus Theorem 1.5 is an extension of this result to the vector-valued setting.
Closely related theorems, but with compact fibers, have previously been
studied by Mourougane-Takayama [MT], and Liu-Yang [LY].

Now let us sketch how these two results can be combined to give a proof
of Theorem 1.2. The first observation is that although the relation (1.2)
at first might seem quite different from the one in Theorem 1.2, the latter
can actually be obtained rather easily from (1.2). Namely, assume that
the metric g in Theorem 1.4 depends on yet another variable t ∈ R

m, i.e.
g : Rn

y × R
m
t → C

r×r. For t ∈ R
m fix, (1.2) then becomes

(1.6) g̃(ξ, t) := (2π)n
∫

Rn

e2ξ·yg(y, t)dV (y),

and choosing ξ = 0 yields the sought for relation (1.1), (up to a constant).
However, if g, and hence g̃, depends on an extra variable t, then so will

the Hilbert spaces A2(g) and L2(g̃). This leads us to the study of (infinite
rank) vector bundles, and so we can relate it to the setting of Theorem 1.5.

In this latter setting we let D = C
n
z × C

m
w but at the same time we also

note that for Theorem 1.4, it is of utmost importance that the metric on A2

is independent of the real part of z. This will, however, certainly be the case
if we start with a metric g : Rn

y × R
m
t → C

r×r, and think of it as a metric
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h : Cn
z × C

m
w → C

r×r which is independent of the real parts of z = x + iy
and w = s+ it, i.e. h(z, w) = g(y, t).

Now we can define the metric h̃ : Rn
ξ × C

m
w → C

r×r through

(1.7) h̃(ξ, w) = (2π)n
∫

Rn

e2ξ·yh(y,w)dV (y)

and let

(1.8) L2
w(h̃) := {f ∈ L2

loc(R
n;Cr) : ‖f‖2

w,h̃
:=

∫

Rn

‖f(ξ)‖2
h̃w(ξ)

dV (ξ) < ∞}.

Similar to the construction of E we see that for different w ∈ C
m, these L2-

spaces are equal as vector spaces, but with norms that vary with w. Hence
in this way we can construct a second infinite rank, trivial, hermitian vector
bundle (Ẽ, ‖ · ‖w,h̃) over C

m, equipped with a nontrivial metric, by setting

Ẽw := L2
w(h̃).

What Theorem 1.4 says is basically that in this setting, the two vector
bundles (E, ‖ · ‖w,h)and (Ẽ, ‖ · ‖w,h̃) are isometrically isomorphic. Combined

with Theorem 1.5 we hence get that if h is Nakano positive, (which will be

the case if g is Nakano log concave), then the bundle (Ẽ, ‖ · ‖w,h̃) will be

Nakano positive as well. Thus for the proof of Theorem 1.2 we need to check
that this implies the Nakano log concavity of g̃.

We end this introduction with a few words about the proofs of Theo-
rem 1.4-1.5. We learned about the scalar-valued case of Theorem 1.4 from
the master’s thesis of Jakob Hultgren, performed at the mathematics de-
partment of Chalmers University of Technology and Gothenburg University.
However, since this thesis was never properly published, we have included a
full proof in section 3, where we basically just adapt the scalar-valued proof
to the vector-valued setting.

Of course, the master’s thesis was not the first time these type of results
were obtained. We have definitely not performed any exhaustive reference
study, but refer once again to [H], [G], and [SW], and the references therein.

Finally, our proof of Theorem 1.5 use the same ideas as in the scalar-valued
case, ([B], Theorem 1.1). These are the Griffiths subbundle formula, and
Hörmander L2-estimates for the ∂̄-equation. This is parallel to the proof of
Brascamp and Lieb of the Prékopa theorem, [BL]. Since these L2-estimates
in the vector-valued setting are somewhat different from the estimates in the
scalar-valued setting, the second part of the proof is a little different from
the proof in [B].

Acknowledgments

It is a pleasure to thank Bo Berndtsson and Jakob Hultgren for inspiring
and fruitful discussions.

2. Examples and basic properties of log concave metrics

As mentioned in the introduction, the log concavity properties of Definition
2 are well-known concepts in complex differential and algebraic geometry.
The aim of this section is to investigate which of the basic complex analytic
properties that can be given an appropriate interpretation in the real setting.
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Of course, these properties can always be shown to hold in the ’complex
sense’, namely by interpreting the metrics g : Rn → C

r×r as metrics h :
C
n
z → C

r×r that do not depend on the real part of z, but we have tried to
come up with real proofs as far as possible.

We begin by looking at a few simple examples.

Example 1. Assume that the metric g : Rn → R
r×r is diagonal, g(x) =

diag{g1(x), . . . , gr(x)}. Any reasonable definition of what it means for g to
be log concave, should in this case be that gj is log concave for all j =
1, . . . , r. Let us check that this is so for log concavity in both the Griffiths
and Nakano sense.

It is immediate that

Θjk = diag

{
∂2 log g1
∂xj∂xk

, . . . ,
∂2 log gr
∂xj∂xk

}
,

and so

g ·Θjk = diag

{
g1

∂2 log g1
∂xj∂xk

, . . . , gr
∂2 log gr
∂xj∂xk

}
.

Hence, if we let uj = (u1j , . . . , u
r
j) we get that

n∑

j,k=1

(
Θjkuj , uk

)
g
=

n∑

j,k=1

u∗kg ·Θjkuj =

= g1

n∑

j,k=1

u1j
∂2 log g1
∂xj∂xk

ū1k + . . .+ gr

n∑

j,k=1

urj
∂2 log gr
∂xj∂xk

ūrk.

On the other hand, in the Griffiths case we have
n∑

j,k=1

(
Θjku, u

)
g
vj v̄k =

= g1|u
1|2

n∑

j,k=1

vj
∂2 log g1
∂xj∂xk

v̄k + . . .+ gr|u
r|2

n∑

j,k=1

vj
∂2 log gr
∂xj∂xk

v̄k.

Since g is assumed to be strictly positive definite, each diagonal element gj is
a strictly positive function, so the factors in front of the sums do not change
the signs. Thus we see that, as expected, the definitions of log concavity in
the sense of Griffiths and Nakano both in this case are equivalent to requiring
that gj is log concave for each diagonal element of g.

In this setting, Theorem 1.2 says that if this is the case, then

g̃j(t) =

∫

Rn

gj(y, t)dV (y)

is log concave on R
m, for all j = 1, . . . , r. Clearly, this is just Prekopa’s

theorem.

Example 2. For a slightly (but only slightly !) more ’genuin’ matrix-valued
example, let us study metrics of the form

g(x) = f(x) · C,

where f ∈ C2(Rn) is a strictly positive function and C ∈ C
l×l is a constant,

hermitian, strictly positive definite matrix.
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In this case we have that

Θjk =
∂

∂xk

(
1

f
C−1 ∂f

∂xj
C

)
=

∂2 log f

∂xj∂xk
· I,

where I denotes the identity matrix.
The Griffiths log concavity condition hence becomes,

n∑

j,k=1

(
Θjku, u

)
g
vj v̄k = ‖u‖2g

n∑

j,k=1

vj
∂2 log f

∂xj∂xk
v̄k ≤ 0,

for all u ∈ C
r and v ∈ C

n, while the Nakano log concavity condition becomes,

(2.1)

n∑

j,k=1

(
Θjkuj , uk

)
g
=

n∑

j,k=1

∂2 log f

∂xj∂xk

(
uj , uk

)
g
≤ 0,

for all n-tuples {uj}
n
j=1 ⊂ C

r.
It is clear that the Griffiths log concavity condition is equivalent to the

log concavity of f , but at first sight, it looks like the same thing does not
necessarily hold in the Nakano case. However f log concave does in fact also
imply that g is Nakano log concave. (For the converse property, just choose
uj = uvj in (2.1).)

This follows from a theorem due to Schur, ([L] Theorem 7, Chapter 10),
which states that if A = (ajk) and B = (bjk) are positive definite matrices,
and we define M = (mjk) as the elementwise product of A and B,

mjk = ajkbjk,

then M is also a positive definite matrix.
Now let

ajk = −
∂2 log f

∂xj∂xk
and bjk = (uj , uk)g.

Then the log concavity of f implies that A is positive definite, and B is also
positive definite since it is the Gram matrix of the n-tuple {uj}

n
j=1. Hence

their elementwise product, M , is also positive definite, and if we let 1 ∈ R
r

denote a vector of ones, we have that
n∑

j,k=1

(
Θjkuj , uk

)
g
= −(M1,1)I ≤ 0,

so g is log concave in the sense of Nakano.

Example 3. Finally, we have the class of metrics described in the introduc-
tion. Namely, metrics g : Ry×R

m
t → C

r×r of the form, g(y, t) = e−ϕ(y,t)A(y),
where ϕ is convex, and A is a metric on R such that,

ΘA =
d

dy

(
A−1dA

dy

)
,

is negative definite.
For any (m+ 1)-tuple {uj}

m+1
j=1 ⊂ C

r we then have that

m+1∑

j,k=1

(
Θjkuj, uk

)
g
= −

m+1∑

j,k=1

∂2ϕ

∂tj∂tk

(
uj , uk

)
g
+

(
ΘAum+1, um+1

)
g
.
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From the previous example we know that the convexity of ϕ implies that
the sum on the right hand side is non-positive. Together with the negative
definiteness of ΘA, we get that g is log concave in the sense of Nakano.

Now let us turn to the general study of log concave metrics. The following
basic properties are the real variable analogues of corresponding results in
complex differential geometry.

Proposition 2.1. Let g : Rn → C
r×r be a metric. Then the following holds:

(i) For any pair of vectors u, v ∈ C
r,

(Θjku, v)g = (u,Θkjv)g for all j, k = 1, . . . , n.

(ii) In the Griffiths setting, if g is log concave, then g−1 is log convex, but
the corresponding result does not hold in general in the Nakano case.

(iii) If g is log concave in the sense of Griffiths, then det g is a log concave
function.

(iv) Assume that g is log concave either in the sense Griffiths (or Nakano),
and let f : Rn → R be a log concave function. Then the metric g̃ := f · g
will also be log concave in the sense of Griffiths (or Nakano).

Proof. By differentiating the equality

I = g · g−1

with respect to xj , we see that,

∂g−1

∂xj
= −g−1 ∂g

∂xj
g−1.

Using this in the definition of Θg−1

jk yields

Θg−1

jk :=
∂

∂xk

(
g
∂g−1

∂xj

)
= −

∂

∂xk

(
∂g

∂xj
g−1

)
.

Now since g is hermitian, so is g−1 and all the partial derivatives of g, which
in turn yields that,

(2.2)
(
Θg

jk

)∗
=

∂

∂xk

(
∂g

∂xj
g−1

)
= −Θg−1

jk .

On the other hand, by direct computation we get that

Θg
jk =

∂

∂xk

(
g−1 ∂g

∂xj

)
= −g−1 ∂g

∂xk
g−1 ∂g

∂xj
+ g−1 ∂2g

∂xj∂xk
,

and

Θg−1

jk = −
∂

∂xk

(
∂g

∂xj
g−1

)
= −

∂2g

∂xj∂xk
g−1 +

∂g

∂xj
g−1 ∂g

∂xk
g−1.

Hence

−g−1Θg−1

kj = Θg
jkg

−1,

or equivalently

(2.3) Θg
jk = −g−1Θg−1

kj g.
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Altogether, (2.2) and (2.3) yield
(
Θg

jku, v
)
g
= v∗gΘg

jku = −v∗gg−1Θg−1

kj gu = v∗(Θg
kj)

∗gu =
(
u,Θg

kjv
)
g
.

This proves (i).
To prove (ii), we note that by (2.2) and property (i)

(
Θg−1

jk u, v
)
g−1 = v∗g−1Θg−1

jk u = −(g−1v)∗(Θg
jk)

∗g(g−1u) =

= −
(
g−1u,Θg

jkg
−1v

)
g
= −

(
Θg

kjg
−1u, g−1v

)
g
.

In particular, if we take any n-tuple of vectors {uj}
n
j=1 ⊂ C

r and let vj =

g−1uj, we get that

n∑

j,k=1

(
Θg−1

jk uj , uk
)
g−1 = −

n∑

j,k=1

(
Θg

kjvj, vk
)
g
.

Thus, we see that in the Griffiths setting, if g is log concave, then g−1 is log
convex, but since the indices on the right hand side are switched, the same
conclusion can not be made in the Nakano case. In example 4 below we will
study a metric, g, such that g−1 is Nakano log concave while g is neither log
concave nor log convex in the sense of Nakano.

To prove (iii), let

Sg(w) :=

n∑

j,k=1

Θg
jkwjw̄k,

where w = (w1, . . . , wn) ∈ C
n. Then, saying that g is log concave in the

sense of Griffiths, is equivalent to saying that for each vector w, the matrix-
valued function Sg(w) is negative semidefinite.

Now it is a well-known fact from linear algebra, (see e.g. [L], Theorem 4,
Chapter 9), that

(2.4)
∂

∂xk
log det g = tr

(
g−1 ∂g

∂xk

)
.

Hence
n∑

j,k=1

wj
∂2 log det g

∂xj∂xk
w̄k =

n∑

j,k=1

wjtr
(
Θg

jk

)
w̄k = tr

(
Sg(w)

)
,

and since Sg(w) is negative semidefinite, tr(Sg(w)) will be negative as well.
This shows that det g is a log concave function and finishes the proof of the
proposition.

Finally, the proof of (iv) is an immediate consequence of the arguments
in examples 2 and 3. �

Example 4. Let g : R
n → C

n×n be a metric, and assume that for some
x0 ∈ R

n, g(x0) = I and

(2.5) Θg
jk(x0) =

{
1 row j, column k,
0 otherwise.

(An explicit example of such a metric when n = 2 will be given below.)
For two vectors v,w ∈ C

n, it is then straightforward to see that
(
Θg

jkv,w
)
g
= vkw̄j ,
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at x0. Hence, for any n-tuple {uj}
n
j=1 ⊂ C

n with uj = (uj1, . . . , ujn), we get
that

(2.6)
n∑

j,k=1

(
Θg

jkuj, uk
)
g
=

n∑

j,k=1

ujkūkj.

This expression is neither positive nor negative.
Now let us study the inverse, or dual, metric g−1. Here we obviously still

have that g−1(x0) = I, and from (2.2) above, we also have that

Θg−1

jk (x0) = −
(
Θg

jk

)∗
(x0) =

{
−1 row k, column j,
0 otherwise,

and so in this case
n∑

j,k=1

(
Θg−1

jk uj , uk
)
g−1 = −

n∑

j,k=1

ujj c̄kk = −
∣∣∣

n∑

j=1

ujj

∣∣∣
2
≤ 0.

Thus, in the sense of Nakano, g−1 is log concave while g is neither log convex
nor log concave.

Note that we in this way, as a bonus, have found a metric that is log
convex in the sense of Griffiths, but not in the sense of Nakano. Since g−1

is also Griffiths log concave, by Proposition 2.1 (ii), g will be Griffiths log
convex. The reason behind this is that in the Griffiths setting, each ujk
in (2.6) is separable. More precisely, each uj will be replaced by uvj , with
u, v ∈ C

n, and we will get

n∑

j,k=1

(
Θg

jku, u
)
g
vj v̄k =

n∑

j,k=1

uj ūkvj v̄k =
∣∣∣

n∑

j=1

ujvj

∣∣∣
2
≥ 0.

Finally, let us give an explicit example of a metric with Θ satisfying (2.5).
Namely let g : R2 → R

2×2 be the metric, whose inverse metric g−1 is given
by,

g−1(x1, x2) = I + x1

(
1 0
0 0

)
+ x2

(
0 1
1 0

)
+

x22
2

(
1 0
0 0

)
.

It is clear that g(0) = g−1(0) = I, and using that

Θg−1

jk = −g
∂g−1

∂xk
g
∂g−1

∂xj
+ g

∂2g−1

∂xj∂xk

we get

Θg−1

11 (0) = −

(
1 0
0 0

)2

=

(
−1 0
0 0

)
,

Θg−1

12 (0) = −

(
0 1
1 0

)(
1 0
0 0

)
=

(
0 0
−1 0

)
,

Θg−1

21 (0) = −

(
1 0
0 0

)(
0 1
1 0

)
=

(
0 −1
0 0

)
,

Θg−1

22 (0) = −

(
0 1
1 0

)2

+

(
1 0
0 0

)
=

(
0 0
0 −1

)
.
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Altogether we see that

Θg−1

jk (0) =

{
−1 row k, column j,
0 otherwise,

and hence Θg
jk(0) satisfies (2.5). �

Constructing metrics that are Nakano log concave, which is needed for
Theorem 1.2, is a priori not an easy task. In the Griffiths case, however,
the situation is quite different. In Proposition 2.4 below, we will give an
alternative characterization of Griffiths log convex metrics, which combined
with Proposition 2.1 (ii), facilitates the construction of Griffiths log concave
metrics considerably.

Given this fact it is then natural to ask if it is possible to construct a metric
that is log concave in the sense of Nakano, out of a given metric which is
log concave in the sense of Griffiths. In the complex-variable setting, a very
elegant solution to this problem is provided by a celebrated theorem due to
Demailly and Skoda ([DS]). Reformulated to our real-variable setting, this
theorem states the following.

Theorem 2.2. Let g : Rn → C
r×r be a metric. If g is log concave in the

sense of Griffiths, then g · det g is log concave in the sense of Nakano.

Since this theorem holds in the complex-variable setting, by interpreting
the metric g : Rn → C

r×r as a metric h : Cn
z → C

r×r that does not depend on
the real part of z, it will also hold in the real-variable setting. Nevertheless,
for the sake of completeness, we have still chosen to include a proof. The
argument is the same as the one in [D], Theorem 8.2, Chapter VII; it is only
adapted to our real-valued setting and our matrix oriented notation.

The proof of Theorem 2.2 relies heavily on the following discrete Forurier
transform type of lemma.

Lemma 2.3. Let q ≥ 3 be an integer and let x, y ∈ C
r be two vectors. Let

furthermore

U r
q :=

{
(e2πik1/q, . . . , e2πikr/q); k1, . . . , kr ∈ {0, . . . , q − 1}

}

and, for σ ∈ U r
q , put

(x, σ) :=

r∑

µ=1

xµσ̄µ, (y, σ) :=

r∑

µ=1

yµσ̄µ.

Then, for any pair of integers (α, β) with 1 ≤ α, β ≤ r, the following identity
holds:

1

qr

∑

σ∈Ur
q

(x, σ)(y, σ)σασ̄β =

{
xαȳβ if α 6= β,∑r
µ=1 xµȳµ if α = β.

For a proof of this lemma see [D] Lemma 8.3, Chapter VII. (This might
seem to contradict what we just said about a complete proof, but the nota-
tion in the proof of the lemma in [D] is standard, while the notation in the
proof of the theorem is completely different from ours.)
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Proof of Theorem 2.2. Let g̃ = g det g. Then, using (2.4) above, a short
computation shows that

Θg̃
jk =

∂

∂xj

(
g−1

det g

∂

∂xk
(g det g)

)
= Θg

jk +
∂2 log det g

∂xj∂xk
· I =

= Θg
jk + tr

(
Θg

jk

)
· I.

Hence, what we want to show is that for arbitrary vectors u ∈ C
r, v ∈ C

n,
and {uj}

n
j=1 ⊂ C

r, if
n∑

j,k=1

(
Θg

jku, ū
)
g
vj v̄k ≤ 0,

then this implies that
n∑

j,k=1

((
Θg

jk + tr(Θg
jk)

)
uj , uk

)
g det g

≤ 0.

First of all we note that, since this statement is pointwise, we can without
any loss of generality assume that we are working in an ortonormal basis for
g, so that g = I.

Now let q and U r
q be as in Lemma 2.3, and let us study the expression

(2.7)
1

qr

∑

σ∈Ur
q

n∑

j,k=1

(
Θg

jkσ, σ
)
(uj , σ)(uk, σ),

where all inner products are with respect to the euclidean metric. Since
g is log concave in the sense of Griffiths, the inner sum, and hence the
entire expression, is negative. On the other hand, we can switch the order
of summation and apply Lemma 2.3. However, to avoid proliferation of
indices, we first do this with Θg

jk replaced by an arbitrary matrix A ∈ R
r×r,

and uj, uk replaced by the (real) vectors x and y respectively, i.e. we study
the expression

1

qr

∑

σ∈Ur
q

(Aσ, σ)(x, σ)(y, σ).

If we write

(Aσ, σ) =
r∑

α,β=1

Aαβσασ̄β,

we get that

1

qr

∑

σ∈Ur
q

(Aσ, σ)(x, σ)(y, σ) =
r∑

α,β=1

Aαβ

( 1

qr

∑

σ∈Ur
q

(x, σ)(y, σ)σασ̄β

)
.

Thus, applying Lemma 2.3 and rewriting slightly, we end up with

1

qr

∑

σ∈Ur
q

(Aσ, σ)(x, σ)(y, σ) =
∑

α6=β

Aαβxαȳβ + tr(A)

r∑

α=1

xαȳα =

=
((

A+ tr(A)
)
x, y

)
−

r∑

α=1

Aααxαȳα.
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Returning to the original expression (2.7), we see that this, together with
the log concavity in the sense of Griffiths, implies that

0 ≥
1

qr

∑

σ∈Ur
q

n∑

j,k=1

(
Θg

jkσ, σ
)
(uj , σ)(uk, σ) =

=
n∑

j,k=1

((
Θg

jk + tr(Θg
jk)

)
uj, uk

)
−

n∑

j,k=1

r∑

α=1

(
Θg

jk

)
αα

ujαūkα.

where uj = (uj1, . . . , ujr). The last term can now be rewritten as

−

n∑

j,k=1

r∑

α=1

(
Θg

jk

)
αα

ujαūkα = −

r∑

α=1

n∑

j,k=1

(
Θg

jkeα, eα
)
ujαūkα ≥ 0,

where {eα}
r
α=1 is an orthonormal basis for g, and the positivity once again

follows from the log concavity of g in the sense of Griffiths. Hence,

n∑

j,k=1

((
Θg

jk + tr(Θg
jk)

)
uj , uk

)
≤ 0,

which is what we wanted to prove. �

Finally, we have the alternative characterization of Griffiths log convexity
alluded to above. In the complex-variable setting, it says the following, (see
e.g. [B], section 2, for a proof).

Proposition 2.4. Let h : Cn → C
r×r be a hermitian metric. Then h is

negatively curved in the sense of Griffiths if and only if

log ‖u‖2h

is plurisubharmonic for every holomorphic function u.

We have unfortunately not managed to find any real-variable analogue of
this property. The main difficulty have been to find an appropriate replace-
ment for the holomorphic functions u.

Nevertheless, Proposition 2.4 is still very useful even in the real-variable
setting, (if we regard our metrics as hermitian metrics as described in the
beginning of this section). For example, combined with Proposition 2.1 (ii),
these results immediately yield that the sum of two Griffiths log convex
metrics is also Griffiths log convex; a fact that is not very easy to verify by
direct computation.

3. The proof of Theorem 1.4

As mentioned in the introduction, the scalar-valued case of Theorem 1.4 was
shown by Jakob Hultgren in his master’s thesis. The main ideas in our proof
are the same as in the thesis, but since this thesis is not properly published,
we have chosen to include a complete proof here as well.

We start by proving that if f ∈ L2(g̃), i.e. f : Rn → C
r is such that

(3.1)

∫

Rn

‖f(ξ)‖2g̃(ξ)dV (ξ) < ∞
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then the function F : Cn → C
r defined through

(3.2) F (z) :=

∫

Rn

f(ξ)e−iξ·zdV (ξ)

is in A2(g), i.e. F is holomorphic and

(3.3)

∫

Cn

‖F (z)‖2g(y)dV (z) < ∞.

To show that each vector element Fj of F is holomorphic, we note that it is
enough to show that Fj restricted to any complex line in C

n is holomorphic.
We apply Morera’s theorem to prove this latter statement. Hence, we let γ
denote a triangle in a complex line in C

n and study

(3.4)

∫

γ
Fj(z)dz =

∫

γ

(∫

Rn

fj(ξ)e
−iξ·zdV (ξ)

)
dz.

As e−iξ·z is holomorphic in z, we would be done if we could apply Fubini’s
theorem. We now turn to justifying this, which turns out to be much more
involved than one might expect at first sight.

To apply Fubini’s theorem in (3.4) we need to show that fj(ξ)e
−iξ·z is

integrable with respect to both z and ξ. However, since γ is compact, it
suffices to prove this locally in z. Hence, we will show that for any fix
z0 = x0 + iy0 ∈ C

n, there exists a function Gj ∈ L1(Rn) such that

|fj(ξ)e
−iξ·z| ≤ Gj(ξ)

in a neighborhood of z0.
For this, we start by noting that

|fj(ξ)e
−iξ·z| = |fj(ξ)|e

ξ·y = |fj(ξ)|e
ξ·(y−y0)eξ·y0 ≤ |fj(ξ)|e

ξ·y0eε|ξ|/2

for all z = x + iy ∈ C
n such that |y − y0| < ε/2, for some ε > 0. We set

Gj(ξ) := |fj(ξ)|e
ξ·y0eε|ξ|/2.

To show that Gj is integrable, we begin by showing that f ∈ L2(g̃) implies
that

(3.5)

∫

Rn

|fj(ξ)|
2e2ξ·ỹdV (ξ) < ∞,

for all j = 1, . . . , r and every ỹ ∈ R
n.

For this we let ỹ ∈ R
n be arbitrary and note that since g is assumed to be

continuous and g(ỹ) is strictly positive definite, there exists ε̃, δ > 0, such
that y ∈ Bδ(ỹ) implies that g(y) ≥ ε̃I. Using this in the definition of g̃
yields

g̃(ξ) = (2π)n
∫

Rn

e2ξ·yg(y)dV (y) ≥ (2π)n
∫

Bδ(ỹ)
e2ξ·yg(y)dV (y) ≥

≥ (2π)nε̃I

∫

Bδ(ỹ)
e2ξ·ydV (y).
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By normalizing, applying Jensen’s inequality, and using the definition of
barycenter, we can further rewrite this as

g̃(ξ) ≥ (2π)nε̃|Bδ(ỹ)|I

∫

Bδ(ỹ)
e2ξ·y

dV (y)

|Bδ(ỹ)|
≥

≥ (2π)nε̃|Bδ(ỹ)|I exp

(
2

∫

Bδ(ỹ)
ξ · y

dV (y)

|Bδ(ỹ)|

)
≥ (2π)nε̃|Bδ(ỹ)|e

2ξ·ỹI.

Thus,
∫

Rn

‖f(ξ)‖2g̃(ξ)dV (ξ) ≥ (2π)nε̃|Bδ(ỹ)|

∫

Rn

e2ξ·ỹ‖f(ξ)‖2IdV (ξ) =

= (2π)nε̃|Bδ(ỹ)|

r∑

j=1

∫

Rn

|fj(ξ)|
2e2ξ·ỹdV (ξ).(3.6)

This proves (3.5).
Now decompose R

n into a finite number of cones, {Γk}
m
k=1, with vertex

at the origin. This decomposition should be made in such a way that if
z1, z2 ∈ Γk, then

(3.7) z1 · z2 >
|z1||z2|

2
.

This simply means that the cosinus of the angle between z1 and z2 must be
greater than 1/2, i.e. the angle between any two points in Γk must be less
than π/3.

Hence, if we choose yk ∈ Γk with |yk| ≥ 1, then by (3.5) and (3.7)
∫

Γk

|fj(ξ)|
2e2ξ·y0e|ξ|dV (ξ) ≤

∫

Γk

|fj(ξ)|
2e2ξ·y0e|ξ||yk|dV (ξ) ≤

≤

∫

Γk

|fj(ξ)|
2e2ξ·(y0+yk)dV (ξ) ≤

∫

Rn

|fj(ξ)|
2e2ξ·(y0+yk)dV (ξ) < ∞.(3.8)

By the Cauchy-Schwarz inequality
∫

Rn

Gj(ξ)dV (ξ) =

∫

Rn

|fj(ξ)|e
ξ·y0eε|ξ|e−ε|ξ|/2dV (ξ) ≤

≤

(∫

Rn

|fj(ξ)|
2e2ξ·y0e2ε|ξ|dV (ξ)

)1/2(∫

Rn

e−ε|ξ|dV (ξ)

)1/2

.

The second factor here is finite for all ε > 0, and by decomposing R
n,

choosing ε = 1/2, and using (3.8), we get that,

∫

Rn

|fj(ξ)|
2e2ξ·y0e|ξ|dV (ξ) =

m∑

k=1

∫

Γk

|fj(ξ)|
2e2ξ·y0e|ξ|dV (ξ) < ∞.

Thus Gj is integrable, which shows that Fj is holomorphic for any j =
1, . . . , r.

It remains to show that F ∈ A2(g), i.e. square integrable with respect
to g. By definition, for fix y ∈ R

n, Fy(x) := F (x + iy) is just the Fourier

transform of eξ·yf(ξ). By (3.5), eξ·yfj(ξ) ∈ L2(Rn) for any j = 1, . . . , r, and
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so by Parseval’s formula, Fj,y ∈ L2(Rn) as well. In particular then, for any
j, k = 1, . . . , r,

fj(ξ)f̄k(ξ)e
2ξ·y ∈ L1(Rn) and Fj,y(x)F̄k,y(x) ∈ L1(Rn).

Hence, we can exchange summation and integration, and use Plancherel’s
formula together with the Fubini-Tonelli theorem to deduce that
∫

Cn

‖F (z)‖2g(y)dV (z) =

r∑

j,k=1

∫

Rn

(∫

Rn

Fj,y(x)F̄k,y(x)dV (x)

)
gjk(y)dV (y) =

= (2π)n
r∑

j,k=1

∫

Rn

(∫

Rn

fj(ξ)f̄k(ξ)e
2ξ·ydV (ξ)

)
gjk(y)dV (y) =

= (2π)n
∫

Rn

(∫

Rn

e2ξ·y‖f(ξ)‖2g(y)dV (ξ)

)
dV (y) =

=

r∑

j,k=1

∫

Rn

fj(ξ)f̄k(ξ)

(
(2π)n

∫

Rn

e2ξ·ygjk(y)dV (y)

)
dV (ξ) =

=

r∑

j,k=1

∫

Rn

fj(ξ)f̄k(ξ)g̃jk(ξ)dV (ξ) =

∫

Rn

‖f(ξ)‖2g̃(ξ)dV (ξ).(3.9)

This shows that f ∈ L2(g̃) implies that F ∈ A2(g).
We now turn to the converse problem. Hence, we assume that F ∈ A2(g)

is given and want to construct a function f ∈ L2(g̃) such that (3.2) holds.
As before, set Fy(x) := F (x + iy) for fix y ∈ R

n. We claim that
f(ξ) := F−1(F0)(ξ), the inverse Fourier transform of F0, which seems natu-
ral considering (3.2). Our plan is to prove this in two steps. First we must
show that F0 is in L2, so that the inverse Fourier transform is well-defined.
After this we show that f := F−1(F0) ∈ L2(g̃). It then follows from the first
part of this proof that the function

G(z) =

∫

Rn

f(ξ)e−iξ·zdV (ξ)

is holomorphic in z. Since F (x) = G(x) for x ∈ R
n, by analytic continuation

F (z) =

∫

Rn

f(ξ)e−iξ·zdV (ξ)

everywhere, and we are done.
The following lemma will be central.

Lemma 3.1. Let G : Cn → R be a continuous, subharmonic, and strictly
positive function. If

(3.10)

∫

Rn×K
G(x+ iy)dV (x, y) < ∞

for all compact sets K ⊂ R
n, then
∫

Rn

G(x+ iy)dV (x)

is continuous in y.
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Proof. Fix y0 ∈ R
n arbitrarily. We are going to use dominated convergence

and so we want to find a function Gy0 ∈ L1(Rn), such that

(3.11) G(x, y) ≤ Gy0(x)

for all y in a neighborhood of y0.
Now let BR

R(y0) ⊂ R
n be a, (real), ball of radius R > 0, centered at y0.

By the submean-inequality for subharmonic functions, for some, (complex),
ball BC

r̃ ⊂ C
n of radius r̃ > 0, centered at the origin

G(x+ iy) ≤
1

|BC
r̃ |

∫

BC

r̃

G(z + w)dV (w) ≤

≤
1

|BC
r̃ |

∫

BR

r̃

(∫

BR

r̃

G
(
(x+ s) + i(y + t)

)
dV (t)

)
dV (s)

where |BC
r̃ | denotes the Lebesgue measure of the ball, and we have used the

fact that BC
r̃ ⊂ BR

r̃ × BR
r̃ . Hence by choosing R > 0 such that BR

r̃ (y) ⊂
B̄R

R(y0), we get that

G(x+ iy) ≤
1

|BC
r̃ |

∫

BR

r̃

(∫

B̄R

R

G
(
(x+ s) + i(y0 + t)

)
dV (t)

)
dV (s) := Gy0(x).

By construction, then, (3.11) holds. Furthermore, by using the Fubini-
Tonelli theorem, (3.10), and a linear change of variables, we also have that
∫

Rn

Gy0(x)dV (x)=
1

|BC
r̃ |

∫

BR
r̃

(∫

Rn×B̄R

R

G
(
(x+s)+i(y0+t)

)
dV (x, t)

)
dV (s)<∞.

�

We apply this lemma with G(x, y) = |Fj(x+ iy)|2 for j = 1, . . . , r, which
are subharmonic, (in fact plurisubharmonic), as F is holomorphic. Also since
the metric g only depends on y, is strictly positive definite everywhere, and
is continuous, it will be locally bounded from below. Hence, F ∈ A2(g)
implies that ∫

Rn×K
|Fj(x+ iy)|2dV (x, y) < ∞,

for all compact sets K ⊂ R
n.

Thus, Lemma 3.1 yields that∫

Rn

|Fj(x+ iy)|2dV (x) =

∫

Rn

|Fj,y(x)|
2dV (x)

is continuous in y, (in particular finite), and so Fy ∈ L2(Rn) for all y ∈ R
n.

This proves that f(ξ) := F−1(F0)(ξ) is well-defined.
It remains to show that f ∈ L2(g̃). By (3.9) this will follow if we can

establish that for all ξ ∈ R
n,

(3.12) F−1(Fy)(ξ) = F−1(F0)(ξ)e
ξ·y = f(ξ)eξ·y.

This is a bit tricky. An important observation is that (3.12) holds if and
only if

F−1
(
(F ◦ T )y

)
(ξ) = F−1

(
(F ◦ T )0

)
(ξ)eξ·T (y)

for any invertible linear mapping T : Cn → C
n. This is straightforward to

verify, and it is important since it allows us to choose coordinates so that
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y = (y1, 0, . . . , 0), thereby reducing the proof of (3.12) to the one-dimensional
case.

Now fix x2, . . . , xn ∈ R, let z = x1 + iy1 ∈ C, ξ ∈ R
n and set

Gj(z) = Fj(z, x2, . . . , xn)e
iξ1zei

∑n
j=2

ξjxj .

Let γ1 be the x-axis in C, let γ2 be an arbitrary horizontal line in C, and
let S denote the strip between these two lines. Furthermore, let χ : R → R

be a cut-off function which is equal to one on the closed unit ball in R, (i.e.
χ ∈ C∞

c (R), 0 ≤ χ ≤ 1 and χ = 1 on [−1, 1]), and set χR(x) := χ(x/R),
with R > 0. Then, by Stokes’ theorem,

∫

γ1

χR

(
Re (z)

)
Gj(z)dz −

∫

γ2

χR

(
Re (z)

)
Gj(z)dz =(3.13)

=

∫

S

∂

∂z̄

(
χR

(
Re (z)

)
Gj(z)

)
dV (z)=

∫

S

(
∂

∂z̄
χR

(
Re (z)

))
Gj(z)dV (z),

as Gj is holomorphic.
Since the function φR(x) := χR(x)−1 is decreasing in R, by the monotone

convergence theorem, φR → 0 in L2(R) as R → ∞. At the same time, if we
assume that γ2 has the parametrization x+ iy, with x ∈ R and y > 0, then

∫

S

∣∣∣ ∂
∂z̄

χR

(
Re (z)

)∣∣∣
2
dV (z) =

y

4

∫

R

∣∣∣ ∂
∂x

χR(x)
∣∣∣
2
dx =

=
y

4R2

∫

R

∣∣∣χ′(
x

R
)
∣∣∣
2
dx =

y

4R

∫

R

|χ′(t)|2dt,

and so (χR)
′
z̄ → 0 in L2(S), as R → ∞.

On the other hand, one can show that

(3.14)

∫

R

∣∣Gj(x1 + iy1)
∣∣2dx1

is continuous in y1, (in particular, Gj,y1 ∈ L2(R) for any fix y1 ∈ R). This
follows from basically the same argument as in Lemma 3.1, but this time
using the plurisubharmonicity of |F |2. The continuity of (3.14) then also
implies that Gj ∈ L2(S).

Hence, letting R → ∞ in (3.13), these facts, together with the Cauchy-
Schwarz inequality yield that,

∫

γ1

G(z)dz =

∫

γ2

G(z)dz,

which in turn is equivalent to
∫

R

F (x1 + iy1, x2, . . . , xn)e
iξ·xe−ξ1y1dx1 =

∫

R

F (x1, x2, . . . , xn)e
iξ·xdx1.

Integrating this identity with respect to x2, . . . , xn, and choosing coordinates
so that y = (y1, 0, . . . , 0) as before, we, at last, get that

F−1(Fy)(ξ)e
−ξ·y = F−1(F0)(ξ),

which is what we wanted to show.
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4. The proof of Theorem 1.5

We now turn to the proof of Theorem 1.5. The plan is to use the same ap-
proach as in the scalar valued case, ([B] Theorem 1.1), namely the Griffiths
subbundle formula and Hörmander L2-estimates for the ∂̄-equation. How-
ever, since in the vector-valued case, these L2-estimates differ a bit from
the ones in the scalar-valued setting, the second part of the proof will be
somewhat different from the proof in [B].

As our main goal in this paper is the proof of Theorem 1.2, we have chosen
not to have a lengthy review of the basic concepts of (infinite rank) vector
bundles. For this, we refer to section 2 of [B].

Proof of Theorem 1.5. Since the first part of the proof is rather similar to
the corresponding argument in [B], our treatment of this part will be a little
sketchy.

We want to show that given a hermitian metric h : Cn
z × C

m
w → C

r×r,
which is positively curved in the sense of Nakano, the trivial, (infinite rank),
holomorphic vector bundle (E, ‖·‖w) over C

m, defined through Ew := A2
w(h)

as in (1.5), is Nakano positive as well.
We begin by observing that E, is a subbundle of the trivial, holomorphic

vector bundle (G, ‖ · ‖w), where

Gw := L2
w(h) = {f ∈ L2(Cn;Cr) : ‖f‖2w :=

∫

Cn

‖f(z)‖2hw(z)dV (z) < ∞}.

By the Griffiths subbundle formula (see [B] section 2)

(4.1)

m∑

j,k=1

(ΘG
jkuj , uk) =

∥∥∥π⊥
m∑

j=1

DG
wj
uj

∥∥∥
2
+

m∑

j,k=1

(ΘE
jkuj , uk).

where {uj}
m
j=1 is an m-tuple of smooth sections of E, (i.e. uj is smooth in w

and holomorphic in z), D and Θ denote the Chern connection and the cur-
vature, and π⊥ is the orthogonal projection on the orthogonal complement
of E (in G).

It is then straightforward to verify that ΘG
jk = Θjk := ∂̄wk

(h−1∂wj
h), so

the Nakano positivity of h implies that the left hand side of (4.1) is positive.
Hence we need to estimate the term

∥∥∥π⊥
m∑

j=1

DG
wj
uj

∥∥∥
2
,

from above. The key observation for this is that if we set

v := π⊥

m∑

j=1

DG
wj
uj,

then v can be regarded as a solution to the ∂̄-equation,

(4.2) ∂̄zv =
n∑

λ=1

m∑

j=1

Θjλujdz̄λ =: f,

where Θjλ = ∂̄zλ(h
−1∂wj

h), (as the uj :s are holomorphic in z), and {dzλ}
n
λ=1

denotes an orthonormal basis for the cotangent space in the fiber direction,
(orthonormal with respect to the scalar product, (·, ·), on norms induced
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by h and the Kähler form ω). Furthermore, since v lies in the orthogonal
complement of E, v is the minimal solution to this equation. Thus, we can
apply Hörmander type L2-estimates for the ∂̄-equation to v.

Up until this point, we have followed the argument in [B] closely. However,
since the L2-estimates for sections of a vector bundle and a line bundle are
slightly different, the rest of the proof will be somewhat different as well.

The Hörmander type L2-estimates for (4.2) are, (see e.g. [D], Chapter
VIII, Theorem 4.6, the notation used here is nonstandard and will be re-
placed shortly),

(4.3) ‖v‖2 ≤
(
B−1f, f

)

where B−1 is the dual of the operator,

B
( n∑

λ=1

αλdz̄λ
)
:=

n∑

λ,µ=1

Θλµαλdz̄µ.

Combining (4.3) with (4.1), we get that

m∑

j,k=1

(ΘE
jkuj , uk) ≥

m∑

j,k=1

(Θjkuj , uk)−
(
B−1f, f

)
.

Now by definition

(
B−1f, f

)
= sup

α1,...,αn

∣∣∣
∑n

λ=1(αλ, fλ)
∣∣∣
2

∑n
λ,µ=1(Θλµαλ, αµ)

for every n-tuple {αλ}
n
λ=1. Hence, we get that E is positively curved in the

sense of Nakano if for all n-tuples {αλ}
n
λ=1,

(4.4)
∣∣∣

n∑

λ=1

(
αλ,

m∑

j=1

Θjλuj

)∣∣∣
2
≤

( m∑

j,k=1

(Θjkuj , uk)
)( n∑

λ,µ=1

(Θλµαλ, αµ)
)
.

In order to make the proof of this inequality more transparent, we will
now reformulate everything in the language of differential forms (thereby
replacing B with [iΘ,Λ]). Let {dwj}

m
j=1 denote an orthonormal basis for

the cotangent space in the base direction.
We let Θ denote the ’total’ curvature

Θ =
m∑

j,k=1

Θjkdwj ∧ dw̄k +
m∑

j=1

n∑

µ=1

Θjµdwj ∧ dz̄µ +

+
n∑

λ=1

m∑

k=1

Θλkdzλ ∧ dw̄k +
n∑

λ,µ=1

Θλµdzλ ∧ dz̄µ.

Also, we let Λ denote the adjoint of the operator that sends (p, q)-forms to
(p+ 1, q + 1)-forms through wedging with the Kähler form

ω = i

m∑

j=1

dwj ∧ dw̄j + i

n∑

λ=1

dzλ ∧ dz̄λ.
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Finally, given the m- and n-tuples {uj}
m
j=1 and {αλ}

n
λ=1, we use them to

create the vector-valued (n+m, 1)-forms

u =

m∑

j=1

ujdw ∧ dz ∧ dw̄j ,

and

α =

n∑

λ=1

αλdw ∧ dz ∧ dz̄λ,

where dw = dw1 ∧ . . . ∧ dwm and dz = dz1 ∧ . . . ∧ dzn.
A short computation now yields that

Λu = i(−1)m+n
m∑

j=1

uj d̂wj ∧ dz,

and

Λα = i(−1)n
n∑

λ=1

αλdw ∧ d̂zλ,

where d̂wj denotes the wedge product of all differentials dwk except dwj,

ordered so that dwj ∧ d̂wj = dw, and similarly for d̂zλ. Using these, we can
now calculate

iΘ ∧ Λu =

m∑

j,k=1

Θjkujdw ∧ dz ∧ dw̄k +

n∑

µ=1

( m∑

µ=1

Θjµuj

)
dw ∧ dz ∧ dz̄µ,

and

iΘ ∧ Λα =

m∑

k=1

( n∑

λ=1

Θλkαλ

)
dw ∧ dz ∧ dw̄k +

n∑

λ,µ=1

Θλµαλdw ∧ dz ∧ dz̄µ.

As u and α are (n +m, 1)-forms, it is immediate that Θ ∧ u = Θ ∧ α = 0.
Hence, if we let [iΘ,Λ] denote the commutator between iΘ and Λ, we see
that

(4.5)
(
[iΘ,Λ]u, u

)
=

m∑

j,k=1

(Θjkuj, uk),

(4.6)
(
[iΘ,Λ]α,α

)
=

n∑

λ,µ=1

(Θλµαλ, αµ),

and
(
[iΘ,Λ]u, α

)
=

n∑

λ=1

( m∑

j=1

Θjλuj , αλ

)
,

where on the left hand sides we, once again, use (·, ·) to denote the scalar
product on norms induced by h and the Kähler form ω.

Altogether we see that, reformulated in terms of differential forms, (4.4)
is equivalent to,

(4.7)
∣∣∣
(
[iΘ,Λ]u, α

)∣∣∣
2
≤

(
[iΘ,Λ]u, u

)(
[iΘ,Λ]α,α

)
.
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Proving this inequality, however, is much easier than (4.4), since the Nakano
positivity of Θ implies that [iΘ,Λ] is a positive operator on the space of
vector-valued (n +m, 1)-forms. (We have shown this for our special forms
u and α in (4.5)-(4.6); the general case can be proven similarly, see e.g. [D],
Chapter VII, Lemma 7.2.) In particular, this means that ([iΘ,Λ]·, ·) defines
a metric on this vector space, with (4.7) just being the usual Cauchy-Schwarz
inequality for this metric. Thus, (4.4) holds for any n-tuple {αλ}

n
λ=1 and

Theorem 1.5 is proved. �

Remark 1. We have chosen to prove Theorem 1.5 for hermitian metrics on
a domain D = Ω × U in C

n
z × C

m
w , since this setting is precisely what we

need for Theorem 1.2. The proof, however, can be adapted to the following
setting.

Let Y be a connected, complex manifold of dimension m, and let Z be a
compact, complex n-dimensional manifold. Then X = Y × Z is a complex
manifold of dimension n + m which can be regarded as a trivial fibration,
p : X → Y , over Y , with compact fibers p−1(w) =: Xw

∼= Z.
Let (G,h) be a holomorphic, hermitian vector bundle over X, and let KZ

denote the canonical bundle of Z, i.e. the bundle of forms of bidegree (n, 0).
The Bergman spaces A2

w then get replaced by the space of global sections

Ew := Γ
(
Z,G|Xw ⊗KZ

)
,

where we have written G|Xw , instead of G|Z , to stress that the metric h on
G depends on the base point w.

Now if X is Kähler, then just as in the setting Theorem 1.2 in [B], E has
a natural structure as a holomorphic vector bundle. Moreover, as elements
of Ew can be integrated over the fiber Xw = Z, (with respect to the metric
hw and the Kähler form on X), we also have a natural, nontrivial, metric
‖ · ‖w on E.

Adapted to this setting, the proof of Theorem 1.5 yields the following
theorem.

Theorem 4.1. If X is Kähler and (G,h) is positively curved in the sense
of Nakano over X, then (E, ‖ · ‖w) is also positively curved in the sense of
Nakano.

A much more general version of this theorem has previously been obtained
by Mourougane and Takayama, [MT] Theorem 1.1, (see also [LY]).

5. The proof of Theorem 1.2

With Theorems 1.4 and 1.5 at our disposal, we can finally turn to the proof
of our matrix-valued Prékopa theorem.

Proof of Theorem 1.2. Given the metric g : Rn
y ×R

m
t → C

r×r, we can think

of it as a metric h : Cn
z ×C

m
w → C

r×r which is independent of the real parts
of z = x+ iy and w = s+ it, i.e. h(z, w) = g(y, t). Then h will be positively
curved in the sense of Nakano, since g is log concave in the sense of Nakano
by assumption. Thus we are in the setting of Theorem 1.5 and so we know
that the trivial, (infinite rank) holomorphic vector bundle (E, ‖ · ‖w,h) over
C
m, with fiber Ew = A2

w(h) as in (1.5), is positively curved in the sense of
Nakano as well.
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As sketched at the end of the introduction, we now use h to define the
metric h̃ : Rn

ξ × C
m
w → C

r×r through

(5.1) h̃(ξ, w) = (2π)n
∫

Rn

e2ξ·yh(y,w)dV (y).

Since h(z, w) is hermitian and independent of the real parts of z and w, the

same thing holds for h̃. In fact, comparing with (1.6) we see that h̃(ξ, w) =
g̃(ξ, t).

From (5.1) it follows that for each fix w ∈ C
m, h̃w(·) := h̃(·, w) is a

hermitian metric on R
n, and so in this way we can construct a second trivial,

(infinite rank), holomorphic vector bundle (Ẽ, ‖ · ‖w,h̃) over C
m, with fiber

Ẽw := L2
w(h̃) as in (1.8).

Theorem 1.4, and (1.4) in particular, then yield that the vector bundles

(E, ‖ · ‖w,h) and (Ẽ, ‖ · ‖w,h̃) are isometrically isomorphic. Hence, since

(E, ‖ · ‖w,h) is positively curved in the sense of Nakano, so is (Ẽ, ‖ · ‖w,h̃).

Let f and k denote two sections of Ẽ, so that for each fix w ∈ C
m,

fw, kw ∈ L2
w(h̃). As we are investigating a pointwise property, (namely being

curved in the sense of Nakano), we can without any loss of generality assume

that f and k both are holomorphic in w. The Chern connection of (Ẽ, ‖·‖w,h̃)

is given by D = ∇+ ∂̄, where ∇ is defined through (∇f, k)w,h̃ := ∂(f, k)w,h̃.

Hence a short computation yields that

(∇f, k)w,h̃ = ∂w

∫

Rn

(
fw(ξ), kw(ξ)

)
h̃w(ξ)

dV (ξ) =

=

∫

Rn

(
D′

w,ξfw(ξ), kw(ξ)
)
h̃w(ξ)

dV (ξ),

where D′
w,ξ := ∂w + h̃−1(ξ, w)∂wh̃(ξ, w).

For the curvature of (Ẽ, ‖·‖w,h̃), an equally short computation gives that

(ΘẼf, k)w,h̃ := (D2f, k)w,h̃ =
(
(∇∂̄ + ∂̄∇)f, k

)
w,h̃

= (∂̄∇f, k)w,h̃ =

=

∫

Rn

(
∂̄wD

′
w,ξfw(ξ), kw(ξ)

)
h̃
dV (ξ) =

∫

Rn

(
Θh̃

ξ,wfw(ξ), kw(ξ)
)
h̃
dV (ξ),

where Θh̃
ξ,w := Θh̃(ξ, w) = ∂̄w

(
h̃−1(ξ, w)∂wh̃(ξ, w)

)
. In particular, this shows

that

(ΘẼ
jlf, k)w,h̃ =

∫

Rn

(
Θh̃

jl(ξ, w)fw(ξ), kw(ξ)
)
h̃
dV (ξ),

for all j, l = 1, . . . ,m.
By definition, Ẽ being positively curved in the sense of Nakano means

that for any m-tuple {f j}mj=1 of sections of Ẽ,

m∑

j,l=1

(
ΘẼ

jlf
j, f l

)
w,h̃

≥ 0.

Thus, from what we have just seen this implies that

(5.2)

∫

Rn

m∑

j,l=1

(
Θh̃

jl(ξ, w)f
j
w(ξ), f

l
w(ξ)

)
h̃w(ξ)

dV (ξ) ≥ 0.
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Now as {f j}mj=1 are arbitrary sections of Ẽ, we can multiply each f j with

a cut-off function χ(ξ), since if f j
w(ξ) ∈ L2

w(h̃) for each w, so is χ(ξ)f j
w(ξ).

But this means that we without any loss of generality can replace (5.2) with
∫

Rn

m∑

j,l=1

(
Θh̃

jl(ξ, w)f
j
w(ξ), f

l
w(ξ)

)
h̃w(ξ)

χ2(ξ)dV (ξ) ≥ 0.

As χ is arbitrary, we get that
m∑

j,l=1

(
Θh̃

jl(ξ, w)f
j
w(ξ), f

l
w(ξ)

)
h̃w(ξ)

≥ 0,

for all ξ ∈ R
n.

What we have shown is that

h̃(ξ, w) = (2π)n
∫

Rn

e2ξ·yh(y,w)dV (y)

is Nakano positive in w. In particular, since we have that h̃(ξ, w) = g̃(ξ, t)
and h(z, w) = g(y, t), this means that for all ξ ∈ R

n,

g̃(ξ, t) = (2π)n
∫

Rn

e2ξ·yg(y, t)dV (y),

is log concave in the sense of Nakano in t. Thus choosing ξ = 0 finishes the
proof of the theorem. �

Remark 2. Just as for the original Prékopa theorem, it is straightforward
to extend Theorem 1.2 to integration over arbitrary convex sets K in R

n.
Namely, let φK : K → R ∪ {∞} be the function

φK(x) :=

{
0 if x ∈ K,
∞ otherwise.

Then, φK can be written as the limit of an increasing sequence of convex
functions {φj}

∞
j=1.

If g : Rn
y × R

m
t → C

r×r is a metric that is log concave in the sense of
Nakano, then by arguing as in example 2 and 3 of section 2, we have that
for each j, the metric e−φjg is also Nakano log concave. Hence, by Theorem
1.2, ∫

Rn

e−φj(y,t)g(y, t)dV (y)

is log concave in the sense of Nakano.
Letting j → ∞ and using monotone convergence, we thus get that

g̃(t) :=

∫

K
g(y, t)dV (y),

is log concave in the sense of Nakano as well.
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images, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 905–924.
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E-mail address: raufi@chalmers.se

http://www-fourier.ujf-grenoble.fr/~demailly
arXiv:1303.2701 [math.CV]

	1. Introduction
	Acknowledgments
	2. Examples and basic properties of log concave metrics
	3. The proof of Theorem ??
	4. The proof of Theorem ??
	5. The proof of Theorem ??
	References

