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Abstract. We show the existence of a thick thin decomposition of the
domain of a pseudo holomorphic curve with boundary. The geometry
of the thick part is bounded uniformly in the energy. Furthermore, in
the thick part, there is a uniform bound on the differential which is
exponential in the energy. The thin part consists of annuli of small
energy the number of which is at most linear in the energy and genus.
The decomposition can be seen as a quantitative version of Gromov
compactness which applies before passing to the limit.
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1. Introduction

A basic tool in the study of the moduli spaceMg of compact Riemann sur-
faces of genus g ≥ 2 is the thick thin decomposition of hyperbolic structures.
Namely, for Σ ∈ Mg, let h be the unique conformal metric h of constant
curvature −1. For x ∈ Σ denote by inj(Σ, x;h) the radius of injectivity of
(Σ, h) at x. Write

Thick(Σ;h) := {x ∈ Σ| inj(Σ, x;h) ≥ sinh−1(1)}
Thin(Σ;h) := {x ∈ Σ| inj(Σ, x;h) < sinh−1(1)}.

Then Thin consists of at most 3g−3 disjoint cylinders and the components of
Thick have geometry that is bounded uniformly in g. Among other things,
the thick thin decomposition provides an intuitive picture of the Deligne
Mumford compactification of Mg.

This paper is concerned with an analogous construction for the moduli
spacesMg(M,J ;A) of J-holomorphic curves of genus g in a symplectic man-
ifold (M,ω) representing A ∈ H2(M ;Z) with J an ω-tame almost complex
structure J . Namely, for

(u : Σ →M) ∈ Mg(M,J ;A),

we construct a decomposition

Σ = Thick(Σ;u) ∪ Thin(Σ;u).
Thin(Σ;u) consists of disjoint annuli and cylinders whose number is pro-
portional to g +

∫

Σ u
∗ω. With respect to the standard cylindrical metric

on Thin(Σ;u), |du| decays exponentially in the distance from ∂Thin(Σ;u).
The components of Thick(Σ;u), once properly normalized, have uniformly
bounded geometry with the bounds exponential in the energy of u. Fur-
thermore, on Thick there is a bound on |du| which is exponential in the en-
ergy. We construct an analogous decomposition for bordered J-holomorphic
curves with boundary in a Lagrangian submanifold L. This time, it is the
complex double of the domain which is decomposed. Our thick thin decom-
position is related to Gromov compactness in the same way the hyperbolic
thick thin decomposition of Riemann surfaces is related to the Deligne-
Mumford compactification.

1.1. The main result. To formulate the result more precisely, we introduce
the following definitions.

Definition 1.1. Let Σ be a closed Riemann surface and let h be a conformal
metric of constant curvature on Σ. A geodesic annulus in Σ is a doubly
connected subset of the form

A(r1, r2, p;h) = {y ∈ Σ|r1 < dh(y, p) < r2},
for some p ∈ Σ, and 0 < r1 < r2 < inj(p;h). For a simple closed geodesic γ
in Σ, let Rγ be the width of a geodesic tubular neighborhood of γ. Suppose
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γ is oriented with unit normal v. A geodesic cylinder in Σ is a doubly
connected subset of the form

C(r1, r2, γ;h) = {y = exp rvp|p ∈ γ, r ∈ (r1, r2)},
for some

−Rγ ≤ r1 < r2 ≤ Rγ .

A bubble decomposition of Σ is a collection of geodesic annuli and geo-
desic cylinders in Σ with pairwise disjoint closures. Write

Thin(B) :=
⋃

I∈B

I,

Thick(B) := Σ \ Thin(B).

Figure 1.

For a bubble decomposition B, let VB denote a finite set with a bijection

VB → π0(Thick(B)), v 7→ Σv.

Here, π0(·) denoting the set of connected components.

Definition 1.2. Let Σ be a closed Riemann surface, let h be a conformal
metric of constant curvature on Σ. Denote by νh the volume form on Σ.
Let µ be a measure on Σ which is absolutely continuous with respect to any
smooth volume form on Σ, and denote by

dµ

dνh

the Radon-Nikodym derivative of µ with respect to νh. Let a, b, δ > 0. A
(µ, h)-adapted bubble decomposition B with constants a, b, δ, is a bubble
decomposition satisfying the following estimates.
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(a) Exponential decay in the thin part. For any I ∈ B, denote by
Mod(I) the modulus of I and by hst the unique conformal metric
such that (I, hst) is isometric to (0,Mod(I)) × S1. Then for any
p ∈ I,

(1)
dµ

dνhst
(p) ≤ ae−bdhst (p,∂I).

(b) Bounded geometry and derivative. For any v ∈ VB let gv be
the genus of Σv and dv its diameter with respect to h. Let nv :=
|π0(∂Σv)| and µv := µ(Σv). Let

sv :=
2(gv + 1)

dv

and define hv := s2vh|Σv . Then the following hold.
(i)

(2) sup
p∈Σv

dµ

dνhv
(p) ≤ aeb(µv+nv).

(ii)

inf
p∈Σv

inj(Σv, p;hv) ≥ ae−b(µv+nv)1.

(iii) For any component γ of ∂Σv,

ℓ(γ;hv) > ae−b(µv+nv).

(iv) For any two distinct components γ1 and γ2 of ∂Σv,

dhv (γ1, γ2) ≥ ae−b(µv+nv)

(c) Stability. For any v ∈ VB we have either

µv ≥ δ,

or

2genus(Σv) + |π0(∂Σv)| ≥ 3.

Remark 1.3. Note that because of the restriction to constant curvature met-
rics, only in the genus 0 case does the property of (µ, h)-adaptedness depend
on h. In the other cases it would be more proper to talk of µ-adaptedness.

Remark 1.4. Note that the stability condition implies

|π0(Thick(B))| ≤ 2g + 2
µ(Σv)

δ
− 3,

and a similar estimate for |π0(Thin(B))|.

1See Remark 6.4 below for the definition of inj for surfaces with boundary.
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Remark 1.5. Fix an E > 0 and a g ∈ N. The bounds (ii)-(iv) of Defini-
tion 1.2(b) imply that in the space of Riemannian manifolds with bound-
ary equipped with the C∞ topology, there exists a compact subset K =
K(g,E, a, b, δ) with the following significance. For all measured Riemann
surfaces (Σ, µ) with genus(Σ) ≤ g and µ(Σ) ≤ E, any constant curvature
metric h on Σ, and any (µ, h)-adapted bubble decomposition B of Σ, the
components of Thick(B) belong to K. This follows from Theorem 3.3.1 in
[1].

We now state the main result. Let (M,ω) be a compact symplectic man-
ifold and J an ω-tame almost complex structure. For a Riemann surface Σ
and a J-holomorphic curve

u : Σ →M,

and for any subset U ⊂ Σ, write

µu(U) :=

∫

U
u∗ω.

Theorem 1.6. Let M be compact. Let F be the family of closed non-
constant J-holomorphic curves in M . Then for every (Σ, u) ∈ F there is a
conformal metric h of constant curvature on Σ and a (µu, h)-adapted bubble
decomposition Bu of Σ with constants depending on F only.

Remark 1.7. If we were to allow an arbitrary constant curvature metric in
the genus 0 case, a simple counterexample to the theorem could be obtained
as follows. Let h be the standard metric on S2 = C ∪ {∞}, let u : S2 →M
be a non-constant J-holomorphic curve, let ψn : S2 → S2 be given by
ψ(z) = nz for any z ∈ C ⊂ S2 and let un = un ◦ ψn. Then there are no
uniformly (µu, h)-adapted bubble decompositions for this sequence.

1.2. Curves with boundary.

Definition 1.8. For any Riemann surface Σ = (Σ, j), write Σ := (Σ,−j).
The complex double is the Riemann surface

ΣC := Σ ∪ Σ,

where the surfaces are glued together along the boundary by the identity.
The complex structure on ΣC is the unique one which coincides with j
and with −j when restricted suitably. ΣC is endowed with a natural anti-
holomorphic involution and for any z ∈ ΣC we denote by z the image of z
under this involution.

Definition 1.9. Let Σ be a connected Riemann surface. A subset S ⊂ ΣC

is said to be clean if either S = S or S ∩ S = ∅.
Definition 1.10. A bubble decomposition of ΣC is said to be conjugation
invariant if and only if all I ∈ B are clean and

I ∈ B ⇒ I ∈ B.
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Theorem 1.11. Let F be the family of non-constant J-holomorphic curves
in M with boundary in a compact Lagrangian submanifold L. Then for
every (Σ, u) ∈ F there is a conjugation invariant conformal constant cur-
vature metric h on ΣC and a conjugation invariant (µu, h)-adapted bubble
decomposition Bu of ΣC with constants depending on F only.

1.3. The non-compact setting.

Definition 1.12. For any Riemannian manifold X with sub-manifold Y
and ǫ > 0, we say that Y is ǫ-Lipschitz if

dX(x, y)

min{1, dY (x, y)}
≥ ǫ ∀x 6= y ∈ Y.

We say that Y is Lipschitz if there is an ǫ such that Y is ǫ-Lipschitz.

Denote by gJ the symmetrization of the positive definite form ω(·, J ·).
Denote by R the curvature of gJ , by B the second fundamental form of L
with respect to gJ and for any tensor T on M or L let ‖T‖n denote the Cn

norm of T with respect to gJ .

Definition 1.13. Let S be a family of compact Riemann surfaces, possibly
with boundary. We say that the data of S together with (M,ω,L, J) com-
prise a bounded setting if M and L are complete with respect to gJ and
one of the following holds.

(a) L = ∅ and

max

{

‖R‖ , ‖J‖2 ,
1

inj(M ; gJ )

}

<∞.

(b) L is Lipschitz and

max

{

‖R‖2 , ‖J‖2 , ‖B‖2 ,
1

inj(M ; gJ )

}

<∞.

(c) Each connected component L′ of L is Lipschitz and

max

{

‖R‖2 , ‖J‖2 , ‖B‖2 ,
1

inj(M ; gJ )

}

<∞.

Furthermore, there is an ǫ > 0 such that for each (u,Σ) ∈ F , there is
a conformal metric h of constant curvature 0,±1, of unit area in case
of zero curvature, such that ∂Σ is totally geodesic and ǫ-Lipschitz.

Theorem 1.14. Let F be the family of non-constant J-holomorphic curves
in M with boundary in L and domain in a set S of Riemann surfaces such
that S and (M,ω, J, L) comprise a bounded setting. Then for every (Σ, u) ∈
F , there is a conjugation invariant conformal constant curvature metric h
on ΣC and a conjugation invariant (µu, h)-adapted bubble decomposition Bu
of ΣC with constants depending on F only.
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1.4. Relation to Gromov compactness. Fix an E > 0 and a g ∈ N.
Then for all u such that genus(Σ) ≤ g and µu(Σ) ≤ E, the components of
Thick(Bu) are elements of K, where K is as in Remark 1.5. Furthermore,
by Remark 1.4, |π0(Thick(Bu)| is bounded uniformly in the set of all such

u. By conformality we have that |du|2h = dµu
dνh

. Together with estimate

(2) and elliptic regularity, we obtain C∞ compactness of the restriction of
J-holomorphic curves to their thick parts.

To see what happens in the thin part, let us elaborate on the geometric
meaning of Definition 1.2(a). Let I be an open cylinder, let u : I → M be
J-holomorphic and Let

ψ : IL := (−L,L)× S1 → I

be a biholomorphism. Let

hcone =
√
ae−

b
2
(L−|r|)hst.

Then for r 6= 0, hcone is a conformal metric on IL whose shape is as an
approximate cone as in the left of Figure 2. By inequality (1),

dµu◦ψ
dνhcone

=
dµu◦ψ
dνhst

dνhst
dνhcone

≤ 1.(3)

As L→ ∞ the approximate cones converge to an actual cone. See Figure 2.
Gromov’s compactness theorem is a consequence of this discussion, of elliptic

Figure 2.

regularity and of removal of singularities. Use of convergence theory of
Riemannian manifolds in the context of Gromov compactness appears also
in [5] and [6].

1.5. The thin part. The specification of the thin part of a J-holomorphic
curve u : Σ → M is more involved then that of a hyperbolic surface. Fur-
thermore, as a subset of Σ it appears to involve some choices which have
to be made for each u. However, the combinatorial structure of the thick
thin decomposition, e.g. the number of components of Thin, is independent
of any such choices. For simplicity we describe the thin part of a closed
J-holomorphic curve u : Σ →M .

We recall the cylinder inequality [4, Lemma 4.7.3]. Let Ia := [−a, a]×S1.
The cylinder inequality states that there are constants δ and c such that for
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any J-holomorphic map u : Ia →M we have

(4) µu(Ia) ≤ δ ⇒ µu(Ia−t) ≤ e−ctµu(Ia),

for t ∈ [log 2, a].

Definition 1.15. An L-long neck is a geodesic cylinder or annulus I ⊂ Σ
such that Mod(I) ≥ 4L, µu(I) ≤ δ/6 and each component A of Σ \ I is
stable in the sense that one of the following conditions holds:

(a) µ(A) ≥ δ;
(b) 2 genus(A) + |π0(∂A)| ≥ 3.

For L large enough we define an equivalence relation on the set LN of
L-long necks as follows. Suppose I1, I2 ∈ LN . Then I1 ∼ I2 if and only if
there exists an annulus I, not necessarily geodesic, such that I1 and I2 are
nontrivially embedded in I and µ(I) ≤ δ/2. That ∼ is indeed equivalence
relation for L large enough follows from the cylinder inequality and the
stability condition. See Lemma 5.5 below. Furthermore, each equivalence
class is shown to contain an element of maximal modulus.

Pick an element Ac of maximal modulus from each ∼-equivalence class c
and let Lc =

1
2Mod(Ac). There is a biholomorphism

fc : Ac → I 1
2
Mod(Ac)

= [−Lc, Lc]× S1,

unique up to automorphisms of the cylinder. The components of the thin
part are the annuli f−1

c (ILc−L). These are shown in the text to be disjoint
for L large enough but chosen independently of the curve. There does not
appear to be a unique maximal element in each equivalence class. Hence
the choices referred to at the beginning of the subsection.

1.6. Idea of the proof. Let B be the set of components of the thin part
as outlined in the previous subsection. In the text we show that Thick(B)
contains no long necks. It turns out that when genus(Σ) > 0, this implies
that B is (µu, h)-adapted. Let us sketch for example how to obtain the
derivative estimate in Thick(B).

For this, recall the gradient inequality [4, Lemma 4.3.1] which says that
there is a constant δ′ > δ such that for any ball Br(p) ⊂ Σ we have

µu(Br(p)) ≤ δ′ ⇒ dµu
dνh

(p) ≤ 1

r2
µu(Br(p)).

Let v ∈ VB. Suppose for concreteness that Σv is a geodesic disk D =
B1(z;hv) ⊂ Σ. In this paragraph all quantities are measured with respect
to hv, so we omit it from the notation. Let p ∈ Σv be a point where
the derivative obtains its maximum. Using the gradient inequality and the
construction of B there is an a priori bound on the derivative in the annulus
B1(z) \ B1/2(z). Suppose p ∈ B1/2(z) and let d = dµu

dνhv
(p). Suppose d > 4

and consider the annulus A = B1/2(p) \B1/d(p). Then Σ \A is stable in the
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sense appearing in Definition 1.15. Indeed, the gradient inequality implies

µu(B1/d(p)) ≥ δ′.(5)

The component Σ\B1/2(p) is clearly stable by the assumption on the genus.

Since D is free of long necks, for any 1
d < r1 < r2 <

1
2 such that

log r2/r1 > L,

we must have

µu (Br2(p) \Br1(p)) > δ/6.

In particular,

log d ≤ 6L

δ
µu(A) ≤

6L

δ
µu(Σv),

which is just inequality (2).

1.7. Acknowledgements. The author would like to thank his PhD advisor
J. Solomon for countless valuable comments and suggestions and for helpful
criticism. The author is grateful to the Azrieli foundation for the award of
an Azrieli fellowship. The author was partially supported by ERC Starting
Grant 337560.

2. Preliminaries

2.1. Annuli.

Definition 2.1. A standard annulus I is a surface of the form K × S1

with K ⊂ R an interval which may be open, closed or half closed. We denote
by hst the product metric on I which assigns to S1 the length 2π. We let jst
be the complex structure induced on I by hst and the product orientation
on I. We take Mod(I) := |K|, where | · | denote the Lebesgue measure. An
Annulus (I, j) is a doubly connected surface with complex structure j. Up
to translation it is bi-holomorphic to a unique standard annulus Ist. We
define Mod(I, j) := Mod(Ist). When the complex structure is clear from
the context we omit it.

Let (I, j) be an annulus and let h be a conformal Riemannian metric on
I. We call global cylindrical coordinates (ρ, θ) on I, with

a ≤ ρ ≤ b, 0 ≤ θ < 2π,

axially symmetric if

(6) h = dρ2 + hθ(ρ)
2dθ2.

We say h is axially symmetric if I has axially symmetric coordinates. In
this case, the conformal length of I is given by

(7) Mod(I, j) =

∫ b

a

1

hθ(ρ)
dρ.
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Definition 2.2. Let I be an annulus and let L = Mod(I). Suppose L <
∞. Then there is a biholomorphism f : K × S1 → I with K an interval
whose infimum is the origin. The map f is unique up to a rotation and a
holomorphic reflection. A sub-cylinder of I is a subset of the form

f(K ′ × S1),

with K ′ ⊂ K an interval. For a ≤ b ∈ K we write

S(a, b; I) := f([a, b]× S1) ⊂ I.

We also define

C(a, b; I) := S(a, L− b; I),

for a, b in the appropriate range. Note that composing f with a holomorphic
reflection of K×S1 replaces S(a, b) with S(L−b, L−a). When applying the
above notations we shall be careful to remove this ambiguity. On the other
hand, the notation C(a, a; I) is well defined. Denote by Kc the closure of K
and by Ic the closure of I. It is convenient to extend the above definitions to
a, b ∈ Kc by defining S(a, b; I) := S(a, b; Ic)∩I and C(a, b; Ic) := C(a, b; I)∩
Ic.

Definition 2.3. Let U be a Riemann surface biholomorphic to the unit
disk D1. Let h be a conformal metric on U and let z ∈ U . Then there is
a biholomorphism φ : U → D1 with φ(z) = 0, unique up to rotation. The
conformal radius of U viewed from z is defined to be

rconf (U, z;h) := 1/‖dφ(z)‖h.
Note that rconf (U, z;h) is not conformally invariant, since it depends on

the metric at z. However, let νh denote the volume form of h, let µ be an

absolutely continuous measure on U . Then the expression dµ(z)
dνh

r2conf (z) is

conformally invariant.
The cases of interest for us will be conformal radii of geodesic disks with

metrics of constant curvature K, viewed from their center. In these cases,
the metric can be written in polar coordinates as

(8) h = dρ2 + h2θ(ρ)dθ
2,

where

(9) hθ(ρ) =











sinh(ρ), K = −1,

ρ, K = 0,

sin(ρ), K = 1.

So, the conformal radius of Br(p) viewed from p is given by

rconf = exp(f(r))

where f is the function defined by

f ′(r) =
1

hθ(r)
, f(r) = log(r) +O(r) as r → 0.
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More explicitly,

(10) f(r) = log(r) +

∫ r

0

(

1

hθ(ρ)
− 1

ρ

)

dρ.

It follows from equation (10) that

(11) rconf ≥ r, K = 0, 1,

and for any κ there exists a constant c > 0 such that

(12) rconf ≥ cr, K = −1, r < κ.

2.2. Collars. For later reference we include a statement of the thick thin
decomposition for surfaces of genus g > 1. In the following we assume the
surfaces are endowed with their unique metric h of constant curvature −1.

Theorem 2.4. [2, 4.1.1] Let Σ be a compact Riemann surface of genus
g ≥ 2, and let γ1, ..., γm be pairwise disjoint simple closed geodesics on Σ.
Then the following hold:

(a) m ≤ 3g − 3.
(b) There exist simple closed geodesics γm+1, ..., γ3g−3, which, together

with γ1, ..., γm, decompose Σ into pairs of pants.
(c) The collars

C(γi) = {p ∈ Σ|dist(p, γi) ≤ w(γi)}
of widths

w(γi) = sinh−1

(

1/ sinh

(

1

2
ℓ(γi)

))

are pairwise disjoint for i = 1, ..., 3g − 3.
(d) Each C(γi) is isometric to the cylinder [−w(γi), w(γi)]×S1 with the

Riemannian metric

dρ2 +
ℓ2(γi) cosh

2(ρ)

4π2
dθ2.

Denote by inj(p;h) the radius of injectivity of Σ at p ∈ Σ, i.e. the supre-
mum of all r such that Br(p) is an embedded disk.

Theorem 2.5. [2, 4.1.6] Let β1, ..., βk be the set of all simple closed geodesics
of length ≤ sinh−1 1 on Σ. Then k ≤ 3g − 3 and the following hold.

(a) The geodesics β1, ..., βk are pairwise disjoint.
(b) inj(p;h) > sinh−1 1 for all p ∈ Σ− (C(β1) ∪ ... ∪ C(βk)).
(c) If p ∈ C(βi),and d = dist(p, ∂C(βi)), then

sinh(inj(p;h)) = cosh
1

2
ℓ(βi) cosh d− sinh d.(13)
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Definition 2.6. Let Σ be a closed Riemann surface. Let h be a metric of
constant curvature 0,±1 on Σ. Let γ ⊂ Σ be a simple closed geodesic in
Σ. In Theorem 2.4, C(γ) was defined when genus(Σ) > 1. We extend the
definition to the case genus(Σ) ≤ 1 by letting

ρmax = max
{p∈Σ}

d(p, γ),

and

C(γ) = {p ∈ Σ|d(p, γ) < ρmax}.
When genus(Σ) = 0, this is the sphere with two antipodes removed. It is

also easy to verify that when genus(Σ) = 1, this is a torus with a geodesic
parallel to γ removed. Global cylindrical coordinates ρ and θ are defined
on C(γ) in the same way as for genus(Σ) > 1. Namely, ρ(p) = d(p, γ;h)
for any p ∈ C(γ) and θ maps lines of constant ρ to S1 isometrically up to
multiplication with an overall constant.

2.3. Cleanness.

Lemma 2.7. Let Σ be a Riemann surface and let I1 and I2 be clean subsets
of ΣC. Then I1∪ I2 is clean if and only if at least one of the following holds:

(a) I1 and I2 are conjugation invariant.
(b) Ii ∩ Ij = ∅ for 1 ≤ i, j ≤ 2.

(c) I1 = I2.
(d) I1 ⊂ I2 or I2 ⊂ I1.

Proof. If condition (a) holds then I1 ∪ I2 is conjugation invariant and there-
fore clean. If condition (b) holds then

I1 ∪ I2 ∩ I1 ∪ I2 =
⋃

1≤i,j≤2

Ii ∩ Ij = ∅.

So, I1 ∪ I2 is again clean. That conditions (c) and (d) imply cleanness of
I1 ∪ I2 is obvious.

Conversely, suppose I1 ∪ I2 is clean. We divide into the case where I1
is conjugation invariant and the case where it is not. If I1 is conjugation
invariant then in particular I1 ∪ I2 ∩ I1 ∪ I2 6= ∅. So, by cleanness, I1 ∪ I2 =
I1 ∪ I2. Now, if condition (d) holds we are done. So we may assume that
I2 \ I1 6= ∅. Let p ∈ I2 \ I1. Then, since I1 = I1, p ∈ I1 ∪ I2 \ I1 ⊂ I2. In
particular, I2 ∩ I2 6= ∅. By cleanness of I2 this implies I2 is also conjugation
invariant, so condition (a) holds.

Next we consider the case where I1 is not conjugation invariant. If I2
is conjugation invariant, exchanging the roles of I1 and I2 in the previous
paragraph we deduce that condition (d) holds and we are done. Suppose
now that I2 is not conjugation invariant and consider I1 ∪ I2. If I1 ∪ I2 is
conjugation invariant, cleanness and non conjugation invariance of I1 and
I2 imply that

I1 ⊂ I2 \ I1 ⊂ I2



A THICK-THIN DECOMPOSITION OF J-HOLOMORPHIC CURVES 13

and, similarly, I2 ⊂ I1. By conjugation invariance of the inclusion of sets,
this implies Condition (c). If, on the other hand, I1 ∪ I2 is not conjugation
invariant, cleanness implies that I1 ∪ I2 ∩ I1 ∪ I2 = ∅. So Condition (b)
holds. �

Lemma 2.8. Let Σ be a connected Riemann surface with non-empty bound-
ary. Let g = genus(ΣC) and let γ ⊂ ΣC be a simple closed geodesic in ΣC.

(a) For g ≥ 2, C(γ)2 is clean if ℓ(γ) < 2 sinh−1(1).
(b) For g ≤ 1, C(γ) is clean if and only if either γ ⊂ ∂Σ, or

γ ∩ ∂Σ 6= ∅
and γ ⊥ ∂Σ.

Proof. (a) Since conjugation is an isometry we have that γ is also a

simple closed geodesic, ℓ(γ) = ℓ(γ) and C(γ) = C(γ). From Theorem

2.4(c) it therefore follows that C(γ)∩C(γ) 6= ∅ if and only if γ∩γ 6= ∅.
Thus it suffices to prove that γ is clean for γ short enough. Suppose
γ ∩ γ 6= ∅. If γ 6= γ then γ intersects γ transversally. Therefore, by
[2, 4.1.2], ℓ(γ) ≥ 2 sinh−1(1).

(b) By definition of C(γ) for this case, it is open and dense in Σ. There-

fore, we always have C(γ) ∩ C(γ) 6= ∅. Thus, C(γ) is clean if and
only if C(γ) is conjugation invariant. That is, since conjugation is
an isometry, if and only if γ = γ. We claim that this is equivalent
to the condition of the Lemma. For this it suffices to show that if
γ 6⊂ ∂Σ, then γ = γ if and only if γ ∩ ∂Σ 6= ∅ and γ ⊥ ∂Σ.

Indeed, if γ ∩ ∂Σ = ∅, then since γ is connected it is contained in
one component Σ \ ∂Σ and is thus not conjugation invariant. So we
assume γ ∩ ∂Σ 6= ∅. Let p ∈ γ ∩ ∂Σ and let v be a vector tangent
to γ at p. Since p is fixed under conjugation and since both γ and
γ are geodesics, we have that γ = γ if and only if v is also tangent
to γ at p. But γ intersects ∂Σ transversally since they are distinct
geodesics. Therefore v 6= v. Since Tpγ is one dimensional it follows
that v is tangent to γ if and only if v = −v. That is, v is tangent
to γ if and only if v points in the direction of the imaginary axis in
TpΣC. Since Tp∂Σ is the real axis, the claim follows.

�

Lemma 2.9. Let Σ be a Riemann surface. Let I1 and I2 be doubly connected
and clean subsets of ΣC which do not contain a component of ∂Σ. Suppose
I1 →֒ I2 homologically nontrivially. Then I2 is conjugation invariant if and
only if I1 is conjugation invariant.

Proof. First we claim that I1 is conjugation invariant if and only if each
component of I1 \ ∂Σ is simply connected. Assume I1 is not conjugation
invariant. Then since I1 is clean, we have I1 \ ∂Σ = I1. So, I1 is the only

2See Definition 2.6.
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connected component and is not simply connected. Conversely, assume I1
is conjugation invariant. Suppose by contradiction that for one component
A of ΣC \ ∂Σ, there is a component of I1 ∩A that is not simply connected.
Since I1 ∩ A is isometric to I1 ∩ A, it is homotopy equivalent to it. Since
I1 does not contain any component of ∂Σ, each component of I1 ∩ ∂Σ is
contractible. Thus the Mayer Vietoris sequence implies that I1 is at least
two connected. This is a contradiction.

Now we prove the lemma. Assume I1 is not conjugation invariant. Then
since I1 is clean, we have I1 ∩ I1 = ∅. Since I2 ⊂ I1, this implies I2 ∩ I2 = ∅.
Conversely, assume by contradiction that I1 is conjugation invariant and I2
is not. Let A be the connected component of ΣC containing I2. I2 is then
contained in I1 ∩ A which by the previous paragraph is simply connected.
This contradicts the fact that I2 is embedded non-trivially in I1. �

3. Thick thin measure

For the rest of the discussion, fix constants c1, c2, c3, δ1, δ2 > 0 such that
c3 ≤ 1 and that δ2 <

1
2δ1.

Definition 3.1. Let (Σ, j) be a Riemann surface, possibly bordered. Let
µ be a finite measure on Σ and extend µ to a measure on ΣC by reflection.
That is,

µ(U) := µ(U),

for U ⊂ Σ a measurable set. Suppose further that µ is absolutely continuous
and has a continuous density dµ

dνh
, where h is any Riemannian metric on ΣC.

The measure µ will be called thick thin if it satisfies the following two
conditions.

(a) gradient inequality. Let U ⊂ ΣC be biholomorphic to the unit
disk such that U ∩ ∂Σ is connected, and let z ∈ U . Then for any
conformal metric h on (ΣC, j),

µ(U) < δ1 ⇒ dµ

dνh
(z) ≤ c1

µ(U)

r2conf
,(14)

where rconf = rconf (U, z;h).
(b) cylinder inequality. Let I ⊂ ΣC be clean and doubly connected

such that Mod(I) > 2c2. Then for all t ∈
(

c2,
1
2Mod(I)

)

we have,

µ(I) < δ2 ⇒ µ(C(t, t; I)) ≤ e−c3tµ(I).

A family of measured Riemann surfaces which are thick thin with respect
to given constants ci, δi will be referred to as a uniformly thick thin family.

Remark 3.2. Let µ be a thick thin measure on Σ, and let h be a conformal
metric of constant curvatureK = 0,±1 on ΣC. By inequalities (11) and (12),
there is a constant c′1 depending linearly on c1 such that for any z ∈ Σ and
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r ∈ (0,min(sinh−1(1), inj(Σ;h, z))),

µ(Br(z;h)) < δ1 ⇒
dµ

dνh
(z) ≤ c′1

µ(Br(z;h))

r2
.(15)

Let Σ, µ and h be as in Remark 3.2. For any point z ∈ ΣC, let d = dµ
dνh

(z)

and let

rd :=

√

c′1δ1
d
.(16)

Lemma 3.3. Suppose

rd ∈ (0,min(sinh−1(1), inj(Σ;h, z))).

Then
µ(Brd(z;h)) ≥ δ1.

Moreover, we have

dµ

dνh
(z) ≤ c′1

µ(Br(z;h))

r2
, r ≤ rd.

Proof. This is immediate from the gradient inequality. �

To simplify our formulas, we scale µ so that c′1δ1 = 1.
We denote by M = M(c1, c2, c3, δ1, δ2) the family of measured Riemann

surfaces (Σ, j, µ) such that µ is thick-thin.

Lemma 3.4. There is a constant a with the following significance. Let
(Σ, µ) ∈ M. Let I ⊂ ΣC be clean and doubly connected, and let h = hst.
Suppose µ(I) < δ2. Let z ∈ C(c2 + π, c2 + π; I) be a point with cylindrical
coordinates

(ρ, θ) ∈
[

−1

2
Mod(I) + c2 + π,

1

2
Mod(I)− c2 − π

]

× S1.

Then,

dµ

dνh
(z) < ae−c3(

1
2
Mod(I)−|ρ|)µ(I).(17)

Proof. Combining the gradient inequality and the cylinder inequality,

dµ

dνh
(z) ≤ c1

π2
µ
(

[ρ− π, ρ+ π]× S1
)

(18)

≤ c1
π2
µ
(

[−|ρ| − π, |ρ|+ π]× S1
)

≤ c1
π2
e−c3(

1
2
Mod(I)−π−|ρ|)µ(I).

�

Definition 3.5. Let (Σ, µ) ∈ M. A connected compact sub-manifold with
boundary A ⊂ ΣC is said to be µ-stable if one of the following holds:

(a) µ(A) ≥ δ1/2;
(b) #π0(∂A) ≥ 2 and µ(A) ≥ δ2/6;
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(c) 2 genus(A) + #π0(∂A) ≥ 3.

A compact sub-manifold with boundary A ⊂ ΣC is said to be µ-stable if
each of its connected components is µ-stable.

4. Preparation

4.1. Choice of spherical metric. As explained in Remark 1.7, the genus
0 case requires a non-trivial choice of Fubini-Study metric. This is done in
the following lemma.

Lemma 4.1. There is a constant K0 with the following property. For each
(Σ, µ) ∈ M with genus(ΣC) = 0 and µ(ΣC) 6= 0, there exists a conjugation
invariant unit curvature Fubini-Study metric, h, on ΣC such that one of the
following conditions holds.

(a)

sup
ΣC

dµ

dνh
≤ K0.

(b) There is a point q ∈ Σ such that

µ(Bπ/2(q;h)) ≥ δ1

and
dµ

dνh

∣

∣

∣

Bπ/2(q;h)
≤ K0.

Furthermore, if ∂Σ 6= ∅, then q ∈ ∂Σ.
(c) ∂Σ 6= ∅. Use h to identify ΣC with the standard sphere in such a

way that ∂Σ is identified with the equator and let q be the north pole.
Letting d := dµ

dνh
(q), we have rd ≤ π/4, and

sup
x∈Brd

(q)

dµ

dνh
(x) ≤ K0d.

Furthermore, for any disc D ⊂ ΣC of radius min

{

√

δ1/2
πK0

, π/4

}

, the com-

plement ΣC\D is stable.

Remark 4.2. When ∂Σ = ∅ we have that ΣC has two components: Σ and
Σ. The conjugate component is if no interest. In the sequel we shall avoid
talking about ΣC in the closed context.

Remark 4.3. The three cases are correspond to the quantitative counterparts
of the possible behaviors of the Gromov limit of a sequence of genus 0 curves:

(a) No bubbling.
(b) Bubbling off of spheres or disks without the boundary degenerating.
(c) Bubbling in which the boundary degenerates to a point.
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Proof. Choose initially any conjugation invariant unit curvature metric h0
on ΣC. Let p ∈ Σ be a point where the maximum of dµ

dνh0
is obtained, and

let

d0 :=
dµ

dνh0
(p).

If rd0 > π/6, then the estimate

dµ

dνh0
≤ 36

π2
,

holds globally. Thus, condition (a) holds with K0 =
36
π2 .

Assume

(19) rd0 ≤ π/6.

If ∂Σ = ∅, let p1 := p. Otherwise, let p1 be the midpoint of a length
minimizing geodesic which connects p and p. Let p2 be the antipode of p1
with respect to h0. With respect to h0, let

(ρ, θ) : ΣC \ {p2} → C

be geodesic polar coordinates centered at p1. In case ∂Σ = ∅, assume further
that ∂Σ \ {p2} is given by {θ = 0}. Let φ : ΣC \ {p2} → C be stereographic
projection. Explicitly, in polar coordinates φ is given by

(20) (ρ, θ) 7→ tan
ρ

2
eiθ.

Note that p and p are mapped by φ to the imaginary axis.
Let r = d(p, p1;h0). Suppose first that

(21) r < 2rd0 .

We prove that condition (b) holds. Let χ : C → C be the map

z 7→ z

tan
(

r+rd0
2

) .

Let ψ : ΣC → ΣC be the holomorphic map defined by

ψ
∣

∣

ΣC\p2
= φ−1 ◦ χ ◦ φ,

and let h1 := ψ∗h0. Note that the change of metric from h0 to h1 scales the
disc of radius r + rd0 around p1 to become the hemisphere centered at p1.
In particular, Brd0 (p;h0) ⊂ Bπ/2(p1;h1). So, by Lemma 3.3,

µ(Bπ/2(p1;h1)) ≥ δ1.

We show now that the energy density is bounded on the hemisphere centered
at p1, uniformly in M. First note that for any z ∈ ΣC,

dµ

dνh1
(z) =

dµ

dνh0
(z)

dνh0
dνh1

(z) = ‖dψ‖−2
h0

(z)
dµ

dνh0
(z).(22)
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A computation gives

‖dψ‖h0(x) =
tan

r+rd0
2

cos2(ρ(x)/2) tan2 r+rd0
2 + sin2(ρ(x)/2)

.(23)

Assumptions (19) and (21) imply that ‖dψ‖−1
h0

increases with distance

from p1 on the ball Bπ/2(p1;h1). In particular,

(24) sup
Bπ/2(p1;h1)

‖dψ‖−1
h0

= sin(r + rd0).

Using equations (21), (22), and the definition of rd0 , we get

sup
Bπ/2(p1;h1)

dµ

dνh1
≤ K0,

for an appropriate constant K0 which is independent of µ. This is condi-
tion (b) with h = h1 and q = p1.

Now suppose

(25) r ≥ 2rd0 .

Let χ : C → C be the map

z 7→ z

tan( r2)
.

Let ψ : ΣC → ΣC be the holomorphic map defined by

ψ
∣

∣

ΣC\{p2}
= φ−1 ◦ χ ◦ φ,

and let h1 := ψ∗h0. Write d2 :=
dµ
dνh1

(p), A := Brd2 (p;h1), and

C :=
‖dψ‖2h0(p)

infw∈A ‖dψ‖2h0(w)
.

Then we have the bound
dµ

dνh1

∣

∣

∣

A
≤ Cd2.

Note that ‖dψ‖h0 is obtained by substituting r in place of r + rd0 in
equation (24), and that r ≤ π/2. Therefore, ‖dψ‖h0 is decreasing for ρ(x) ∈
[0, π]. Let x0 be the point which maximizes ρ(x) on A. One computes that

C =
cos2(ρ(x0)/2)

2 cos2 r/2
+

sin2(ρ(x0)/2)

2sin2(r/2)
.

To bound C it suffices to bound the ratio ρ(x0)
r . By direct computation,

ρ(x0) = 2 tan−1

(

tan
r

2
tan

π/2 + rd2
2

)

.

Note now that rd2 =
rd0
sin r . Using assumption (25) and the fact the function

r 7→ r
2 sin r is monotone increasing for 0 < r < π and that r ≤ π/2, we

conclude that rd2 ≤ π/4. Thus, ρ(x0)
r ≤ C ′ for some uniform constant
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C ′. There is therefore an a priori constant K0 bounding C. This gives
condition (c) with h = h1 and q = p.

We prove the last part of the claim. Suppose condition (a) holds. As is
well known, the gradient inequality implies

µ(ΣC) 6= 0 ⇒ µ(ΣC) ≥ δ1.

It is straightforward to verify that µ(D) ≤ δ1/2, implying the claim. If
condition (b) holds, one similarly verifies that

µ(D ∩Bπ/2(q;h)) ≤ δ1/2.

So, for each component3 Σ′ of ΣC,

µ(Σ′ \D) ≥ µ(Bπ/2(q;h) \D) ≥ δ1/2.

Suppose now that condition (c) holds. Then D meets at most one of the
discs B1 = Brd(q;h) and B2 = Brd(q;h). By Lemma 3.3, µ(Bi) ≥ δ1 for
i = 1, 2. �

4.2. Admissible annuli. From now to Section 6, we fix a (Σ, µ) ∈ M.
However, all constants are that appear in the sequel are independent of Σ
and µ. Let

Σ′ =

{

Σ, ∂Σ = ∅,
ΣC, ∂Σ 6= ∅.

If genus(Σ′) ≥ 2, let h be the unique conformal metric of constant curvature
−1 on Σ′. If genus(Σ′) = 1, let h be the unique conformal metric of constant
curvature 0 and of unit area. Finally, if genus(Σ′) = 0, let h be a conformal
metric of constant curvature 1 which satisfies the property of Lemma 4.1.

Our goal in the following three sections is to construct a (µ, h)-adapted
bubble decomposition of ΣC. We make the following assumption

Assumption 4.3.1. (Σ, µ) satisfies one of the following:

(a) genus(Σ′) = 0 and h does not satisfy condition (a) in Lemma 4.1.
(b)

genus(Σ′) = 1, and µ(Σ′) > δ2.

(c)

genus(Σ′) > 1.

The cases not covered Assumption 4.3.1 are referred to as the trivial

cases. The genus 0 trivial case automatically admits a (µ, h)-adapted bubble
decomposition and requires no treatment. The trivial genus 1 case will be
treated separately in the proof of Theorem 1.6.

We need to partially break the symmetry in the cases of genus 0 and
1 in Definition 4.4 below. For this we introduce some notation. Suppose
genus(Σ′) = 0. If in Lemma 4.1 condition (b) holds for h, let q be the point

3See remark 4.2.
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given there and let Σ̃ := Σ′\{q}. If, instead, condition (c) holds, let q be the

point given there and let Σ̃ := Σ′ \ {q, q}. For genus(Σ′) ≥ 1, let Σ̃ := Σ′.

Suppose now genus(Σ̃) = 1. Our normalization of h implies there is at

most one element of H1(Σ̃;Z) which is represented by a simple geodesic of
length less than 1. Suppose such a class exists, and denote it by A. Pick
closed geodesics α0 and α1 representing A as follows. If ∂Σ 6= ∅ and the
components of ∂Σ represent A, let α0 and α1 be the components of ∂Σ.
Otherwise, let I0 be a sub-cylinder maximizing the modulus among all the
subcylinders I such that µ(I) = δ2/6 and each component of ∂I represents
A. Fix a biholomorphism

f : I →
[

−1

2
Mod(I0),

1

2
Mod(I0)

]

,

and let α0 := f−1({0}×S1). Let α1 be the geodesic whose image is Σ̃\C(α0).
I0 will play a role in the construction of the bubble decomposition. We
therefore define it also when ∂Σ 6= ∅. In this case, define I0 ⊂ C(α0) to be
a conjugation invariant sub-cylinder containing α0 and satisfying µ(I0) =
δ2/6.

Definition 4.4. An admissible annulus is a doubly connected clean open
I ⊂ Σ̃ of one of the following forms:

(a) There is a point z ∈ Σ̃ and positive reals r ∈ (0, 13 inj(Σ̃;h, z)] and

r′ ∈ (0, 15r] such that I = A(r, r′, z;h). Furthermore, I is contractible

in Σ̃4.
(b) In case genus(Σ̃) = 1 assume α1 is defined. In case genus(Σ̃) = 0

assume ∂Σ 6= ∅. There is a simple closed geodesic γ ⊂ Σ̃ satisfying










ℓ(γ) < 2 sinh−1(1), genus(Σ̃) > 1,

γ = α1, genus(Σ̃) = 1,

γ = ∂Σ, genus(Σ̃) = 0

such that I is an open sub-cylinder5 of C(γ)6.
If I is of the type (a) it will be referred to as a trivial admissible annulus.
Otherwise, it will be referred to a non trivial admissible annulus. We will
also use the term admissible cylinder for nontrivial annuli. We denote by
Ah the collection of admissible annuli both trivial and non trivial.

When genus(Σ̃) = 1 and α0 is defined, we will also use the notation Âh

for the union of Ah with the set of sub-cylinders of C(α0). In all other cases,

Âh := Ah.

Remark 4.5. Note that an admissible trivial annulus is uniquely repre-
sentable as the difference between two discs in Σ̃. Henceforth, whenever

4This is of course redundant when genus(Σ̃) > 0.
5See Definition 2.2
6See Definition 2.6
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we represent an admissible annulus I as the difference I = B \ B′, it is

intended that B′ ⊂ Σ̃.

Remark 4.6. Recall our notation C(a, b; I) for an annulus I and reals a, b.
When a 6= b this notation is well defined only up to a holomorphic reflection
since it depends on the choice of holomorphic parametrization

(ρ, θ) : [0,Mod(I)] × S1 → I.

We adopt the convention that for a trivial annulus I = B \ B′, ρ increases
as the distance to the center of B1 increases. For nontrivial annuli we as-
sume that for each simple closed geodesic we fixed a choice of holomorphic
parametrization of C(γ) by

[0,Mod(C(γ))] × S1

once and for all. This induces a choice for all the admissible nontrivial
annuli.

4.3. Topological relatedness.

Definition 4.7. Let I1, I2 ∈ Ah. We say that I1 and I2 are topologically

related if there exists a doubly connected clean I ⊂ Σ̃ such that both I1
and I2 are nontrivially embedded in I.

Theorem 4.8. Let I1, I2 ∈ Ah. I1 and I2 are topologically related if and
only if one of the following holds:

(a) There is a simple closed geodesic γ such that C(γ) is clean and both I1
and I2 are sub-cylinders of C(γ). Furthermore, when genus(Σ̃) = 1,

we have that α1 is defined and that γ = α1. When genus(Σ̃) = 0,
we have that ∂Σ 6= ∅ and γ = ∂Σ.

(b) There are concentric geodesic discs B′
i ⊂ Bi ⊂ Σ̃ such that Ii =

Bi\B′
i, for i = 1, 2. Furthermore,

(i) B′
1 ∩B′

2 6= ∅,
(ii) I1 ∪ I2 is clean.

To prove Theorem 4.8 we first prove the following Lemmas some of which
will also be used later.

Lemma 4.9. Let I = B \ B′ be an admissible trivial annulus. Then both
B and B′ are clean. Furthermore, I is conjugation invariant if and only if
both B and B′ are.

Proof. If I ∩ I = ∅ there is a component A of Σ̃ \ ∂Σ such that I ⊂ A.
Suppose by contradiction that B 6⊂ A then B ∩ ∂Σ 6= ∅. Since ∂B ⊂ ∂I this
implies there is a component of ∂Σ contained in B. When genus(Σ̃) > 0
this is a contradiction since B is contractible whereas each component of ∂Σ
is a closed geodesic. When genus(Σ̃) = 0 it is straightforward to verify by
definition that I cannot be admissible. Thus B ∩B = ∅. Since B′ ⊂ B the
same is true for B′.
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If I = I then ∂I is conjugation invariant. Thus, either each component
of ∂I is conjugation invariant, or each component of ∂I is contained in
different component of Σ̃\∂Σ. But this latter case is ruled as in the previous
paragraph. In particular we get that ∂B and ∂B′ are each conjugation
invariant. So, the same is true for B and B′. Thus we have proven the first
part of the lemma and one direction of the second part. The other direction
is obvious. �

Lemma 4.10. Let pi ∈ Σ̃ and ri ∈ (0, 13 inj(Σ̃;h, pi)) and write Bi =
Bri(pi;h) for i = 1, 2. If B1 ∩B2 6= ∅, then

(a) B1 ∪B2 is contained in a geodesic disc.
(b) The closure of B1 ∩B2 is homeomorphic to the closed disc.
(c) The closure of B1 ∪B2 is homeomorphic to the closed disc.

Proof. Let

r = inj(Σ;h, p1),

and without loss of generality assume

r ≥ inj(Σ;h, p2).

Then r2 <
1
3r and so, since d(p1, p2) ≤ r1 + r2 <

2
3r, we have

B1 ∪B2 ⊂ Br(p1).

This gives part (a). Since the curvature is constant, the sizes of the ri imply
that the balls Bi are geodesically convex. Thus, B1∩B2 is geodesically con-
vex and therefore simply connected. It follows from Van Kampen’s theorem
that B1 ∪B2 is also simply connected. Clearly, the closures of B1 ∪B2 and
B1∩B2 are topological surfaces with boundary. Parts (b) and (c) follow. �

Lemma 4.11. Let Ii = A(ri, r
′
i; pi) ∈ Ah for i = 1, 2. Suppose

Bc
r′1
(p1) ∩Bc

r′2
(p2) 6= ∅.

Let

I = Br1(p1) ∪Br2(p2) \Bc
r′1
(p1) ∩Bc

r′2
(p2).

Then I is doubly connected. Furthermore, if I1 ∪ I2 is clean, so is I.

Proof. Write Bi = Bri(pi) and B′
i = Bc

r′i
(pi) for i = 1, 2. By Lemma 4.10

parts (b) and (c), B′
1∩B′

2 is homeomorphic to the closed disc and B1∪B2 is
homeomorphic to the open disc. Denoting by Ic the closure of I, the Mayer
Vietoris sequence implies that H1(I

c;Z) = Z. The only orientable surface
with boundary satisfying this is the annulus.

To see that I is clean if I1 ∪ I2 is, distinguish between the possibilities for
I1 and I2 according to Lemma 2.7.

(a) Ii is conjugation invariant for i = 1, 2. By Lemma 4.9, so are Bi and
B′
i and therefore, so is I.
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(b) Ii ∩ Ij = ∅ for i, j = 1, 2. By Lemma 4.9, Bi ∩ Bi = ∅. Since

B1 ∩ B2 6= ∅, B1 and B2 belong to the same component of Σ̃ \ ∂Σ.
Therefore, I ⊂ B1 ∪ B2 belongs to one component of Σ̃ \ ∂Σ. In
particular, I ∩ I = ∅.

(c) I1 = I2. We claim that I1 is conjugation invariant and so I = I1 =
I2. Indeed if I1 is not conjugation invariant, then Lemma 4.9 implies

B′
1 is clean and not conjugation invariant. So, B′

1∩B
′
1 = ∅. But since

I1 = I2, B
′
1 = B′

2. We thus get a contradiction to the assumption
B′

1 ∩B′
2 6= ∅.

(d) Without loss of generality I1 ⊂ I2. In this case it is clear that
B′

2 ⊂ B′
1, so I = I2.

�

Proof of Theorem 4.8. Assume Condition (a) holds. Then C(γ) plays the
role of I in Definition 4.7. Assume Condition (b), holds and let

I = B1 ∪B2 \ (B′
1 ∩B′

2).

By Lemma 4.11, I is clean and doubly connected. Clearly, Ii is nontrivially
embedded in I for i = 1, 2. Thus I1 and I2 are topologically related.

Conversely, let I1 and I2 be embedded nontrivially in a clean I ⊂ Σ̃. I1
and I2 are homologous in I to a homology generator of I. This implies that
I1 and I2 are either both trivially embedded or both nontrivially embedded
in Σ̃. These correspond to the cases where I is embedded trivially and
nontrivially respectively.

In the first case, if genus(Σ̃) ≤ 1 the only non-trivial annuli are the sub-

cylinders of C(α1) and C(∂Σ) which are clean. If genus(Σ̃) > 1, there are
simple closed geodesics γi, for i = 1, 2, such that Ii is a sub-cylinder of C(γi).
We have that γi is freely homotopic to any component of ∂Ii which in turn
is freely homotopic to any component of ∂I. So γ1 is freely homotopic to
γ2. Since there is a unique simple closed geodesic in each free homotopy
class, this implies γ1 = γ2. Clearly, ℓ(γ) < 2 sinh−1(1) since C(γ) contains
admissible cylinders as sub cylinders. Therefore, by Lemma 2.8, C(γ) is
clean.

Now consider the case where Ii are trivial for i = 1, 2. Then I must be
trivially embedded in Σ̃. Since Σ̃ is not a sphere, Σ̃ \ I has exactly one
component A with the topology of a disc. Clearly, A ⊂ B′

1 ∩B′
2. This gives

the first part of (b). Now, if I ∩ I = ∅ then clearly I1 ∪ I2 ⊂ I is clean. If I
is conjugation invariant then by Lemma 2.9, so are I1 and I2. This implies
that so is I1 ∪ I2, giving the second part of (b). �

Let I1 and I2 be topologically related. We associate with I1 and I2 two
clean doubly connected sub-surfaces M(I1, I2) and m(I1, I2) in which both
are non-trivially embedded. One should think of M(I1, I2) as the minimal

annulus in Σ̃ in which I1 and I2 are nontrivially embedded. On the other
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hand, m(I1, I2) should be thought of as the maximal admissible annulus
which is nontrivially embedded in M(I1, I2).

Formally, the definitions are as follows. When I1 an I2 are sub-cylinders
of C(γ) for a simple closed geodesic γ, suppose that Ii is given in (ρ, θ)
coordinates7 by

Ii := {z ∈ C(γ)|ρ0,i < ρ(z) < ρ1,i} .
Let ρ0 = min {ρ0,1, ρ0,2} , ρ1 = max {ρ1,1, ρ1,2}, ρ = max {|ρ0|, |ρ1|}. Define

M(I1, I2) :=

{

{z ∈ C(γ)| − ρ < ρ(z) < ρ} , γ ⊂ ∂Σ and 0 ∈ [ρ0, ρ1],

{z ∈ C(γ)|ρ0 < ρ(z) < ρ1} , otherwise.

When I1 and I2 are trivial, write Ii = Bi \B′
i and take

M(I1, I2) := B1 ∪B2 \B′
1 ∩B′

2.

We now define m(I1, I2). If I1 and I2 are nontrivial take m(I1, I2) :=
M(I1, I2). Otherwise, suppose Ii = Bri(pi) \ Bc

r′i
(pi) and assume without

loss of generality that r2 ≤ r1. Then define

m(I1, I2) := A
(

d(p2, ∂B1;h), r
′
2, p2;h

)

.

Lemma 4.12. M(I1, I2) and m(I1, I2) are clean and doubly connected.

Proof. That M(I1, I2) is clean and doubly connected follows from the def-
inition, from Theorem 4.8, and from Lemma 4.11. To prove the same for
m(I1, I2) we may assume I1 and I2 are trivial as otherwise m(I1, I2) =
M(I1, I2). Clearly, m(I1, I2) is doubly connected. We show that it is clean.

If m(I1, I2) ∩ m(I1, I2) = ∅, we are done. Otherwise, let Ii = Bi \ B′
i for

i = 1, 2. We claim that B1 and B2 are each conjugation invariant. Indeed,
since m(I1, I2) ⊂ B1 ∪ B2, we have that B1 ∪ B2 meets ∂Σ. Without loss
of generality, B1 meets ∂Σ. Since by Lemma 4.9 B1 is clean, it must be
conjugation invariant. Thus, I1 meets ∂Σ. So, I1 is conjugation invariant.
By definition of topological relatedness and by Lemma 2.9, I2 is also con-
jugation invariant. By Lemma 4.9 again, B2 is conjugation invariant. In
particular, the centers p1, p2 of B1 and B2 lie on ∂Σ. It is now clear by
construction that m(I1, I2) is conjugation invariant. �

Lemma 4.13. Suppose the pairs (I1, I2) and (I2, I3) are topologically related.

(a) If Ii is trivial for i = 1, 2, 3, then

M(I1, I3) ⊂M(I1, I2) ∪M(I2, I3).

(b) If Ii is nontrivial for i = 1, 2, 3, then one of the following holds.
(i) M(I1, I3) ⊂M(I1, I2) ∪M(I2, I3),

(ii) M(I1, I3) ⊂M(I1, I1) and M(I2, I3) =M(I2, I3).

(iii) M(I1, I3) ⊂M(I3, I3) and M(I1, I2) =M(I1, I2).

Proof. (a) This is straightforward set theory.

7See the discussion subsequent to Definition 2.6.



A THICK-THIN DECOMPOSITION OF J-HOLOMORPHIC CURVES 25

(b) By Theorem 4.8 there is a simple closed geodesic γ such that

Ii = {z ∈ C(γ)|ρ0,i < ρ(z) < ρ1,i} ,
for i = 1, 2, 3. Suppose without loss of generality that

ρ0,1 ≤ ρ0,3.

Assume

(26) M(I1, I3) 6⊂M(I1, I2) ∪M(I2, I3).

Considering the definition of M(·, ·), this assumption implies that
γ ⊂ ∂Σ and that

(27) ρ0,1ρ1,3 < 0.

We claim, further, that

(28) ρ0,1 ≤ ρ0,2 < ρ1,2 ≤ ρ1,3.

Indeed, if ρ1,2 > ρ1,3 then combining the definition of M(·, ·) and
inequality (27) it would follow thatM(I1, I3) ⊂M(I1, I2). Similarly,
if ρ0,2 < ρ0,1 we would get that M(I1, I3) ⊂ M(I2, I3). Now, if
|ρ0,1| ≥ |ρ1,3|, inequality (28) implies condition (ii). Indeed, the
first part of condition (ii) is immediate. Furthermore, we must have
in this case ρ0,2ρ1,3 < 0 for otherwise we would have M(I1, I2) =

M(I1, I1). By the first part of condition (ii) this would contradict
equation (26). Thus M(I2, I3) meets ∂Σ. Since M(I2, I3) is clean,
this implies M(I2, I3) is conjugation invariant. If |ρ0,1| ≤ |ρ1,3| we
get condition (iii) by switching the roles of I1 and I3.

�

Lemma 4.14. Suppose I1 and I2 are topologically related. Then I1 is con-
jugation invariant if and only if I2 is.

Proof. If I1 is conjugation invariant then by Lemmas 4.12 and 2.9 it follows
thatM(I1, I2) is conjugation invariant. Again applying Lemma 2.9 it follows
that I2 is conjugation invariant. The converse is obtained by exchanging the
roles of I1 and I2. �

Lemma 4.15. For i = 1, 2, 3 let Ii be admissible annuli. Write Ii = Bi \B′
i

where B′
i is a clean closed disc, Bi a clean open disc and B′

i is concentric with
Bi. Suppose that the pairs (I1, I2) and (I2, I3) are topologically related. If
B′

1 *M(I2, I3) and B
′
3 *M(I1, I2) then I1 and I3 are topologically related.

Proof. We show first that I1∪ I3 is clean. If I1 is conjugation invariant then
by Lemma 4.14 so is I3. If I1 is not conjugation invariant then there is a
component A of Σ̃\∂Σ which contains I1. By Theorem 4.8(b), B′

2∩B′
1 6= ∅.

Since I2 is not conjugation invariant it follows that I2 ⊂ A. By repeating
this argument, I3 ⊂ A. Thus I1 ∪ I3 is clean.
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We now wish show that B′
1 ∩ B′

3 6= ∅. For this we show first that either
B′

1 ⊂ B2∪B3 or B
′
3 ⊂ B1∪B2. By Theorem 4.8, B′

1∩B′
2 6= ∅ and B′

2∩B′
3 6= ∅.

That is,

d(p1, p2) ≤ r′1 + r′2

and

d(p2, p3) ≤ r′2 + r′3.

Let now x ∈ B′
1. Then

d(x, p2) ≤ d(x, p1) + d(p1, p2) ≤ 2r′1 + r′2,

and

(29) d(x, p3) ≤ d(x, p1) + d(p1, p2) + d(p2, p3) ≤ 2r′1 + 2r′2 + r′3.

Suppose x 6∈ B2 ∪B3 then 2r′1 + r′2 > r2 ≥ 5r′2. This implies

(30) r′2 <
1

2
r′1.

Combining estimates (29) and (30) and the estimate r3 ≥ 5r′3, we get

(31) r′3 <
3

4
r′1.

On the other hand, for any x ∈ B′
3 we have

d(x, p1) ≤ d(x, p3) + d(p1, p3) ≤ r′3 + d(p1, p3).

Therefore, combining estimates (30) and (31),

d(p1, p3) ≤ r′1 + 2r′2 + r′3 < (2 +
3

4
)r′1 < r1 − r′3.

That is, B′
3 ⊂ B1 ⊂ B1 ∪B2 as claimed.

We use this to show that B′
1 ∩B′

2 ∩B′
3 6= ∅. Suppose by contradiction

(32) B′
1 ∩B′

2 ∩B′
3 = ∅.

Then in case B′
1 ⊂ B2 ∪B3, assumption (32) implies B′

1 ⊂M(I2, I3). Simi-
larly in case B′

3 ⊂ B1 ∪B2, assumption (32) implies B′
3 ⊂M(I1, I2). In any

case we get a contradiction to the assumptions of the lemma. �

4.4. Essential disjointeness.

Theorem 4.16. There is a constant K1 with the following significance. Let
I1, I2 ∈ Âh. Suppose C(K1,K1; I1) ∩ C(K1,K1; I2) 6= ∅. Then either Σ̃ is a
torus covered by I1 and I2, or

b1(I1 ∪ I2) ≤ 1.

Here for a topological space X, b1(X) denotes the first Betti number of X.

The proof of Theorem 4.16 spans this subsection.
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Definition 4.17. I1 and I2 are said to be essentially disjoint if

C(K1,K1; I1) ∩ C(K1,K1; I2) = ∅,
where K1 is a constant satisfying Theorem 4.16 that is fixed once and for
all. In later uses it will be convenient to assume further that K1 ≥ c2 + π.

Lemma 4.18. Let I1 and I2 be admissible nontrivial annuli. If

I1 ∩ I2 6= ∅
then each component8 of I1 ∩ I2 is a sub-cylinder of Ii for i = 1, 2.

Proof. By definition 4.4 there are simple closed geodesics γi such that Ii
is a sub-cylinder of C(γi) for i = 1, 2. First assume genus(Σ̃) > 1. The
assumption

I1 ∩ I2 6= ∅
and Theorem 2.4(c) imply that γ1 ∩ γ2 6= ∅. If γ1 intersects γ2 transversally
in a nonempty set then by [2, 4.1.1] there is an i ∈ {1, 2} such that ℓ(γi) ≥
2 sinh−1(1). This is contrary to the definition of admissibility. Since γ1 and
γ2 are geodesics which intersect non transversally, γ1 = γ2. The intersection
of sub-cylinders of a given cylinder is a sub-cylinder. Thus the claim follows.

Assume now that genus(Σ̃) = 0. Then by definition ∂Σ 6= ∅ and Ii are
both sub-cylinders of the C(∂Σ). So, the claim follows as before. Finally,

assume genus(Σ̃) = 1. We claim that γ1 is parallel to γ2. Indeed, the
alternative is that γ1 intersects γ2 transversally. But then

ℓ(γ1)ℓ(γ2) > Area(Σ;h) = 1 > sinh−1(1),

contradicting the admissibility of I1 and I2. This implies the claim. �

Lemma 4.19. Let I and B be a geodesic annulus and a geodesic disc,
respectively, in the hyperbolic disc, in the Riemann sphere, or in the flat
plane. Then b1(I ∪B) ≤ 1.

Proof. Suppose by contradiction otherwise. Then, by the Meyer Vietoris
sequence, I ∩ B has at least two components. In particular, there is a
boundary component of γ ⊂ ∂I such that γ ∩ ∂B consists of at least four
points. On the other hand, any two geodesic circles are also circles with
respect to the flat metric on the disc. Any two such circles intersect in at
must two points. A contradiction. �

Lemma 4.20. There is a constant K with the following significance. Let
I1 and I2 be admissible trivial annuli. Assume that b1(I1 ∪ I2) ≥ 2 Then

C(K,K; I1) ∩ C(K,K; I2) = ∅.
Proof. Write Ii = A(ri, r

′
i; pi), Bi = Bri(pi), and B

′
i = Bc

r′i
(pi) for i = 1, 2.

First assume B′
1 ∩B′

2 = ∅. Note that the assumption on I1 ∪ I2 implies

B′
i 6⊂ Bi mod 2+1.(33)

8The possibility of more than one component appears when genus(Σ̃) = 1.
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Indeed, suppose for example that B′
1 ⊂ B2 \B′

2 then

I1 ∪ I2 = I2 ∪B1.

By Lemma 4.19 this would imply b1(I1 ∪ I2) ≤ 1 contradicting the assump-
tion.

It follows that r1 < d(p1, p2) + r′2 and r2 < d(p1, p2) + r′1. The combi-
nation of these inequalities with the condition r′i ≤ 1

5ri in the definition of
admissibility implies that

d(p1, p2) >
2

5
(r1 + r2).(34)

Let now si = 2rid(p1,p2)
3(r1+r2)

for i = 1, 2. Write Ji = A(si, r
′
i; pi). By equa-

tion (34),

si >
1

5
ri ≥ r′i.

In particular, Ji 6= ∅. We have s1 + s2 < d(p1, p2), so

J1 ∩ J2 = ∅.(35)

It thus suffices to show that there is a universal constant K such that
C(K,K; Ii) ⊂ Ji for i = 1, 2. Write Li := A(ri, si; pi). Li is a sub-
cylinder of Ii, so Ii\Li = C(0,Mod(Li); Ii). Note that Ji = Ii \ Li, so
C(Mod(Li),Mod(Li); I) ⊂ Ji. It therefore suffices to uniformly bound
Mod(Li). We have

Mod(Li) =

∫ ri

si

dr

hθ(r)
(36)

We have either hθ(r) = sin(r) and ri ≤ π/2, or hθ(r) = r, or hθ(r) = sinh(r),
so we need only verify the boundedness of expression (36) when si → 0. But
si/ri ≥ 4

15 , so this is obvious.
Now assume B′

1 ∩ B′
2 6= ∅. First note that the assumption on I1 ∪ I2

implies that either B′
1 6⊂ B2 or B′

2 6⊂ B1. Indeed, otherwise

I1 ∪ I2 = B1 ∪B2 \B′
1 ∩B′

2.

By Lemma 4.11 we would then have that b1(I1 ∪ I2) = 1 in contradiction
to the assumption of the Lemma. Thus we may, without loss of generality,
assume B′

1 6⊂ B2. Since B′
1 ∩ B′

2 6= ∅, d(p1, p2) ≤ r′1 + r′2. On the other
hand , since B′

1 6⊂ B2, r2 ≤ d(p1, p2) + r′1. The combination of these two
inequalities implies that r2 ≤ 5

2r
′
1. We thus have

d(p1, p2) + r2 ≤ r′1 + r′2 +
5

2
r′1 ≤ 4r′1.

Therefore, letting J = A(4r′1, r
′
1; p1), we have (I1 \J)∩ I2 = ∅. On the other

hand
C(Mod(J),Mod(J); I1) ⊂ I1 \ J.

We have that Mod(J) is bounded from above by some constant K which is
independent of r′1. The claim follows. �
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Lemma 4.21. There is a constant K with the following significance. Let
I1 = A(r1, r

′
1; p) ∈ Ah be trivial and I2 ∈ Âh be nontrivial. Suppose I1 6⊂ I2.

Then I1 ∩ C(K,K; I2) = ∅.
Proof. First assume genus(Σ̃) ≥ 1. By definition, there is a simple closed
geodesic γ such that I2 is a sub-cylinder in C(γ). Recall the definition of
(ρ, θ) coordinates on C(γ). Write ρ0 = inf{ρ(z)|z ∈ I1 ∩ I2} and ρ1 =
sup{ρ(z)|z ∈ I1 ∩ I2}. Let I ⊂ C(γ) be given in (ρ, θ) coordinates by

{(ρ, θ)|ρ0 ≤ ρ ≤ ρ1}.
Denote by βi the components {ρ = ρi} of ∂I for i = 0, 1. Now note that

since Br1(p1) is a disc of radius r < 1
3 inj(Σ̃; p1), we have

ρ1 − ρ0 < sup
z∈I

inj(Σ̃; z).(37)

Indeed, this is obvious if p1 ∈ I. Otherwise, suppose without loss of gen-
erality that β0 lies between p1 and β1, and let p′ be the intersection of the
perpendicular from p1 with β0. Then Bρ1−ρ0(p

′) ⊂ Br(p1). In particular,

ρ1 − ρ0 < inj(Σ̃; p′). This establishes inequality (37).

Now, inj(Σ̃, ·) is either constant or has no local maximum in I. When

genus(Σ̃) > 1 this can be seen from relation (13). Else inj is constant.

We may therefore assume without loss of generality that inj(Σ̃, ·) attains
its supremum at ρ0 (we no longer make the assumption from the previous
paragraph about β0). By the assumption on the genus, β0 is not contractible.
Therefore,

inj(Σ; (ρ0, θ(·))) ≤
1

2
ℓ(β0) = πhθ(ρ0).

Thus, we have the estimate

Mod(I) ≤
∫ ρ0+πhθ(ρ0)

ρ0

dρ

hθ(ρ)
.

The last expression is bounded by a universal constant K. Indeed, in case
genus(Σ̃) = 1, hθ is constant and the bound is obvious. Otherwise, using

Theorem 2.4(d), the last expression is estimated by Ceℓ(γ)π cosh(ρ0) for an a
priori constant C. Using the definition of ρ0 and C(γ) we have

ℓ(γ)π cosh(ρ0) ≤ ℓ(γ)π cosh(w(γ)) ≤ C ′.

Here w(γ) is as defined in Theorem 2.4(c) and C ′ is an a priori constant.

When genus(Σ̃) = 0, C(γ) is an annulus in Σ̃ and the claim follows with
slight modification in the same way as Lemma 4.20. �

Proof of Theorem 4.16. Let K1 be a constant as in Lemmas 4.20 and 4.21.
Suppose C(K1,K1; I1) ∩ C(K1,K1; I2) 6= ∅. If I1 and I2 are both trivial
annuli, the theorem is just a restatement of Lemma 4.20. If both I1 and
I2 are nontrivial and ΣC is not a torus covered by I1 and I2, Lemma 4.18
implies I1 and I2 intersect in a sub-cylinder I. So, I1∪I2 is a sub-cylinder of
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C(γ) for some simple closed geodesic γ. In particular b1(I1∪I2) = 1. Finally,
if I1 is trivial and I2 is nontrivial. Then by Lemma 4.21, I1 ∪ I2 = I2. �

4.5. Long annuli.

Lemma 4.22. There is a constant K2 with the following significance. Let
L ≥ K2 and let I1, I2 ∈ Ah be essentially disjoint. Suppose Mod(Ii) > 4L
for i = 1, 2. Suppose further that I1 and I2 are topologically related. Then

Mod(m(I1, I2)) > max{Mod(I1),Mod(I2)}+ 2L.(38)

Proof. When I1 and I2 are cylinders, it is straightforward to verify that the
claim holds whenever K2 ≥ K1 where K1 is the constant from Definition
4.17. Otherwise, for i = 1, 2, write Ii = A(ri, r

′
i, pi) and B′

i = Bc
r′i
(pi).

Assume without loss of generality that r′2 ≤ r′1. Then Theorem 4.8(b)
implies

d(p2, ∂B1) ≥ r1 − 2r′1,

and admissibility implies p2 ∈ B1. Let r = d(p2, ∂B1) and write

I := m(I1, I2) = Br(p2)\B′
2.

Let

∆ =

∫ r1

r1−2r′1

dr

hθ(r)
.

Then, applying equation (7),

Mod(I) =

∫ r

r′2

dr

hθ(r)

≥
∫ r1−2r′1

r′2

dr

hθ(r)

=

∫ r1

r′2

dr

hθ(r)
−∆

≥Mod(I1) +Mod(I2)− 2K1 −∆.

The claim of the lemma will follow if we find a K2 such that

∆ + 2K1 ≤ 2K2.

In other words it suffices to bound ∆ uniformly from above. By the restric-
tions on the range of r1 in the definition of admissibility, hθ is monotone
increasing. See equation (8). Therefore,

∆ ≤ 2r′1
hθ(r1 − 2r′1)

≤ r′1
hθ(3r

′
1)
.

But whether the curvature of h is positive, negative or vanishing,

lim
r→0

r

hθ(r)
= 1.
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Relying again on equation (8) we get that ∆ is uniformly bounded from
above whenever the curvature is non-positive. When the curvature is posi-
tive, we still have that ∆ is uniformly bounded in the range of admissibility

r′1 ∈ (0,
π

15
].

�

Lemma 4.23. Let Ii = A(ri, r
′
i; pi) ∈ Ah for i = 1, 2. Suppose r2 ≤ r1, I1

is topologically related to I2, and M(I1, I2) 6= I1 ∪ I2. Then

(a)

d(p1, p2) ≤ r′1 + r′2,

(b)

r2 <
5

2
r′1,

(c)

M(I1, I2) = I1 ∪m(I1, I2).

Proof. Write Bi = Bri(pi), B
′
i = Bc

r′i
(pi) and J = M(I1, I2). By Lemma

4.15,

B′
1 ∩B′

2 6= ∅.(39)

Part (a) is an immediate consequence. To prove part (b), verify using J =
B1 ∪B2 \ (B′

1 ∩B′
2) that

J \ (I1 ∪ I2) ⊂
(

B′
1 \B2

)

∪
(

B′
2 \B1

)

.(40)

On the other hand, relation (39), admissibility, and the assumption r2 ≤ r1,
imply B′

2 ⊂ B1. Indeed, we have for any q ∈ B′
2

d(q, p1) ≤ 2r′1 + r′2 ≤
2

5
r1 +

1

5
r2 ≤

3

5
r1 < r1.

So, by relation (40), B′
1 \B2 6= ∅. Let q ∈ B′

1 \ B2. Then d(q, p1) < r′1 and
r2 < d(q, p2). Combining these inequalities we get

(41) r2 < d(q, p2) ≤ d(q, p1) + d(p1, p2) < 2r′1 + r′2.

Since I2 is admissible, r′2 ≤ 1
5r2. Thus, inequality (41) implies part (b).

We prove part (c). By definition, I1 andm(I1, I2) are subsets ofM(I1, I2).
We prove the reverse inclusion. Using part (b) and admissibility, one verifies
that B2 ⊂ B1. Therefore,

M(I1, I2) \ I1 = B1 \
(

(B′
1 ∩B′

2) ∪ I1
)

= B′
1 \B′

2.

Write r = d(p2, ∂B1). We need to show that

B′
1 \B′

2 ⊂ m(I1, I2) = Br(p2) \B′
2.

For this it suffices to show that B′
1 ⊂ Br(p2). That is,

d(p1, p2) + r′1 < r.
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But by parts (a) and (b) we get

r = d(p2, ∂B1)

≥ d(p1, ∂B1)− d(p1, p2)

≥ r1 − r′1 − r′2

≥ 3r′1

> d(p1, p2) + r′1.

�

Lemma 4.24. There is a constant K3 with the following significance. Let
Ii = A(ri, r

′
i; pi) ⊂ Ah, for i = 1, 2. Let L ≥ K3 and suppose

ModIi ≥ 2L.

Suppose I1 is topologically related to I2 and let I = m(I1, I2). Then

(a) M(I1, I2) = I1 ∪ I2 ∪C(L,L; I).
(b) I \ C(L,L; I) ⊂ I1 ∪ I2.

Proof. Write Bi = Bri(pi), B
′
i = Bc

r′i
(pi), and J =M(I1, I2). If

J = I1 ∪ I2

there is nothing to prove. We thus assume J 6= I1∪I2. We first show that for
some fixed K3 chosen large enough, part (b) holds. Let J1 = I \ C(0, L; I)
and J2 = I \ C(L, 0; I). Assume without loss of generality that r2 ≤ r1.
Then I is centered at p2. Since, furthermore, Mod(I2) > L, it follows that
J2 ⊂ I2

9. It remains to show that J1 ⊂ I1. Let r = d(p2, ∂B1). There is a
real number r′ such that J1 = A(r, r′, p2). Clearly, Br(p2) ⊂ B1. Therefore,
to show the inclusion J1 ⊂ I1 it suffices to show that Bc

r′1
(p1) ⊂ Bc

r′(p2).

That is, it suffices to show that

r′ − r′1 > d(p1, p2).

By parts (a) and (b) of Lemma 4.23, it suffices that r′ > 3r′1. Considering
the definition of r′, this is equivalent to the claim

Mod(A(r, 3r′1; p2)) > L.

Let L′ :=Mod(A(r, 3r′1; p2)). Since B
′
1 ∩B′

2 6= ∅, it is clear that

r ≥ r1 − 2r′1.

9See remark 4.6.
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So,

L′ ≥Mod
(

A(r1 − 2r′1, 3r
′
1; p2)

)

=Mod
(

A(r1 − 2r′1, 3r
′
1; p1)

)

> Mod

(

A

(

1

2
r1, 3r

′
1; p1

))

=Mod(I1)−Mod

(

A

(

r1,
1

2
r1; p1

))

−Mod
(

A(3r′1, r
′
1; p1)

)

≥ 2L−
∫ π/3

π/6

dr

sin r
−

∫ π/3

π/9

dr

sin r

For the last line, see equations (7), (8) and the definition of admissibility.
Choosing

K3 =

∫ π/3

π/6

dr

sin r
+

∫ π/3

π/9

dr

sin r
,

we thus get J1 ⊂ I1. This establishes part (b). We prove part (a). The
inclusion

M(I1, I2) ⊃ I1 ∪ I2 ∪C(L,L; I),

follows from definitions. The reverse inclusion is an immediate consequence
of Lemma 4.23(c) and part (b).

�

5. Construction of bubble decomposition

Let L0 > max{c2, log 3/c3}. It follows from the cylinder inequality that
for any (Σ, µ) ∈ M and any clean I ⊂ ΣC with µ(I) ≤ δ2 andMod(I) > 2L0,
we have

µ (C(L0, L0; I)) ≤
µ(I)

3
.(42)

Let L0 satisfy, further, L0 > max{K1,K2,K3}. Here, K1, K2 andK3 are the
constants from Definition 4.17, Lemma 4.22 and Lemma 4.24, respectively.

Definition 5.1. A neck is an I ∈ Ah with the property that Σ̃ \ I is µ-
stable. Write L1 = 4L0. A long neck is a neck I which satisfies µ(I) ≤ δ2/6
and Mod(I) ≥ L1.

When genus(Σ̃) 6= 1, let LN denote the set of long necks. Otherwise,
recall the definition of I0 appearing in the definition of α0. Define LN to
be the set of long necks contained in Σ \ I0. If Mod(I0) ≥ L1, let L̃N :=

LN ∪ {I0}. In all the other cases, whatever the genus, define L̃N := LN .

Definition 5.2. A maximal µ-decomposition is a bubble decomposition
B with the following properties.

(a) There exists a set B̃ of pairwise essentially disjoint elements of L̃N
such that

B := {C(2K1, 2K1; I)|I ∈ B̃}.
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(b) For any v ∈ VB, Σv is µ-stable.
(c) For any v ∈ VB, Σv contains no long necks.

Theorem 5.3. For any (Σ, µ) ∈ M satisfying Assumption 4.3.1, there
exists a maximal µ-decomposition.

To prove Theorem 5.3, we define a relation ∼ on LN as follows. For
I1, I2 ∈ LN , I1 ∼ I2 if and only if I1 and I2 are topologically related and
µ(M(I1, I2)) ≤ δ2/2.

Lemma 5.4. Let I1 ∈ LN be trivial. Write I1 = B1 \ B1 for appropriate

concentric discs in Σ̃. Let I2 ∈ LN . Then B′
1 6⊂ I2. Furthermore, if

I3 ∈ LN and I2 ∼ I3 then B′
1 6⊂M(I2, I3).

Proof. The component B′
1 of Σ̃ \ I1 is µ-stable. That is,

µ(B′
1) ≥ δ1/2 > δ2/6.

On the other hand, µ(I2) ≤ δ2/6, and, by ∼-equivalence,

µ(M(I2, I3)) ≤ δ2/2 < δ1/2.

Both parts of the claim follow. �

Lemma 5.5. The relation ∼ is an equivalence relation.

Proof. Symmetry and reflexivity are obvious, so we need only establish tran-
sitivity. Let Ii ∈ LN for i = 1, 2, 3, and suppose I1 ∼ I2 and I2 ∼ I3. It
follows from Theorem 4.8(a) that either the three annuli are all trivial or all
nontrivial. Suppose all are non trivial. Observe, using 4.8(a), that I1 and
I3 are topologically related.

Let now J =M(I1, I3). We show first that

(43) µ(J) ≤ δ2.

Let I ′ =M(I1, I2) and I
′′ =M(I2, I3). If J ⊂ I ′ ∪ I ′′ we have

µ(J) ≤ µ(I ′) + µ(I ′′) ≤ δ2/2 + δ2/2 = δ2.

Otherwise, by Lemma 4.13 we may assume without loss of generality that
J ⊂M(I1, I1) and I

′′ = I ′′. Let J ′ = J ∩Σ and J ′′ = J ′. It is easy to verify
that J ′ ⊂ I ′ ∪ I ′′. So, µ(J ′) ≤ δ2. Similarly, one verifies that

J ′ \ C(L0, L0;J
′) ⊂ I1 ∪ C(L0, L0; I

′′).

Applying inequality (42) we get

µ(J ′) ≤ 3

2
(δ2/6 + δ2/6) = δ2/2.

Similarly, µ(J ′′) ≤ δ2/2. Inequality (43) follows.
Applying inequality (42) again,

µ(J) ≤ 3

2
µ(J \ C(L0, L0;J)).(44)
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Now note that by definition of J , J \ C(L0, L0;J) is contained within one
the following sets: I1 ∪ I3, I1 ∪ I1, or I3 ∪ I3. But

µ(Ii) = µ(Ii) ≤
δ2
6

for i = 1, 3. Thus in any case we get that

µ(J \ C(L0, L0;J)) ≤
δ2
3
.

Therefore by inequality (44)

µ(J) ≤ δ2
2

as was to be proven.
Let now Ii all be trivial. Write Ii =Bi \ B′

i where Bi = Bri(pi), B
′
i =

Bc
r′i
(pi) for some pi ∈ Σ̃, r′i < ri ∈ (0,∞), and i = 1, 2, 3. By Lemmas 4.15

and 5.4, I1 and I3 are topologically related. Let J =M(I1, I3). We need to
show that µ(J) ≤ δ2/2. By Lemma 4.24,

J = I1 ∪ I3 ∪ C(L0, L0; I)

where I = m(I1, I3). Thus, µ(J) ≤ δ2/3 + µ(C(L0, L0; I)). To finish the
proof we need to show that µ(C(L0, L0; I)) ≤ δ2/6. Then

I ⊂ J ⊂M(I1, I2) ∪M(I2, I3).

So, µ(I) ≤ δ2. On the other hand, by Lemma 4.24,

I \ C(L0, L0; I) ⊂ I1 ∪ I3.
Therefore, by definition of L0,

µ(C(L0, L0; I)) ≤
1

3
(µ(I1 ∪ I3) + µ(C(L0, L0; I))).

So,

µ(C(L0, L0; I)) ≤
1

2
µ(I1 ∪ I3) ≤

δ2
6

as required. �

Lemma 5.6. For every ∼-equivalence class c there is an I ∈ c such that
Mod(I) is maximal in c .

Proof. Write LN0 for the set of trivial long necks, and LN1 for the set
of nontrivial long necks. Let R := maxz∈Σ inj(Σ, z;h). To give a trivial
element of Ah is to give a point and two real numbers r1, r2 subject to some
restrictions. This induces on LN0 the topology of a subset of the compact
bordered manifold

X0 = Σ×
[

0,
1

3
R

]

×
[

0,
1

10
R

]

.
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To give a nontrivial element of Ah is to give a simple closed geodesic and
two real numbers subject to some restrictions. Thus, when

genus(Σ̃) > 1,

LN1 can be assigned the topology of a subset of the compact bordered
manifold

X1 =
⋃

{γ|ℓ(γ)<sinh−1(1)}

[

−1

2
Mod(C(γ)), 1

2
Mod(C(γ))

]2

.

X1 is indeed compact since the number of simple closed geodesics γ for which
ℓ(γ) < sinh−1(1) is finite. See [2]. When genus(Σ̃) = 0 we have that LN1

can be thought of as a subset of

[−π, π]2.
Finally, when genus(Σ̃) = 1, LN1 is a subset of

X1 =

[

−1

2
Mod(C(α0)),

1

2
Mod(C(α0))

]

.

We show that LNi is closed in Xi. The conditions of stability, length and
cleanness are closed conditions. However, admissibility alone is not a closed
condition for trivial annuli because the inner radius of a trivial annulus must
be positive. For nontrivial annuli it is not closed when genus(Σ̃) = 0, since
C(∂Σ) is not closed in this case. We show that the intersection of the set of
admissible annuli with those having stable complement is closed.

First we show this for trivial annuli. The non-admissible points of X0 in
the closure of the trivial admissible annuli are points of the form (p, r, 0).
That is, annuli with internal radius 0. Let

r = inf

{

r′ ∈
[

0,
1

10
R

]

∣

∣

∣
p ∈ Σ, µ(Br′(p)) ≥ δ1/2

}

.

Since Σ is compact, dµ
dνh

is bounded. So, r > 0. Thus, any trivial element

of LN0 has internal radius no less than r. The claim follows. For nontrivial
annuli the claim follows in a similar manner.

Now we need to show that on LN, the condition of equivalence is closed.
The only non trivial point is to show that topological relatedness is a closed
condition. By Theorem 4.8 it suffices to show that there is an a > 0 such that
for any two equivalent trivial long necks of the form Ii = Bri(pi) \ Bc

r′i
(pi),

i = 1, 2, we have

(45) A := Area(Bc
r′1
(p1) ∩Bc

r′2
(p2);hcan) ≥ a.

Write Bi = Bri(pi) and B
′
i = Bc

r′i
(pi). We have µ(B′

i) ≥ δ1/2 and

µ(B′
1 ∪B′

2 \B′
1 ∩B′

2) = µ(M(I1, I2)) ≤ δ2/2.

Therefore,
µ(Bc

r′1
(p1) ∩Bc

r′2
(p2)) ≥ δ1/2− δ2/2 ≥ δ2/2.
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Since Σ is compact, dµ
dνh

is bounded on Σ by some constant d. Clearly,

δ2/2 ≤ µ(Bc
r′1
(p1) ∩Bc

r′2
(p2)) ≤ Ad.

Inequality (45) follows.
Finally, equation (7) shows that Mod : LN → R is continuous with

respect to the topology on LN. �

Lemma 5.7. Let Ii ∈ LN for i = 1, 2. Suppose I1 ∼ I2 and I1 is essentially
disjoint from I2. Write I = m(I1, I2). Then C(L0, L0; I) is a long neck
which is ∼-equivalent to each of the Ii.

Proof. Relying on Lemma 4.22 one verifies that I ∈ Ah and, furthermore,
that Mod(I) > L1. We have

I ⊂M(I1, I2),

so
µ(I) ≤ µ(M(I1, I2)) ≤ δ2/2.

Therefore, µ(C(L0, L0; I)) ≤ δ2/6. We show that each component of

Σ̃ \ C(L0, L0; I)

is µ-stable. Let A be one such connected component. If I is an admissible
annulus, then, by construction, A contains a component of Σ̃ \ Ii for either
i = 1 or i = 2. If I is an admissible cylinder then if

genus(Σ̃) > 1,

stability is automatic. It is left to treat the exceptional cases. When
genus(Σ̃) = 0 the claim follows as in the case of trivial annuli. When

genus(Σ̃) = 1, the complement of C(L0, L0; I) consists of a single compo-
nent and so the claim follows by Assumption 4.3.1. We thus showed that
I is a long neck. For the remaining part of the claim, I and each of the
Ii are nontrivially embedded in M(I1, I2) and so are topologically related.
Furthermore, we haveM(Ii, I)) =M(I1, I2), so µ(M(Ii, I)) ≤ δ2. The claim
follows. �

Lemma 5.8. Let I1, I2 ∈ LN and suppose b1(I1 ∪ I2) = 1. Then I1 ∼ I2.

Proof. Suppose first that I1 and I2 are both trivial. Let Ii = A(ri, r
′
i; pi).

By the Mayer Vietoris sequence, the assumption implies that

b1(I1 ∩ I2) = 1.

From this it follows that Bc
r′1
(p1) ⊂ Br2(p2) and B

c
r′2
(p2) ⊂ Br1(p1). It easily

follows that I1 ∪ I2 is clean. Since I1 and I2 are nontrivially embedded in
I1 ∪ I2, they are topologically related. Furthermore, M(I1, I2) = I1 ∪ I2. In
particular

µ (M(I1, I2)) ≤ δ2/3 ≤ δ2/2.

Suppose now that I1 and I2 are both non trivial. If I1∪ I2 is clean then it is
straightforward that M(I1, I2) = I1 ∪ I2. Otherwise, I1 or I2 is conjugation
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invariant. Without loss of generality assume I1 is conjugation invariant.
Then M(I1, I2) = I1 ∪ I2 ∪ I2. In any case, µ(M(I1, I2)) ≤ δ2/2. �

Lemma 5.9. For any I1, I2 ∈ LN , b1(I1 ∪ I2) > 0.

Proof. If I1 is nontrivial, this is immediate. Otherwise, the claim is a con-
sequence of Lemma 5.4. �

Lemma 5.10. Let c be a ∼-equivalence class. Let I1 ∈ c have maximal
modulus. Let I2 ∈ LN . I1 and I2 are essentially disjoint if and only if
I2 6∈ c.

Proof. Suppose I1 and I2 are essentially disjoint and suppose by contradic-
tion I2 ∈ c. Write I := C(L0, L0;m(I1, I2)). By Lemma 5.7, I ∈ LN ∩ c.
By Lemma 4.22, Mod(I) > Mod(I1). This is a contradiction. Conversely,
suppose I1 is not essentially disjoint from I2. Recall that we excluded the
trivial case Σ̃ 6= I1 ∪ I2. Therefore, combining Theorem 4.16 and Lemma
5.9, we have b1(I1 ∪ I2) = 1 as long as Σ̃ 6= I1 ∪ I2, we conclude I1 ∼ I2. �

Lemma 5.11. Let c be a ∼-equivalence class.

(a) The elements of c are either all trivial or all nontrivial. In the first
case we say that c is trivial, in the second case we say that it is
nontrivial.

(b) If c is trivial and then either all elements of c are conjugation in-
variant or there is a component A of ΣC \ ∂Σ such that they are all
contained in A.

(c) If c is nontrivial then either the maximal elements of c are conjuga-
tion invariant or there is a component A of ΣC \ ∂Σ such that they
are all contained in A.

Proof. (a) This follows from Theorem 4.8 since ∼-equivalence entails
topological relatedness.

(b) For any I1, I2 ∈ c, I1 and I2 embed nontrivially in M(I1, I2) which
is clean and doubly connected. Since these annuli are all trivial,
none of them contains a component of ∂Σ. It thus follows from
Lemma 2.9 that I1 and I2 are either both conjugation invariant or
both contained in the same component of ΣC \ ∂Σ.

(c) Suppose there is a maximal element I1 of c that is not conjugation
invariant. Since I1 is clean, there is a component A of ΣC \ ∂Σ such
that I1 ⊂ A. Suppose by contradiction that there is an I2 ∈ c such
that I2 6⊂ A. Write J = C(L0, L0;M(I1, I2)). Then maximality of
I1 easily implies

J =M(I1, I1).

But then we get the contradiction J ∈ LN ∩ c and
Mod(J) > Mod(I1).

�
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Lemma 5.12. Let B be a bubble decomposition consisting of elements of
LN . Let I = Σv for some v ∈ VB and suppose b1(I) = 1. Suppose I is
bordered by ∼-inequivalent elements I1, I2 ∈ B ⊂ LN . Then I is µ-stable.

Proof. First we claim that I1 and I2 are topologically related. To see this
note first that I1 and I2 freely homotopic, so they are either both trivial or
both non-trivial. If both are nontrivial, the claim follows from Lemma 2.8.
Suppose both are trivial. Write Ii = Bi \B′

i where Bi and B
′
i are concentric

discs. Clearly we may assume with no loss of generality that B2 ⊂ B′
1 and

so, I = B′
1 \ B2. In particular B′

1 ∩ B′
2 6= ∅. Further, I1 ∩ I2 is clean.

Indeed, the only alternative is that B1 is conjugation invariant while B2 is
not, but in that case I is not conjugation invariant. Since by definition B
is conjugation invariant, this is a contradiction. By Theorem 4.8(b), I1 is
topologically related to I2.

We now show that I is µ-stable. In case the Ii are trivial,

I =M(I1, I2) \ (I1 ∪ I2).
So, by ∼-inequivalence, µ(I) > δ2/6. Suppose the Ii are nontrivial. If I1∪I2
is clean, we have I = M(I1, I2) \ (I1 ∪ I2) and the claim follows as before.
Otherwise, without loss of generality I1 is conjugation invariant while I2 is
not. Then

M(I1, I2) = I1 ∪ I ∪ I2 ∪ I ∪ I2.
Suppose by contradiction that µ(I) < δ2/6. Write M = M(I1, I2). Then
µ(M) < δ2. Let N =M \C(L0, L0;M). We have N ⊂ I2∪ I2. In particular
µ(N) ≤ δ2/3. By definition of L0 it follows that

µ(M) < δ2/2.

That is, I1 ∼ I2. A contradiction. �

Proof of Theorem 5.3. Denote by S the set of ∼ equivalence classes. Pick a
component A ⊂ Σ̃ \ ∂Σ. For each c ∈ S whose elements lie in A or which
is conjugation invariant assign an element Ic ∈ c of maximal modulus. For
any other c define Ic := Ic. Let now

B̃ = {Ic|c ∈ S}.
In the exceptional case where genus(Σ̃) = 1 and Mod(I0) ≥ L1, we add I0
to B̃. It is follows from Lemma 5.11 that B̃ is conjugation invariant. By
Lemma 5.10 the elements of B̃ are pairwise essentially disjoint. Now let

B = {C(2K1, 2K1; I)|I ∈ B̃}.
We show that B is a maximal µ-decomposition. We check the stability
condition. Let v ∈ VB. We distinguish between the following cases.

(a) 2genus(Σv) + |π0(∂Σv)| ≥ 3. In this case stability is automatic.
(b) genus(Σv) = 1 and ∂Σv = ∅. Stability is a consequence of Assump-

tion 4.3.1.
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(c) genus(Σv) = 0 and |π0(∂Σv)| = 2. Then if Σv is bordered by two
inequivalent elements of LN , this case is covered by Lemma 5.12.
Otherwise, we must have that genus(Σ̃) = 1, and either Σv is the
complement of a long neck, or Σv is bordered by I0 and some element
I1 of LN . In the first case, stability follows by definition of long
necks. We treat the second case. Write I = Σv and suppose by
contradiction that µ(I) < δ2/6. Let

M = I0 ∪ I1 ∪ I ∪ I1 ∪ I,
and let N = C(L0, L0;M). Suppose first ∂Σ = ∅. Then Mod(N) >
Mod(I0) and µ(N) ≤ δ2/6. This contradicts the choice of I0. Sup-
pose now ∂Σ 6= ∅. Then I0 ⊂ N andM \N ⊂ I1∪I1. By assumption
µ(M) < δ1, so

µ(I0) ≤ µ(N) ≤ δ2/9.

This again contradicts the choice of I0.
(d) |π0(∂Σv)| = 1. In this case Σv is a component of the complement of

a long neck and so the claim follows by definition.

It remains to check the maximality condition. Suppose by contradiction
that Σv contains a long neck I ′. Then there is a c ∈ S such that I ′ ∈ c.
Clearly,

C(K1,K1; I
′) ∩C(K1,K1; Ic) = ∅.

That is, I ′ and Ic are essentially disjoint. Since Ic has maximal modulus in
c, this contradicts Lemma 5.10.

�

6. (µ, h)-adaptedness

Theorem 6.1. Let F be a uniformly thick thin family. Let (Σ, µ) ∈ F
satisfy Assumption 4.3.1.

(a) If ∂Σ = ∅, there is a conformal constant curvature metric h on
Σ and a (µ, h)-adapted bubble decomposition B of Σ with constants
independent of (Σ, µ).

(b) If ∂Σ 6= ∅, there is a conjugation invariant conformal constant cur-
vature metric h on ΣC and a conjugation invariant (µ, h)- adapted
bubble decomposition B of ΣC with constants independent of (Σ, µ).

For the rest of this section fix a (Σ, µ) ∈ F satisfying Assumption 4.3.1
with the understanding that all constants depend only on F and not on the
particular (Σ, µ) we chose. Let B be a maximal µ-decomposition as in Theo-
rem 5.3. To prove that B satisfies the estimates in part (b) of Definition 6.1,
we need to introduce some notation.

Associate to B a graph GB as follows. As the vertex set of GB take VB.
Add an outgoing half edge l from v for each element of π0(∂Σv). For any
v ∈ VB, denote by Hv the set of half edges going out of v. For l ∈ Hv denote
by γl the boundary component corresponding to l. Half edges l1 and l2 are
connected to one another in GB if and only if there is an element of I ∈ B
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such that ∂I = γl1 ∪γl2 . There is thus a two to one correspondence between
half edges and elements of B. For l ∈ Hv, write Il for the corresponding
element of B.

Let v ∈ VB. An external boundary component of Σv is an element γ ∈
π0(∂Σv) such that γ is either not contractible in Σ̃ or satisfies

Diam(γ;h) = Diam(Σv;h)
10.

Let Ev ⊂ Hv denote the half edges corresponding to the external boundary
components of Σv, and let

Fv := Hv \ Ev.
For each l ∈ Fv , γl is the boundary of a disc Bl ⊂ Σ̃. Write

Cl(Σv) := Σv
⋃

{l∈Fv}

Bl ⊂ ΣC.

Lemma 6.2. There is a constant f1 with the following significance. Let v ∈
VB and let I ⊂ Cl(Σv) be a neck. In case I = B \B′ for discs B′ ⊂ B ⊂ Σ,
suppose that ∂B′ ⊂ Σv. Let

n(I) := |{l ∈ Fv : γl ∩ I 6= ∅}| .
Then Mod(I) ≤ f1(µ(I ∩ Σv) + n(I) + 1).

Proof. Let L =Mod(I). For any integer 0 ≤ i < ⌊L/L1⌋ let

Ii := S(iL1, (i+ 1)L1; I).

Since Σv contains no long necks, we must have

µ(Ii) > δ2/6.

Let S1 denote the set of those 0 ≤ i < ⌊L/L1⌋ that satisfy Ii ⊂ Σv and let
S2 be the rest. Clearly,

L

L1
≤ |S1|+ |S2|+ 1,

and

|S1| ≤
6µ(I ∩ Σv)

δ2
.

To complete the proof we need to bound |S2|.
If i ∈ S2, there is an l ∈ Fv such that Ii ∩Bl 6= ∅. We show that there as

at most one j 6= i such that Bl meets Ij . For this, let J0 ∈ B be the unique
element such that

γl ⊂ ∂J0.

There is a J1 ∈ LN such that J0 = C(2K1, 2K1;J1). Let

J = S(Mod(J1)− 3K1,Mod(J1)−K1;J1).

10Note that if Σv is formed by removing any number of small discs from sphere, then
Ev = ∅.
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Suppose now by contradiction that Bl meets three successive sub-cylinders
Ii−1, Ii and Ii+1. By the assumption of the lemma, Bl does not contain any
of the Ii. Therefore, γl ∩ C(K1,K1; Ii) 6= ∅. But γl ⊂ C(K1,K1;J). So, J
and Ii are not essentially disjoint.

On the other hand, we show that the fact that Bl 6⊂ Ii implies that J
and Ii are essentially disjoint. Let k := b1(Ii ∪ J). By Theorem 4.16 it
suffices to show that k > 1. Suppose by contradiction that k ≤ 1. If k = 0
then I is trivial and its interior disc B is contained in J . But since I is
a neck, µ(B) ≥ δ1/2 whereas µ(J) ≤ µ(J1) ≤ δ2/6. Suppose now that
k = 1. Since we are assuming Bl 6⊂ Ii, this is only possible if I is trivial and
Bl∩B 6= ∅. But then by the assumption of the Lemma we have that Bl ⊂ B,
in contradiction to Ii ∩ B 6= ∅. We conclude that Ii and J are essentially
disjoint. The contradiction shows that Bl meets at most two sub-cylinders.
We thus conclude that

|S2| ≤ 2n(I).

�

For any v ∈ VB let nv = |Fv | and µv = µ(Σv).

Lemma 6.3. There are constants fi, for i = 2, ..., 9, with the following
significance. Let v ∈ VB and let l ∈ Ev.

(a)

ℓ(γl;hv) ≥ f2e
−f3(µv+nv).

(b) For all x ∈ Σv

inj(Σv, x;hv) ≥ f4e
−f5(µv+nv).

(c) Let l′ 6= l ∈ Hv. Then

d(γl, γl′ ;hv) ≥ f6e
−f7(µv+nv).

Remark 6.4. inj(Σv, x;hv) is defined as the supremum of all r such that any
unit speed geodesic ray

α : [0,min {r, dhv (p, ∂Σv)}] → Σv

emanating from p minimizes length.

Proof. Let let g = genus(Σ̃). Let

m(v) := 2genus(Cl(Σv)) + |Ev|.
We distinguish between various possibilities for m(v) and g.

(a) m(v) = 0. In this case Ev = ∅, so only part (b) is not vacuous. But
part (b) is obvious.

(b) m(v) = 1 and g = 0. By carefully inspecting the definition of exter-
nal boundary parts (a) and (b)are seen to hold. We show part (c).
By construction, there are J, J ′ ∈ LN such that

Il = C(2K1, 2K1;J),
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and

Il′ = C(2K1, 2K1;J
′).

Let N be the component of

C(K1,K1;J) \ Il,
for which γl ⊂ ∂N . N is a tubular neighborhood of γl. By essential
disjointness of Jl and Jl′ we have that N ∩ γl′ = ∅. We have

Mod(N) = K1.

Denote by r the metric width of N . That is, the distance between
the two boundary components. Then

K1 =
1

sv

∫ r

0

dx

hθ,FS
≤

∫ r

0

dx

hθ,FS
,

where hθ,FS is Fubini Study metric in appropriate coordinates. Take
f6 to be the solution of

K1 =

∫ f6

0

dx

hθ,FS
.

f7 may be taken to vanish.
(c) m(v) = 1 and g > 0. This case is similar to the previous case.
(d) m(v) = 2 and g = 0. In this case it can be verified that Cl(Σv) =

B \ B′ for two concentric discs in ΣC. Suppose first that Cl(Σv)
is contained in a hemisphere. Then the only additional thing to
address after the case m(v) = 1 is to estimate ℓ(∂B′;hv). Applying
Lemma 6.2 to Cl(Σv) we have

Mod(cl(Σv)) ≤ f1(µ(I ∩ Σv) + n(I) + 1).

On the other hand we denote by r and r′ the radii of B and B′ with
respect to hv, then

log(r/r′) ≤ cMod(I),

for an appropriate constant. Now note that r = 1, so the claim
follows. If Cl(Σv) is not contained in a hemisphere, cut Cl(Σv) in
two along a concentric equator and repeat the same argument.

(e) m(v) = 2 and g = 1. Only part (b) is not vacuous. But dv in this
case is proportional to the modulus of Σv which is appropriately
bounded by Lemma 6.2.

(f) m(v) = 2 and g > 1. Let e ∈ Ev. Then there is a simple closed
geodesic γ such that γe ⊂ C(γ). Write I = Cl(Σv) and let γ1 and γ0
be the components of ∂I. It is easy to see that I is a sub-cylinder of
C(γ). Therefore, γ0 and γ1 have constant ρ coordinates x0 and x1,
respectively. For r ∈ [x0, x1] let

γr := {z ∈ I|ρ(z) = r},
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and let rmin ∈ [x0, x1] be the point where ℓ(γr) obtains its minimum,
ℓmin. Without loss of generality, assume |x0| ≤ |x1|. We have

ln
ℓmin

ℓ1
= ln

hθ(rmin)

hθ(x1)
(46)

≥ −
∫ x1

x0

h′θ(x)

hθ(x)
dx

≥ −
∫ x1

x0

1

πhθ(x)
dx

= − 1

π
ModI

≥ − 1

π
f1(µv + nv).

Here we rely on the inequality h′θ(x) = ℓ(γ) sinhx/(2π) ≤ 1/π for
x ∈ w(γ). On the other hand,

(47)
dv

ℓ(γ1;h)
≤ |x1 − x0|+ ℓ(γ0;h)

ℓ(γ1;h)
.

But

(48) |x1 − x0| ≤
ℓ(γ1;h)

2π

∫ x1

x0

dx

hθ(x)
=
ℓ(γ1;h)

2π
Mod(I),

where for the inequality we relied on the equation

hθ(x) =
1

2π
ℓ({ρ = x};h) ≤ ℓ1.

Combining estimates (46), (47) and (48), we obtain

ℓmin
dv

≥ exp
(

− 1
πf1(µv + nv)

)

Mod(I) + 1
.

Together with Lemma 6.2, this implies part (a)
Part (b) is a consequence of Eq. (13) as follows. For any p ∈ I,

let x = ρ(p) and d = w(γ)− |x|. We have,

inj(p; Σ, h) = sinh−1(cosh
1

2
ℓ(γ) cosh d− sinh d)(49)

= sinh−1(e−d + (cosh
1

2
ℓ(γ)− 1) cosh d)

≥ sinh−1(e−d)

= ln(e−d +
√

e−2d + 1)

= e−d + o(e−d).
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Let ξ = |x1| − |x| ∈ [0, |x1| − |x0|]. We have

inj(p; Σ, hv) ≥ c
e−d

dv
ℓ1
ℓ1

≥ c
e−d

ℓ(γ) cosh x1(Mod(I) + 1)

≥ c
e−w(γ)

ℓ(γ)(Mod(I) + 1)
e−ξ.

It is straightforward to verify that there is lower bound on the ex-

pression e−w(γ)

ℓ(γ) which is independent of γ. Since ξ ≤ |x1| − |x0| <
diam(I;h), the claim follows.

Given the estimate on ℓ(γi) the proof of part (c) in the current
case is similar to that of the case m(v) = 1 and g = 0. We omit the
details.

(g) m(v) > and g = 0. Considering the definition of external boundary
components, there is no such case.

(h) m(v) > 2 and g > 1. Decompose

Σv = (Thick(Σ;h) ∩Σv) ∪ (Thin(Σ;h) ∩ Σv).

The components of (Thin(Σ;h) ∩ Σv) behave exactly as the case
m(v) = 2 and g = 1 and contain all the external boundary compo-
nents. It remains to estimate on inj and (Thick(Σ;h)∩Σv), but this
is a tautology.

�

To establish the rest of the estimates in Definition 1.2, we introduce some
further notation. For any v ∈ VB let

rv :=

{

1
3 minz∈Cl(Σv) inj(ΣC, z;h), genus(ΣC) > 0,

min
{√

δ1
2πK0

, π3

}

, genus(ΣC) = 0.

Let B = Br(p;hv) ⊂ Cl(Σv) be a clean geodesic disc. Define

rB :=

{

min{svrv, d(p, ∂Cl(Σv);hv)}, p ∈ ∂Σ,

min{svrv, d(p, ∂Cl(Σv);hv), 12d(p, p;hv)}, p 6∈ ∂Σ.

Lemma 6.5. There is a constant f2 with the following significance. Let
B = Br(p;hv) ⊂ Cl(Σv) be a clean disc of radius r satisfying

µ(B) ≥ δ1/2.

Then

r ≥ 1

5
rBe

−f2(µv+nv).
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Proof. Let

I = A(rB , r, p).

If rB < 5r we are done, so suppose rB ≥ 5r. It follows that I ∈ Ah. Also,
I ⊂ Cl(Σv). We claim that I is a neck. For this we need to verify that both
B and Σ′ := ΣC\BrB (p;hv) are stable. But B is stable by assumption. In
the case where

genus(ΣC) > 0,

Σ′ is immediately seen to be stable. When genus(Σ) = 0, stability of Σ′ fol-
lows from the fact that h satisfies the condition of Lemma 4.1. Furthermore,
I satisfies the condition of Lemma 6.2. So,

f1{µ(Cl(I)) + n(Cl(I)) + 1} ≥Mod(Cl(I)) > c log
rB
2r
,

for an appropriate constant c. This inequality gives the claim. �

Lemma 6.6. There are constants fi, 10 ≤ i ≤ 13, with the following signif-
icance. Let B = Br(p;hv) ⊂ Cl(Σv) be a clean disc such that µ(B) ≥ δ1/2.
Suppose

(50) d(p, ∂Cl(Σv);hv) > f6e
−f7(µv+nv).

Then

r ≥ f10e
−f11(µv+nv).

Proof. By Lemma 6.3 we have that

inj(x;hv) ≥ f4e
−f5(µv+nv)

for all x ∈ Cl(Σv). So, by assumption (50), when B is conjugation invariant
we have

rB ≥ min

{

f4e
−f5(µv+nv),

1

2
f6e

−f7(µv+nv), sv

√

δ1
2πK0

, sv
π

3

}

.

the claim now follows by Lemma 6.5.
To prove the claim for any clean B we need to further bound

r′ :=
1

2
d(p, p;hv)

from below by an exponent in µv + nv. In fact, to prove the Lemma, it
suffices to estimate r + r′ by such an exponent. We may suppose

(51) r + r′ <
1

2
f6e

−f7(µv+nv),

for otherwise we are done. Let p′ be the midpoint of the shortest geodesic
segment connecting p with p. Combining inequality (51) with inequality
(50) we get

d(p′, ∂Cl(Σv)) >
1

2
f6e

−f7(µv+nv).
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Let B′ := Br+r′(p
′). Then ⊂ Cl(Σv). Furthermore,

rB′ >
1

4
f6e

−f7(µv+nv),

By Lemma 6.5 this implies

r′ + r ≥ 1

20
f6e

−(f7+f2)(µv+nv).

�

Corollary 6.7. (a) For any l ∈ Fv

ℓ(Σv;hv) ≥ f10e
−f11(µv+nv).

(b) For any l1, l2 ∈ Fv we have

d(γl1 , γl2 ;hv) ≥ f12e
−f13(µv+nv).

Proof. (a) By Lemma 6.3(c), the assumptions of Lemma 6.6 hold in
particular for B = Bl where l ∈ Fv.

(b) This follows by the same proof as that of Lemma 6.3(c).
�

In the following, for any γ ∈ π0(∂Σ), let Nγ := Bf12e−f13(µv+nv)(γ;hv).
Without loss of generality we assume f12 ≤ f6 and f13 ≥ f7.

Corollary 6.8. For any γ ∈ π0(∂Σv)
dνhv
dνhst

∣

∣

∣

Nγ

≥ f10e
−f11(µv+nv).

Proof. Using cylindrical coordinates on Nγ let

γr = {z ∈ Nγ |ρ(z) = r}.
We have

dνhv
dνhst

(r, θ) =
1

2π
ℓ(γr).

If γ ∈ Fv, Lemmas 6.6 and 6.3(c) imply

ℓ(γr) ≥ f10e
−f11(µv+nv).

Otherwise, this is just Lemma 6.3(a). �

Lemma 6.9. There are constants f14, f15, such that for any p ∈ Σv,

dµ

dνhv
(p) ≤ f15e

f14(µv+nv).

Proof. Let p ∈ Σv be the point where the supremum of dµ
dνhv

is obtained

and let d be its value. Let c = f6e
−f7(µv+nv). If d(p, ∂Cl(Σv);hv) < c

then, by construction of B, there is a long neck I so that p is contained in

C(π + c2, π + c2; I) ⊂ C(K1,K1; I). Thus, by Lemma 3.4, dµ
dνhst

≤ a. The

claim now follows from Corollary 6.8.
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Otherwise, if d < 1/c we are done. If d > 1/c, consider the disc B =
B 1

d
(p;hv). Then µ(B) > δ1 by Remark 3.3 and B ⊂ Σv, so the bound

follows immediately from Lemma 6.6. �

Proof of Theorem 6.1. Let B be a maximal µ-decomposition as in Theorem
5.3. Note that this B satisfies part (a) of Definition 1.2. Indeed, for any I
in B there is an I ′ ∈ LN such that I = C(K1,K1; I

′). But we assumed in
Definition 4.17 that K1 ≥ c2+π. By definition of LN , µ(I ′) < δ2. The claim
now follows from Lemma 3.4. That B satisfies part (c) of Definition 1.2 is just
Definition 5.2(b). The estimates of part 1.2(b) are the content of Lemmas
6.3 and 6.6, Corollary 6.7, and Lemma 6.9. �

7. Proof of Theorems 1.6, 1.11, and 1.14

Proof of Theorems 1.6, 1.11, and 1.14. Let

M = {(Σ, µu)|(Σ, u) ∈ F).

According to Theorem 2.8 in [3], the hypotheses of Theorems 1.6, 1.11,
and 1.14 imply that M is uniformly thick thin. If (Σ, u) ∈ M satisfies
Assumption 4.3.1 the theorems follow from Theorem 6.1. Otherwise, let
B = ∅. If genus(ΣC) = 0 we must have a metric h satisfying condition (a)
in Lemma 4.1. Stability follows from the fact that u is non-constant and
the rest of the claims are obvious. Now assume genus(ΣC) = 1. All parts
of the theorem hold vacantly except for stability, the derivative estimate
and the injectivity radius estimate. Stability follows from the monotonicity
inequality as follows. The injectivity radius of M is uniformly bounded
away from zero by a constant r. Let p ∈ (Σ). Since u represents a nontrivial
homology class u(Σ) 6⊂ Br(p; gJ). By the boundedness of the curvature and
by the monotonicity inequality,

E(ΣC;u) > Area(u(Σ) ∩Br(p; gJ )) ≥ cr2

for a constant c > 0.
To bound the injectivity radius and derivative we need to bound

Diam(ΣC;h).

For this, it suffices to bound the modulus of ΣC. For any x > 0, let

L := c2 + π +
ln{a(c2 + π + x)}

c3
,

where the constants are as in Lemma 3.4. If ModI > 2L, any point p ∈ ΣC

is at the center of a cylinder of modulus 2L. Lemma 3.4 then implies that

dµ

dνhst
(p) ≤ 1

(c2 + π + x)
µ(ΣC).

Pick x large enough so that

4πL

c2 + π + x
< 1.
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We then have the contradiction

µ(ΣC) ≤ 2L sup
p∈ΣC

dµ

dνh
(p) ≤ 4πL

c2 + π + x
µ(ΣC) < µ(ΣC).

The derivative estimate is an immediate consequence of Remark 3.3 and the
global bound µ(ΣC) < δ2 < δ1. The radius on injectivity of hv is just the
inverse of the diameter multiplied by a suitable constant. �
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