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SOME REMARKS ON THE GROMOV WIDTH OF

HOMOGENEOUS HODGE MANIFOLDS

ANDREA LOI, ROBERTO MOSSA, AND FABIO ZUDDAS

Abstract. We provide an upper bound for the Gromov width of compact

homogeneous Hodge manifolds (M,ω) with b2(M) = 1. As an application we

obtain an upper bound on the Seshadri constant ǫ(L) where L is the ample

line bundle on M such that c1(L) = [ω
π
].

1. Introduction

Consider the open ball of radius r,

B2n(r) = {(x, y) ∈ R2n |
n
∑

j=1

x2
j + y2j < r2} (1)

in the standard symplectic space (R2n, ω0), where ω0 =
∑n

j=1 dxj ∧ dyj . The

Gromov width of a 2n-dimensional symplectic manifold (M,ω), introduced in [4],

is defined as

cG(M,ω) = sup{πr2 | B2n(r) symplectically embeds into (M,ω)}. (2)

By Darboux’s theorem cG(M,ω) is a positive number. In the last twenty years

computations and estimates of the Gromov width for various examples have been

obtained by several authors (see, e.g. [9] and reference therein).

Gromov’s width is an example of symplectic capacity introduced in [6] (see also

[7]). A map c from the class C(2n) of all symplectic manifolds of dimension 2n to

[0,+∞] is called a symplectic capacity if it satisfies the following conditions:

(monotonicity) if there exists a symplectic embedding (M1, ω1) → (M2, ω2)

then c(M1, ω1) ≤ c(M2, ω2);

(conformality) c(M,λω) = |λ|c(M,ω), for every λ ∈ R \ {0};

(nontriviality) c(B2n(r), ω0) = πr2 = c(Z2n(r), ω0).

Here Z2n(r) is the unitary open cylinder in the standard (R2n, ω0), i.e.

Z2n(r) = {(x, y) ∈ R2n | x2
1 + y21 < r2}. (3)
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Note that the monotonicity property implies that c is a symplectic invariant. The

existence of a capacity is not a trivial matter. It is easily seen that the Gromov

width is the smallest symplectic capacity, i.e. cG(M,ω) ≤ c(M,ω) for any capacity

c. Note that the nontriviality property for cG comes from the celebrated Gromov’s

nonsqueezing theorem according to which the existence of a symplectic embedding

of B2n(r) into Z2n(R) implies r ≤ R. Actually it is easily seen that the existence

of any capacity implies Gromov’s nonsqueezing theorem.

Recently (see [9]) the authors of the present paper have computed the Gromov

width of all Hermitian symmetric spaces of compact and noncompact type and their

products extending the previous results of G. Lu [10] (see also [8]) for the case of

complex Grassmanians.

The aim of this paper is to provide un upper bound of the Gromov width of

homogeneous Hodge manifolds with second Betti number equal to one. In this

paper a homogeneous Hodge manifold is a compact Kähler manifold (M,ω) such

that ω
π

is integral and such that the group of holomorphic isometries of M acts

transitively on M .

Our main results are the following three theorems.

Theorem 1. Let (M,ω) be a compact homogeneous Hodge manifold such that

b2(M) = 1 and ω is normalized so that ω(A) =
∫

A
ω = π for the generator

A ∈ H2(M,Z). Then

cG(M,ω) ≤ π. (4)

Theorem 2. Let (Mi, ω
i), i = 1, . . . , r, be homogeneous compact Hodge manifolds

as in Theorem 1. Then

cG
(

M1 × · · · ×Mr, ω
1 ⊕ · · · ⊕ ωr

)

≤ π. (5)

Moreover, if a1, . . . , ar are nonzero constants, then

cG
(

M1 × · · · ×Mr, a1ω
1 ⊕ · · · ⊕ arω

r
)

≤ min{|a1|, . . . , |ar|}π. (6)

Theorem 3. Let (M,ω) be as in Theorem 1 and (N,Ω) be any closed symplectic

manifold. Then, for any nonzero real number a,

cG(N ×M,Ω⊕ aω) ≤ |a|π. (7)

Note that an Hermitian symmetric space of compact type is an example of com-

pact Hodge manifold with b2(M) = 1. It is worth pointing out that there exist

many examples of manifolds satisfying the assumption of Theorem 1 which are not

symmetric.

In the symmetric case inequalities (4) and (5) are equalities (see [9] for a proof)

and we believe that this holds true also in the non symmetric cases. To this respect
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recall a conjecture due to P. Biran which asserts that π is a lower bound for the

Gromov width of any closed integral symplectic manifold.

The paper contains two other sections. In Section 2 we summarize Lu’s work

on pseudo symplectic capacities and their links with Gromov–Witten invariants

needed in the proof of our main results. Section 3 is dedicated to the proofs of

Theorem 1, 2 and 3. The paper ends with a remark on the Seshadri constant of an

ample line bundle over a homogeneous Hodge manifold.

2. Pseudo symplectic capacities

G. Lu [10] defines the concept of pseudo symplectic capacity by weakening the re-

quirements for a symplectic capacity (see the Introduction) in such a way that this

new concept depends on the homology classes of the symplectic manifold in question

(for more details the reader is referred to [10]). More precisely, if one denotes by

C(2n, k) the set of all tuples (M,ω;α1, . . . , αk) consisting of a 2n-dimensional con-

nected symplectic manifold (M,ω) and k nonzero homology classes αi ∈ H∗(M ;Q),

i = 1, . . . , k, a map c(k) from C(2n, k) to [0,+∞] is called a k-pseudo symplectic

capacity if it satisfies the following properties:

(pseudo monotonicity) if there exists a symplectic embedding ϕ : (M1, ω1) →

(M2, ω2) then, for any αi ∈ H∗(M1;Q), i = 1, . . . , k,

c(k)(M1, ω1;α1, . . . , αk) ≤ c(k)(M2, ω2;ϕ∗(α1), . . . , ϕ∗(αk));

(conformality) c(k)(M,λω;α1, . . . , αk) = |λ|c(k)(M,ω;α1, . . . , αk), for every

λ ∈ R \ {0} and all homology classes αi ∈ H∗(M ;Q) \ {0}, i = 1, . . . , k;

(nontriviality) c(B2n(1), ω0; pt, . . . , pt) = π = c(Z2n(1), ω0; pt, . . . , pt), where

pt denotes the homology class of a point.

Note that if k > 1 a (k − 1)-pseudo symplectic capacity is defined by

c(k−1)(M,ω;α1, . . . , αk−1) := c(k)(M,ω; pt, α1, . . . , αk−1)

and any c(k) induces a true symplectic capacity

c(0)(M,ω) := c(k)(M,ω; pt, . . . , pt).

Observe also that (unlike symplectic capacities) pseudo symplectic capacities do

not define symplectic invariants.

In [10] G. Lu was able to construct two 2-pseudo symplectic capacities denoted

by C
(2)
HZ (M,ω;α1, α2) and C

(2o)
HZ (M,ω;α1, α2) respectively (see Definition 1.3 and

Theorem 1.5 in [10]), where α1 and α2 are homology classes1 in H∗(M ;Q). The

1In the notations of [10] the generic classes α1 (resp. α2) are called α0 (resp. α∞).
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C
(2)
HZ and C

(2o)
HZ are called by Lu pseudo symplectic capacities of Hofer–Zehnder

type. Denote by

CHZ(M,ω) := C
(2)
HZ (M,ω; pt, pt)

(resp. C0
HZ (M,ω) := C

(2o)
HZ (M,ω; pt, pt)) the corresponding true symplectic capac-

ities associated to Lu’s pseudo symplectic capacities. The next lemma summarizes

some properties of the concepts involved so far.

Lemma 4. Let (M,ω) be any symplectic manifold. Then, for arbitrary homology

classes α1, α2 ∈ H∗(M ;Q) and for any nonzero homology class α, with dimα ≤

dimM − 1, the following inequalities hold true:

C
(2)
HZ(M,ω;α1, α2) ≤ C

(2o)
HZ (M,ω;α1, α2) (8)

cG(M,ω) ≤ C
(2)
HZ (M,ω; pt, α), (9)

Proof. See Lemma 1.4 and (12) in [10]. �

When the symplectic manifold M is closed the pseudo symplectic capacities

C
(2)
HZ(M,ω;α1, α2) and C

(2o)
HZ (M,ω;α1, α2) can be estimated by other two pseudo

symplectic capacities GW (M,ω;α1, α2) and

GW0(M,ω;α1, α2). These GW and GW0 are defined in terms of Liu–Tian type

Gromov-Witten invariants as follows. Let A ∈ H2(M,Z): the Liu–Tian type

Gromov–Witten invariant of genus g and with k marked points is a homomorphism

ΨM
A,g,k : H∗(Mg,k;Q)×H∗(M ;Q)k → Q, 2g + k ≥ 3

where Mg,k is the space of isomorphism classes of genus g stable curves with k

marked points. When there is no risk of confusion, we will omit the superscript M

in ΨM
A,g,k. Roughly speaking, one can think of ΨM

A,g,k(C;α1, . . . , αk) as counting,

for suitable generic ω-tame almost complex structure J on M , the number of J-

holomorphic curves of genus g representing A, with k marked points pi which pass

through cycles Xi representing αi, and such that the image of the curve belongs

to a cycle representing C (for details the reader is referred to the Appendix in [10]

and references therein for details).

In fact, several different constructions of Gromov-Witten invariants appear in the

literature and the question whether they agree is not trivial (see [10] and also Chap-

ter 7 in [11]). The Gromov–Witten invariants described in the book of D. McDuff

and D. Salamon [11] are the most commonly used: these are homomorphisms

ΨA,g,m+2 : H∗(M ;Q)m+2 → Q, m ≥ 1

The reason for this notation comes from the concept of hypersurface S ⊂ M separating the
homology classes α0 and α∞ (see Definition 1.3 and the (α0, α∞)-Weinstein conjecture at p.6 of
[10]).
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which play an important role in the proofs of this paper. The conditions under

which these invariants agree with the ones considered by Lu are given in Lemma 6

below.

Let α1, α2 ∈ H∗(M,Q). Following [10], one defines

GWg(M,ω;α1, α2) ∈ (0,+∞]

as the infimum of the ω-areas ω(A) of the homology classes A ∈ H2(M,Z) for which

the Liu–Tian Gromov–Witten invariant

ΨA,g,m+2(C;α1, α2, β1, . . . , βm) 6= 0 for some homology classes β1, . . . , βm ∈ H∗(M,Q)

and C ∈ H∗(Mg,m+2;Q) and integer m ≥ 1 (we use the convention inf ∅ = +∞).

The positivity of GWg reflects the fact that ΨA,g,m+2 = 0 if ω(A) < 0 (see, for

example, Section 7.5 in [11]). Set

GW (M,ω;α1, α2) := inf{GWg(M,ω;α1, α2) | g ≥ 0} ∈ [0,+∞]. (10)

Lemma 5. Let (M,ω) be a closed symplectic manifold. Then

0 ≤ GW (M,ω;α1, α2) ≤ GW0(M,ω;α1, α2).

Moreover GW (M,ω;α1, α2) and GW0(M,ω;α1, α2) are pseudo symplectic capaci-

ties and, if dimM ≥ 4 then, for nonzero homology classes α1, α2, we have

C
(2)
HZ (M,ω;α1, α2) ≤ GW (M,ω;α1, α2),

C
(2o)
HZ (M,ω;α1, α2) ≤ GW0(M,ω;α1, α2).

In particular, for every nonzero homology class α ∈ H∗(M,Q),

C
(2)
HZ(M,ω; pt, α) ≤ GW (M,ω; pt, α), (11)

C
(2o)
HZ (M,ω; pt, α) ≤ GW0(M,ω; pt, α). (12)

Proof. See Theorems 1.10 and 1.13 in [10]. �

We end this section with the following lemmata fundamental for the proof of our

results. Recall that a closed symplectic manifold is monotone if there exists a

number λ > 0 such that ω(A) = λc1(A) for A spherical (a homology class is

called spherical if it is in the image of the Hurewicz homomorphism π2(M) →

H2(M,Z)). Further, a homology class A ∈ H2(M,Z) is indecomposable if it cannot

be decomposed as a sum A = A1 + · · · + Ak, k ≥ 2, of classes which are spherical

and satisfy ω(Ai) > 0 for i = 1, . . . , k.

Lemma 6. Let (M,ω) be a closed monotone symplectic manifold. Let A ∈ H2(M,Z)

be an indecomposable spherical class, let pt denote the class of a point in H∗(Mg,m+2;Q)

and let αi ∈ H∗(M,Z), i = 1, 2, 3. Then the Liu–Tian Gromov–Witten invariant

ΨA,0,3(pt;α1, α2, α3) agrees with the Gromov–Witten invariant ΨA,0,3(α1, α2, α3).
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Proof. See [10, Proposition 7.6]. �

Lemma 7. Let (N1, ω1) and (N2, ω2) be two closed symplectic manifolds. Then

for every integer k ≥ 3 and homology classes A2 ∈ H2(N2;Z) and βi ∈ H∗(N2;Z),

i = 1, . . . , k,

ΨN1×N2

0⊕A2,0,k
(pt; [N1]⊗ β1, . . . , [N1]⊗ βk−1, pt⊗ βk) = ΨN2

A2,0,k
(pt;β1, . . . , βk).

Proof. See [10, Proposition 7.4]. �

3. The proofs of Theorems 1, 2, 3

The following lemma is the key tool for the proofs of our main results.

Lemma 8. Let (M,ω) be a compact homogeneous Hodge manifold of complex di-

mension n such that b2(M) = 1 and ω is normalized so that ω(A) =
∫

A
ω = π for

the generator A ∈ H2(M,Z). Then there exist α(M,ω) and β(M,ω) in H∗(M,Z)

such that

dimα(M,ω) + dimβ(M,ω) = 4n− 2c1(A)

and

ΨA,0,3(pt;α(M,ω), β(M,ω), pt) 6= 0. (13)

Proof. Since the symplectic form ω is Kähler-Einstein (being b2(M) = 1), it fol-

lows that (M,ω) is monotone, so that Lemma 6 applies under our assumptions.

We need then to show the existence of a non-vanishing Gromov-Witten invariant

ΨA,0,3(α(M,ω), β(M,ω), pt), which follows by Fulton’s results on the quantum co-

homology of homogeneous spaces proved in [3]. In order to explain this, let us recall

that a compact homogeneous space M writes as M = G/P , where G is a semisim-

ple complex group and P is parabolic (i.e. contains a maximal solvable subgroup

of G) in G. Let R be the root system associated to G. As it is known from the

theory of semisimple complex Lie algebras (see, for example, [5] for the details),

one chooses in R a finite set ∆ ⊂ R, the set of simple roots (with the property

that every root can be written as a linear combination of the elements of ∆ with

the coefficients either all non-negative or all non-positive) and associates to every

α ∈ R a reflection sα in a suitable euclidean vector space: the group W generated

by these reflections is called the Weyl group of G. For every w ∈ W the length l(w)

of w is defined as the minimum number of reflections associated to simple roots

whose product is w. Then, as recalled in Section 3 of [3], the homology classes of

M correspond to the classes of the quotient W/WP , where WP is the subgroup

of W generated by the reflections sα for which α belongs to the root system of

the reductive part of P . More precisely, for every u ∈ W/WP we denote by σ(u)

(resp. σu) the class of the corresponding so called Schubert variety (resp. opposite
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Schubert variety ) of complex dimension (resp. codimension) l(u) := inf [w]=u l(w).

The classes σu and σ(u) are dual under the intersection pairing, and moreover one

has σ(u) = σu∨ , where u∨ := w0u, being w0 the element of longest length in W . In

particular, σ[w0] = σ[1]∨ = σ([1]) has zero dimension, i.e. is the class of a point.

Under the assumption b2(G/P ) = 1, there exists a simple root β such that

H2(G/P ) is generated by the class σ([sβ ]). Now, for every u = [ũ] ∈ W/WP , let

v = [ũsβ ]
∨. Then, in the terminology of Section 4 in [3], u and v∨ are adjacent

and u0 = u, u1 = v∨ is a chain of degree σ([sβ ]) between u and v. By Theorem

9.1 in [3], it follows that there exists w ∈ W/WP such that the Gromov-Witten

invariant Ψσ([sβ ]),0,3(σu, σv, σw∨) does not vanish. In particular, when u = [w0],

we get Ψσ([sβ ]),0,3(pt, σv, σw∨) 6= 0, as required. The relation between the (real)

dimensions of the classes in the statement easily follows from the general condition

necessary for a Gromov-Witten invariant to be well-defined and non-vanishing (see,

for example, Section 6 in [3]). �

Proof of Theorem 1. In order to use Lemma 5 we can assume, without loss of gen-

erality, that dimM ≥ 4. Indeed the only compact homogeneous Hodge manifold

of (real) dimension < 4 (and hence of dimension 1) is (CP1, ωFS) whose Gromov

width is well-known to be equal to π. Let A = [CP 1] be the generator of H2(M,Z)

as in the statement of Theorem 1. Then the value ω(A) = π is clearly the infimum

of the ω-areas ω(B) of the homology classes B ∈ H2(M,Z) for which ω(B) > 0.

By Lemma 8 we have ΨA,0,3(pt; pt, α, β) 6= 0, with α = α(M,ω) and β = β(M,ω),

and hence, by definition of GWg,

GW (M,ω; pt, γ) = GW0(M,ω; pt, γ) = π (14)

with γ = α(M,ω) or γ = β(M,ω). It follows by the inequalities (8), (9), (11) and

(12) that

cG(M,ω) ≤ C
(2)
HZ(M,ω; pt, γ) ≤ C

(2o)
HZ (M,ω; pt, γ) ≤ π,

i.e. the desired inequality. �

Proof of Theorem 2. The proof of Theorem 2 is an immediate consequence of the

following result combined with (8) and (9) in Lemma 4.

Lemma 9. Let (M,ω) be as in Theorem 1 and let (N,Ω) be any closed symplectic

manifold. Then

C
(2o)
HZ (N ×M,Ω⊕ aω; pt, [N ]× γ) ≤ |a|π (15)

for any a ∈ R \ {0} and γ = α(M,ω) or γ = β(M,ω), with α(M,ω) and β(M,ω)

given by Lemma 8.
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Proof. Since by (13) we have ΨM
A,0,3(pt;α, β, pt) 6= 0, with α = α(M,ω) and β =

β(M,ω), it follows by Lemma 7 that

ΨN×M
B,0,3 (pt; [N ]× α(M,ω), [N ]× β(M,ω), pt) 6= 0

for B = 0×A, where 0 denotes the zero class in H2(N,Z) and A the generator of

H2(M,Z). Hence (15) easily follows from (12) in Lemma 5. �

Proof of Theorem 3. From (8) and (9) in Lemma 4 and by (15) it follows that

cG(N ×M,Ω⊕ aω) ≤ C
(2o)
HZ (N ×M,Ω⊕ aω; pt, [N ]× γ) ≤ |a|π,

where γ = α(M,ω) (or γ = β(M,ω)), which yields the desired inequality (7). �

On Seshadri constants of homogeneous manifolds

Given a compact complex manifold (N, J) and a holomorphic line bundle L → N

the Seshadri constant of L at a point x ∈ N is defined as the nonnegative real

number

ǫ(L, x) = inf
C∋x

∫

C
c1(L)

multxC
,

where the infimum is taken over all irreducible holomorphic curves C passing

through the point x and multxC is the multiplicity of C at x (see [2] for details).

The (global) Seshadri constant is defined by

ǫ(L) = inf
x∈N

ǫ(L, x).

Note that Seshadri’s criterion for ampleness says that L is ample if and only if

ǫ(L) > 0. P. Biran and K. Cieliebak [1, Prop. 6.2.1] have shown that

ǫ(L) ≤ cG(N,ωL),

where ωL is any Kähler form which represents the first Chern class of L, i.e.

c1(L) = [ωL]. Let now (M,ω) be a compact homogeneous Hodge manifold and

L be the (very) ample line bundle L → M such that c1(L) = [ω
π
] (L can be taken

as the pull-back of a suitable normalized Kodaira embedding M → CPN of the

universal bundle of CPN ). Then, by using the upper bound cG(M,ω) ≤ π and the

conformality of cG we get:

Corollary 10. Let (Mi, ω
i), i = 1, . . . , r, be homogeneous compact Hodge manifolds

as in Theorem 1. Let (M,ω) = (M1 × · · · × Mr, ω
1 ⊕ · · · ⊕ ωr) and L → M as

above. Then ǫ(L) ≤ 1.

Remark 11. The previous inequality has been found in [9] when (M,ω) is a Her-

mitian symmetric space of compact type
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