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3 A simplified discharging proof of Grötzsch theorem
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July 5, 2021

Abstract

In this note, we combine ideas of several previous proofs in order
to obtain a quite short proof of Grötzsch theorem.

Grötzsch [2] proved that every planar triangle-free graph is 3-colorable,
using the discharging method. This proof was simplified by Thomassen [3]
(who also gave a principally different proof [4]). Dvořák et al. [1] give an-
other variation of the discharging proof. Both of the later arguments were
developed in order to obtain more general results (the Thomassen’s proof
gives extensions to girth 5 graphs in the torus and the projective plane,
while the proof of Dvořák et al. aims at algorithmic applications), and thus
their presentation of the proof of Grötzsch theorem is not the simplest pos-
sible. In this note, we provide a streamlined version of the proof, suitable
for teaching purposes.

We use the discharging method. Thus, we consider a hypothetical mini-
mal counterexample to Grötzsch theorem (or more precisely, its generaliza-
tion chosen so that we are able to deal with short separating cycles) and show
that it does not contain any of several “reducible” configurations. Then, we
assign charge to vertices and edges so that the total sum of charges is neg-
ative, and redistribute the charge (under the assumption that no reducible
configuration appears in the graph) so that the final charge of each vertex
and face is non-negative. This gives a contradiction, showing that there
exists no counterexample to Grötzsch theorem.

A 3-coloring ϕ of a cycle C of length at most 6 is valid if either |C| ≤ 5,
or |C| = 6 and there exist two opposite vertices u, v ∈ V (C) (i.e., both
paths in C between u and v have length three) such that ϕ(u) 6= ϕ(v). If
G is a plane triangle-free graph whose outer face is bounded by an induced
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cycle C of length at most 6 and ϕ is a valid coloring of C, then we say
that the pair (G,ϕ) is valid. We define a partial ordering < on valid pairs
as follows. We have (G1, ϕ1) < (G2, ϕ2) if either |V (G1)| < |V (G2)|, or
|V (G1)| = |V (G2)| and |E(G1)| > |E(G2)|. A valid pair (G,ϕ) is a minimal

counterexample if ϕ does not extend to a 3-coloring of G, but for every valid
pair (G′, ϕ′) < (G,ϕ), the coloring ϕ′ extends to a 3-coloring of G′.

Let us start with several basic reductions (eliminating short separating
cycles, 4- and 6-faces), which are mostly standard. Usually, 6-faces are
eliminated by collapsing similarly to 4-faces, which is necessary in the proofs
that first eliminate the 4-cycles and then maintain girth five; in our setting,
adding edges to transform them to 4-faces is more convenient.

Lemma 1. If (G,ϕ) is a minimal counterexample, then G is 2-connected,
δ(G) ≥ 2, all vertices of degree two are incident with the outer face, and

every (≤5)-cycle in G bounds a face.

Proof. If G contained a vertex v of degree at most two not incident with
the outer face, then since (G,ϕ) is a minimal counterexample, the coloring
ϕ extends to a 3-coloring of G− v. However, we can then color v differently
from its (at most two) neighbors, obtaining a 3-coloring of G extending ϕ.
This is a contradiction, and thus G contains no such vertex. Note that all
vertices of G incident with the outer face have degree at least two, since the
outer face is bounded by a cycle.

Suppose that a (≤ 5)-cycle K of G does not bound a face. Since G is
triangle-free, the cycle K is induced. Let G1 be the subgraph of G drawn
outside (and including) K, and let G2 be the subgraph of G drawn inside
(and including) K. We have (G1, ϕ) < (G,ϕ), and thus there exists a 3-
coloring ψ1 of G1 extending ϕ. Furthermore, (G2, ψ1 ↾ V (K)) < (G,ϕ), and
thus there exists a 3-coloring ψ2 of G2 that matches ψ1 on K. The union of
ψ1 and ψ2 is a 3-coloring of G extending ϕ, which is a contradiction. Hence,
every (≤5)-cycle of G bounds a face.

Suppose that G is not 2-connected, and thus there exist graphs G1, G2

intersecting in at most one vertex such that G = G1 ∪ G2, C ⊆ G1 and
|V (G1)|, |V (G2)| ≥ 4. Observe that for i ∈ {1, 2}, there exists a vertex
vi ∈ V (Gi) incident with the common face of G1 and G2 such that if G1

and G2 intersect, then the distance between vi and the vertex in G1 ∩ G2

is at least two. Then G + v1v2 is triangle-free and (G + v1v2, ϕ) < (G,ϕ).
However, this implies that there exists a 3-coloring of G+ v1v2 extending ϕ,
which also gives such a 3-coloring of G. This is a contradiction.
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Lemma 2. If (G,ϕ) is a minimal counterexample with the outer face bounded

by a cycle C, then G contains no induced 6-cycle other than C.

Proof. Suppose that G contains an induced 6-cycle K 6= C. Let G1 be the
subgraph of G drawn outside (and including) K, and let G2 be the subgraph
of G drawn inside (and including) K. Since K 6= C and C is an induced
cycle, we have V (K) 6⊆ V (C). Let us label the vertices of K by v1, v2, . . . v6
in order so that v1 6∈ V (C) and subject to that, the degree of v1 in G1 is as
small as possible. Let G′

1
= G1 + v1v4.

Note that C is an induced cycle bounding the outer face of G′

1
. If G′

1

contains a triangle, then G contains a 5-cycle Q = v1v2v3v4x with x ∈
V (G1) \ V (K), which bounds a face by Lemma 1. Hence, the path v1v2v3
is contained in boundaries of two distinct faces (K and Q) in G1, and thus
v2 has degree two in G1. However, v1 has at least three neighbors v2, v3
and x in G1, which contradicts the choice of the labels of the vertices of
K. Therefore, G′

1
is triangle-free. Note also that either |V (G′

1
)| < |V (G)|

(if K does not bound a face), or |V (G′

1
)| = |V (G)| and |E(G′

1
)| > |E(G)|

(if K bounds a face). Hence, (G′

1
, ϕ) < (G,ϕ), and thus there exists a 3-

coloring ψ1 of G′

1
extending ϕ. Because of the edge v1v4, ψ1 ↾ V (K) is a

valid coloring of K. Since K is an induced cycle, we have V (C) 6⊆ V (K),
and thus |V (G2)| < |V (G)| and (G2, ψ1 ↾ V (K)) < (G,ϕ). Therefore, there
exists a 3-coloring ψ2 of G2 that matches ψ1 on K. The union of ψ1 and ψ2

is a 3-coloring of G extending ϕ, which is a contradiction.

Lemma 3. If (G,ϕ) is a minimal counterexample with the outer face bounded

by a cycle C, then G contains no 4-cycle other than C.

Proof. Suppose that G contains a 4-cycle K 6= C. By Lemma 1, K bounds
a face. Let v1, . . . , v4 be the vertices of K in order. Since K 6= C and C
is an induced cycle, we can assume that v3 6∈ V (C). Let G1 be the graph
obtained from G by identifying v1 with v3. Note that each 3-coloring of G1

corresponds to a 3-coloring of G, and thus ϕ does not extend to a 3-coloring
of G1. Since |V (G1)| < |V (G)|, it follows that the pair (G1, ϕ) is not valid.
There are two possibilities: either G1 contains a triangle or its outer face is
not an induced cycle.

If G1 contains a triangle, then G contains a 5-cycle Q = v1v2v3xy. By
Lemma 1, Q bounds a face, hence the path v1v2v3 is contained in boundaries
of two distinct faces (K and Q). It follows that v2 has degree two, and by
Lemma 1, v2 is incident with the outer face. However, this implies that v3
is incident with the outer face as well, contrary to its choice.
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It remains to consider the case that the outer face of G1 is not an induced
cycle. Since G1 contains no triangle, it follows that the outer face of G1

has length 6. Hence, C = v1w2w3w4w5w6 and v3 is adjacent to w4. We
choose the labels so that either v2 = w2 or v2 is contained inside the 6-cycle
Q = v1v4v3w4w3w2. By Lemma 2, Q is not an induced cycle, and since C
is an induced cycle and G is triangle-free, we conclude that v3w2 ∈ E(G).
The symmetric argument for the 6-cycle v1v2v3w4w5w6 implies that v3w6 ∈
E(G). By Lemma 1, w2v1w6v3, w2v3w4w3 and w6v3w4w5 bound faces, hence
V (G) = V (C)∪ {v3}. Since ϕ is a valid coloring of C, two opposite vertices
of C have different colors; say ϕ(v1) 6= ϕ(w4). Then, we can properly color
v3 by ϕ(v1). This is a contradiction.

Corollary 4. If (G,ϕ) is a minimal counterexample with the outer face

bounded by a cycle C, then G contains no 6-cycle other than C.

Proof. No 6-cycle in G other than C is induced by Lemma 2. However,
a non-induced 6-cycle would imply the presence of at least two 4-cycles,
contradicting Lemma 3.

The following is the main reduction enabling us to eliminate 5-faces inci-
dent with too many vertices of degree three. Thomassen [3] uses a different
reduction in this case, which however is slightly more difficult to argue about.

Lemma 5. Let (G,ϕ) be a minimal counterexample whose outer face is

bounded by a cycle C. Let K = v1v2v3v4v5 be a cycle bounding a 5-face in

G such that v1, v2, v3 and v4 have degree three and do not belong to V (C).
Then at least one of the neighbors of v1, . . . , v4 outside K belongs to V (C).

Proof. Let x1, . . . , x4 be the neighbors of v1, . . . , v4, respectively, outside
of K. Suppose that none of these vertices belongs to V (C). Let G′ be the
graph obtained from G − {v1, v2, v3, v4} by adding the edge x1x4 and by
identifying x2 with x3. Note that C is an induced cycle bounding the outer
face of G′.

If G′ contained a triangle, then G would contain a 6-cycle x2v2v3x4ab
or x1v1v5v4x4a (contrary to Corollary 4) or a matching between {x1, x4}
and {x2, x3} (contrary to either planarity or Lemma 3). Hence, (G′, ϕ) <
(G,ϕ) is valid and there exists a 3-coloring ψ of G′ extending ϕ. Note
that ψ(x1) 6= ψ(x4); hence, we can choose colors ψ(v1) 6∈ {ψ(x1), ψ(v5)} and
ψ(v4) 6∈ {ψ(x4), ψ(v5)} so that ψ(v1) 6= ψ(v4). Since ψ(x2) = ψ(x3), observe
that we can extend this coloring to v2 and v3. This gives a 3-coloring of G
extending ϕ, which is a contradiction.
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We can now proceed with the discharging phase of the proof.

Lemma 6. If (G,ϕ) is a valid pair, then ϕ extends to a 3-coloring of G.

Proof. Suppose that ϕ does not extend to a 3-coloring of G; choose a valid
pair (G,ϕ) with this property that is minimal with respect to <. Thus,
(G,ϕ) is a minimal counterexample. Clearly, G has a vertex not incident
with its outer face. Let the initial charge c0(v) of a vertex v of G be defined
as deg(v)− 4 and the initial charge c0(f) of a face f of G as |f | − 4.

Let C be the cycle bounding the outer face of G. A 5-face Q is tied to a
vertex z ∈ V (C) if z 6∈ V (Q) and z has a neighbor in V (Q) \V (C) of degree
three. Let us redistribute the charge as follows: each face other than the
outer one sends 1/3 to each incident vertex that either has degree two, or
has degree three and does not belong to V (C). Each vertex of C sends 1/3
to each 5-face tied to it. Let the charge obtained by these rules be called
final and denoted by c.

First, let us argue that the final charge of each vertex v ∈ V (G) \ V (C)
is non-negative: by Lemma 1, v has degree at least three. If v has degree at
least four, then c(v) ≥ c0(v) = deg(v)− 4 ≥ 0. If v has degree three, then it
receives 1/3 from each incident face, and c(v) = c0(v) + 1 = 0.

Next, consider the charge of a face f distinct from the outer one. By
Lemma 3, we have |f | ≥ 5. The face f sends at most 1/3 to each incident
vertex, and thus its final charge is c(f) ≥ c0(f)− |f |/3 = 2|f |/3− 4. Hence,
c(f) ≥ 0 unless |f | = 5. Suppose that |f | = 5 and let k be the number of
vertices to that f sends charge. We have c(f) = c0(f)− k/3 = 1 − k/3. If
k ≤ 3, then c(f) ≥ 0, and thus we can assume that k ≥ 4. If f is incident
with a vertex v of degree two, then note that v ∈ V (C) by Lemma 1.
Furthermore, since G is 2-connected and G 6= C, we conclude that f is
incident with at least two vertices of degree three belonging to V (C), to
which f does not send charge. This contradicts the assumption that k ≥ 4.
Hence, no vertex of degree two is incident with f , and thus k is the number
of vertices of V (f)\V (C) of degree three. By Lemma 5, f is tied to at least
k − 3 vertices of C, and thus c(f) ≥ c0(f)− k/3 + (k − 3)/3 = 0.

The final charge of the outer face is |C|−4. Consider a vertex v ∈ V (C).
If deg(v) = 2, then v receives 1/3 from the incident non-outer face and
c(v) = −5/3. If deg(v) ≥ 3, then v sends 1/3 to at most deg(v) − 2 faces
tied to it, and thus c(v) ≥ c0(v)−(deg(v)−2)/3 = 2deg(v)/3−10/3 ≥ −4/3.

Note that since G is 2-connected and G 6= C, the outer face is incident
with at least two vertices of degree greater than two. Therefore, the sum of
the final charges is at least (|C|−4)−5(|C|−2)/3−2·4/3 = −10/3−2|C|/3 >
−8, since |C| ≤ 6. On the other hand, the sum of final charges is equal to
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the sum of the initial charges, which (if G has n vertices, m edges and s
faces) is

∑

v

c0(v) +
∑

f

c0(f) =
∑

v

(deg(v)− 4) +
∑

f

(|f | − 4)

= (2m− 4n) + (2m− 4s) = 4(m− n− s)

= −8

by Euler’s formula. This is a contradiction.

The proof of Grötzsch theorem is now straightforward.

Theorem 7. Every planar triangle-free graph is 3-colorable.

Proof. Suppose for a contradiction that G is a planar triangle-free graph
that is not 3-colorable, chosen with as few vertices as possible. Clearly, G
has minimum degree at least three (as otherwise we can remove a vertex v
of degree at most two, 3-color the rest of the graph by the minimality of G,
and color v differently from its neighbors). Hence, Euler’s formula implies
that every drawing of G in the plane has a face of length at most 5. Fix
a drawing of G such that the outer face is bounded by a cycle C of length
at most 5. Since G is triangle-free, the cycle C is induced. Let ϕ be an
arbitrary 3-coloring of C. By Lemma 6, ϕ extends to a 3-coloring of G,
which is a contradiction.
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