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THE KRZYŻ CONJECTURE REVISITED

MARÍA J. MARTÍN, ERIC T. SAWYER, IGNACIO URIARTE-TUERO,
AND DRAGAN VUKOTIĆ

Abstract. The Krzyż conjecture concerns the largest values of the
Taylor coefficients of a non-vanishing analytic function bounded by one
in modulus in the unit disk. It has been open since 1968 even though
information on the structure of extremal functions is available. The
purpose of this paper is to collect various conditions that the coefficients
of an extremal function (and various other quantities associated with it)
should satisfy if the conjecture is true and to show that each one of these
properties is equivalent to the conjecture itself. This may provide several
possible starting points for future attempts at solving the problem.

Introduction

Formulation of the problem. Denote by D the unit disk and by B∗

the class of all analytic functions f in D such that 0 < |f(z)| ≤ 1 for all z in
D. Consider the extremal problem of determining the following supremum:

(1) Mn = sup{|f (n)(0)|/n! : f ∈ B∗} , n ≥ 1 .

A standard argument involving normal families shows that the supremum
Mn is attained for some function f . Any such function will be called an
extremal function. For every n ≥ 1, the function

(2) fn(z) = e(z
n−1)/(zn+1) =

1

e
+

2

e
zn + . . .

shows that Mn ≥ 2/e. In 1968 the late Polish mathematician Jan Krzyż
[19] suggested that Mn = 2/e should hold for all n ≥ 1, with equality only
for the function fn given by (2) and its rotations: αf(γz), |γ| = |α| = 1.
This is known as the Krzyż conjecture.

Whenever |α| = |γ| = 1, it is plain that f(z) =
∑∞

j=0 ajz
j is an extremal

function if and only if γf(αz) = γ
∑∞

j=0 α
jajz

j is extremal. Therefore

(3) Mn = sup{Re an : f ∈ B∗ , a0 > 0} , n ≥ 1 .

Since the rotation in the argument involving α does not affect a0, the coef-
ficients of an extremal function for (3) must actually satisfy the condition
Re an = |an| and hence an > 0 (otherwise an appropriate rotation would
yield a function in B∗ for which Re an > Mn). This observation will be used
often.
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Significance of the problem. The importance of the question stems
from a number of its relationships with some fundamental results or concepts
in geometric function theory. We review some of them here. For f ∈ B∗,
write f = eg, where Re g < 0 in D and (after a suitable normalization) we
may also assume that g(0) is real and negative. Then the normalized func-
tion g/g(0) belongs to the class P of normalized functions with positive real
part, hence its coefficients are bounded by 2 in modulus by Carathéodory’s
lemma [8, Chapter 2]. Thus, the Krzyż conjecture can be thought of as an
“exponential analogue” of the Carathéodory lemma.

From the fact that every Taylor coefficient of f can be computed recur-
sively in terms of its previous coefficients and those of g, a further rela-
tionship stems with the Faber polynomials and Grunsky’s inequalities [8,
Chapter 5].

The statement of the Krzyż conjecture also provides a curious subor-
dination relation. The atomic singular inner function S(z) = e(z+1)/(z−1)

is a universal covering map of the punctured disk D \ {0}. A moments’
thought reveals that every analytic function f of the disk into the punc-
tured disk is subordinated to S in the sense that it can be written in the
form f = e(h+1)/(h−1) for some analytic function h from D into itself. (Let

us point out here that one can also write f = e(h−1)/(h+1) and in this paper
we will use whichever one of the two forms is more convenient for a specific
purpose.) Subordination is a central topic in geometric function theory (see,
for example, Chapter 6 of Duren’s monograph [8]). The basic principles in
this theory state roughly that, whenever a function is subordinated to an-
other then some of the initial Taylor coefficients will be smaller than those
of the superordinate function and some mean value of the coefficients should
be smaller. The Krzyż conjecture states that n-th Taylor coefficients of any
admissible f cannot be larger than the corresponding coefficient of S ◦ σn,
where σn(z) = zn.

Some parallelism can also be observed between the Krzyż conjecture and
the famous Bieberbach’s conjecture (now de Branges’ theorem) for the n-th
coefficient of a univalent function in the class S; cf. [8], [4]. Actually, in [13] a
differential equation was devised which would govern the coefficients for the
Krzyż problem in much the same way the celebrated Loewner’s equation [8]
did for the Bieberbach’s conjecture. A different approach along these lines
was tried in [29]. This suggests that the relative similarity between the two
problems may not be so superficial and may also nurture some hopes that,
if the Krzyż conjecture had a “simple” proof then perhaps so would the de
Branges theorem.

The Krzyż conjecture has attracted the attention of a number of math-
ematicians and has been mentioned in a number of relevant surveys; see
Lewandowski and Szynal [20] or Bénéteau and D. Khavinson [2], for ex-
ample. Various master theses or doctoral dissertations have been, at least
partially, devoted to this problem, e.g., those of Ermers [9] under the di-
rection of A.C.M. v. Rooij and R.A. Kortram, Romanova [28, 29] under
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the supervision of D.V. Prokhorov, and Williams [37] under R. Barnard.
Closely related problems had been considered earlier in Terpigoreva’s thesis
(cf. [35], for example) under the supervision of S.Ya. Khavinson.

Further motivation and brief history of the conjecture. By the
basic theory of Hardy spaces Hp (see [7] or [10]), the coefficients of any
function f analytic in D and bounded by one in modulus must satisfy

∞
∑

j=0

|aj |2 = ‖f‖22 ≤ ‖f‖2∞ = sup
z∈D

|f(z)|2 ≤ 1 .

Thus, if two coefficients of f had the property |ak|, |am| ≥ 2/e, k 6= m, then
we would have

1 ≥ |ak|2 + |am|2 ≥ 2

(

2

e

)2

=
8

e2
> 1 ,

which is absurd. Thus, no more than one coefficient of f can possibly be
bigger than 2/e. This seems to speak in favor of the conjecture as one would
naturally expect stronger statements to hold for functions in B∗.

A well-known estimate shows that |an| ≤ 1− |a0|2 for all n ≥ 1 whenever
f is analytic and bounded by one in D; see [1] or [37]. We wish to stress
that for the class B∗ uniform bounds on Mn strictly smaller than one are
known. Horowitz [11] showed that

Mn ≤ 1− 1

3π
+

4

π
sin

1

12
= 0.99987 . . . , n ∈ N .

This was later improved slightly to 0.9991. . . by Ermers [9]. Both values are
obviously still far from the desired bound 2/e = 0.73575888 . . . Some useful
asymptotic bounds were obtained in [26].

As for the exact bounds, it was known as early as in 1934 that M1 = 2/e.
The first known record of this seems to appear in [22]; see also [32] or [1].
However, so far the Krzyż conjecture has only been proved for n ≤ 5. Krzyż
[19] and Reade, as well as MacGregor (unpublished), were the first to prove
the statement for n = 2. Hummel, Scheinberg, and Zalcman [13] later gave
a new proof in this case and also solved the problem for n = 3. Tan [34] and
Brown [6] proved the conjecture for n = 4 and Samaris [31] did it for n = 5.
As far as we know, the conjecture remains open for all other values of n.

Some partial progress on the problem was obtained by a number of other
authors. We mention the papers by Brown [5] and Peretz [24, 25] who
provided the proof under some additional assumptions on the coefficients of
extremal functions. We also mention [15], [21], [27], and [33]. Krushkal’s
unpublished preprint [18], in spite of some gaps found in it, contains a wealth
of geometric and analytic ideas which may be useful for a further study of
problems of this type.

Some known qualitative results. In their influential paper [13], Hum-
mel, Scheinberg, and Zalcman obtained various relationships between the
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coefficients of an extremal function. They showed that the extremal func-
tions are of the form

(4) f(z) = e
∑N

j=1 rj
αjz+1

αjz−1 , 1 ≤ N ≤ n , rj > 0 , |αj | = 1, 1 ≤ j ≤ N .

The above structure is not too surprising in view of the general knowledge
of extremal problems developed by S.Ya. Khavinson and first published in
Russian in the early 60’s; see [16] or [2]. Namely, as a limit case of the
result from [16] for functions in the unit ball of Hp spaces as p → ∞, it is
possible to deduce (4). The authors of [13] gave their own proof of (4) and
mentioned two other possible proofs. Kortram [17] later gave yet another
proof. We also mention a result on the structure of extremal functions for
more general coefficient problems that follows directly from an earlier work
of Hummel [12], as was pointed out by Sakaguchi [30, Theorem C].

Unfortunately, in spite of such a clear structure of extremal functions
there are simply too many parameters to control here, so it is not at all
immediate that the desired symmetry holds in (4):

N = n ; rj =
1

n
and αj = αe2πji/n , j = 1, 2, . . . , n , |α| = 1 .

Hence the problem remains open in spite of all the information available.
However, it seems that most experts believe that the conjecture is true.

Contents and organization of the paper. Our aim is to consider
the problem from a different viewpoint. First, we will show that the Tay-
lor coefficients of an extremal function for (3), as well as the zeros of some
polynomials associated with it in a natural way, must satisfy certain inequal-
ities. Next, it turns out that whenever equality holds in any one of these
inequalities, the conjecture is true. This is the main purpose of this paper.
Therefore our main statement, Theorem 1, can be viewed as a reformulation
of the conjecture in many ways.

Our proofs are typically based on variational methods, similar to those
employed in [13], on the Riesz factorization for Hardy spaces, on the Fejér
lemma on polynomials with positive real part on the unit circle, and on the
Carathéodory lemma for analytic functions with positive real part in D.

The paper is organized as follows. We first review some known facts,
several of them with new proofs, and collect other useful information in the
section on preliminary results. In the final section we formulate explicitly
the main result and give its detailed proof, together with various comments.
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1. Various preliminary observations and results

The simplest case. We formulate the answer in the easiest case n = 1
as a lemma and also present a very simple proof which seems different from
the ones published before, for example, from [32]. This is done not only for
the sake of completeness but also because it will be needed later.

Lemma 1. If f ∈ B∗ then |a1| ≤ 2
e . Equality holds only for the functions of

the form

(5) f(z) = γe
αz+1
αz−1 , |α| = |γ| = 1 .

Remark 1. Note that, under the normalization (3), it is easy to check that

equality holds in Lemma 1 if and only if f(z) = e
z−1
z+1 (when −α = 1 = γ).

Proof. If f ∈ B∗ then we can write f = eg where g is a function analytic in
D and with negative real part, hence g = (h + 1)/(h − 1), for some h with
‖h‖∞ ≤ 1. A direct computation shows that

f ′ = − 2h′

(h− 1)2
e

h+ 1

h− 1 ,
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hence by the Schwarz-Pick lemma

|f ′(0)| = 2|h′(0)|
|1− h(0)|2 e

Re
h(0)+1
h(0)−1 ≤ 2

1− |h(0)|2
|1 − h(0)|2 e

−
1− |h(0)|2
|1− h(0)|2 ≤ 2

e

since elementary calculus shows that the function u(x) = 2x e−x considered
in [0,+∞) attains its maximum at the point x = 1.

The case of equality requires some analysis. In order for equality to
hold, we must have equality in the Schwarz-Pick lemma so h has to be a
disk automorphism. Also, h(0) must belong to the set of all w such that
1− |w|2 = |1−w|2, which is the horocycle {z : |z− 1

2 | = 1
2}. Now note that

the linear fractional (Möbius) map w 7→ (w+1)/(w−1) maps this horocycle
onto the vertical line Re z = −1. In particular, we have

h(0) + 1

h(0) − 1
= −1 + ic , c ∈ R .

But the linear fractional map (h + 1)/(h − 1) − ic maps the unit disk con-
formally onto the left half-plane and the origin to the point −1. It follows
that

g(z) =
h(z) + 1

h(z) − 1
= ic+

αz + 1

αz − 1
, |α| = 1 .

The desired structure of f is observed immediately. �

Some useful recurrence relations. We continue with the following
simple computation which is, for example, used to derive Grunsky’s in-
equalities [8, p. 143].

Lemma 2. If f and g are analytic in D and

f = eg , f(z) =

∞
∑

j=0

ajz
j , g(z) =

∞
∑

j=0

bjz
j ,

then a0 = eb0 and

(6) an =
n−1
∑

k=0

n− k

n
akbn−k =

n
∑

j=1

j

n
an−jbj , n ≥ 1 .

Proof. Differentiation of f = eg yields f ′ = fg′. Upon differentiating n− 1
more times and applying the Leibniz formula we get

f (n) =
n−1
∑

k=0

(

n− 1
k

)

f (k)g(n−k) .

After evaluating both sides at the origin and dividing both sides by n!, we
get the desired formula. �
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From the above lemma it easily follows that, for example,

a1 = a0b1 , a2 = a0

(

b21
2

+ b2

)

, a3 = a0

(

b31
6

+ b1b2 + b3

)

,

a4 = a0

(

b41
24

+
b21b2
2

+ b1b3 +
b22
2

+ b4

)

, . . .

This is easily generalized to obtain the following structural formula which
essentially reduces to the well-known Faà di Bruno formula [14] on differen-
tiation of composite functions (for functions of exponential type). We could
even be more specific about the values of some of the coefficients but this
will not be needed in the paper.

Proposition 1. Let f and g and their coefficients be as in Lemma 2. Then

an = a0 Pn(b1, b2, . . . , bn) ,

where, for each n ≥ 1, Pn is a polynomial of the form

Pn(b1, b2, . . . , bn) =
∑

1≤m≤n,∑m
j=1 ij(n)=n

ci1(n),i2(n),...,im(n)bi1(n)bi2(n) . . . bim(n) ,

where all ij(n) ∈ N and the coefficients ci1(n),i2(n),...,im(n) are all strictly

positive. In particular, whenever 1 ≤ m ≤ n and
∑m

j=1 ij(n) = n, the term
containing the product bi1(n)bi2(n) . . . bim(n) actually appears in the expression
for Pn with a non-zero coefficient in front of it.

Proof. The statement follows easily by induction. It is obviously true for
n = 1 as P1(b1) = b1. Now let n ≥ 2 and suppose that the claim is true for
every k with 1 ≤ k < n; that is:

Pk(b1, b2, . . . , bk) =
∑

1≤mk≤k,
∑mk

j=1 ij(k)=k

ci1(k),i2(k),...,imk
(k)bi1(k)bi2(k) . . . bimk(k)

,

whenever 1 ≤ k < n. By (6) we have

an
a0

=

n−1
∑

k=0

n− k

n

ak
a0

bn−k = bn +

n−1
∑

k=1

n− k

n
Pk(b1, b2, . . . , bk) bn−k

= bn +

n−1
∑

k=1

n− k

n

∑

1≤mk≤k,
∑mk

j=1 ij(k)=k

ci1(k),i2(k),...,imk
(k)bi1(k)bi2(k) . . . bimk(k)

bn−k

= bn +
∑

2≤m≤n,∑m
j=1 ij(n)=n

ci1(n),i2(n),...,im(n) bi1(n)bi2(n) . . . bim(n) ,

which completes the proof of the inductive step. The last identity in the
above string of equalities follows from the obvious fact that a positive integer
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n can be written as a sum of at least two positive integers:

n = i1(n) + i2(n) + . . .+ im(n) , m ≥ 2 ,

if and only if one of the numbers ij(n) = n− k with 0 ≤ k < n and the sum
of the remaining ones is k. Note also that, when collecting terms with the
same product bi1(n)bi2(n) . . . bim(n) (which may appear in several summands
in the last line in the display above) no cancelation can occur because all
the coefficients n−k

n ci1(k),i2(k),...,imk
(k) are positive. �

For n ≥ 1 and considering a0 as a constant, (6) allows us also to express
the coefficients bn as a polynomial of a1,. . . ,an; for example:

b1 =
a1
a0

, b2 =
1

a0

(

a2 −
1

2
a1b1

)

=
1

a0
a2 −

1

2a20
a21 ,

b3 =
1

a0

(

a3 −
1

3
a2b1 −

2

3
a1b2

)

=
1

a0
a3 −

1

a20
a1a2 +

1

3a30
a31 , . . .

The difference with respect to the previous lemma is that some coefficients
are no longer positive. However, all possible terms ai1ai2 . . . aim with i1 +
i2 + . . . + im = n are present in the formula for each bn and the signs of
the coefficients are easy to control: they are positive in front of a product
of an odd number of terms and negative in front of a product of an even
number of terms ai. It turns out that in computing bn when we sum up
similar terms, coming from different summands but containing the same
product, no cancelation of the coefficients in front of two similar terms occurs
because these coefficients will have the same sign. This is easily checked
when computing b3 and b4 and can be proved formally without difficulty.
We formulate the precise statement as follows.

Proposition 2. Let f and g and their coefficients be as in Lemma 2 and
let a0 > 0 be fixed. Then

bn = Qn(a1, a2, . . . , an) ,

where the polynomial Qn has the form

Qn(a1, a2, . . . , an) =
∑

1≤m≤n,∑m
j=1 ij(n)

=n

(−1)m+1ci1(n),i2(n),...,im(n)(a0) ai1(n)ai2(n) . . . aim(n) ,

where every ci1(n),i2(n),...,im(n)(a0) is positive. In particular, whenever n =
∑m

j=1 ij(n), the term containing the product ai1(n)ai2(n) . . . aim(n) effectively

appears in the expression for Qn above (with a non-zero coefficient in front
of it).

Proof. A proof can again be given by induction, similar to Proposition 1 but
here we should also explain the sign changes (−1)m+1.
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A simple inspection of the formulas preceding this result shows that the
statement is obviously true for n = 1 and n = 2. Suppose n > 1 and the
claim is true for every j with 1 ≤ j < n. Again by (6), we have

bn =
1

a0



an −
n−1
∑

j=1

j

n
an−jbj





=
1

a0



an −
n−1
∑

j=1

j

n
Qj(a1, a2, . . . , aj) an−j





and everything will be similar to the previous result with one difference:
whenever a new product ai1(j)ai2(j) . . . aim(j)an−j is created from the earlier
term ai1(j)ai2(j) . . . aim(j) (that is, whenever there is an extra factor), a sign
change occurs simultaneously. This explains the appearance of the factor
(−1)m+1 in front of all terms containing similar products. �

The structure of extremal functions. We have already observed that
all functions in the class B∗ are of the form f = e(h+1)/(h−1) for some analytic
self-map h of D. Now recall Carathéodory’s theorem (see [10, Theorem 2.1]
or [36, Theorem IV.24]) which says that, for any given n ≥ 1 and an analytic
function h whose modulus is bounded by one in the disk, with h(z) =
∑∞

k=0 akz
k, one can find a finite Blaschke product B of degree at most n+1

with

B(z) =
n
∑

k=0

akz
k +

∞
∑

k=n+1

ckz
k .

By combining Lemma 2 and this result, it is actually not difficult to see that
there exists an extremal function which is of the form

(7) f = e(B+1)/(B−1)

where B is a Blaschke product of degree at most n+ 1.
It takes a further step to deduce that actually every extremal function is

as in (7) but with the degree of B at most n to obtain the theorem on the
structure of extremal functions as given in [13]. We have already mentioned
several references on this starting with S.Ya. Khavinson’s work. Let us also
mention that it is possible to combine the open mapping theorem for non-
constant analytic functions and the Toeplitz-Carathéodory theorem on the
coefficients of analytic functions from the disk into the right half-plane [36,
Theorem IV.22] to give yet another proof of this statement, as was shown
to us by Donald Marshall. Here we only recall again the exact statement of
this result from [13]:

Theorem. Every extremal function for the Krzyż problem (3) is of the form

f(z) = e
∑N

j=1 rj
αjz+1

αjz−1 ,
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for certain values of the parameters considered which satisfy

1 ≤ N ≤ n ; rj > 0 and |αj | = 1, 1 ≤ j ≤ N .

(Without loss of generality, we may assume that αj 6= αk whenever j 6= k.)

It should be noted that every function as above is actually of the form

(7). Indeed, note that all the fractions
αjz+1
αjz−1 map the unit disk to the left

half-plane and the unit circle to the imaginary axis and since all rj > 0 the
same is true of the exponent

g(z) =
N
∑

j=1

rj
αjz + 1

αjz − 1
.

Invoking again the conformal map of the disk onto the left half-plane, we
see that B = (g + 1)/(g − 1) maps the unit disk to itself, the unit circle
into itself and has N zeros in the disk counting the multiplicities (since g
takes on the value −1 exactly N times, which is easily seen by inspecting
the resulting polynomial equation). It follows that B is a finite Blaschke
product of degree N by the well-known characterization of such functions
[10, p. 6]. Solving for g, we see that all extremal functions are actually of
the form (7) where B is a finite Blaschke product of degree N ≤ n.

On the Taylor coefficients of an extremal function. We now recall
some important facts. Parts (a) and (b) of the statement below may not
have been recorded explicitly in the literature while (c) and (d) were deduced
on p. 173 of [13]. For the sake of completeness, we include a simple proof of
both facts by an elementary variational method, i.e., using differentiation
with respect to a parameter.

Proposition 3. Let n > 1 and let f(z) =
∑∞

j=0 ajz
j be an extremal function

for (3). (Recall that then, as observed earlier, an is real and an > 0.) Then

(a) If u is an arbitrary analytic function with negative real part in D and
u(z) =

∑∞
n=0 cnz

n, then

Re {anc0 + an−1c1 + . . .+ a0cn} ≤ 0 .

(b) When f = eg and the coefficients of g are denoted by bj, we have

(8) Re {anb0 + an−1b1 + . . .+ a0bn} = 0 .

(c) an ≥ 2a0.
(d) The polynomial P (z) = an + 2an−1z + . . . 2a1z

n−1 + 2a0z
n satisfies

ReP (z) ≥ 0 whenever |z| ≤ 1.
(e) Moreover, if the extremal function (which is a singular inner function

with finitely many atoms) has N point masses: at α1, α2,. . . ,αN ,
1 ≤ N ≤ n, then actually ReP (αk) = 0 for each k with 1 ≤ k ≤ N .

Proof. (a) Let u be analytic in D with Re u < 0 and let ε > 0. Then the
function feεu ∈ B∗ and is, hence, in contention with f . But

feεu = f(1 + εu+O(ε2)) = f + εfu+O(ε2) .
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By comparing the n-th coefficients, canceling, dividing out by ε and letting
ε → 0, we see that the real part of the n-th coefficient of fu is ≤ 0, which
proves (a).

(b) Note that for the specific choice u = g above, where f = eg, we are
allowed to consider ε < 0 with small absolute value and can hence obtain
equality.

(c) Now pick

u(z) =
zn − 1

zn + 1
= −1 + 2zn − 2z2n + . . .

to deduce that

2a0 − an = Re {2a0 − an} ≤ 0 .

(d) Let λ be an arbitrary complex number with |λ| ≤ 1. Choose

uλ(z) =
λz + 1

λz − 1
= −(1 + 2λz + 2λ2z2 + 2λ3z3 + . . .)

to infer that

Re {an + 2an−1λ+ . . .+ 2a1λ
n−1 + 2a0λ

n} ≥ 0

whenever |λ| ≤ 1.
(e) Follows from our formula (4) by another variation. Namely, for any k

with 1 ≤ k ≤ N , we can consider the function

gε(z) = f(z) e
ε
αkz+1

αkz−1 = f(z)

(

1 + ε
αkz + 1

αkz − 1
+O(ε2)

)

= f(z)
(

1− ε(1 + 2αkz + 2α2
kz

2 + . . . +O(ε2))
)

, ε → 0 ,

which is in competition with f for being an extremal function for any small
ε, positive or negative. From here one immediately realizes that the n-th
coefficient of gε is precisely

an − εP (αk) +O(ε2) , ε → 0 ,

and the real part of this function (on some open interval around ε = 0)
attains its maximum an at ε = 0. The statement follows easily from here. �

Part (c), as was observed in [24], has the following corollary: if f is
an extremal function for (3) then its constant term enjoys the estimate
a0 ≤

√
2 − 1 ≈ 0.41421356237 . . .. This is immediate from the inequalities

mentioned earlier: 2a0 ≤ an ≤ 1 − a20. Of course, our ultimate goal would
be to show that actually a0 = 1/e ≈ 0.36787944117 . . .

If the Krzyż conjecture is true then the suspected extremal functions
should satisfy the equality Re an = 2a0 since a0 = 1/e and an = 2/e. We
will now show that the converse is also true. That is, proving this fact for
any extremal function is equivalent to proving the Krzyż conjecture. We
will show that there are also many other statements equivalent to it.

It is worth mentioning that several existing partial results on the Taylor
coefficients of an extremal function either go in another direction or seem to
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use stronger initial hypotheses. For example, it was shown in [24] that if n is
odd, f is extremal for (1), and a1 = a3 = · · · = an−2 = 0 then |a0| ≤ 1/e and
equality holds if and only if |an| = 2/e. Before proceeding on to improving
this result, we need to review some basic facts.

On the coefficients of the polynomial associated with an ex-
tremal function. Denote by λk, 1 ≤ k ≤ n, the zeros of the polynomial P
defined in Proposition 3. Since

P (z) = 2a0

n
∏

k=1

(z − λk) ,

it follows that

(9) an = P (0) = 2(−1)na0

n
∏

k=1

λk .

In view of Proposition 3 and the fact that an, a0 > 0, we get

(10) (−1)n
n
∏

k=1

λk ≥ 1 .

We actually know more: |λk| ≥ 1 for all k ∈ {1, 2, . . . , n}. The reason is
that if for some j we had |λj | < 1 and P (λj) = 0 then the open mapping
theorem for analytic functions would imply that in any small neighborhood
of λj there is a point z at which ReP (z) < 0, which would contradict the

fact that ReP (z) ≥ 0 in D.

The Fejér lemma. Given a complex polynomial of degree n: P (z) =
∑n

k=0 ckz
k, if we look at its restriction to the unit circle and write each

z of modulus one as z = eit, t ∈ [0, 2π], it is easy to see that ReP is a
trigonometric polynomial of degree n:

(11) T (t) = α0 +
n
∑

k=0

(αk cos kt+ βk sin kt)

and can, thus, have at most 2n zeros in [0, 2π]. In particular, from here we
see the following:

If the real part of a complex polynomial P vanishes on the unit circle then
P is identically equal to a purely imaginary constant.

The following classical lemma due to Fejér (see [36, p. 154–155]) charac-
terizes an important class of trigonometric polynomials.

Fejér’s Lemma. If T is a trigonometric polynomial as in (11) and T (t) ≥ 0
for all t ∈ [0, 2π] then there are complex coefficients γj , 0 ≤ j ≤ n, such that

T (t) = |γ0 + γ1e
it + . . . γne

int|2 , for all t ∈ [0, 2π] .
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Wiener’s trick. The following argument is well-known and appears in
different contexts in complex analysis. It is actually the basis of F. W. Wien-
er’s proof of the inequality |an| ≤ 1 − |a0|2 mentioned earlier; see [3, p. 4],
for example. Thus, we shall refer to it as the Wiener trick .

Given a function f ∈ B∗ with f(z) =
∑∞

k=0 akz
k and a fixed integer n > 1,

consider the primitive n-th root of unity: ω = e2πi/n. It is routine to check
that the Wiener transform of f , given by

(12) Wnf(z) =
1

n

n−1
∑

k=0

f(ωkz) =

∞
∑

k=0

ankz
nk ,

is of the form H(zn), where

(13) H(z) =

∞
∑

k=0

ankz
k .

Obviously, both Wnf and H are analytic in D and bounded by one there.
Moreover, Wnf(0) = H(0) = a0 and H ′(0) = an. This will sometimes allow
us to translate the problem for the n-th Taylor coefficient to the problem
for the first coefficient, already solved by Lemma 1.

Note that when f is extremal, the function H defined in (13) and asso-
ciated with its Wiener transform Wnf may or may not vanish in D. (If it
does not, the conjecture will easily follow as we will see later.) In either
case, the standard Riesz factorization for Hardy spaces [7, Chapter 2] tells
us that there exist a Blaschke product B (possibly a constant of modulus
one) and a function G which is analytic and non-vanishing in D such that

(14) H = BG , ‖G‖∞ = ‖H‖∞ ≤ 1 .

Since for any α with |α| = 1 we have H = (αB)(αG) and H(0) = a0 > 0,
we can replace B by αB and so without loss of generality we may assume
that B(0) is real and positive. Thus,

Wnf(z) = a0+anz
n+. . . = B(zn)G(zn) = (B0+Bnz

n+. . .)(C0+Cnz
n+. . .)

with B0 = B(0) > 0. Obviously,

(15) a0 = B0C0 , an = B0Cn +BnC0 ,

and since a0 > 0 we see that actually C0 > 0 as well. This discussion includes
the case when Wnf does not vanish in the disk, meaning that B ≡ B0 = 1
in that case. We have already proved that 2 ≤ an/a0 for any extremal
function. We will now prove a related upper bound.

Proposition 4. Let f be an extremal function for the Krzyż problem. Then,
with B as in (14) and B0 = B(0) normalized so that 0 < B0 ≤ 1, we have

an
a0

≤ 1 +
1

B0
.
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Proof. Assume the contrary:

an
a0

> 1 +
1

B0
.

In view of (15), this means that an > a0 + C0 = C0(1 +B0). This yields

an(1−B0) > C0(1−B2
0) ≥ C0|Bn| ≥ C0ReBn

by the well-known inequality |Bn| ≤ 1−B2
0 that follows from Wiener’s trick.

From here we get that

an − C0ReBn > anB0 .

Thus, again by (15),

B0 ReCn = Re {an − C0Bn} = an − C0ReBn > anB0 .

Since B0 > 0, this shows that ReCn > an. But G(zn) belongs to the class
B∗ and is thus in contention with f . This contradicts the assumption that
f is extremal in B∗. �

Inequalities of Carathéodory and Livingston type. Denote by P
the class of all analytic functions u in D such that Reu(z) > 0 in D and
u(0) = 1. If we write the Taylor series expansion of such u in the disk as

u(z) = 1 + b1z + b2z
2 + b3z

3 + . . . ,

the well-known Carathéodory’s lemma [8, Chapter 2] states that |bn| ≤ 2 for
all n ≥ 1. There are many other inequalities for the coefficients in this class,
several of them due to Livingston. Here we only need one such inequality
which can also be deduced without much effort from [23, Lemma 1] but we
give our own proof.

Lemma 3. If −u ∈ P , u(z) = −1 + b1z + b2z
2 + b3z

3 + . . ., and k ∈ N then
∣

∣

∣

∣

b2k +
b2k
2

∣

∣

∣

∣

≤ 2 .

Proof. It suffices to prove the inequality in the case k = 1:
∣

∣

∣

∣

b2 +
b21
2

∣

∣

∣

∣

≤ 2 .

To this end, note that every u such that −u ∈ P can be written as u =
(h−1)/(h+1) where h is an analytic function from D into itself and h(0) = 0.
Let c2 = h′′(0)/2 be the second Taylor coefficient of h at the origin; then
by the inequality mentioned earlier for all analytic self-maps of the disk we
have |c2| ≤ 1− |h(0)|2 = 1. By differentiating the equality

uh+ u = h− 1

twice and taking into account that u(0) = −1 and c0 = h(0) = 0, a direct
computation yields

2c2 = b2 +
b21
2
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and the desired inequality follows.
The case k = 1 of Livingston’s inequality already proved applied to the

Wiener’s transform Wku yields the statement in the general case k > 1. �

Inductive sets. In some papers the Krzyż conjecture was proved under
the additional hypotheses on an extremal function that ai = 0 for all i
belonging to some I ⊂ {1, 2, . . . , n − 1}. Typically, “about a half of these
initial coefficients” are assumed to vanish.

More specifically, in Brown’s paper [5] on a similar but more general
problem for Hp spaces (see Corollary 2 and the comment that follows it in
[5]) it was shown that the assumption that ai = 0 whenever 1 ≤ i < (n+1)/2
implies the conjecture.

Also, Peretz [24] proved that:
(a) if n is odd and a1 = a3 = . . . = an−2 = 0 then a0 ≤ 1/e,
(b) if, besides the conditions listed in (a), a0 = 1/e actually holds then

an = 2/e.
It should be noted that Brown’s assumptions ai = 0 whenever 1 ≤ i <

(n + 1)/2 easily imply that also bi = 0 whenever 1 ≤ i < (n + 1)/2, with
the notation as in our Lemma 2. It is also quite simple to check that, for n
odd, Peretz’s assumptions a1 = a3 = . . . = an−2 = 0 imply that ak = a0bk
for each odd k ∈ {1, 2, . . . , n}, hence we also have b1 = b3 = . . . = bn−2 = 0.

Here we sketch a quick proof of both results in one stroke, without dis-
cussing the case of equality. Recall that we are assuming that a0 > 0 and
an > 0. This forces that Re b0 < 0 hence, by periodicity of the exponential
function we can impose the additional assumption b0 < 0 without loss of
generality. Such normalization, together with the recurrence relations (6),
yield

an = a0bn = |a0bn| =
∣

∣

∣

∣

bn
b0

∣

∣

∣

∣

|b0|e−|b0| .

The function g/b0 belongs to the normalized class P so Carathéodory’s
lemma applies: |bn/b0| ≤ 2; also, as observed before, the function xe−x

achieves its maximum 1/e at x = 1 hence |an| ≤ 2/e, as asserted by Krzyż.
From here we can already deduce that for any normalized extremal function
b0 = −1, a0 = 1/e, and we shall see later that this is enough to deduce that
the only normalized extremal function is the conjectured one.

In what follows, the sets I of indices as in the papers [5], [24] will be
called inductive sets. This general approach will lead to further examples
and a unified proof of the conjecture under other similar assumptions. We
first introduce some notation and give a formal definition below. Fix n ∈ N,
n ≥ 2. Given K ⊂ {1, 2, 3, ..., n − 1}, define

C
n
K = {c = (c1, c2, ..., cn) ∈ C

n : ci = 0 for all i ∈ K} .
By an additive semigroup or simply semigroup we will mean a subset of
N closed under addition. For K ⊂ {1, 2, 3, ..., n − 1}, denote by G(K) the
additive semigroup generated by (K ∪ {n})c = N \ (K ∪ {n}).
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Definition 1. Let n ∈ N, n ≥ 2, and a0 > 0. A subset I of {1, 2, 3, ..., n − 1}
is said to be n-inductive if an = a0bn for all a ∈ C

n
I and b ∈ C

n that satisfy
the recursion formula (6).

A subset J of {1, 2, 3, ..., n − 1} is said to be exponentially n-inductive if
an = a0bn for all a ∈ C

n and b ∈ C
n
J that satisfy the recursion formula (6).

We will sometimes suppress the integer n and simply say I is inductive
or J is exponentially inductive when the value of n is understood. The
following lemma helps us to identify inductive and exponentially inductive
sets explicitly and easily.

Lemma 4. Fix n ∈ N, n ≥ 2, a0 > 0.
(a) Let I = {i : 1 ≤ i ≤ n− 1, ai = 0}. Then I is n-inductive if and only

if n /∈ G(I).
(b) Let J = {j : 1 ≤ j ≤ n − 1, bj = 0}. Then J is exponentially n-

inductive if and only if n /∈ G(J).

Proof. (a) (⇐) Let I ⊂ {1, 2, 3, ..., n − 1}, and assume that n /∈ G(I). Let

Z = {1, 2, 3, ..., n − 1} \ G(I) ⊂ I. Enumerate Z as Z = {zℓ}Lℓ=1 with
z1 < z2 < ... < zL < n. We will show that I is an inductive set by using
induction on ℓ (in its finite version) to prove that

(16) bzℓ = 0 , 1 ≤ ℓ ≤ L .

To this end we will repeatedly use that, whenever 1 ≤ j < n, we have
j ∈ Z if and only if j /∈ G(I). For the inductive base case ℓ = 1, note
that, necessarily, z1 = 1. Indeed, if not, then 1 ∈ G(I) and thus n ∈ G(I),
contradicting our assumption. Then we have from (6) that

0 = az1 = a1 = a0b1 ,

which implies that b1 = 0 since a0 is positive by assumption.
Now we prove the inductive step that if bzk = 0 for all k < ℓ then also

bzℓ = 0. Indeed, assuming bzk = 0 for all k < ℓ, we have

(17) 0 = azℓ =

zℓ−1
∑

j=1

j

zℓ
azℓ−jbj + a0bzℓ = a0bzℓ ,

since if 1 ≤ j ≤ zℓ − 1, then either j ∈ Z and so bj = 0 by the inductive
hypothesis, or j ∈ G(I) and so zℓ− j /∈ G(I) (since otherwise the semigroup
property of G(I) would give zℓ = j + zℓ − j ∈ G(I), a contradiction), hence
zℓ − j ∈ Z. Thus azℓ−j = 0. In either case we have azℓ−jbj = 0 and so (17)
holds. We now get bzℓ = 0 since a0 > 0. This completes the proof of (16).

Now we prove that I is inductive from the same argument using that
n /∈ G(I). Indeed,

an =

n−1
∑

j=1

j

n
an−jbj + a0bn = a0bn ,
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since if j ∈ Z then bj = 0, while if j ∈ G(I) then n − j /∈ G(I) and so
an−j = 0.

(⇒) To prove the reverse implication, assume the contrary: n ∈ G(I).
We will show that then G(I) is not n-inductive. In other words, we will
show that for some a ∈ C

n
I and b ∈ C

n that satisfy the recursion formula (6)
we will have an 6= a0bn. To this end, start off with a pair of n-tuples a ∈ C

n
I

and b ∈ C
n that satisfy (6). If we have an 6= a0bn to begin with then there

is nothing to prove, so assume that an = a0bn.
Since n ∈ G(I) there exists g1, g2,. . . ,gs with gi ∈ (I ∪ {n})c, 1 ≤ i ≤ s,

and g1 + g2 + · · · + gs = n. Note that s ≥ 2 since none of the gi can
be equal to n. We will now perturb some of the numbers ap while still
requiring that the recurrence relations (6) hold, in such a way that the new
point a = (a1, a2, ...an) ∈ C

n
I , but it is no longer true that an = a0bn, or,

equivalently, it is no longer true that an − a0bn = 0. More precisely, denote
the perturbed values ap by ãp, for 1 ≤ p ≤ n, and define

ãp =

{

ap + εp, if p ∈ {g1, . . . , gs} ,
ap, if p ∈ {0, 1, 2, . . . n} \ {g1, . . . , gs} .

(Since a0 is fixed, we do not alter its value so we may formally understand
that also ã0 = a0.) These values ãp determine uniquely the corresponding

new perturbed value b̃n according to Proposition 2:

ãn − a0b̃n = ãn − a0Qn(ã1, ã2, . . . , ãn) =

ãn − a0
∑

1≤m≤n,∑m
j=1 ij(n)=n

(−1)m+1ci1(n),i2(n),...,im(n)(a0) ãi1(n)ãi2(n) . . . ãim(n) .

In view of our definition of ãp, the above value is a polynomial in the s
variables εg1 ,. . . ,εgs . Because of the assumption that g1 + g2 + · · ·+ gs = n,
the polynomial above will contain a term with a non-zero coefficient, namely

(−1)m+1cg1,g2,...,gs(a0) ãg1 ãg2 . . . ãgs

= (−1)m+1cg1,g2,...,gs(a0) (ag1 + εg1)(ag2 + εg2) . . . (ags + εgs) ,

which after an expansion will contain the term εg1εg2 · · · εgs that cannot
possibly appear in any other summand.

The Open Mapping Principle is well-known to hold for analytic functions
from C

m to C and, in particular, for polynomials of several variables. Note
that the above polynomial is a non-constant function because it contains
at least one term whose corresponding coefficient does not vanish. Also, it
takes on the value zero at the point (εg1 , εg2 , . . . , εgs) = (0, 0, . . . , 0) by our
assumption that an = a0bn. Hence it follows that in a neighborhood of this
point the polynomial takes on non-zero values. Thus, there is a perturbation
that makes ãn − a0b̃n 6= 0, and we are done.

(b) (⇐) Completely analogous to the case (a), reversing the roles of ak’s
and bk’s in the observations.
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(⇒) The converse is completely analogous to the case (a), using Proposi-
tion 1 instead of Proposition 2, with the same idea involving perturbations
and using the fact that all terms that should appear in the polynomial Pn

actually do appear because the relevant coefficients are non-zero. �

Remark 2. Note that the situation considered by Peretz [24] corresponds to
the semigroup G(I) = 2N = {2, 4, 6, 8, . . .}. In Brown’s result [5], G(I) is
the semigroup generated by the set {i ∈ N : (n+ 1)/2 ≤ i ≤ n− 1}. In both
cases, as observed before, I = J hence G(I) = G(J).

We would like to point out that different examples indeed exist. A general
example of a pertinent semigroup is G = {k, 2k, 3k, . . .} for any fixed k ≥ 2,
k ∈ N, such that n is not a multiple of k. An even more general family
of examples is obtained by choosing 1 < a ≤ b and letting Ga,b be the
semigroup generated by 〈a, b〉 ≡ {k ∈ N : a ≤ k ≤ b}. It is not difficult to
see that

Ga,b =

∞
⋃

ℓ=1

〈ℓa, ℓb〉 .

Whenever it is possible to choose k > 1 so that kb + 2 = (k + 1) a, we can
consider the value n = kb+ 1 so that

Ga,b ∩ 〈1, n〉 = 〈a, b〉 ·∪ 〈2a, 2b〉 ·∪ 〈3a, 3b〉 ·∪ ...
·∪ 〈ka, kb〉 .

Now we compute the density of I in the set {1, 2, . . . , n− 1} to be

n− 1−#(Ga,b ∩ 〈1, n− 1〉)
n− 1

=
n− 1−∑k

ℓ=1 [ℓ (b− a) + 1]

n− 1

=
n− 1−

[

k(k+1)
2 (b− a) + k

]

n− 1

=
n− 1− 1

2 [(k + 1) (a− 2) + 2k]

n− 1

=
kb− 1

2kb

n− 1
=

1

2
.

Note that density 1
2 is the smallest density needed to deduce an = a0bn

following the above methods, since the fact that j + (n − j) = n /∈ G(I)
implies that either j or (n− j) is in I, hence I must have density at least 1

2
within the set {1, 2, . . . , n− 1}.

2. The main result and its proof

At this point it is convenient to summarize some of the findings on ex-
tremal functions for the normalized Krzyż problem (3). Recall that this
normalization requires that a0 > 0, hence Re b0 < 0. As observed before,
due to periodicity of the exponential function, without loss of generality we
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may actually assume that b0 ∈ R and b0 < 0. We know from our earlier
discussions that any such function f fulfills the following conditions:

(i) an > 0 (in fact, an = Mn ≥ 2/e).
(ii) 2 ≤ an

a0
≤ 1+ 1

B0
, whereB0 is the constant term in the Blaschke factor

of the factorization given in (14) normalized so that 0 < B0 ≤ 1.
(iii) The polynomial P (z) = an + 2an−1z + . . . 2a1z

n−1 + 2a0z
n from

Proposition 3 has non-negative real part on the closed unit disk D

and strictly positive real part on D.
(iv) N ≤ n in formula (4) and also Re bn ≤ 2|b0| (the function g/b0 has

positive real part in D and value one at the origin; by Carathéodory’s
lemma [8, p. 41], its Taylor coefficients are bounded by two).

(v) The zeros λj, 1 ≤ j ≤ n, of the polynomial P satisfy |λk| ≥ 1 for
1 ≤ k ≤ n and (10).

Our aim is to show that, essentially, if equality holds in any one of the
above inequalities, then the conjecture is true. We are now ready to state
and prove our main result.

Theorem 1. Let n ≥ 2 and consider an arbitrary but fixed extremal function
f for the Krzyż problem (3). Writing f(z) =

∑∞
j=0 ajz

j , g(z) =
∑∞

j=0 bjz
j ,

and f = eg as before, we know that an, a0 > 0 and may also assume without
loss of generality that b0 < 0. Consider the quantity B0, the polynomial P
and its zeros as described above.

(I) The following statements are equivalent:

(a) an = 2a0;
(b) ak = 0 when 1 ≤ k < n (equivalently by (6), bk = 0 when 1 ≤ k < n);

(c) f(z) = e(z
n−1)/(zn+1) (and, in particular, Mn = 2/e);

(d) the set I consisting of all indices i ∈ {1, 2, . . . , n−1} for which ai = 0
is n-inductive;

(e) the set J consisting of all indices j ∈ {1, 2, . . . , n − 1} for which
bj = 0 is exponentially n-inductive;

(f) g(z) = (zkH(z) − 1)/(zkH(z) + 1) for some analytic function H in
D such that |H(z)| ≤ 1 for all z ∈ D and k ∈ N, k ≥ n/2;

(g) the zeros of the polynomial P satisfy (−1)n
∏n

k=1 λk = 1;
(h) the zeros of P all lie on the unit circle;
(i) the zeros of P are actually the n-th roots of −1;
(j) anb0 + a0Re {bn} = 0;
(k) Re {a1bn−1 + a2bn−2 + . . .+ an−1b1} = 0;
(l) an = a0Re bn.

(m) Re bn = 2|b0|, N = n, and r1 = r2 = . . . = rn;
(n) B0 = 1;
(o) Wnf does not vanish in D;
(p) Wnf ≡ f ;
(q) g = Wng.
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(II) In addition to the above, the following is true: there is a unique extremal
function for (3) if and only if every extremal function for (3) satisfies any
one of the conditions (a)–(q) from part (I), and therefore all of them.

Some remarks.

• The implication (d)⇒ (c), which is a consequence of our theorem,
is thus a generalization of Brown’s result [5] for p = ∞ and an
improvement of the result of Peretz [24] mentioned earlier since it
yields directly that if f is extremal, n is odd, and a1 = a3 = . . . =
an−2 = 0 then a0 = 1/e and an = 2/e.

• According to the above findings, proving the conjecture amounts to
showing that N = n and the following sets of numbers coincide:

- {α1, . . . , αN}, the rotation coefficients in the point masses in
extremal functions as in (4),

- {ω1, . . . , ωn}, the n-th roots of −1,
- {λ1, . . . , λn}, the roots of the polynomial P associated with the

extremal function f ,
- the zeros of ReP = |Q|2 on T.

• Alternatively, it suffices to show the uniqueness of the extremal func-
tion for (3). According to D. Khavinson, this so far unpublished fact
was already known earlier to various experts, for example, to Stephen
D. Fisher.

• It should be noted that neither of the conditions n /∈ G(I), n /∈ G(J),
apparently equivalent to those from the above list, is included in
the theorem. The reason is that in both statements (a) and (b) in
Lemma 4 one implication was proved without checking whether the
perturbed coefficients actually correspond to an admissible function
(that is, to one for which Re g < 0 in D) and it is unclear whether that
implication also holds for the more restricted class of coefficients of
admissible function as opposed to the class of coefficients considered
in Lemma 4. However, Lemma 4 provides sufficient conditions for I
being n-inductive or J being exponentially n-inductive that are easy
to check.

Proof. Part (I). The scheme of the proof is as follows. We first show that

(a) ⇒ (b) ⇒ (c) ⇒ (i) ⇒ (h) ⇒ (g) ⇒ (a). We will then see that (c) ⇒
(m) ⇒ (b).

Next, we will see that (c) ⇒ (d) ⇒ (l) and also (c) ⇒ (e) ⇒ (l) ⇒ (j)⇒
(k)⇒ (a) and this will close some further loops.

Then we will verify that (c) ⇔ (f).
Finally, we will show that (c) ⇒ (p) ⇒ (o) ⇒ (n) ⇒ (a) and will also

check that (c) ⇒ (q) ⇒ (b), which will complete the equivalence of the 17
conditions (a)–(q).
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We note that all arguments are quite brief (due to the work done previ-
ously) with the exception of the first two, which together account for about
two pages.

(a) ⇒ (b): Let f be an extremal function. By Proposition 3, we know

that the coefficients of f satisfy the following condition:

(18) Re {an + 2an−1λ+ . . .+ 2a1λ
n−1 + 2a0λ

n} ≥ 0 , whenever |λ| ≤ 1 .

Let us write

ωk = e(2k+1)πi/n , k = 0, 1, . . . , n− 1 ,

for the n-th roots of −1. Our assumption that an = 2a0 shows that whenever
λ = ωk, k = 0, 1, . . . , n − 1, we have Re {an + 2ωn

ka0} = 0. Hence from (18)
we conclude that for each of these values

(19) Re {an−1ωk + . . . + a1ω
n−1
k } ≥ 0 , k = 0, 1, . . . , n− 1 .

By basic algebra, for any fixed j with 1 ≤ j ≤ n− 1 we have

n−1
∑

k=0

ωj
k = eπij/n

n−1
∑

k=0

e2kjπi/n = eπij/n
1− e2jπi

1− e2jπi/n
= 0 .

Thus, summing up all terms that appear on the left in (19) over k =
0, 1, . . . , n− 1, we get

n−1
∑

k=0

Re {an−1ωk + an−2ω
2
k + . . . + a1ω

n−1
k } = Re

n−1
∑

j=1

{

an−j

n−1
∑

k=0

ωj
k

}

= 0 .

Since every summand on the left-hand side in the above formula is non-
negative by (19), all of them must be zero:

(20) Re {an−1ωk + an−2ω
2
k + . . .+ a1ω

n−1
k } = 0 , k = 0, 1, . . . , n− 1 ,

hence also

(21) Re {an+2an−1ωk+ . . .+2a1ω
n−1
k +2a0ω

n
k} = 0 , k = 0, 1, . . . , n−1 ,

in view of our choice of ωk and the assumption that an = 2a0.
As remarked before, the function

T (t) = Re {an + 2an−1λ+ . . .+ 2a1λ
n−1 + 2a0λ

n}
is a trigonometric polynomial of degree n of the variable t ∈ [0, 2π], where
λ = eit. Since T (t) ≥ 0 on the circle, Fejér’s Lemma tells us that for some
coefficients γ0,γ1,. . . ,γn we have

T (t) = |(γ0 + γ1λ+ . . . γnλ
n)2| , λ = eit .

The complex polynomial Q(z) = (γ0+γ1z+ . . . γnz
n)2 has 2n zeros counting

the multiplicities, each zero being obviously of order at least two. But
we know from (21) that this polynomial has at least n distinct zeros ωk,
k = 0, 1, . . . , n − 1, which are roots of −1, so each one of these zeros must
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be double and hence Q cannot have any other zeros. Thus, the polynomial
factorizes as

Q(z) = (γ0 + γ1z + . . . γnz
n)2 = C

n−1
∏

k=0

(z − ωk)
2 = C(zn + 1)2 .

Hence

Re {an+2an−1λ+ . . .+2a1λ
n−1+2a0λ

n} = |C(λn+1)2| = 2|C|Re {λn+1}
for all λ on the unit circle. As was observed earlier, two polynomials whose
real parts are equal on the unit circle must coincide everywhere, except for
an imaginary constant:

an+2an−1z+ . . .+2a1z
n−1+2a0z

n = 2|C|(zn+1)+ic , z ∈ C , c ∈ R ,

but since we know that actually an > 0, we finally have

c = 0 , an = 2a0 = 2|C| , a1 = a2 = . . . = an−1 = 0 ,

which yields (b).

(b) ⇒ (c): In view of the inequalities a0, an > 0 and b0 < 0, the recur-

rence relations (6) yield

an = a0bn = |a0bn| =
∣

∣

∣

∣

bn
b0

∣

∣

∣

∣

|b0|e−|b0| .

The function g/b0 belongs to the normalized class P so Carathéodory’s
lemma applies: |bn/b0| ≤ 2. The function xe−x achieves its maximum 1/e
at x = 1. Thus, we obtained the desired inequality |an| ≤ 2/e.

It is only left to discuss the case of equality. When this happens, we must
have |b0| = 1, hence b0 = −1 and a0 = 1/e. Also, in order for equality to
hold in Carathéodory’s lemma: |bn/b0| = 2, the measure in the Herglotz
representation of the exponent g must supported on a set where e−int has
constant signum. Thus, each of the numbers αj , 1 ≤ j ≤ N , is one of the
n-th roots of some ζ such that |ζ| = 1. By the geometric series expansion of
the terms in the exponent and by comparing coefficients we get

b0 = −
N
∑

j=1

rj , b1 = −2

N
∑

j=1

rjαj , . . . , bn−1 = −2

N
∑

j=1

rjα
n−1
j .

We already know that b0 = −1 and b1 = . . . = bn−1 = 0, hence

N
∑

j=1

rj = 1 ,

N
∑

j=1

rjαj = 0 , . . . ,

N
∑

j=1

rjα
n−1
j = 0 .

We may enlarge the set {αj : 1 ≤ j ≤ N} so as to include all the n-th roots
of ζ (if N < n) and then may reorder it so as to obtain the complete system

n
∑

j=1

rj = 1 ,

n
∑

j=1

rjαj = 0 , . . . ,

n
∑

j=1

rjα
n−1
j = 0
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of n linear equations in n unknowns r1,. . . ,rn, with rj = 0 for N+1 ≤ j ≤ n.
The determinant of this system is the Vandermonde determinant

Vn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αn−1
1 an−1

2 · · · αn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤ i < j≤n

(αj − αi) 6= 0 ,

hence the system has a unique solution. In view of the properties of the
sums of powers of the n-th roots of ζ, the system is obviously satisfied when

(r1, . . . , rn) =

(

1

n
, . . . ,

1

n

)

and thus it follows that N = n. Let ω = e(2πi)/n be the primitive n-th root
of 1. Then {α1, . . . , αn} = {ωkα1, . . . , ω

kαn} for any fixed k with 0 ≤ k < n
and therefore the function

g(z) =
1

n

n
∑

j=1

αjz + 1

αjz − 1

has the property that g(ωkz) = g(z) for all z in D and 0 ≤ k < n. Hence

Wng(z) =

∑n−1
k=0 g(z)

n
= g(z) ,

so g is a function of zn so g is a function of zn. Given our normalizations
and that d(z) =

∏n
j=1 (αjz − 1) also satisfies Wnd(z) = d(z), which can be

proved as we did for g, it now readily follows that

g(z) =
zn − 1

zn + 1

and this proves (c).

(c) ⇒ (i) is easy since for the function given by (c) we have

f(z) = e(z
n−1)/(zn+1) =

1

e
+

2

e
zn + . . . ,

hence P (z) = 2
e (z

n + 1). This means that the numbers λk are precisely the
n-th roots of −1.

(i) ⇒ (h) is completely trivial.

(h) ⇒ (g) clearly follows from (10).

(g) ⇒ (a): The assumption (g) means that (−1)n
∏n

k=1 λk = 1. In view

of (9), this means that an = 2a0.
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(c)⇒ (m): Denoting again by ωj the n-th roots of −1, this follows from

the identity

e
zn−1
zn+1 = e

1
n

∑n
j=0

ωjz+1

ωjz−1

which can be proved as earlier.

(m)⇒ (b): Starting from formula (4), the geometric series expansion

shows that

b0 = −
n
∑

j=1

rj , b1 = −2
n
∑

j=1

rjαj , b2 = −2
n
∑

j=1

rjα
2
j , . . . , bn = −2

n
∑

j=1

rjα
n
j .

Thus,

Re bn ≤ |bn| = 2

∣

∣

∣

∣

∣

∣

n
∑

j=1

rjα
n
j

∣

∣

∣

∣

∣

∣

≤ 2

n
∑

j=1

rj = 2|b0| .

By our assumption, equality must hold throughout but this is only possible
if the signum of αn

j is independent of j and bn > 0, meaning that αn
j = −1 for

all j. But then, taking into account the assumption that r1 = r2 = . . . = rn,
the basic algebra of complex numbers and the above formulas show that

b1 = b2 = . . . = bn−1 = 0 ,

the desired conclusion (b) follows by Lemma 2. (Note that we could have
also used the condition for equality in Carathéodory’s lemma.)

(c)⇒ (d): It is clear that from (c) we get b1 = . . . = bn−1 = 0, hence

a1 = . . . = an−1 = 0 by (6); that is, I = {1, 2, . . . , n − 1} in this case. Since
(6) readily yields an = a0bn, the set I is clearly n-inductive.

(d)⇒ (l): If I is n-inductive then an = a0bn and (l) follows trivially

since an, a0 > 0 by assumption.

(c)⇒ (e): From (c), b1 = . . . = bn−1 = 0, hence J = {1, 2, . . . , n− 1} in

this case. Then (6) implies an = a0bn, hence J is exponentially n-inductive.

(e)⇒ (l): If J is exponentially n-inductive then an = a0bn and (l) again

follows trivially in view of an, a0 > 0.

(l)⇒ (j): Assume that an = a0 Re bn holds. Recalling that a0 = eb0 =

e−|b0|, we have an = |b0|e−|b0|
Re bn
|b0|

. By Carathéodory’s lemma for analytic

functions with positive real part and value one at the origin (applied to the
function g/b0), we have

Re bn
|b0|

≤
∣

∣

∣

∣

bn
b0

∣

∣

∣

∣

≤ 2 .

Since the maximum value of xe−x is 1/e and is attained at x = 1, we get
an ≤ 2/e and hence an = 2/e, so equality holds above. Thus, we must also
have b0 = −1 and (j) follows readily.
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(j)⇒ (k): Immediate from (8).

(k)⇒ (a): Apply (8) again to get Re {a0bn + anb0} = 0. Thus, recalling

that a0, an > 0 and b0 < 0, it follows that

an = a0 Re

{

bn
−b0

}

≤ a0

∣

∣

∣

∣

bn
b0

∣

∣

∣

∣

≤ 2a0

by Carathéodory’s lemma applied to g/b0. Recalling that an ≥ 2a0, (a)
follows.

(c)⇒ (f): Obviously true with k = n and H ≡ 1.

(f)⇒ (c): If f is as in the assumptions of condition (f) and we write

f = eg as before, then

g(z) = −1 + 2zkH(z)− 2z2kH(z)2 + . . .

= −1 + bkz
k + bk+1z

k+1 + . . .+ bnz
n + . . .

In other words, b1 = b2 = . . . = bk−1 = 0. If n is odd then obviously
k ≥ (n + 1)/2, hence it follows that bi = 0 whenever 1 ≤ i < (n + 1)/2
and then it follows from (6) that also ai = 0 whenever 1 ≤ i < (n + 1)/2.
Then Brown’s result (whose hypotheses are a special case of our condition
(d) because of Lemma 4) implies the conjecture and hence our condition (c).

The more interesting case is when n is even and k = n/2 when the
hypotheses of our condition (d) are not automatically fulfilled and hence
there is something to prove. (The case k > n/2 is, of course, easier and
follows from (d) and Lemma 4 because again it is part of Brown’s result
mentioned earlier.) Writing n = 2k and taking into account that then
b1 = b2 = . . . = bk−1 = 0 = a1 = a2 = . . . = ak−1, we again have by (6) that
ak = bka0 and, in view of a0 = e−1, this leads to

a2k =

2k
∑

j=1

j

2k
a2k−jbj =

1

2
akbk + a0b2k =

(

1

2
b2k + b2k

)

a0 =
1

e

(

1

2
b2k + b2k

)

.

The inequality an = a2k ≤ 2/e now follows by Lemma 3. Since we already
know that for our extremal function an ≥ 2/e, it follows that an = 2/e =
2a0, which is (a), and we already know that this implies (c).

(c)⇒ (p): Follows because the (only) extremal function f in (c) is an

analytic function of zn.

(p)⇒ (o): Obvious.

(o)⇒ (n): If Wnf does not vanish in the disk, the Blaschke factor B of

H is constant: B0 = 1, which is (n).

(n)⇒ (a): Follows from Proposition 3 and Proposition 4 which combined

yield 2 ≤ an
a0

≤ 2.
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(c)⇒ (q): Clear from the fact that the exponent is an analytic function

of zn.

(q)⇒ (b): Under the assumption (q), we have (for example, by Lemma 2)

f(z) = eb0+bnzn+... = eb0 + bne
b0zn + . . . ,

which readily implies (b).

Part (II).

Suppose first that the extremal function for (3) is unique and denote

it by f , keeping the notation as in part (I). Let ω = e(2πi)/n and define
gj(z) = f(ωjz), for j = 1, . . . , n. It is clear from the Taylor series of f
that the constant term of gj is a0 and its n-th coefficient is anω

jn = an. In
view of the uniqueness of our extremal function, it follows that gj = f for
all values of j. Hence Wiener’s trick yields

Wnf(z) =
1

n

n−1
∑

j=0

f(ωjz) =
1

n

n−1
∑

j=0

gj(z) = f(z)

so Wnf ∈ B∗ and the n-th coefficient of Wnf is an but at the same time
also equals H ′(0) for the function H defined by (13) as before, hence by
Lemma 1, it is bounded by 2/e. Moreover, under the normalization (3)

imposed, equality holds if and only if H(z) = e(z−1)/(z+1) by the remark
following Lemma 1. That is, if and only if

Wnf(z) = e
zn−1
zn+1 .

In view of the equality f(z) = Wnf(z), condition (c) from part (I) follows.
Recalling that all conditions (a)–(q) are equivalent, f must satisfy all other
conditions as well.

Conversely, if any of the conditions from part (I) holds, then also (c)
holds. But condition (c) gives the uniqueness of the extremal function. This
ends the proof. �

Closing remarks.

• At the present time, we are not able to deduce the desired equality
an = 2a0 for an extremal function.

• Also, it is not clear to us how one can show that a0 = 1/e holds
for extremal functions nor whether this equality implies the other
conditions without further assumptions on extremal functions.

• At this point we are not able to show the uniqueness of extremal
functions either.

In summary, the Krzyż conjecture remains open. However, it is our hope
that the statements proved here may point out in some new directions for
further research on the problem.
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