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Abstract

For any simple graph G on n vertices, the (positive semi-definite) minimum rank

of G is defined to be the smallest possible rank among all (positive semi-definite) real

symmetric n × n matrices whose entry in position (i, j), for i ≠ j, is non-zero if ij is

an edge in G and zero otherwise. Also, the (positive semi-definite) maximum nullity

of G is defined to be the largest possible nullity of a (positive semi-definite) matrix in

the above set of matrices. In this thesis we study two graph parameters, namely the

zero forcing number of G, Z(G), and the positive zero forcing number of G, Z+(G),

which bound the maximum nullity and the positive semi-definite maximum nullity

from above, respectively. With regard to the zero forcing number, we introduce

some new families of graphs for which the zero forcing number and the maximum

nullity are the same. Also we establish an equality between the zero forcing number

and the path cover number for a new family of graphs. In addition, we establish a

connection between the zero forcing number and the chromatic number of graphs.

With regard to the positive zero forcing number, we introduce the concept of forcing
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trees in a graph and we establish a connection between the positive zero forcing

number and the tree cover number. Also we study families of graphs for which these

parameters coincide. In addition, we provide some new results on the connections

of this parameter with other graph parameters, including the independence number

and the chromatic number of G.
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Chapter 1

Introduction

Pattern classes of matrices represent an important part of the field of combinatorial

matrix theory. Examples of related applications are models of problems in economics,

mathematical biology (especially ecological food webs), statistical mechanics, and

communication complexity.

1.1 The minimum rank problem

The minimum rank problem for a simple graph, or the minimum rank problem

for short, determines the minimum rank among all real symmetric matrices whose

zero-nonzero pattern of off-diagonal entries is described by a given simple graph G.

A graph or digraph “describes” the zero-nonzero pattern of a family of matrices;

namely, the (i, j)-entry of the matrix is either non-zero or zero, depending on whether

vertices vi and vj are adjacent or non-adjacent in the graph. Note that there is no

1



restriction on the diagonal entries of the matrix. In particular, the “adjacency matrix”

of a graph G is described by G; this is the (0,1)-matrix whose rows and columns are

labeled by the vertices of G and whose (i, j)-entry is 1 if and only if the vertices vi

and vj are adjacent in G. The set of all real symmetric matrices which are described

by a graph G, is denoted by S(G). For any graph G, we denote the minimum rank

of G by mr(G).

The minimum rank problem is to determine the minimum among the ranks of the

matrices in such a family; the determination of maximum nullity is then equivalent.

Considerable progress has been made on the minimum rank problem for the family

of real symmetric matrices described by a simple graph, although the problem is far

from being solved in general. For example, the minimum rank problem has been

completely solved for all types of tree patterns. The reader may refer to [14] to see a

more detailed discussion on the recent results in the minimum rank problem.

We can also view the minimum rank problem as the problem of determining the

maximum nullity. Since the nullity is, by definition, the number of vectors in a basis

for the null space, the core idea becomes the study of subspaces with structured

bases. Let matrix A be described by a graph G. Essentially, if “enough” of the

entries of a vector in the null space of A are known to be zero, then, because of

the pattern of A, we may deduce that the entire vector is zero. From this line of

research, a new parameter was devised, and has become known as the zero forcing
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number. This parameter is the minimum size of a “zero forcing set”, which is a set

of initially black-colored vertices of G which, through a coloring process, can “force”

the rest of the vertices to be black. The zero forcing number gives an upper bound

on the maximum nullity of A. However, a zero forcing parameter is a completely

combinatorial parameter, and thus has the advantage of being intimately related to

the structures within a pattern, or more precisely, a graph.

It turns out, perhaps surprisingly, that the zero-nonzero pattern described by the

graph has significant influence on the minimum rank. For example, the minimum

rank of a path graph is always equal to the number of edges in the path.

If in the definition of the minimum rank and maximum nullity, one restricts the

matrices considered to the family of positive semi-definite matrices, then the result-

ing quantities will be called positive semi-definite minimum rank and positive semi-

definite maximum nullity, respectively. In addition to studying the zero forcing num-

ber, in this thesis we investigate a graph parameter called positive zero forcing number

which has the “same nature” as the zero forcing number. This is the minimum size

of a positive zero forcing set for the graph which has, in turn, a similar definition

as a zero forcing set with a different colour change rule. The goal for studying this

parameter, similar to the conventional zero forcing number, is to bound the positive

semi-definite maximum nullity. Although these two zero forcing numbers are analo-

gous (as the two maximum nullities are), there has been more research conducted on
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the conventional zero forcing number.

1.2 Relationship to other problems

The minimum rank of a family of matrices associated with a graph has also played

a role in various other problems, such as the inverse eigenvalue problem, singular

graphs, biclique decompositions and the biclique partition number, and orthonormal

labellings of graphs (see the survey paper [14] for details on these problems).

It is well-known that the sum of the rank and the nullity of an n × n matrix

is n. This implies that, for any graph G, the sum of the minimum rank and the

maximum nullity of a graph on n vertices is n. Hence the solution of the minimum

rank problem is equivalent to the determination of the maximum multiplicity of an

eigenvalue among the same family of matrices in the symmetric free-diagonal case.

An important related problem is then, the so-called inverse eigenvalue problem of a

graph G, which can be stated as: what eigenvalues are possible for a real symmetric

matrix A having nonzero off-diagonal entries determined by the edges of G? For

example, if the minimum rank is m, then the multiplicity of an eigenvalue can be no

more than n −m.

In spectral graph theory, an important tool is the (0,1)-adjacency matrix A(G) of

the graph G, and a well-known open problem from 1957, is to characterize the graphs

G whose adjacency matrix is singular (see [10] for a survey of this problem). Further,
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many researchers have studied the dimension of the null space of the adjacency matrix;

the nullity of A(G) is an upper bound on the difference of n and the minimum rank

of G.

Partitioning the edges of a graph is an important research area in graph theory

(see [17], [28], [30], [33]). A biclique partition is a partition of the edges of a graph

into subgraphs in such a way that each subgraph is a complete bipartite graph (or

a biclique). The size of the smallest such partition is called the biclique partition

number of G and is denoted by bp(G) (see also [20]). In [17] it is shown that

bp(G) ≥ max{i+(A(G)), i−(A(G))},

also

n − α(G) ≥ max{i+(A), i−(A)}, A ∈ S(G),

where A(G) is the (0,1)-adjacency matrix of G and i+(X) and i−(X) are the number

of positive and negative eigenvalues of the symmetric matrix X, respectively, and

α(G) is the independence number of G; that is the maximum size of an independent

set in G. The second bound is often called the inertia bound on the independence

number. In the special case when G is a bipartite graph it follows easily that bp(G) ≥

1
2 rank(A(G)) ≥ 1

2 mr(G).

The orthogonal labeling of the vertices is another prominent subject in graph the-

ory that also has ties to minimum rank. If G = (V,E) is a graph, then an orthonormal

labeling of G of dimension d is a function f ∶ V Ð→ Rd such that f(u) ⋅ f(v) = 0
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whenever vertices u and v are not adjacent, and ∣f(u)∣ = 1 for all u ∈ V (see [12] for

more details about orthonormal labeling). If d(G) denotes the smallest dimension d

over all orthonormal labellings of G, then d(G) is equal to the minimum rank of a

positive semidefinite matrix whose graph is given by G (see [12]). Lovász [29] has

also shown that

α(G) ≤ ϑ(G) ≤ d(G) ≤ χ(Ḡ), (1.1)

where, ϑ(G) is the Lovász ϑ function and χ(Ḡ) is the chromatic number of the

complement of G (i.e., the clique cover number of G). Note that (1.1) provides lower

and upper bounds on d(G); hence it approximates the minimum rank of a positive

semidefinite matrix described by G.

1.3 Thesis objectives

One of the main objectives in this thesis is to determine the families of graphs for

which the maximum nullity and the zero forcing number coincide. This is, in partic-

ular, important since the zero forcing number is a graph theoretical parameter which

is more “tangible” than the maximum nullity. The latter is an algebraic parameter,

and in the majority of the cases more difficult to deal with. This will, therefore, ease

the study of this algebraic concept.

It has been shown [1, Proposition 2.10] that the path cover number of a graph is a

lower bound for the zero forcing number of the graph. As another objective, we will
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investigate families of graphs for which these two parameters are equal.

One of the other objectives of this thesis is to develop new approaches to studying

the (positive) zero forcing number and to understand its possible connections with

other graph parameters. As the zero forcing number and the positive zero forcing

number have a “graph colouring characteristic”, one of the natural directions to this

goal is studying the possible connections of these two parameters and other colouring

parameters. As a result, we establish some relationships with the traditional graph

colouring parameter, namely the chromatic number. Further, some results on the

connection between positive zero forcing number and the chromatic number will be

presented.

The other connection which will be established is the relationship between the

positive zero forcing number and the tree cover number, which is the minimum number

of induced trees of a graph which cover the vertices of the graph. We show, in

particular, that the positive zero forcing number is an upper bound for the tree cover

number of the graph. Also, we will investigate families of graphs in which the positive

zero forcing number and the tree cover number agree.

1.4 Outline of the thesis

This thesis includes seven chapters. Chapter 2 will cover some necessary back-

ground material on graph theory and matrix theory and classical facts which we will

7



use in later chapters.

In Chapter 3 we will introduce the algebraic parameters (positive semi-definite)

minimum rank and maximum nullity, defined for a given simple graph. We will then

provide some known facts about these concepts.

Chapter 4 will provide all the information we need to begin the study of zero

forcing sets and zero forcing numbers. This will illustrate how the zero forcing number

bounds the maximum nullity of a graph. Then we study the graphs for which this

bound is tight and provide some new results. Next we investigate graphs for which

the zero forcing number meets the path cover number. In addition, the Colin de

Verdière parameters for a graph and their connection to the zero forcing number will

be discussed in Section 4.7. We conclude this chapter with a section on our new

results on bounding the chromatic number with the zero forcing number.

In Chapter 5, we study the effect of graph operations on the zero forcing number.

In particular, we calculate the zero forcing number of some graph products in terms

of those of the initial graphs.

In Chapter 6, which also includes some of the main new results of this thesis,

we will first introduce the parameter positive zero forcing number and then show

how it bounds the positive semi-definite maximum nullity (and thus the positive

semidefinite minimum rank). Furthermore, we will define the concept of forcing trees

which provides connections between the positive zero forcing number and the tree

8



cover number. Next we introduce one of the most important families of graphs for

which the positive zero forcing number equals the tree cover number. In addition, we

study these two graph parameters in more families of graphs. Finally, we will compare

the positive zero forcing number with the chromatic number and the independence

number of a graph.

The thesis will be concluded with Chapter 7 in which we show some of the potential

directions for future research work on this topic. We will list some open questions

and conjectures which are closely related to our results.

9



Chapter 2

Graph Theory

This chapter presents some basic definitions, concepts and facts from graph theory

and matrix theory needed throughout the thesis. The reader may also refer to [6]

and [35] for additional details.

2.1 Basic concepts

Throughout this thesis all graphs are assumed to be finite, simple and undirected.

We will often use the notation G = (V,E) to denote the graph with non-empty vertex

set V = V (G) and edge set E = E(G). An edge of G with end-points i and j is denoted

by ij. The order of the graph G is defined to be ∣V (G)∣, this may also be written

as ∣G∣. Vertex v is a neighbour of vertex u if uv ∈ E(G). The set of all neighbours

of v is denoted by N(v). The degree of a vertex v is ∣N(v)∣ and is denoted by d(v).

The minimum degree over all the vertices of a graph G is the minimum degree of the

10



graph G and is denoted by δ(G). A graph H is a subgraph of G (denoted H ≤ G) if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of a graph G is said to be induced

if, for any pair of vertices x and y of H, xy is an edge of H if and only if xy is an

edge of G. Let S ⊆ V (G); then the subgraph H of G induced by S is denoted by

H = G[S]. Also the subgraph induced by V (G)/S is denoted by G/H. The degree of

a vertex v ∈ V (G) in an induced subgraph of the graph G, the subgraph H, is denoted

by dH(v). A supergraph of a graph G is a graph of which G is a subgraph. A graph

G is called complete if G has all possible edges between its vertices. The complete

graph on n vertices is denoted by Kn. An empty graph is a graph with empty edge

set. The complement of the graph G which is denoted by G is a graph on the same

set of vertices such that two vertices are adjacent in G if and only if they are not

adjacent in G. In particular, the empty graph is denoted by Kn.

A path on n vertices is a graph Pn with vertex set V (Pn) = {v1, . . . , vn} in which

vi is adjacent only to vi+1, for all i ∈ {1, . . . , n− 1}. We may also write Pn as v1v2⋯vn.

The graph formed by adding the edge v1vn to Pn is called a cycle on n vertices and

is denoted by Cn. The cycle Cn is said to be an odd cycle (even cycle) if n is odd

(even). A graph G is said to be connected if for any pair x, y of vertices in G, there is

a path between x and y. A component of a graph is a maximal connected subgraph of

the graph. It is clear that any connected graph has only one component. Any graph

G with more than one component is said to be disconnected. If a graph contains no
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cycle as a subgraph, then it is called a forest. A connected forest is a tree.

The length of a path is the number of edges of the path, i.e. the length of Pn is

n− 1. Let u and v be two vertices in graph G. Then the distance between u and v in

G, denoted by dG(u, v), is the length of a shortest path in G between u and v. The

diameter of a graph G is, then, defined to be the maximum distance over all vertices:

diam(G) = max{dG(u, v) ∣ u, v ∈ V (G)}.

A subset S of the vertex set of a graph is said to be an independent set if no pair of

elements of S are adjacent. A multipartite graph is a graph whose vertex set can be

partitioned into subsets X1, . . . ,Xk, with k ≥ 2, such that each Xi is an independent

set. The subsets Xi are called the parts of the graph. A multipartite graph with two

parts is called a bipartite graph.

Theorem 2.1.1 (see [35]). A graph is bipartite if and only if it does not contain an

odd cycle.

It is obvious from Theorem 2.1.1 that all trees are bipartite. A complete bipartite

graph is a bipartite graph with bipartition (X,Y ) in which each vertex ofX is adjacent

to every vertex of Y ; if ∣X ∣ = m and ∣Y ∣ = n, such a graph is denoted by Km,n. A

multipartite graph which has all possible edges in its edge set is called a complete

multipartite graph.

A clique in a graph is a subset of its vertices such that every pair of vertices in the

subset are adjacent. A clique covering of a graph is a family of cliques in the graph
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that cover all edges of the graph. The clique cover number of a graph G, denoted by

cc(G), is the minimum number of cliques in the graph needed to “cover” all edges of

G; i.e. each edge of G lies in at least one of those cliques. Figure 5.3 has an example

of a graph with cc(G) = 4. The reader may refer to [6] for more facts about the clique

cover number.

There are similar concepts for covering the vertices of a graph. For instance, a

path covering of a graph is a family of induced vertex-disjoint paths in the graph that

cover all vertices of the graph. The minimum number of such paths that cover the

vertices of a graph G is the path cover number of G and is denoted by P (G). Also a

tree covering of a graph is a family of induced vertex disjoint trees in the graph that

cover all vertices of the graph. The minimum number of such trees that cover the

vertices of a graph G is the tree cover number of G and is denoted by T (G).

Next, we define the chromatic number of a graph. To this end, recall that a k-

vertex colouring of G assigns to each vertex one colour from a set of k colours; the

colouring is proper if no two adjacent vertices have the same colour. A graph G is

k-colourable if G has a proper k-vertex colouring. The chromatic number, χ(G), of

G is the minimum k for which G is k-colourable. A k-chromatic graph G is a graph

with χ(G) = k.

Identifying two vertices is a way to form new graphs. Let v1, v2 ∈ V (G). The simple

graph formed by identifying v1 and v2 has vertex set (V (G)/{v1, v2})∪{v} and N(v) =
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N(v1) ∪N(v2) with all possible multiple edges changed to single edges. Similarly we

can identify vertices from different graphs. If v1 ∈ G and v2 ∈ H, then identifying

the vertices v1 and v2 produces the vertex-sum of the graphs G and H at vertex v,

which is denoted by G+
v
H. This simple graph has V (G) ∪ (V (H)/{v1, v2}) ∪ {v} as

its vertex set and E(G) ∪E(H) as its edge set and with N(v) = N(v1) ∪N(v2). The

graph formed by connecting G and H by adding the edge v1v2 is the edge-sum of the

graphs G and H and is denoted by G = G +
v1v2

H. This graph has V (G) ∪ V (H) as its

vertex set and E(G) ∪E(H) ∪ {v1v2} as its edge set.

The graph resulting from the removal of a vertex v and all edges incident with v

from the graph G is denoted by G−v. Also the graph resulting from removing an edge

e from the graph G is denoted by G− e. The subdivision of an edge e = uv in a graph

G yields a graph with vertex set V (G)∪{w} and edge set E(G)/{uv}∪{uw}∪{wv}.

A cut vertex of a graph G is a vertex whose deletion disconnects G. A cut set of

the graph G is a set V ′ ⊆ V (G) whose deletion disconnects G. The vertex connectivity

of the graph G, which is denoted by κ(G), is the minimum size over all cut sets of G.

Recall that a subgraph of a graph G is a graph “smaller” than G that is obtained

from G by removing some vertices and/or edges of G. There are other “smaller”

graphs, which are not necessarily subgraphs of G, yet are obtained from G by a

series of edge and vertex removing and identifying operations. The next definition

introduces an example of these “smaller” graphs. If e = xy is an edge of G, then the
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contraction of e, which is denoted by G/e, is the operation that deletes the edge e

and identifies x and y and removing all multiples edges. The resulting graph is a

simple graph with fewer number of vertices and edges. A minor of a graph G arises

by performing a sequence of the following operations:

(a) deletion of edges;

(b) deletion of isolated vertices;

(c) contraction of edges.

Note that a graph obtained from a graph G by deleting some of its vertices is also

a minor of G; therefore any subgraph is a minor. If a graph G has a graph H as a

minor, we say that “G has an H minor”.

A graph parameter λ is said to be minor-monotone, if for any graph G and any

minor H of G, we have λ(H) ≤ λ(G), or if for any graph G and any minor H of G, we

have λ(H) ≥ λ(G). For example, κ(G) is a minor-monotone graph parameter. Based

on the definition, a graph has lots of different minors but the existence of certain

minors in the graph can give information about its minor monotone parameters.

A graph is said to be embeddable in the plane, or planar, if it can be drawn in

the plane so that its edges intersect only at their incident vertices. Such a drawing

of a planar graph G is called a planar embedding or crossing-free embedding of G.

We refer the reader to the books [11] and [35] for detailed discussions about planar
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graphs. A graph is planar if and only if it has neither a K5 minor nor a K3,3 minor

(see [35, Theorem 6.2.2]). In a planar graph a face is a region bounded by edges

that does not have any edges going through them. The area outside the planar graph

is also a face, called the outer face, and the other faces are called the inner faces.

Similarly a graph is outerplanar if it has a planar embedding in which the outer face

contains all the vertices. The edges touching the outer face are called outer edges

and other edges are called inner edges. In the graph depicted in Figure 6.7, wu is an

outer edge while wv is an inner edge and the region bounded by edges wu, wv and

uv is an inner face. A graph is outerplanar if and only if it has neither a K4 minor

nor a K2,3 minor [11].

The corona of G with H, denoted by G ○H, is the graph of order ∣V (G)∣∣V (H)∣ +

∣V (G)∣ obtained by taking one copy of G and ∣V (G)∣ copies of H, and joining all

vertices in the i-th copy of H to the i-th vertex of G. See Figure 2.1 for an illustration

of C5 ○K2. In Section 4.6 we give a generalization of the corona, in keeping with the

notation of this generalization, the corona of G with H will be denoted by G ≺

H, . . . ,H ≻.

2.2 Spectral graph theory

This section represents a brief introduction to an important part of algebraic graph

theory, namely spectral graph theory. Here we introduce some linear algebraic tools
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which are used to establish some properties of graphs. For more details on spectral

graph theory, the reader may refer to [5] or [16] and for more details on matrix theory

to [21] or [22].

First we define the concept of an adjacency matrix. Assume that X is a graph

with vertex set V (X) = {v1, . . . , vn}. Then the adjacency matrix of X, which is

denoted by A(X), is a square (0,1)-matrix of size n, whose (i, j)-th entry is 1 if and

only if vi is adjacent to vj. Since there are no loops in the graph, the diagonal entries

of the adjacency matrix are zero. Also, changing the order of the vertices produces a

distinct, but similar adjacency matrix.

Recall from linear algebra that for a matrix A = [ai,j], the transpose of a matrix

of A, denoted by A⊺, is defined to be the matrix A⊺ = [a′i,j], where a′i,j = aj,i, for all

i and j. An n × n matrix A is said to be a symmetric matrix if A⊺ = A. The set

17



of all square n × n matrices with entries in C is denoted by Mn. The conjugate of a

matrix A = [aij] ∈Mn is denoted by Ā = [āij], where āij is the conjugate of aij. The

conjugate transpose of a matrix A, denoted by A∗, is defined to be

A∗ ≡ (Ā)⊺ = [āji].

A matrix A = [aij] ∈Mn is said to be Hermitian if A = A∗. The set of real symmetric

n×n matrices is denoted by Sn and the set of Hermitian n×n matrices is denoted by

Hn.

The null space (or the kernel) of a matrix A is the vector space consisting of all

vectors v for which Av = 0; we denote the null space of A by ker(A). The matrix A

is said to be nonsingular (or invertible) if there is no nonzero vector in its null space,

otherwise, it is singular. The dimension of the null space of a matrix A is called the

nullity of A and is denoted by null(A). The rank of a matrix is defined to be the

dimension of the row or column space of the matrix; that is, the dimension of the

vector space spanned by the rows or columns of the matrix. The rank of A is denoted

by rank(A). The following fact is well-known.

Proposition 2.2.1 (see [21]). For an n × n matrix A,

rank(A) + null(A) = n.

For a square matrix A, the eigenvalues are defined to be the roots λ of the char-

acteristic polynomial φ(A;x) =det(xI −A). Equivalently, a complex number λ is an
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eigenvalue of A, if the determinant of the matrix λI − A is zero. This is, in turn,

equivalent to the fact that there is a non-zero vector in the null space of λI −A. If

λ is an eigenvalue of A, then the null space of λI − A is called the eigenspace of A

corresponding to the eigenvalue λ, and its non-zero elements are called the eigenvec-

tors of A corresponding to λ. The dimension of the eigenspace corresponding to the

eigenvalue λ is called the geometric multiplicity of the eigenvalue λ. The algebraic

multiplicity of the eigenvalue λ of a matrix A, is the maximum power of the factor

x − λ in the characteristic polynomial φ(A;x) and is denoted by m(λ).

Proposition 2.2.2. If a square matrix A is symmetric, then all the eigenvalues of

A are real and the algebraic multiplicity of each eigenvalue is equal to its geometric

multiplicity.

Note that in this thesis, we call the the eigenvalues of the adjacency matrix of the

graph the eigenvalues of the graph. So we have the following simple corollary of the

previous results.

Corollary 2.2.3. All the eigenvalues of a graph are real.

Therefore, we usually order the eigenvalues of a graph on n vertices as λn ≥

λn−1 ≥ ⋯ ≥ λ1. The spectrum of a graph X is the set of its eigenvalues with their

multiplicities. It is usually written as the array:

Spec(X) =
⎛
⎜⎜⎜
⎝

λ1 λ2 ⋯ λs

m(λ1) m(λ2) ⋯ m(λs)

⎞
⎟⎟⎟
⎠
,
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where λs > ⋯ > λ1 are the distinct eigenvalues of X. For example, the spectra of the

complete graph Kn and the complete bipartite graph Km,n are as follows:

Spec(Kn) =
⎛
⎜⎜⎜
⎝

−1 n − 1

n − 1 1

⎞
⎟⎟⎟
⎠
,

Spec(Km,n) =
⎛
⎜⎜⎜
⎝

−√mn 0
√
mn

1 m + n − 2 1

⎞
⎟⎟⎟
⎠
.

A symmetric matrix A is positive semi-definite if all the eigenvalues of A are non-

negative. For example A(Kn) is not a positive semi-definite matrix while A(Kn) + I

is. The matrix A is said to be a tridiagonal matrix if it has non-zero entries only

on the diagonal, the super-diagonal and the sub-diagonal. For example A(Pn) is a

tridiagonal matrix. The following is another example of a tridiagonal matrix :

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 −1 0 0

−1 3 2 0

0 2 1 1

0 0 1 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Lemma 2.2.4. Let A be an n × n tridiagonal matrix in which all the entries of the

super-diagonal and sub-diagonal are non-zero. Then the (1, n)-entry of Ar is zero,

for any integer 0 ≤ r ≤ n − 2, and non-zero for r = n − 1.

Proof. We assume n ≥ 3 as the lemma is trivial for n = 1,2. First we claim that for

any 0 ≤ r ≤ n−1 and for any 1 ≤ i < n−r, the (i, n)-entry of Ar is zero. The proof is by
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induction on r. If r = 0 or 1, the claim is, obviously, true. Thus, assume 2 ≤ r ≤ n− 1.

Then for any 1 ≤ i < n − r, since A is tridiagonal, we have

(Ar)i,n = (AAr−1)i,n =
n

∑
k=1
Ai,k(Ar−1)k,n

= Ai,i−1(Ar−1)i−1,n +Ai,i(Ar−1)i,n +Ai,i+1(Ar−1)i+1,n,

where Ai,i−1 is considered to be zero if i = 1. Then, using the induction hypothesis, we

have (Ar−1)i−1,n = (Ar−1)i,n = (Ar−1)i+1,n = 0; thus the claim is proved. Now it follows

from the claim that, for any 0 ≤ r ≤ n − 2, the (1, n)-entry of Ar is zero. To complete

the proof of lemma, it is enough to note that the (1, n)-entry of An−1 is

A1,2A2,3⋯An−1,n ≠ 0.
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Chapter 3

The Minimum Rank of Graphs

In this chapter we introduce the “minimum rank” and the “maximum nullity” of a

graph. We will also consider the positive semi-definite minimum rank and the positive

semi-definite maximum nullity of graphs. The problem of evaluating or approximating

these parameters is of great importance in this thesis. In the future chapters we will

approach these problems using some combinatorial tools.

3.1 Definition

In this chapter we introduce the concept of minimum rank of graphs and related

concepts, and provide some examples. To a given graph G with vertex set {1, . . . , n},

we associate a class of real, symmetric matrices as follows.

S(G) = {A = [aij] ∣ A ∈ Sn, for i ≠ j, aij ≠ 0 ⇐⇒ ij ∈ E(G)},
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Note that there is no restriction on the value of aii, with i = 1,2, . . . , n and the

adjacency matrix A(G) belongs to S(G).

On the other hand, the graph of an n × n Hermitian matrix A, denoted by G(A),

is the graph with vertices {1, . . . , n} and the edge set

{ij ∣aij ≠ 0, 1 ≤ i ≠ j ≤ n}.

The minimum rank of G is defined to be

mr(G) = min{rank(A) ∣ A ∈ S(G)},

while the maximum nullity of G is defined as

M(G) = max{null(A) ∣ A ∈ S(G)}.

By Proposition 2.2.1 we have

mr(G) +M(G) = ∣V (G)∣. (3.2)

Note that for any non-empty graph each matrix in the class of all symmetric

matrices associated with a non-empty graph is non-zero, so the minimum rank of any

graph is bounded below by 1. Also, as the diagonal entries of the matrices are free to

be chosen, they can always be adjusted in such a way that the matrix admits a zero

eigenvalue; this implies that mr(G) is bounded above by ∣V (G)∣ − 1. Thus we have

the following lemma.
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Lemma 3.1.1. For any non-empty graph G

1 ≤ mr(G) ≤ ∣V (G)∣ − 1.

Example 3.1.2. Consider the complete graph K3. Then, for example

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −3 1

−3 0 7

1 7 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ S(K3);

and also
⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1

1 1 1

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ S(K3);

Thus since there is a matrix of rank 1 in S(K3), mr(K3) = 1.

Example 3.1.3. As another illustrative example, consider any matrix A associated

with a path v1v2⋯vn. Up to labelling of the vertices, A is a symmetric tridiagonal

matrix with nonzero sub-diagonal and super-diagonal. From Lemma 2.2.4 the (1, n)-

entry of Ai is zero, for any 0 ≤ i ≤ n−2, and non-zero for i = n−1. We deduce that the

set {I = A0,A1,A2, . . . ,An−1} is linearly independent. Thus the minimal polynomial of

A must be of degree at least n. This implies that A must have n distinct eigenvalues.

This, in turn, implies that the number of non-zero eigenvalues of A is at least n − 1;

that is mr(G) ≥ n − 1 and, therefore, mr(G) = n − 1. In fact a path on n vertices is

the only graph on n vertices whose minimum rank is equal to n−1 (see [14, Theorem

1.4] and [15]).
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3.2 Basic facts about the minimum rank

In this section we provide some basic results about the minimum rank of graphs.

The set of real positive semidefinite matrices described by a graph G and the set of

Hermitian positive semidefinite matrices described by G are

S+(G) = {A ∈ Sn ∶ G(A) = G and A is positive semidefinite}

and

H+(G) = {A ∈Hn ∶ G(A) = G and A is positive semidefinite},

respectively. The minimum positive semidefinite rank of G and minimum Hermitian

positive semidefinite rank of G are

mrR+(G) = min{rank(A) ∣ A ∈ S+(G)}

and

mrC+(G) = min{rank(A) ∣ A ∈ H+(G)},

respectively. The maximum positive semidefinite nullity of G and maximum Hermi-

tian positive semidefinite nullity of G are

MR
+ (G) = max{null(A) ∣ A ∈ S+(G)}

and

MC
+ (G) = max{null(A) ∣ A ∈ H+(G)},
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respectively.

Clearly mrR+(G) +MR
+ (G) = ∣V (G)∣ and mrC+(G) +MC

+ (G) = ∣V (G)∣.

The following two observations are well known and straightforward to prove.

Observation 3.2.1. If the connected components of the graph G are G1, . . . ,Gt, then

mr(G) =
t

∑
i=1

mr(Gi) and M(G) =
t

∑
i=1
M(Gi).

The following fact has been shown in [31].

Proposition 3.2.2. For any vertex v of G, 0 ≤ mr(G) −mr(G − v) ≤ 2.

Clearly if A′ is a submatrix of A then rank(A′) ≤ rank(A). Based on this fact we

have the following corollary.

Corollary 3.2.3. If G′ is an induced subgraph of G then

mr(G′) ≤ mr(G).

Note that a similar result does not hold for maximum nullity. To show this note

that M(Cn) = 2 and Pn−1 is an induced subgraph of it with M(Pn−1) = 1. Also the

graph shown in Figure 5.3 has M(G) = 2 while M(G − v) = 3.

Since a connected graph G contains an induced path on diam(G) + 1 vertices we

observe the following.

Observation 3.2.4. For a connected graph G we have diam(G) ≤ mr(G).
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The union of the graphs Gi = (Vi,Ei), i = 1, . . . , h, is defined to be

h

⋃
i=1
Gi = (

h

⋃
i=1
Vi ,

h

⋃
i=1
Ei) .

If G = ⋃h
i=1Gi, a matrix A of rank at most ∑h

i=1 mr(Gi) having G(A) = G can be ob-

tained by choosing (for each i = 1, . . . , h) a matrix Ai that realizes mr(Gi), embedding

Ai in a matrix Ãi of size ∣V (G)∣, choosing ai ∈ R such that no cancelation of nonzero

entries occurs, and letting A = ∑h
i=1 aiÃi. Thus we have the following.

Observation 3.2.5. If G = ⋃h
i=1Gi, then mr(G) ≤ ∑h

i=1 mr(Gi).

The inequality in Observation 3.2.5 can be strict. For example mr(K3) = 1 and K3

can be considered as the union of 3 copies of K2 with mr(K2) = 1. Since 1 < 1+ 1+ 1,

the inequality in this example is strict.

If in the definition of the union of graphs we have Vi∪Vj = ∅ for i ≠ j, then we have

the disjoint union of graphs. Under these assumptions the matrices Ãi, for 1 ≤ i ≤ h,

don’t overlap on the position of nonzero entries. Thus in this case we have the same

result for the minimum rank of disjoint union of graphs as Observation 3.2.1, i.e.

mr(⋃h
i=1Gi) = ∑h

i=1 mr(Gi).

The following well-known fact is a special case of Observation 3.2.5.

Corollary 3.2.6. If G is a graph, mr(G) ≤ cc(G).

The problem of the minimum rank of trees has been completely solved (see [25]).

Theorem 3.2.7. M(T ) = P (T ) = ∣V (T )∣ −mr(T ).
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The rank-spread of a graph G at a vertex v, denoted by rv(G), is the amount of

change in the minimum rank of G when v is deleted. More precisely

rv(G) = mr(G) −mr(G − v).

From Proposition 3.2.2, for any vertex v of G, we have 0 ≤ rv(G) ≤ 2. It has been

shown in [2,23] that if a graph has a cut-vertex, then the problem of finding the min-

imum rank of the graph can be reduced to the problem of determining the minimum

rank of several graphs of smaller orders.

Theorem 3.2.8 (Cut-vertex reduction). Let v be a cut-vertex of a graph G. For

i = 1, . . . , h, let Wi ⊆ V (G) be the vertices of the i-th component of G/v and let Gi be

the subgraph of G induced by {v} ∪Wi. Then

rv(G) = min{
h

∑
i=1
rv(Gi), 2}

and hence

mr(G) =
h

∑
i=1

mr(Gi − v) +min{
h

∑
i=1
rv(Gi), 2}.

Example 3.2.9. Consider the graph K3 with a vertex labeled v. The vertex v is a

cut-vertex of the graph G =K3+v K3. Using Theorem 3.2.8, we calculate the minimum

rank of the graph G. The removal of the vertex v from G results in two components

G1 − v = G2 − v = K2 with G1 = G2 = K3. We have rv(G1) = rv(G2) = 0 therefore,

rv(G) = min{∑h
i=1 rv(Gi), 2} = 0. Also mr(G1 − v) = mr(G2 − v) = 1 thus mr(G) =

1 + 1 = 2.
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Chapter 4

Zero Forcing Sets

In this chapter we will introduce a new type of graph colouring which defines

a graph parameter called the zero forcing number, denoted by Z(G), which is the

minimum size of a zero forcing set. This parameter was first introduced and defined

at the workshop “Spectra of Families of Matrices described by Graphs, Digraphs, and

Sign Patterns”, which was held at the American Institute of Mathematics on October,

2006 (see [18]). Also, in that workshop it was shown that Z(G) is an upper bound

for M(G). Somewhat surprisingly, M(G) = Z(G), for most of the graphs for which

M(G) is known. For instance, these two parameters are equal for all graphs with

fewer than seven vertices and for some families of chordal graphs. We will establish

this equality for more families of graphs and we show the equality Z(G) = P (G) in

some families of graphs as well. In addition, we will establish a relationship between

Z(G) and the chromatic number χ(G) of a graph G.
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4.1 Definition

This section includes basic definitions and facts about the zero forcing number of

a graph G, which will be used throughout this thesis. The zero forcing number is a

graph parameter that arises from a type of graph colouring, therefore, first we turn

our attention to the rules of this new graph colouring. This graph colouring is based

on a colour-change rule that describes how to colour the vertices of the graph.

Let G be a graph with all vertices initially coloured either black or white. If u is

a black vertex of G and u has exactly one neighbour that is white, say v, then we

change the colour of v to black; this rule is called the colour change rule. In this case

we say “u forces v” which is denoted by u → v. The procedure of colouring a graph

using the colour rule is called the zero forcing process (shortly the forcing process).

Note that each vertex will force at most one other vertex. Given an initial colouring

of G, the derived set is the set of all black vertices resulting from repeatedly applying

the colour-change rule until no more changes are possible. A zero forcing set Z, is

a subset of vertices of G such that if initially the vertices in Z are coloured black

and the remaining vertices are coloured white, then the derived set of G is V (G).

The zero forcing number of a graph G, denoted by Z(G), is the smallest size of a

zero forcing set of G. We abbreviate the term zero forcing set as ZFS. A zero forcing

process is called minimal if the initial set of black vertices is a minimal ZFS. Note
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that for any nonempty graph G

1 ≤ Z(G) ≤ ∣V (G)∣ − 1.

4.2 Examples and basic results

This section presents examples of zero forcing sets of several graphs in order to

illustrate this concept. As an example, each endpoint of a path is a zero forcing set for

the path, thus Z(Pn) = 1 (note that no other vertex of the path is a zero forcing set).

In a cycle, any set of two adjacent vertices is a zero forcing set and there is no ZFS

of size one for the cycle, thus Z(Cn) = 2. It is, also, easy to see that Z(Kn) = n − 1.

Example 4.2.1. Let G be the graph in Figure 4.1. Then, Figure 4.2 illustrates why

the set Z = {v1, v2} is a ZFS for G.

e e e
e e�
�
�
�
�

v1 v2 v5

v3 v4

The graph G for which we want to find a ZFS
Figure 4.1

Any three pairwise adjacent vertices of a wheel form a ZFS for it. Any set of
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Finding a zero forcing set Figure 4.2

pendant vertices of size n − 1 of a star (K1,n−1) is a ZFS for it. As another example

we have the following proposition.

Proposition 4.2.2. Let Kn1,...,nm be a complete multipartite graph with at least one

ni > 1 for 1 ≤ i ≤m, then

Z(Kn1,...,nm) = (n1 + n2 + ⋅ ⋅ ⋅ + nm) − 2.

Proof. Let G = Kn1,...,nm and Z be the set of all vertices of the graph except for two

vertices say, u and v, which lie in different parts, A and B. Since the graph is a

complete multipartite graph, any vertex in A can force v and any vertex in B can

force u. Thus Z is a ZFS for G and

Z(G) ≤ ∣G∣ − 2.

32



Next we show that Z(G) ≥ ∣G∣ − 2. Suppose that Z(G) < ∣G∣ − 2, therefore we have a

set of size at most ∣G∣−3 as the set of initial black vertices and this means we initially

have at least 3 white vertices, which leads to the following three different cases:

(a) All of them are in the same part.

(b) They are all in different parts.

(c) Exactly two of them are in the same part.

In the first and second cases there is no black vertex with a single white neighbour

in the graph thus no vertex can perform a force. In the third case neither of the two

white vertices that are in the same part can be turned black since any existing black

vertex is either adjacent to both of them or adjacent to neither of them. Therefore

the initial set of black vertices can not be a zero forcing set for the graph. Thus

Z(G) ≥ ∣G∣ − 2.

Observation 4.2.3. For every graph G we have

Z(G) ≥ δ(G).

This bound is tight when G is a complete graph. But for trees with a large path

cover number, such as stars, this can be a very bad bound (see Proposition 4.4.5).

Since the neighbours of the first black vertex which is performing a force in a zero

forcing process are all black, it is easy to observe the following. The i-th level of a
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forcing process is the colouring of G after applying the colour-change rule in a zero

forcing process i times. As noted in [18], since any vertex that turns black under

one sequence of application of the colour-change rule can always be turned black,

regardless of the order of colour changes, we have the following.

Proposition 4.2.4. Let G be a graph. The derived set of any forcing process in the

graph G, starting with a specific initial set of black vertices, is unique.

4.3 Connection to the maximum nullity

In this section we show how the zero forcing number of a graph bounds the max-

imum nullity of the graph. To see this we need some additional definitions and

theorems from linear algebra. The support of a vector x = (xi), denoted by Supp(x),

is the set of indices i such that xi ≠ 0. The following proposition relates the support

of the vectors in the null space of a matrix to its nullity, (from [18, Proposition 2.2]).

Proposition 4.3.1. Let A be an n × n matrix and suppose null(A) > k. Then there

is a nonzero vector x ∈ null(A) vanishing at any k specified positions.

In other words, if W is a set of k indices, then there is a nonzero vector x ∈ null(A)

such that Supp(x) ∩W = ∅.

Proposition 4.3.2 (see [18, Proposition 2.3]). Let Z be a zero forcing set of

G = (V,E) and A ∈ S(G). If x ∈ null(A) and Supp(x) ∩Z = ∅, then x = 0.
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Proof. Assume x ∈ null(A) and Supp(x) ∩ Z = ∅. If Z = V , the statement clearly

holds, so suppose Z ≠ V . If v ∈ Z then xv = 0. Since Z is a zero forcing set we must

be able to perform a colour change. That is, there exists a vertex u coloured black

(xu is required to be 0) with exactly one neighbour v coloured white (so xv is not yet

required to be 0). Upon examination, the equation (Ax)u = 0 reduces to auvxv = 0,

which implies that xv = 0. Similarly each colour change corresponds to requiring

another entry in x to be zero. Thus x = 0.

Theorem 4.3.3 (see [18, Proposition 2.4]). If G is a graph, then M(G) ≤ Z(G).

Proof. Let Z be a ZFS for G. Assume M(G) > ∣Z ∣, and let A ∈ S(G) with null(A) >

∣Z ∣. By Proposition 4.3.1, there is a nonzero vector x ∈ ker(A) that vanishes on all

vertices in Z. By Proposition 4.3.2, x = 0, which is a contradiction.

Note that Theorem 4.3.3 displays a nice relationship between a linear algebraic

quantity, M(G), and a purely graph theoretical parameter, Z(G). Note also that

the inequality in this theorem can be tight or strict. For example, for paths, it holds

with equality while the corona C5 ≺ K1, . . . ,K1 ≻ (also called the penta-sun) has

a zero forcing number equal to three (this follows from the fact that is proven in

Corollary 4.5.4) but the maximum nullity of the penta-sun is equal to two, see [18,

Example 4.1].
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4.4 Zero forcing chains

In this section we study the zero forcing chains produced by a zero forcing process

in a graph and how this concept relates the zero forcing number of a graph to the

path cover number of the graph.

Let Z be a zero forcing set of a graph G. Construct the derived set, making a

list of the forces in the order in which they are performed. This list is called the

chronological list of forces. A forcing chain (for a particular chronological list of

forces) is a sequence of vertices (v1, v2, . . . , vk) such that vi → vi+1, for i = 1, . . . , k − 1.

Not that a minimal zero forcing process produces a minimal collection of forcing

chains. For the graph G in Example 4.2.1, we have the forcing chains (v1, v3, v4) and

(v2, v5). A maximal forcing chain is a forcing chain that is not a proper subsequence

of another zero forcing chain (the previous example has two maximal forcing chains).

Note that a zero forcing chain can consist of a single vertex (v1) and such a chain is

maximal if v1 ∈ Z and v1 does not perform a force. In each step of a forcing process,

each vertex can force at most one other vertex and can be forced by at most one

other vertex, therefore the maximal forcing chains are disjoint. Thus the vertices of

the zero forcing set partition the vertices of the graph into disjoint paths (this will

be discussed in Proposition 4.4.4). As we showed in Theorem 4.2.4, the derived set

of a given set of black vertices is unique; however, a chronological list of forces and

the forcing chains of a particular zero forcing set usually is not.
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The number of chains in a zero forcing process starting with a zero forcing set Z

is equal to the size of Z and the elements of Z are the initial vertices of the forcing

chains. Let Z be a zero forcing set of a graph G. A reversal of Z is the set of last

vertices of the maximal zero forcing chains of a chronological list of forces. Thus the

cardinality of a reversal of Z is the same as the cardinality of Z.

Theorem 4.4.1 (see [1, Theorem 2.6]). If Z is a zero forcing set of G, then so is

any reversal of Z.

Proof. We prove this by induction on the number of vertices. For the base case

consider the graph K2. Either of the vertices of the graph is a reversal for the other

one and also is a ZFS for the graph. Let G be a graph and assume that this is true

for all graphs G′ with ∣V (G′)∣ < ∣V (G)∣. Now in graph G write the chronological

list of forces in reverse order. Reversing each force, this is the reverse chronological

list of forces. Let the reversal of Z for this list be denoted by W . We show the

reverse chronological list of forces is a valid list of forces for W . Consider the first

force, u → v on the reverse chronological list. We need to show that all neighbours

of u except v must be in W , so that u can force v. Since then the last force in the

original chronological list of forces was v → u, each of the neighbours of u had u as a

white neighbour and thus could not have forced any vertex previously (in the original

chronological list of forces). Then (Z/{u}) ∪ {v} is a ZFS for the graph G − u. Then

according to the induction hypothesis, the rest of forces in the reverse chronological
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list of forces is a valid list of forces for the graph G − u. Thus W is a zero forcing set

of G.

Since we can always reverse a ZFS, every connected graph (exceptK1) has multiple

ZFS. Therefore, we have the following.

Corollary 4.4.2 (see [1, Corollary 2.7]). No connected graph of order greater

than one has a unique minimum zero forcing set.

The following theorem shows that there is no connected graph G with a vertex

v ∈ V (G) such that v is in every minimum zero forcing set. To see a proof of it refer

to [1, Theorem 2.9]. Let ZFS(G) be the set of all minimum zero forcing sets of G.

Theorem 4.4.3. If G is a connected graph of order greater than one, then

⋂
Z∈ZFS(G)

Z = ∅.

The next proposition shows that the path cover number is a lower bound for the

zero forcing number (see [1, Proposition 2.10]).

Proposition 4.4.4. For any graph G, P (G) ≤ Z(G).

The most famous family of graphs for which the path cover number agrees with

the zero forcing number is trees (see [18, Proposition 4.2]). Two forcing chains P1 and

P2 are called adjacent if there are two vertices v ∈ P1 and u ∈ P2 such that uv ∈ E(G).
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Proposition 4.4.5. For any tree T , P (T ) = Z(T ). Moreover, any minimal path

covering of a tree P(T ) coincides with a collection of forcing chains with ∣ P(T )∣ =

Z(G) and the set consisting of one end-point from each path in P(T ) is a ZFS for T .

Proof. We prove this by induction on the path cover number. For any tree with

P(T ) = 1 (a path), the theorem applies. To perform induction step we need to show

the following claim.

Claim. In any minimal path covering of a tree there always is a path that is connected

(through an edge) to only one other path in the path covering. We call such path a

pendant path. To observe this, suppose there is no such a path in a minimal path

covering of a tree T . Thus any path is connected to at least two other paths in the

path covering. This means the graph has a cycle as a subgraph which contradicts T

being a tree.

Assume the theorem holds for all trees T ′ with P (T ′) < P (T ). Let P(T ) be a

path covering of T with ∣ P(T )∣ = P (T ). Let Z be the set consisting of one end-point

of each path in P(T ) and P1 be a pendant path in P(T ) that is joined to the rest of

T by only one edge uv with v ∈ V (P1) and u /∈ V (P1). Then by repeatedly applying

the colour-change rule starting at the black end-point of P1, all vertices from the

black end-point through to v are coloured black. Now the path P1 is irrelevant to the

analysis of the tree T −V (P1), thus by the induction hypothesis, the black end-points

of the remaining paths are a zero forcing set for T − V (P1), and all vertices not in
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P1, including u, can be coloured black. Hence the remainder of path P1 can also be

coloured black and Z is a zero forcing set for T . Moreover all the forces are performed

along the paths in P(T ) which completes the proof.

We will basically follow a similar idea as in the proof of Proposition 4.4.5 in order

to prove Theorem 4.5.3 and Theorem 6.4.9 in the following sections. In [25] it has

been shown that:

Theorem 4.4.6. For any tree T , M(T ) = P (T ).

Combining Proposition 4.4.5 and Theorem 4.4.6 we obtain the following.

Corollary 4.4.7. For any tree T , M(T ) = Z(T ).

4.5 Graphs with Z(G) = P (G)

The most famous family of graphs satisfying Z(G) = P (G) are trees (see Propo-

sition 4.4.5). In this section we establish this equality for another family of graphs

namely the block-cycle graphs. We will, also, try to give some evidence to show that

not so many families of graphs satisfy this equality.

4.5.1 Block-cycle graphs

A graph is called non-separable if it is connected and has no cut-vertices. A block

of a graph is a maximal non-separable induced subgraph. A block-cycle graph is a
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graph in which every block is either an edge or a cycle (see Figure 4.3). A block-cycle

graph with only one cycle is a unicycle graph.

u u u
u u u u

@
@
@
@
@

u
@
@
@
@
@

A block-cycle graph Figure 4.3

Let b(G) be the number of blocks in a block-cycle graph G. According to the

definition, the only block-cycle graph with no cut vertex is either a cycle or an edge.

In a block-cycle graph each pair of cycles can intersect in at most one vertex, otherwise

there will exist a block in the graph which is neither a cycle nor an edge. Two blocks

are called adjacent if they have one vertex in common. A block in a block-cycle graph

is pendant if it shares only one of its vertices with the other blocks.

Lemma 4.5.1. Any block-cycle graph has at least two pendant blocks.

Proof. Assume G is a given block-cycle graph. To prove this lemma, we will construct

a minor G′ of the graph G and we will show that the end-points of the longest induced

path in G′ are associated to the pendant blocks in the original graph. Let B1, . . . ,BN

be the blocks in G. Note that Bi is either an edge or a cycle, for any 1 ≤ i ≤ N . If Bi

41



is a cycle, contract all edges in Bi until all that remains is a single vertex, call this

vi. In this case we say the vertex vi in G′ is associated to the cycle Bi in G. Also we

say vi ∈ G′ is associated to the edge Bi in G, if vi is an end-point of the edge Bi in G.

Note that all the edges adjacent to Bi, are adjacent to vi after this operation. If two

cycles Bi and Bj share a vertex in G, draw an edge between the associated vertices

vi and vj in G′.

Let P = {u1, u2,⋯, uk} be the longest induced path in G′. Let u1 = vi and u2 = vj

for some i and j and vi and vj correspond to blocks Bi and Bj. We first consider the

case where Bi is a cycle while Bj is either an edge or a cycle. We claim that the cycle

Bi is a pendant block in G. Otherwise there is another block, B, which can be an

edge or a cycle that shares a vertex with Bi which is different from the vertex that Bi

shares with Bj. First, assume that B is a cycle in G. Let z be the vertex associated

to B. The only reason z is not in P is that there is an edge between z and some other

vertices, say ui, in P . The translation of this in the graph G is that there is either an

edge or a cycle associated with ui, with i ≠ 1, which B shares a vertex with. Thus,

there exists a cycle in G which shares more than one vertex with at least one other

cycle in G. This means that there is a block in G that is neither a cycle nor an edge

which contradicts with the fact that G is a block-cycle graph. A similar argument

applies when B is an edge in G.

Using a similar reasoning when Bi is an edge in G, we get the same contradiction
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which proves the theorem.

The following lemma is straightforward to prove.

Lemma 4.5.2. If B is a pendant block in a block-cycle graph, then

P (G/B) ≤ P (G).

Theorem 4.5.3. Let G be a block-cycle graph. Then

Z(G) = P (G).

Furthermore, the paths in any minimal path covering of G are precisely the forcing

chains in a minimal zero forcing process initiated by a proper selection of the end-

points of the paths in this collection.

Proof. We prove the equation by induction on the number of blocks in G and applying

Lemma 4.5.1. The only block-cycle graph with b(G) = 1 is either an edge or a cycle

and the theorem is clearly true for these graphs. Assume that it is true for all graphs

G′ with b(G′) < n. Let b(G) = n. According to Lemma 4.5.1, there is a pendant

block, B, in G which is connected to the other blocks through a single vertex, u. Let

G = G′ +
u
B. The induction hypothesis holds for G′, that is Z(G′) = P (G′) and a

proper selection of the end-points of the paths in a minimal path covering P of G′

constructs a zero forcing set for it. By Lemma 4.5.2, we have P (G′) ≤ P (G). Two

cases are then possible:
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(a) There is a path-cover P for the graph G′ = G/B in which there is a path P of

length more than one such that u is an end-point of P .

First assume that B is the edge uv. Then G/B is the graph obtained from G

by removing the pendant vertex v of G. Since u is an end-point of P and v is

only connected to u, returning B to G′ doesn’t change the path cover number of

the graph. By the induction hypothesis, the paths in the path-cover P are the

forcing chains of the forcing process initiated by the end-points of the paths in

P. Also since u is an end-point of P , we can assume that it doesn’t perform any

force. Therefore, the zero forcing process will be continued by using u to force v.

Thus,

P (G′) = P (G) ≤ Z(G) ≤ Z(G′) = P (G′),

which implies Z(G) = P (G).

If B is a cycle, then since it is a pendant cycle, returning it to G′ increases the

path cover number of G′ at least by one, since we will need at least two paths to

cover the vertices of a cycle. Assume that v and w are two neighbours of u in B.

Then, since u is an end-point of P , P ∪ (V (B)/{v}) can cover all vertices in the

cycle B except v. Thus the path cover for G′ along with {v} is a path cover for

G and P (G) = P (G′) + 1. Also we need at least two initial black vertices in the

cycle to colour its vertices. By assigning colour black to the vertex v, all vertices
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in B will be coloured by continuing the forcing process in P through u. Thus,

P (G′) + 1 = P (G) ≤ Z(G) ≤ Z(G′) + 1 = P (G′) + 1,

which implies Z(G) = P (G).

(b) In every minimal path covering P of G′, u is an inner vertex of a path in P .

If B is an edge uv, then P (G) ≠ P (G′). Otherwise v is covered in the same path

as u is, which contradicts the fact that u is not an end-point of any path in any

path covering of G. Thus P (G) = P (G′)+ 1 since P ∪{v} covers all vertices of G.

Also by assigning a black colour to the vertex v we are able to colour the graph

G following the same forcing process which we followed to colour the graph G′.

Thus,

P (G′) + 1 = P (G) ≤ Z(G) ≤ Z(G′) + 1 = P (G′) + 1,

which implies Z(G) = P (G).

If B is a cycle, then P (G) = P (G′) + 1, since P along with a path covering all

vertices of B, except u, covers all vertices of G. Also, by assigning a black colour

to one of the neighbours of u in B, w, we can colour G using the initial set of

black vertices in the zero forcing set of G′ along with w. Thus,

P (G′) + 1 = P (G) ≤ Z(G) ≤ Z(G′) + 1 = P (G′) + 1,

which implies Z(G) = P (G).
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The following corollary is obtained from the fact that any unicycle graph is a

block-cycle graph.

Corollary 4.5.4. If G is a unicycle graph, then Z(G) = P (G).

4.5.2 Graphs for which the path cover number is two

It seems that for a general graph it is rare to satisfy the equality Z(G) = P (G).

To show this along with the fact that the discrepancy between Z(G) and P (G) can

be arbitrarily large we focus on the family of graphs with P (G) = 2.

Proposition 4.5.5. Let G be a graph with P (G) = 2 and two covering paths P1 and

P2 with ∣P1∣ =m and ∣P2∣ = n. Then

2 ≤ Z(G) ≤ min{n,m} + 1.

Moreover for any number k in this interval, there is a graph G satisfying P (G) = 2

with Z(G) = k.

Proof. The claim that Z(G) ≥ 2 is trivial. Suppose m ≤ n and let B be the set

consisting of V (P1) and an end-point of P2. Obviously B is a ZFS for G. Thus Z(G) ≤

∣B∣ =m+ 1 = min{n,m}+ 1. For the given number k in the interval [2,min{m,n}+ 1]

let G be the following graph. Set two paths P1 and P2 with ∣P1∣ = m and ∣P2∣ = n

and assume that m ≤ n. Starting with an end-point of P1 make each of k consecutive
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vertices of P1 adjacent to all of the vertices of P2. Then, it is easy to observe that

Z(G) = k.

Among all the graphs with P (G) = 2, only those that are also outerplanar satisfy

Z(G) = 2 (see [27, Theorem 5.1]).

4.6 Graphs with Z(G) =M(G)

One of the most important questions here, which is motivated by Theorem 4.3.3,

is to characterize the graphs for which M(G) = Z(G) holds. Although, all families

of graphs with M(G) = Z(G) have not yet been fully characterized, there are some

families of graphs for which this equality has been established. For instance, all the

graphs with less than seven vertices (see [18, Proposition 4.4]), and the families of

graphs are listed in [18, Table 1]. In this chapter we expand this list.

A graph G is said to be chordal, if it has no induced cycle of length more than

three. In [18, Proposition 3.23] as well as in [24, Theorem 7], it has been shown

that the equality M(G) = Z(G) also holds for some families of chordal graphs. In

this section, also, we prove that this equality holds for some new families of chordal

graphs.

For any graph G, assume that ZG is a minimum zero forcing set of G. Given

graph G with ∣G∣ = n and the graphs H1, . . . ,Hn, let

G ≺H1, . . . ,Hn ≻
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be the graph obtained by joining all the vertices of the graph Hi to the i-th vertex of

G, where i = 1, . . . , n. Note that ∣Hi∣ can be zero, in which case no extra vertices will

be joined to the vertex i. We call the graph

G ≺H1, . . . ,Hn ≻

a generalized corona of G with H1, . . . ,Hn. In the next theorem, we use the convention

that Z(Hi) = 0 if ∣Hi∣ = 0.

Theorem 4.6.1. For graph G with ∣G∣ = n and graphs H1, . . . ,Hn we have

Z(G ≺H1, . . . ,Hn ≻) ≤ Z(G) +
n

∑
i=1
Z(Hi).

Proof. Let G = {v1, . . . , vn}. Without loss of generality, we may assume that ZG =

{v1, . . . , vk} is a zero forcing set for G, and that one can colour all the other vertices

of G by a sequence of forces in the following order:

vk+1, vk+2, . . . , vn. (4.3)

Define

∆ = ZG ∪ZH1 ∪ . . . ∪ZHn .

We claim that ∆ is a zero forcing set for G ≺H1, . . . ,Hn ≻, which is of size

∣∆∣ = Z(G) +
n

∑
i=1
Z(Hi).

To prove the claim, first assume that ∆ is initially coloured black and we colour all

the vertices of the graphs Hi, with i = 1, . . . , k, which are associated to the vertices of
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ZG using the corresponding set ZHi
’s. Now note that there is a vertex vi ∈ ZG whose

only white neighbour in G is vk+1; because we were able to colour the vertices of G

using ZG in the order (4.3). Now, since all the vertices in the graph Hi associated

with vi are black, vk+1 is, still, the only white neighbour of vi in G ≺ H1, . . . ,Hn ≻.

Thus vk+1 can be forced by vi. Then we colour all the vertices in the Hk+1 using

the black vertices in ZHk+1
. Continuing this process, therefore, we can colour all the

vertices of G ≺H1, . . . ,Hn ≻ which proves the claim.

The following is an immediate consequence of Theorem 4.6.1.

Corollary 4.6.2. For graphs G and H we have

Z(G ≺H, . . . ,H ≻) ≤ Z(G) + ∣G∣Z(H).

The bound in Corollary 4.6.2 is, in fact, an improvement of the bound in [18,

Proposition 2.12]. Using Theorem 4.6.1, Theorem 4.3.3 and Corollary 3.2.6, we can

prove that equality in Theorem 4.3.3 holds for the following families of chordal graphs.

Theorem 4.6.3. Let G be a graph satisfying the equalities Z(G) = M(G) and

mr(G) = cc(G) and H1, . . . ,Hn be graphs satisfying the equalities Z(Hi) = M(Hi)

and mr(Hi) = cc(Hi) with i = 1, . . . , n. Then

Z(G ≺H1, . . . ,Hn ≻) =M(G ≺H1, . . . ,Hn ≻),

and

mr(G ≺H1, . . . ,Hn ≻) = cc(G ≺H1, . . . ,Hn ≻).
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Proof. By (3.2) and Corollary 3.2.6 we have

M(G ≺H1, . . . ,Hn ≻) ≥ ∣V (G ≺H1, . . . ,Hn ≻)∣ − cc(G ≺H1, . . . ,Hn ≻). (4.4)

Note that

∣V (G ≺H1, . . . ,Hn ≻)∣ = ∣V (G)∣ +
n

∑
i=1

∣V (Hi)∣.

On the other hand we have

cc(G ≺H1, . . . ,Hn ≻) ≤ cc(G) +
n

∑
i=1

cc(Hi). (4.5)

In order to show (4.5) note that each clique Kji in a minimal clique covering of Hj

joined to the vertex j of G constructs a clique isomorphic to Kji+1. Thus by using

the same number of cliques we use to cover the edges of G and Hi with i = 1, . . . , n

we can cover the edges of G ≺ H1, . . . ,Hn ≻. Also by Theorem 4.6.1 and (3.2), and

the assumptions of the theorem we have

M(G ≺H1, . . . ,Hn ≻)

= ∣V (G ≺H1, . . . ,Hn ≻)∣ −mr(G ≺H1, . . . ,Hn ≻)

≤ Z(G ≺H1, . . . ,Hn ≻)

≤ Z(G) +∑n
i=1Z(Hi)

=M(G) +∑n
i=1M(Hi)

= ∣V (G)∣ + ∑n
i=1 ∣V (Hi)∣ − [cc(G) +∑n

i=1 cc(Hi)]

≤ ∣V (G ≺H1, . . . ,Hn ≻)∣ − cc(G ≺H1, . . . ,Hn ≻).

(4.6)

The theorem follows from (4.4) and (4.6).
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Theorem 4.6.3 provides a recursive construction to generate an infinite family of

graphs that satisfy the equality Z(G) = M(G). The following is a consequence of

Theorem 4.6.3.

Corollary 4.6.4. For the following graphs, Z(G) =M(G):

(a) G1 =Kt ≺ Ps1 , . . . , Psr ,Kq1 , . . . ,Kq` ≻, where si, qj ≥ 2;

(b) G2 = Pt ≺ Ps1 , . . . , Psr ,Kq1 , . . . ,Kq` ≻, where si, qj ≥ 2.

Moreover

(1) M(G1) = Z(G1) = t − 1 − ` + q1 +⋯ + q` + r;

(2) mr(G1) = cc(G1) = 1 + ` + s1 +⋯ + sr − r;

(3) M(G2) = Z(G2) = 1 − ` + q1 +⋯ + q` + r;

(4) mr(G2) = cc(G2) = t − 1 + ` + s1 +⋯ + sr − r.

Proof. Statements (1), (2), (3) and (4) follow from the facts Z(Kt) = t−1, Z(Pt) = 1,

cc(Kt) = 1 and cc(Pt) = t − 1, for any t.

The next theorem demonstrates the existence of another family of chordal graphs

for which the equality holds in Theorem 4.3.3.

Theorem 4.6.5. Let G be a chordal graph consisting of N ≥ 1 cliques, Kn1 , . . . ,KnN
,

such that the intersection of any two cliques is a complete graph and no vertex is
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contained in more than two cliques. Also, let ki,j be the size of the clique in the

intersection of Kni
and Knj

then

M(G) = Z(G) =
N

∑
i=1
ni −∑

i<j
kij −N,

and

mr(G) = cc(G) = N.

Proof. The proof is by induction on the number of cliques. It is clearly true for N = 1.

Since no vertex of G is contained in more than two cliques, it has a pendant clique,

that is, a clique which intersects only one other clique in the graph. Otherwise we

have an induced cycle of order more than three in G which contradicts with G being

chordal. Without loss of generality, assume that, this clique is Kn1 and that it only

intersects with Kn2 . Let H = Kn1/ (Kn1 ∩Kn2) and G′ = G/H. By the induction

hypothesis we have,

M(G′) = Z(G′) =
N

∑
i=2
ni − ∑

1<i<j
kij − (N − 1).

It is clear that

cc(G′) ≤ N − 1.

Then it follows that a ZFS from G′ with an additional n1−k1,2−1 black vertices from

H forms a ZFS for G. Thus,

M(G) ≤ Z(G) ≤
N

∑
i=2
ni − ∑

1<i<j
kij −N + 1 + n1 − k1,2 − 1 =

N

∑
i=1
ni −∑

i<j
kij −N,
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and

cc(G) ≤ N.

It is clear that

∣G∣ =
N

∑
i=1
ni −∑

i<j
kij.

Thus, using (3.2) and Corollary 3.2.6, we obtain the following lower bound for M(G):

M(G) ≥
N

∑
i=1
ni −∑

i<j
kij −N,

which completes the proof.

Note that the equality in Theorem 4.3.3 does not hold for all chordal graphs. See

for instance [1, Example 2.11].

4.7 The Colin de Verdière graph parameter

In 1990, Colin de Verdière [8] introduced an interesting new parameter µ(G) for

any undirected graph G. The parameter µ(G) can be fully described in terms of

properties of matrices related to G. One of the interesting applications of µ is that

certain topological properties of a graph G can be characterized by spectral properties

of matrices associated with G including values of µ, see [8, 34]. Another interesting

graph theoretical property of µ is that it is monotone on graph minors. Before

defining this parameter, we need to introduce the Strong Arnold Property, which will

be abbreviated by SAP throughout the thesis.
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The Hadamard product of two matrices A = [aij] and B = [bij] of the same size

is just their element-wise product A ○B ≡ [aijbij]. Let A and X be symmetric n × n

matrices. We say that X fully annihilates A if

1. AX = 0,

2. A ○X = 0, and

3. In ○X = 0.

The matrix A has the Strong Arnold Property (SAP) if the zero matrix is the only

symmetric matrix that fully annihilates A. The following is a basic, yet useful, ob-

servation concerning symmetric matrices with small nullity. In particular, it demon-

strates that there are matrices in S(G) that satisfy SAP, for any graph G.

Lemma 4.7.1. If null(A) ≤ 1, then A has SAP.

Proof. If null(A) = 0, then A is nonsingular and the only matrix X that fully annihi-

lates A is the zero matrix. Suppose, now, that null(A) = 1 and let X fully annihilate

A. Thus by condition (3), the diagonal of X is 0. Since X is symmetric, this implies

that X is not a rank 1 matrix. Hence, if X ≠ 0, then rank(X) ≥ 2 and AX = 0 would

imply null(A) ≥ 2. Therefore X = 0 and A has SAP.

Now we can define the Colin de Verdière parameter. For a given graph G, µ(G)

is defined to be the maximum multiplicity of 0 as an eigenvalue of L, where L = [li,j]

satisfies all of the following conditions:
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1. L ∈ S(G) and li,j ≤ 0, for i ≠ j;

2. L has exactly one negative eigenvalue (with multiplicity one);

3. L has SAP.

In other words µ(G) is the maximum nullity among the matrices satisfying (1)-(3)

above. Further, observe that

µ(G) ≤M(G) = n −mr(G) ≤ Z(G). (4.7)

Hence there is an obvious relationship between µ(G) and mr(G).

the linking number is a numerical invariant that describes the linking of two

closed curves in three-dimensional space. Intuitively, the linking number represents

the number of times that each curve winds around the other. A linkless embedding

of an undirected graph is an embedding of the graph into Euclidean space in such a

way that no two cycles of the graph have nonzero linking number.

Colin de Verdière et al [8, 34], through some sophisticated theorems, have shown

that :

• µ(G) ≤ 1 if and only if G is a disjoint union of paths;

• µ(G) ≤ 2 if and only if G is outerplanar;

• µ(G) ≤ 3 if and only if G is planar;

• µ(G) ≤ 4 if and only if G is linklessly embeddable.
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A related parameter, also introduced by Colin de Verdière (see [9]), is denoted by

ν(G) and is defined to be the maximum nullity among matrices A that satisfy the

following conditions:

1. A ∈ S(G);

2. A is positive semidefinite;

3. A has SAP.

Note, also, that

ν(G) ≤M+(G) = n −mr+(G). (4.8)

Thus, there is an obvious relationship between ν(G) and mr+(G).

Properties analogous to µ(G) have been established for ν(G). For example,

ν(G) ≤ 2 if the dual of G is outerplanar, see [9]. Furthermore, ν(G), like µ(G)

is a minor-monotone graph parameter.

Consequently, in order to learn more about the minimum rank of graphs, another

related parameter which is denoted by ξ(G) is been introduced by Fallat et al. [3]

with the following definition.

Definition 4.7.2. For a graph G, ξ(G) is the maximum nullity among matrices

A ∈ S(G) having SAP.

For example, based on Lemma 4.7.1 we have :

ξ(Kn) = n − 1. (4.9)
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One of the most important properties of ξ(G) analogous to µ(G) is its minor-

monotonicity [3, Corollary 2.5] . Also, note that

µ(G) ≤ ξ(G) ≤M(G) ≤ Z(G), (4.10)

and

ν(G) ≤ ξ(G) ≤M(G) ≤ Z(G). (4.11)

Two of the most interesting open questions in this area that have been proposed

by Colin de Verdière in 1998, are the following.

Conjecture 4.7.3. For any graph G, χ(G) ≤ µ(G) + 1.

Conjecture 4.7.4. For any graph G, χ(G) ≤ ν(G) + 1.

According to Conjecture 4.7.3 and Equations (4.3.3) and (4.7), a weaker compar-

ison can be stated as follows:

Question. Does the following inequality hold for any graph G;

χ(G) ≤ Z(G) + 1?

The next section is devoted to answering this question.

4.8 The zero forcing number and the chromatic number

Since the zero forcing number of a graph is a graph parameter associated with

a new type of graph colouring, it seems natural to ask if there is any relationship

57



between this parameter and the traditional graph colouring parameter called the

chromatic number of the graph. This, along with the second last question of Sec-

tion 4.7 motivates us to find a relationship between the zero forcing number and the

chromatic number of a graph.

Theorem 4.8.1. Let G be a graph. Then we have

Z(G) ≥ max{δ(H ′) ∣ H ′ is any induced subgraph of G}.

Proof. Let H be an induced subgraph of G such that

δ(H) = max{δ(H ′) ∣ H ′ is any induced subgraph of G}.

Let Z be a zero forcing set of G with ∣Z ∣ = Z(G). If Z includes all vertices of H, then

there is nothing to prove. If not, and no vertex of H performs a force in the zero

forcing process with the initial black vertices in Z, then there is a zero forcing set Z ′

(the reversal of Z) with ∣Z ′∣ = ∣Z ∣ that includes all vertices in H and again the result

follows. Now assume that there is at least one vertex in H performing a force and let

v be the first vertex of H which performs a force in the process (this vertex is either

in Z or it is forced by a vertex not in H). Since v is the first one which performs a

force, all the neighbours of v in H, except one, should already have been forced in

some distinct forcing chains. The initial vertices of these chains are in Z. Thus,

Z(G) ≥ dH(v) − 1 + 1 ≥ δ(H),

which completes the proof.

58



The following inequality shows the connection between the chromatic number of

a graph and the minimum degree among all the induced subgraphs of the graph

(see [6, Section 4.2]).

Lemma 4.8.2. For any graph G,

χ(G) ≤ 1 +max{δ(H ′) ∣ H ′is any induced subgraph of G}.

Corollary 4.8.3. For any graph G we have

χ(G) ≤ Z(G) + 1.

Proof. The inequality follows directly from Theorem 4.8.1 and Lemma 4.8.2.

Note that the bound in the above inequality is tight for some graphs such as paths

and complete graphs. The following corollary is a direct result of Theorem 4.8.1.

Corollary 4.8.4. Let G be a graph.

1. If Kn is a subgraph of G then Z(G) ≥ n − 1.

2. If Kp,q is a subgraph of G then Z(G) ≥ min{p, q}.

In fact there is a stronger result than the first statement of Corollary 4.8.4 based

on the minor monotonicity property of ξ(G) and (4.11) and (4.9) which is as follows:

Proposition 4.8.5. If G has a Kn minor then

Z(G) ≥ n − 1.
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Also we can improve the bound in the second statement of Corollary 4.8.4 as

follows.

Proposition 4.8.6. If the complete bipartite graph Kp,q is a subgraph of G then,

Z(G) ≥ min{p, q} + 1,

provided that (p, q) ≠ (1,1), (1,2), (2,1), (2,2).

Proof. Let the graph Kp,q be a subgraph of the graph G. Assume that (X,Y ) are

the partitions of Kp,q with ∣X ∣ = p and ∣Y ∣ = q where p ≤ q. Let Z be a zero forcing

set of G with ∣Z ∣ = Z(G). If Z includes all vertices of Kp,q, there is nothing to prove.

If not and no vertex of Kp,q performs a force in the zero forcing process with the

initial black vertices in Z, then there is a zero forcing set Z ′ (the reversal of Z) with

∣Z ′∣ = ∣Z ∣ that includes all vertices in Kp,q and the inequality follows.

Now assume that there is at least one vertex in Kp,q performing a force. Let

v be the first vertex of Kp,q which is forcing a vertex u in a zero forcing process

starting with the vertices in Z (v is either in Z or it is forced by a vertex not in Kp,q).

First assume that v ∈ X. If u is not a vertex of Kp,q, since v is the first vertex of

Kp,q which performs a force, all q neighbours of v in Kp,q should already have been

forced in some distinct forcing chains and the result follows. If u is in Kp,q, then

there are q − 1 distinct forcing chains having the neighbours of v in Kp,q except u

as their end-points. If u has no other neighbours in X, then min{p, q} = 1 and the

60



inequality follows from the fact that Z(G) ≥ q ≥ 2 = min{p, q} + 1. If not and u is the

second vertex of Kp,q that performs a force, this requires at least all the neighbours

of u in Kp,q, except one, are already coloured black in some distinct forcing chains.

Therefore, Z(G) ≥ q+1 ≥ min{p, q}+1. If not and the forcing chain containing v ends

with u, then there is at least one more forcing chain to colour the rest of the vertices

in X. Thus Z(G) ≥ q + 1 ≥ min{p, q}+ 1. A similar argument applies when v ∈ Y .
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Chapter 5

Zero forcing number and graph operations

In this chapter we study effects of some graph operations, including operations

on a single graph or operations on several graphs, on the zero forcing number of the

resulting graph. The impact of the graph operations on zero forcing number shows

this parameter, similar to maximum nullity, is not monotone on subgraphs.

5.1 Simple operations

Deleting a vertex from a graph can increase or decrease the zero forcing number,

but by at most one in either direction. It is somehow predictable that vertex deletion

could either decrease the zero forcing number or keep it the same, but surprisingly,

there are examples in which vertex deletion increases the zero forcing number.

Proposition 5.1.1 (see [32, Theorem 6.4]). Let v be a vertex of the graph G.

Then Z(G − v) − 1 ≤ Z(G) ≤ Z(G − v) + 1.
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The following are examples of all three possible cases in Proposition 5.1.1.

• Decrease:

u
u e

A
A
A
A
A

�
�
�
�
�

v

Z(G) = 2

u e
Z(G − v) = 1

An example of a graph for which removing a vertex decreases the zero forcing number

Figure 5.1

• No change:

u ev

Z(G) = 1

u
Z(G − v) = 1

An example of a graph for which removing a ver-

tex does not change the zero forcing number

Figure 5.2

• Increase:
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e u
e u

e e

�
�
�
��

A
A
A
AA

A
A
A
AA

�
�
�
��

�
�
�
��

A
A
A
AA

v

Z(G) = 2

e u
u

u e
�
�
�
�
�

A
A
A
AA

A
A
A
A
A

�
�
�
�
�

Z(G − v) = 3

An example of a graph for which removing a vertex increases the zero forcing number

Figure 5.3

It is not hard to observe the following.

Proposition 5.1.2. Let G be a graph with a vertex labeled v.

(a) If v ∈ Z where Z is a minimal ZFS of G, then Z(G) − 1 ≤ Z(G − v) ≤ Z(G).

(b) If Z(G − v) = Z(G) + 1, then there is no minimal ZFS of G including v.

Similarly edge deletion can change the zero forcing number by at most 1.

Proposition 5.1.3 (see [32, Theorem 5.2]). Let G be a connected graph. If e = uv

is an edge of G, then

Z(G) − 1 ≤ Z(G − e) ≤ Z(G) + 1.

The following are examples of all three possible cases in Proposition 5.1.3.

64



• Decrease:

u
u e

A
A
A
A
A

�
�
�
�
�

e

Z(G) = 2

e
e u
�
�
�
��

e

Z(G − e) = 1

An example of a graph for which removing an edge decreases the zero forcing number

Figure 5.4
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• No change:

e u
e u
@
@
@
@
@

e

Z(G) = 2

e u
e u
Z(G − e) = 2

An example of a graph for which removing an

edge does not change the zero forcing number

Figure 5.5

• Increase:

e e
u

u e

�
�
�
��

A
A
A
AA

A
A
A
AA

�
�
�
��

e

Z(G) = 2

e u
u

u e

�
�
�
��

A
A
A
AA

A
A
A
AA

�
�
�
��

Z(G − e) = 3

An example of a graph for which removing an edge increases the zero forcing number

Figure 5.6

It is not hard to observe the following
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Proposition 5.1.4. Let e = uv be an edge in a graph G. If there is a minimal zero

forcing process for G in which neither u forces v nor v forces u, then Z(G) − 1 ≤

Z(G − e) ≤ Z(G). Otherwise Z(G) ≤ Z(G − e) ≤ Z(G) + 1.

Proof. In order to prove the case “otherwise”, assume that P is a minimal collection

of forcing chains of G in which u forces v in the chain P . Let P /{e} = P1 ∪ P2.

Then by assigning the black colour to v, (P /{P}) ∪ {P1, P2} is a minimal collection

of forcing chains for G−e. Thus Z(G−e) ≤ Z(G)+1. To show that Z(G) ≤ Z(G−e),

suppose that Z(G − e) ≤ Z(G) − 1. Then there is a collection of forcing chains P ′

of G − e of size Z(G) − 1. First suppose that u and v are in the same chain P ′ ∈ P ′

and u is in a lower level than v. Assume u forces w and w′ forces v in this chain.

Let P ′/{uw,w′v} = P ′
1 ∪ P ′

2 ∪ P ′
3 in which P ′

1 ends with u and P ′
2 starts with w and

ends with w′ and P ′
3 starts with v. Let P ′′ be the chain obtained by merging two

chains P ′
1 and P ′

3 by adding the edge uv. Then by assigning the black colour to w,

(P /{P}) ∪ {P ′
3, P

′′} is a minimal collection of forcing chains of G in which u forces

v. A similar argument applies when u and v are in different chains.

Edge contraction affects the zero forcing number in the following ways.

Proposition 5.1.5 (see [32, Theorem 5.1]). Let e = uv be an edge in a graph G.

Then

Z(G) − 1 ≤ Z(G/e) ≤ Z(G) + 1.

The following are examples of all three possible cases in Proposition 5.1.5.
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• Decrease:

u
u e e

e

Z(G) = 2

u e e
Z(G/e) = 1

An example of a graph for which contracting an edge decreases the zero forcing number

Figure 5.7

• No change:

u ee

Z(G) = 1

u
Z(G/e) = 1

An example of a graph for which contracting an

edge does not change the zero forcing number

Figure 5.8

• Increase:
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e u
e
e

e u

�
�
�
��

A
A
A
AA

A
A
A
AA

�
�
�
��

e

Z(G) = 2

u u
e

e u

�
�
�
��

A
A
A
AA

A
A
A
AA

�
�
�
��

Z(G/e) = 3

An example of a graph for which contracting an edge increases the zero forcing number

Figure 5.9

Subdividing an edge can only increase the zero forcing number by at most one.

Proposition 5.1.6 (see [32, Theorem 5.4]). If H is obtained from G by subdi-

viding an edge e = uv, then

Z(G) ≤ Z(H) ≤ Z(G) + 1.

The following are examples of the two possible cases in Proposition 5.1.6.

• No change:
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u ee

Z(G) = 1

u e e
Z(H) = 1

An example of a graph for which subdividing an

edge does not change the zero forcing number

Figure 5.10

• Increase:

u u
e e
@
@
@
@
@

e

Z(G) = 2

u u
e e
@
@
@
@
@

u
Z(H) = 3

An example of a graph for which subdividing an edge increases the zero forcing number

Figure 5.11

In the next proposition we bound the variation of the zero forcing number of a

specific type of graphs after adding edges and vertices to it. A graph G is called a

semi-complete graph if all of its forcing chains in any minimal zero forcing process

are pairwise adjacent. Note that such a graph is contractable to a KZ(G) and any

complete graph is semi-complete.

Proposition 5.1.7. Let G be a semi-complete graph and u and v be two nonadjacent
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vertices of G. Let G1 = G+uv and G2 be the graph obtained from G by adding a new

vertex z to V (G) that is connected to the vertices of G in any fashion. Then

1. Z(G) ≤ Z(G1) ≤ Z(G) + 1.

2. Z(G) ≤ Z(G2) ≤ Z(G) + 1.

Proof. Suppose that Z(G1) < Z(G). Let P be a collection of forcing chains of G1

with ∣ P ∣ = Z(G1). If in this zero forcing process neither u forces v nor v forces u,

then P is a ZFS for G. Thus Z(G) = Z(G1 − uv) ≤ Z(G1) that implies Z(G) < Z(G)

which is a contradiction. Assume that there is a forcing chain in P, say P , that has a

force through uv, then P −uv = P1⋃P2 where P1 and P2 are two non-adjacent forcing

chains one of them starting with u (or v). Therefore by assigning a black colour to

u (or v), (P /{P}) ∪ {P1, P2} is a minimal collection of forcing chains of G with two

non-adjacent chains P1 and P2. This contradicts the fact that G is a semi-complete

graph and therefore, proves the claim.

A similar argument applies for the second statement.

Proposition 5.1.7 and testing several examples motivates us to propose the follow-

ing conjecture.

Conjecture 5.1.8. If the graph G has a Kn minor, then G has a semi-complete

subgraph, H, with Z(H) ≥ n − 1.
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5.2 Vertex-sum of graphs

One of the most common graph operations is the vertex-sum of two graphs. The

following theorem calculates the zero forcing number of the vertex-sum of two graphs.

Theorem 5.2.1. Let G and H be two graphs each with a vertex labeled v. Then the

following hold.

1. If v is in some minimal ZFS of H but not in any minimal ZFS of G, then

Z(G +
v
H) = Z(G) +Z(H).

2. If v is in some minimal ZFS of H and some minimal ZFS of G, then

Z(G +
v
H) = Z(G) +Z(H) − 1.

3. If v is neither in any minimal ZFS of H nor in any minimal ZFS of G, then

Z(G +
v
H) = Z(G) +Z(H) + 1.

Proof. Let ZG be a minimal ZFS of G and ZH be a minimal ZFS of H.

To verify the first case assume that v ∈ ZH . By Theorem 4.4.1, if Z ′
H is the reversal

of ZH , then Z ′
H is a minimal ZFS in which v doesn’t perform a force. Therefore

starting with the initial black vertices in Z ′
H ∪ ZG and colouring H before G we can

colour the entire graph G+
v
H. Thus

Z(G+
v
H) ≤ Z(G) +Z(H).
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To prove the equality in the equation suppose that

Z(G+
v
H) < Z(G) +Z(H).

Hence we can colour G+
v
H using Z(G)+Z(H)−1 initial black vertices. No vertex of

G, except v, can force any vertex of H in any zero forcing process. In addition, since

v is not a member of any minimal ZFS of G, v is not an end-point of any zero forcing

chain in G. Therefore v can not perform any force in H. Thus we need at least Z(H)

initial black vertices from V (H) to colour H. Hence we have at most Z(G) − 1 black

vertices of G along with v (that is already turned to black) to colour G. This means

there is a minimal ZFS for G that contains v which contradicts the fact that v is not

in any minimal ZFS of G.

To verify the second case we use a similar reasoning as in the first case. First

using Z ′
H we can colour all of H. If ZG is a minimal ZFS for G that contains v then

Z ′
H ∪ (ZG/{v}) forms a ZFS for G+

v
H. Thus

Z(G +
v
H) ≤ Z(G) +Z(H) − 1.

In order to prove the equality, suppose that

Z(G +
v
H) < Z(G) +Z(H) − 1.

Therefore we can colour G +
v
H with an initial set of black vertices of size Z(G) +

Z(H) − 2. Since at most one of the vertices of H, i.e. v, can be forced by a vertex of
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G, we need at least Z(H) − 1 black vertices from V (H) to colour H. Therefore there

are needed at most Z(G) − 1 initial black vertices from V (G) to finish colouring of

G. This contradicts the fact that Z(G) is the zero forcing number of G.

To prove the third case let u be a vertex that is forced by v in a zero forcing

process started with the vertices of ZG. Then ZH ∪ ZG ∪ {u} is a ZFS for G +
v
H.

Thus

Z(G +
v
H) ≤ Z(G) +Z(H) + 1.

Since v is neither in any minimal ZFS of H nor in any minimal ZFS of G, in all zero

forcing processes starting with any minimal set of black vertices of V (Z(G +
v
H)), v

must perform a force both in G and in H. Therefore in any zero forcing process, v

will have two white neighbours, one in G and one in H. Thus we can not complete

the colouring of graph G +
v
H using at most Z(G) + Z(H) initial black vertices and

this completes the proof.

In order to find a connection between the zero forcing number and the path cover

number of the vertex-sum of two graphs we try to calculate the path cover number

of the vertex-sum of two graphs G and H in terms of those of G and H.

Proposition 5.2.2. Let G and H be two graphs each with a vertex labeled v. Then

the following hold.

1. If there is a minimal path covering of G in which v is a path of length zero and
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v in not an end-point in any minimal path covering of H, then

P (G +
v
H) = P (G) + P (H) − 1.

2. If v is an end-point of some minimal path covering of G but no minimal path

covering contains v as a path of length 1 and v is not an end-point in any

minimal path covering of H, then

P (G +
v
H) = P (G) + P (H).

3. If there are minimal path coverings of H and G in which v is an end-point of a

path in both, then

P (G +
v
H) = P (G) + P (H) − 1.

4. If v is neither an end-point of any minimal path covering of H nor the end-point

in any minimal path covering of G, then

P (G +
v
H) = P (G) + P (H) + 1.

Proof. To prove the second case, let P(G) and P(H) be two minimal path coverings

of G and H respectively. Let P ∈ P(G) be the path for which v is an end-point

and P ′ = P − v. Then (P(G)/{P}) ∪ {P ′} ∪ P(H) is a path covering for G +
v
H.

Thus P (G +
v
H) ≤ P (G) + P (H). To show the equality, suppose that P (G +

v
H) <

P (G) +P (H). Hence there is a path covering for G +
v
H with size P (G) +P (H) − 1.
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Let Pv be the path in a path covering of G +
v
H with size P (G)+P (H)−1 that covers

v. Three following cases are possible:

1. Pv is entirely in G.

2. Pv is entirely in H.

3. Pv = P1 +v P2 such that P1 and P2 are two paths in G and H respectively.

In the first case the vertices of G/Pv are covered by at least P (G) − 1 paths. On the

other hand, since the number of paths in this covering is at most P (G) + P (H) − 1,

the vertices of H − v are covered by at most P (H) − 1 paths. Therefore there is a

path covering of H of size P (H) in which v is an end-point. In the second case the

vertices of H/Pv are covered by at least P (H) − 1 paths. Since the number of paths

in this covering is at most P (G) + P (H) − 1, the vertices of G − v are covered by at

most P (G)− 1 paths. Thus there is a path covering of G of size P (G) in which there

is a path of length 1 consisting of v. Similarly for the third case the vertices of G/Pv

are covered by at least P (G)−1 paths. On the other hand since the number of paths

in this covering is at most P (G) +P (H) − 1, the vertices of H −Pv are covered by at

most P (H) − 1 paths. Therefore there is a path covering of H of size P (H) in which

v is an end-point. We have shown that in all cases we have a contradiction with the

conditions in the original statement. Thus P (G +
v
H) = P (G) + P (H).

Using similar arguments, it is not hard to prove the other cases.
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In Proposition 4.4.5, it was shown that for trees, P (T ) = Z(T ). Also for any cycle

Cn we have P (Cn) = Z(Cn) = 2. In Corollary 4.5.4, we see that for any unicycle

graph G, P (G) = Z(G). On the other hand, any unicycle graph can be obtained by

a sequence of vertex-sums of a cycle and a number of trees. Also it was shown that

for block-cycle graphs G, P (G) = Z(G). Furthermore, any block-cycle graph can be

obtained by vertex-sums of a number of unicycle graphs. These observations along

with Theorem 5.2.1, Proposition 5.2.2 and Proposition 4.4.5 lead us to the following

conjecture:

Conjecture 5.2.3. Let G and H be two graphs with Z(G) = P (G) and Z(H) =

P (H). Then

Z(G +
v
H) = P (G+

v
H).

Note that if we can show that the conditions in the cases of Theorem 5.2.1 and

Proposition 5.2.2 coincide properly then we will prove the conjecture.

5.3 Join of graphs

Next we turn our attention to the zero forcing number of the join of two graphs

and we give a formula to obtain the zero forcing number of the join of two graphs

based on the zero forcing number of each of the initial graphs and their sizes. The

join of two graphs is their union with all the edges gh where g ∈ V (G) and h ∈ V (H).

The join of graphs G and H is denoted by G ∨H.
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Theorem 5.3.1. Let G and H be two connected graphs. Then

Z(G ∨H) = min{∣H ∣ +Z(G), ∣G∣ +Z(H)}.

Proof. Without loss of generality, assume that

min{∣H ∣ +Z(G), ∣G∣ +Z(H)} = ∣H ∣ +Z(G).

Let Z be a minimum zero forcing set for G. Clearly V (H) ∪ Z is a zero forcing set

for Z(G ∨H). Thus

Z(G ∨H) ≤ min{∣H ∣ +Z(G), ∣G∣ +Z(H)}.

We show that, in fact, it is not possible to colour G ∨H with fewer vertices. Let B

be a minimal ZFS for G ∨H. Let u → v be the first force in the chronological list

of forces. If u, v ∈ G, then V (H) ⊂ B otherwise, u can not perform any force. Also,

since all the vertices of H are adjacent to all the vertices of G, a vertex of H can only

force a vertex w of G if w is the last white vertex of G and no vertex of G forces w,

which contradicts with G being connected. Therefore, in order to colour the vertices

of G there are at least Z(G) zero forcing chains in this zero forcing process starting

with the vertices of a zero forcing set of G. Thus

Z(G ∨H) ≥ ∣H ∣ +Z(G).

If u ∈ G and v ∈H, then V (H)/{v} ⊂ B. With a similar reasoning as above, no vertex

of H forces any vertex of G. Therefore, in order to colour the vertices of G there are

78



at least Z(G) zero forcing chains in this zero forcing process starting with the vertices

of a zero forcing set of G. In addition, all neighbours of u in G are black. This implies

that B ∩V (G) cannot be a minimal zero forcing set of G. Hence ∣B ∩V (G)∣ > Z(G).

Therefore

Z(G ∨H) ≥ ∣H ∣ +Z(G).

A similar argument applies when u ∈H.

Example. K1 ∨ Ck with k ≥ 3 is a wheel on k + 1 vertices. According to Theo-

rem 5.3.1,

Z(K1 ∨Ck) = min{1 + 2, k + 1} = 3.
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Chapter 6

Positive Zero Forcing Sets

6.1 Positive zero forcing number

In this chapter we study the positive semidefinite zero forcing number which was

introduced and its connection with the maximum positive semidefinite nullity was

established in [1]. Also, we will establish some relations between the positive semidef-

inite zero forcing number and some graph parameters such as vertex connectivity and

chromatic number.

The positive semidefinite colour change rule is as follows: let G be a graph and

B be the set consisting of all the black vertices of G. Let W1, . . . ,Wk be the set of

vertices of the k components of G/B with k ≥ 1. If u ∈ B and w is the only white

neighbour of u in the graph induced by V (Wi ∪B), then change the colour of w to

black. The definitions and terminology for the positive zero forcing process, such

as, colouring, derived set, etc., are similar to those for zero forcing number, but the
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colour change rule is different.

A positive zero forcing set Zp of G, is a subset of vertices of G such that if initially

the vertices in Zp are coloured black and the remaining vertices are coloured white,

then the derived set of G is V (G). The positive zero forcing number of G, denoted

by Z+(G), is then defined to be the smallest size of a positive zero forcing set of G.

We abbreviate the term positive zero forcing set as PZFS. Note that for a non-empty

graph G,

1 ≤ Z+(G) ≤ ∣V (G)∣ − 1.

Example 6.1.1. Let G be the graph in Figure 6.1. Then, Figure 6.2 illustrates why

the set Zp = {v1, v3, v10} is a PZFS for G. It is clear that this set is not a ZFS for G.
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Figure 6.1

We easily deduce the following relationship between Z+(G) and Z(G).
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Observation 6.1.2. Since every zero forcing set is a positive zero forcing set, Z+(G) ≤

Z(G).

Next we calculate the positive zero forcing number of trees. This result has been

shown in [1].

Theorem 6.1.3. Let T be a tree. Then Z+(T ) = 1 and any vertex v ∈ V (T ) forms a

PZSF.

Proof. The proof is by induction on ∣V (T )∣. It is clearly true for ∣V (T )∣ = 1. Assume

that the statement is true for any tree with ∣V (T )∣ < n. Let T be a tree on n vertices

and let v be any vertex in T . If v is a leaf, it forces its neighbour; if not, deleting

v creates components such that v has only one white neighbour in each component.

In either case, smaller tree(s) are obtained for which the induction hypothesis is

applied.

The following theorem shows that the maximum positive semidefinite nullity of a

graph is bounded above by the positive zero forcing number of the graph [1, Theorem

3.5].

Theorem 6.1.4. For any graph G, M+(G) ≤ Z+(G).

Proof. Let A ∈ H+(G) with null(A) = M+(G). Let x = [xi] be a nonzero vector in

null(A). Define B to be the set of indices u such that xu = 0 and let W1, . . . ,Wk be

the vertex sets of the k components of G/B. We claim that in the graph induced
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by V (B ∪Wi), any vertex w ∈ Wi can not be the unique neighbour of any vertex

u ∈ B. Once the claim is established, if X is a positive semidefinite zero forcing set

for G, then the only vector in null(A) with zeros in positions indexed by X is the zero

vector, and by Proposition 4.3.1, M+(G) ≤ Z+(G). To establish the claim, renumber

the vertices so that the vertices of B are last, the vertices of W1 are first, followed by

the vertices of W2, etc. Then A has the block form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 0 . . . 0 C∗
1

0 A2 . . . 0 C∗
2

⋮ ⋮ ⋱ ⋮

0 0 . . . Ak C∗
k

C1 C2 . . . Ck D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Partition vector x as x = [x∗1, . . . ,x∗k,0]⊺, and note that all entries of xi are nonzero

with i = 1, . . . , k. Then Ax = 0 implies Ai xi = 0 with i = 1, . . . , k. Since A is positive

semidefinite, each column in C∗
i is in the span of the columns of Ai by the column

inclusion property of Hermitian positive semidefinite matrices [26]. That is, for i =

1, . . . , k, there exists Yi such that C∗
i = AiYi. Thus Ci xi = Y ∗

i Ai xi = 0, and w ∈ Wi

can not be the unique neighbour in Wi of any vertex u ∈ B. Otherwise xi would be a

length 1 vector so Ai xi = 0 implies xi = 0.

It has long been known (see [14]) that for any tree T , M+(T ) = 1, but the use

84



of the positive zero forcing number provides an easy proof of this result; indeed by

Theorem 6.1.4 M+(T ) = 1 is an immediate consequence of Z+(T ) = 1.

The following lemma shows how it is possible to replace a member of a PZFS by

a new vertex which is not in the PZSF.

Lemma 6.1.5. Let B be a PZFS for a graph G whose deletion leaves components

C1, . . . ,Ck. Then there is at least one vertex in each Ci for i = 1, . . . , k, which is the

only white neighbour in Ci of at least one vertex of B. Also, if v ∈ Ci is the only

white neighbour of u ∈ B in Ci, then B′ = (B/{u}) ∪ {v} is a PZFS for G.

Proof. There is at least one vertex in each Ci with i = 1, . . . , k, that is the only

white neighbour in Ci of some vertex of B because if there is no such a vertex in B

for a component, the derived set won’t include the vertices of the component which

contradicts the fact that B is a PZFS for G.

Assume v ∈ Ci is the only white neighbour of u ∈ B in Ci. Set B′ = (B/{u})∪{v}.

Then two cases are possible:

(a) u has no neighbour in G/B except v; in this case after deletion of B′ we get the

component {u} as an isolated vertex. Thus v forces u and the rest of the positive

zero forcing process will be the same as the positive zero forcing process initiated

by the vertices in B after forcing v.

(b) u has some other neighbours in G/B other than v. Clearly these neighbours are
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not in Ci. Let Cni
be the components with

(N(u)/ (B ∪ {v})) ⊆
k

⋃
i=1
Cni

.

Thus in the forcing process initiated by the black vertices in B′, u is the only

white neighbour of v in the component induced by V (∪k
i=1Cni

) ∪ {u}. Hence v

forces u and the rest of the positive zero forcing process will be the same as the

positive zero forcing process initiated by the vertices in B after forcing v.

6.2 Forcing trees

We start this section by defining a concept analogous to zero forcing chains. Let

G be a graph and Zp be a positive zero forcing set of G. Construct the derived set,

recording the forces in the order in which they are performed; this is the chronological

list of forces. Note that two or more vertices can perform forces at the same time by

applying the colour change rule once and a vertex can perform two or more forces at

the same time (for example see step 4 in Figure 6.2).

For any chronological list of forces, as above, a multi-forcing chain is an induced

rooted tree, Tr, formed by a sequence of sets of vertices (r,X1, . . . ,Xk), where r ∈ ZP

is the root and the vertices in Xi are at distance i from r in the tree. The vertices of

Xi for i = 1, . . . , k, are forced by applying the positive semidefinite colour change rule

to the vertices in Xi−1; so for any v ∈ Xi there is a u ∈ Xi−1, such that u forces v if

and only if v is a neighbour of u. A multi-forcing chain is also called a forcing tree.
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GraphG Figure 6.3

Also, the set of all multi-forcing chains in a positive zero forcing process is called the

set of forcing trees.

In a forcing tree, the vertices in Xi are said to be the vertices of the i-th level in

the tree. Note that the vertices in a specific level may have been forced in different

steps of the positive semidefinite colour change procedure and they may also perform

forces in different steps.

Example 6.2.1. The positive zero forcing number of graph G in Figure 6.3 is 3 and

{1,3,10} is a PZFS for the graph. The forcing trees in this colouring procedure (as

depicted in Figure 6.4) are as follows:

T1 = {1,X1,X2,X3}, where X1 = {2,6}, X2 = {5,7}, X3 = {4,8},

T3 = {3},

T10 = {10,X1}, where X1 = {9}.

We now define the tree cover number which is a very interesting and useful graph
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parameter. Given a graph G, the tree cover number, T(G), is the smallest positive

integer m such that there are m vertex-disjoint induced trees in G that cover all the

vertices of G. In Example 6.3, the trees T1, T10 and T3 form a tree covering of the

graph. Also it can be shown that the tree cover number of the graph in Example 6.3

is three. Note that any set of forcing trees corresponding to a minimal PZFS is of

size Z+(G) and covers all vertices of the graph. This implies the following.

Proposition 6.2.2. For any graph G, it holds that T(G) ≤ Z+(G).

Based on Proposition 6.2.2, the tree cover number is a lower bound for the positive

zero forcing number. This bound is clearly tight for trees. But there are graphs, such

as complete bipartite graphs, for which the discrepancy between these parameters

is relatively large. It is, hence, an interesting question to ask for which families of
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graphs the equality between these two parameters holds. One way to approach this

problem is to find graph operations which preserve the equality in graphs for which

these parameters agree.

We have the following fact for the vertex-sum of any graph with any tree.

Theorem 6.2.3. Let G be any graph and T be a tree both with a vertex labeled v

then the following equalities hold:

(a) Z+(G+
v
T ) = Z+(G);

(b) T(G+
v
T ) = T(G).

Proof. For (a) assume that B is a PZFS for G. After applying the colour change

rule with B the set of initial black vertices, all vertices in G including v get forced.

According to Theorem 6.1.3, B is therefore a PZFS for T . Thus Z+(G+
v
T ) ≤ Z+(G).

To show that the reverse inequality also holds, let B′ be a PZFS for Z+(G+
v
T ). If all

members of B′ belong to G, then we are done. Otherwise at most one of the vertices

of B′, say u, is in T . Let Tu be the forcing tree started by u and Xi be the first level of

Tu in which the vertices of G appeared. Since v is the only vertex in the intersection

set of V (G) and V (T ), Xi ∩ V (G) = {v}. Thus

Z+(G+
v
T ) ≥ Z+(G).

The statement (b) is trivial.
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6.3 Positive zero forcing number and graph operations

In this section we study the effects of the graph operations considered in Section 5.1

on the positive zero forcing number and show that it is not monotone on subgraphs.

These results are in fact analogous to what we have already shown in Section 5.1

(for the proofs, see [13, Proposition 5.3, Proposition 5.14, Proposition 5.22, Theorem

5.23]).

First, we consider vertex deletion.

Proposition 6.3.1. Let G be a graph and v be a vertex in V (G). Then

Z+(G) + deg(v) − 1 ≥ Z+(G − v) ≥ Z+(G) − 1.

Next, we consider edge deletion.

Proposition 6.3.2. Let G be a graph and e be an edge in G. Then

Z+(G) − 1 ≤ Z+(G − e) ≤ Z+(G) + 1.

Edge contraction has the following effect on the positive zero forcing number.

Proposition 6.3.3. Let e = uv be an edge in a graph G. Then

Z+(G) − 1 ≤ Z+(G/e) ≤ Z+(G) + 1.

And finally the following result is about the effect of edge subdivision on the

positive zero forcing number.
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Proposition 6.3.4. Let H be the graph obtained from G by subdividing an edge

e ∈ E(G). Then Z+(H) = Z+(G) and any positive semidefinite zero forcing set for G

is a positive semidefinite zero forcing set for H.

Because of the strong relationship between the tree cover number and the positive

zero forcing number and Proposition 6.3.4, we turn our attention to the changes of

the tree cover number of a graph after subdividing an edge.

Theorem 6.3.5. Let H be the graph obtained from G by subdividing an edge. Then

T (G) = T (H).

Proof. Assume H is obtained by subdividing the edge e = uv ∈ E(G). Hence uw and

wv are the new edges in H. Let T G be a minimal tree covering for G. If e is an edge

of one of the trees, T , in T G, then subdividing e in T produces a new tree that covers

w. Next consider when v and u are covered by two different trees, say T1 and T2

respectively. In this case by extending T1 to include the edge vw we are able to cover

w. Alternatively we could extend T2 by {u,w}. Thus T (H) ≤ T (G). To establish

the equality, suppose that T (H) < T (G). Let T H be a minimal tree covering for H.

By contracting uw we obtain a tree covering for G with the same size as T H ; this

contradicts T (G) being the tree cover number of G and this completes the proof.

Combining Proposition 6.3.4 and Theorem 6.3.5 we have the following corollary.
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Corollary 6.3.6. Let G be a graph with Z+(G) = T (G) and H be a graph obtained

from G by subdividing some edges of G. Then

Z+(H) = T (H).

Corollary 6.3.6 is a useful tool to generate more families of graphs satisfying

Z+(G) = T (G) out of graphs which satisfy this equality.

6.4 Outerplanar graphs

Recall that a graph is a partial 2-tree if it does not have a K4 minor and that

outerplanar graphs are exactly the graphs with no K4 and K2,3 minors. In [4] it is

shown that M+(G) = T (G) for any outerplanar graph. This is extended to Z+(G) =

M+(G) = T (G) for any partial 2-tree. This implies that Z+(G) =M+(G) = T (G) holds

for any outerplanar graph. It is easy to see that every outerplanar graph is a partial

2-tree. In this section we give a different proof of the fact that the positive zero forcing

number of an outerplanar simple graph agrees with its tree cover number. Moreover

we show that any minimal tree covering of an outerplanar graph, G, coincides with a

collection of forcing trees that contains exactly Z+(G) trees.

6.4.1 Double paths and trees

In this section we introduce two families of graphs: double paths and double trees.

We establish some properties for the PZFS of these graphs which we use to prove some
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important results in the next section. If the vertices of an outerplanar graph with

more than one face can be covered with two induced paths, then the graph is called

a double path. These paths are called the covering paths. Similarly, if the vertices

of an outerplanar graph with more than two faces can be covered with two induced

trees, then the graph is called a double tree. Note that the subgraph H of a double

tree G which is induced by the vertices on the boundary of the outer face of G is a

double path. Also G/H is a forest T H = {T1, T2, . . . , Tk}. In this case there is a subset

{v1, v2, . . . , vk} of V (H), such that

G = (. . . ((H +
v1
T1)+v2 T2) . . . )+vk Tk.

Since any vertex of a tree is a minimal PZFS of the tree, It is not hard to observe the

following.

Observation 6.4.1. Let G and H be as above and u be any vertex in V (Ti)/{vi}

with, 1 ≤ i ≤ k. Assume u ∈ B. Then B is a minimal PZFS of G if and only if

(B/{u}) ∪ {vi} is a minimal PZFS for G.

Now we show that for any double path starting with any vertex in one of the

covering paths there is always another vertex in the other path such that these two

vertices form a PZFS for the graph, and, using Theorem 6.1.3, the positive zero

forcing number of a double path is 2.

In the following three lemmas we assume that G is a double path with covering

paths P1 and P2. Also we focus on a specific planar embedding of G. Once we have a
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planar embedding of G we can refer to the end points of a covering path as the right

end point and the left end point.

Lemma 6.4.2. If u and v are both right (left) end points of P1 and P2, respectively,

then {u, v} is a positive zero forcing set of G.

Proof. We prove this lemma by induction on the number of vertices. This is clearly

true for C3 which is a double path with fewest number of vertices. Assume that it is

true for all graphs H with ∣V (H)∣ < n. Let G be a graph of size n. Assume that u

and v are left end points of P1 and P2, respectively. By assigning the colour black to

each of these vertices we claim that {u, v} is a PZFS of G. If u is a pendant vertex,

then it forces its only neighbour, say w, which is a left end point of a covering path

in G/u. Thus by the induction hypothesis {w, v} is a PZSF of G. Similarly if v is a

pendant vertex, using a similar reasoning, the lemma follows. If neither u nor v are

pendant then u and v are adjacent and since both are on the same side, at least one

of them, say u, is of degree two. Let w be the only neighbour of u in P1. Thus u can

force w (its only white neighbour) and again by the induction hypothesis {w, v} is a

PZSF of G. The same reasoning applies when u and v are the right end points of P1

and P2, respectively.

Lemma 6.4.3. If u and v are two vertices of P1 and P2, respectively, which form a

cut set for G, then {u, v} is a positive zero forcing set for G.
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Proof. Let W1 ⊆ V (G) and W2 ⊆ V (G) be the vertices of the left hand side and

the right hand side components of G/{u, v} respectively and let G1 and G2 be the

subgraphs induced by {u, v} ∪W1 and {u, v} ∪W2 respectively. Then according to

Lemma 6.4.2, {u, v} is a PZFS for both G1 and G2 and this completes the proof.

Lemma 6.4.4. If u is a vertex in P1 which is not an end point, then there always is

a vertex v in P2 such that {u, v} is a cut set of G.

Proof. Suppose there is a vertex u in P1 for which there is no vertex v in P2 such that

{u, v} is a cut set for G. Since G is an outerplanar graph, it has an embedding in the

plane such that all vertices are on the same face. Let v be any non pendant vertex

of P2. Obviously u is a cut vertex of P1 and v is a cut vertex of P2. Since {u, v} is

not a cut set of G, there is a vertex in the left hand side (or right hand side) of u

that is adjacent to a vertex in the right hand side (or left hand side) of v. Assume

that l is the farthest vertex from v in P2 having this property. Since l is the farthest

vertex from v with the described property and G is an outerplanar graph, {u, l} is a

cut set of G which contradicts the fact that, there is no vertex in P2 that forms a cut

set along with u for G.

Combining Lemmas 6.4.2, 6.4.3 and 6.4.4 along with the fact that in the proof

of all these three lemmas forces are performed along covering paths, we have the

following.

95



Corollary 6.4.5. Let G be a double path with covering paths P1 and P2. Then for

any vertex v in P1, there is always another vertex u in P2 such that {u, v} is a positive

zero forcing set for G. Moreover the two paths P1 and P2 are a minimal set of forcing

trees in G.

The following corollary is a consequence of Observation 6.4.1 and Corollary 6.4.5.

Corollary 6.4.6. Let G be a double tree with covering trees T1 and T2. Then for any

vertex v in T1, there is always another vertex u in T2 such that {u, v} is a positive zero

forcing set for G. Moreover {T1, T2} coincides with a minimal collection of forcing

trees in G.

6.4.2 Pendant trees

In this section we show that for any outerplanar graph there is a minimal tree

covering in which there is a pendant tree.

In a tree covering of a graph, two trees, T1 and T2, are said to be adjacent if there

is at least one edge uv ∈ E(G) such that v ∈ V (T1) and u ∈ V (T2). In Figure 6.3, T1

is adjacent to T10 and T3 but T10 and T3 are not adjacent. A tree is called pendant

if it is adjacent to only one other tree. In Example 6.3, T10 and T3 are two pendant

trees.

Let G be an outerplanar graph with a planar embedding in which all the vertices

are on the same face. Let T (G) be a minimal tree covering for G. Define HT to be
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the graph whose vertices correspond to the elements of T (G) in which two vertices

are adjacent if there is an outer edge between their corresponding trees in the graph

G. Two trees of T (G) are called consecutive, if their corresponding vertices in HT

are adjacent vertices each of degree two.

Theorem 6.4.7. Let G be an outerplanar graph and T (G) a minimum tree covering

for G. If there is no pendant tree in T (G), then there are at least two consecutive

trees in T (G).

Proof. Assume that T (G) is a minimum tree covering for G in which there is no

pendant tree. Then, two cases are possible:

Case 1. There is no tree in T (G) with at least one of the inner edges of G in its

edge set (see Figure 6.5 for an example of such a graph). Therefore HT is a cycle.

Accordingly, any adjacent pair of trees in T (G) are consecutive.

Forcing trees with no inner edge in their edge set
Figure 6.5
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T1 is a forcing tree with an inner edge in its edge set
Figure 6.6

Case 2. There is at least one tree in T (G) having at least one of the inner edges of G

in its edge set. Any inner edge e = uv ∈ E(G) partitions the plane into two parts and,

consequently, the set V (G)/{u, v} into two subsets Vu and Vv. For any inner edge

uv, let Vf be the subset of all vertices in V (G)/{u, v} which are not end-points of an

inner edge that is included in a tree of T (G). Since G is outerplanar and finite, there

exists an edge, e = uv, such that at least one of Vu or Vv is in Vf . Therefore there are

at least two consecutive trees in T (G) covering the vertices of Vf . In Figure 6.6 the

pairs T3, T4 and T5, T6 are examples of consecutive pairs of trees in T (G).

The following theorem plays a key role in the proof of the fact that outerplanar
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graphs satisfy Z+(G) = T (G).

Theorem 6.4.8. Let G be an outerplanar graph. Then there is a minimum tree

covering for G in which there is a pendant tree.

Proof. Since G is an outerplanar graph, it has an embedding in the plane such that

all of its vertices are on the same face. Assume that T (G) is a minimum tree covering

for G in which there is no pendant tree. We use Theorem 6.4.7 to construct a new

tree covering T ′(G) of T (G) with ∣ T ′(G)∣ = ∣ T (G)∣ in which there is a pendant tree.

Consider two trees T1 and T2 in T (G), which are consecutive and assume that

T1 is in the right hand side of T2. Let H be the graph induced by V (T1) ∪ V (T2)

(Figure 6.7). There are two outer edges in H that have an end-point from each of

trees T1 and T2. One of these outer edges, call it e = uv, is an inner edge in G with

u ∈ T1 and v ∈ T2. If v has any other neighbour in T1, then u has no other neighbour

in T2; otherwise there will be either two crossing edges in the planar embedding of

G or an edge beyond e; either case is a contradiction. Thus u along with all vertices

on its right hand side in T1 and all the vertices in T2 induce a new tree Ti and the

vertices in the left hand side of u in T1 induce another new tree Tk which is a subtree

of T1. Now we have a new tree covering T ′(G) for G with ∣ T ′(G)∣ = ∣ T (G)∣ in which

Tk is a pendant tree.

A similar argument applies when u has another neighbour in T2. If neither u nor

v has any other neighbour in T1 and T2, respectively, then either cases mentioned
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above are applicable.

6.4.3 Outerplanar graphs satisfy Z+(G) = T (G)

We now turn our attention to the positive zero forcing number of outerplanar

graphs and show that this parameter for any graph among this family of graphs is

equal to the tree cover number of the graph, moreover any minimal tree covering of

such a graph coincides with a minimal collection of forcing trees.

Theorem 6.4.9. Let G be an outerplanar graph. Then

Z+(G) = T(G).

Also any minimal tree covering of the graph T (G) coincides with a collection of

forcing trees with ∣ T (G)∣ = Z+(G).

Proof. We prove the claim by induction on the tree cover number and using Theo-

rem 6.4.8. It is clearly true for T(G) = 1. Assume that it is true for any outerplanar

graph G′ with T(G′) < k. Now let G be an outerplanar graph with T(G) = k. By

Proposition 6.2.2, we have Z+(G) ≥ T(G). According to Theorem 6.4.8 there is a

minimum tree covering of G, T (G), containing T1, T2, . . . , Tk in which there is a pen-

dant tree, say Tk. Let Tk−1 be the only neighbour of Tk. Let G′ = G/V (Tk) then the

induction hypothesis holds, so T (G′) = Z+(G′) = k − 1. Further, T1, T2, . . . , Tk−1 are

forcing trees in a positive zero forcing process whose initial set of black vertices, Z ′
p,
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has a vertex from each tree in T (G)/Tk. A zero forcing process in G starting with

the black vertices in Z ′
p can proceed as it does in G′ until the first vertex of Tk−1,

say x, that is adjacent to some vertex in Tk gets forced. Since the graph induced by

V (Tk−1) ∪ V (Tk) is a double tree, according to Corollary 6.4.6, the vertex x deter-

mines a vertex y in Tk such that {x, y} is a PZFS for the subgraph, W , induced by

V (Tk−1) ∪ V (Tk). Since the induction hypothesis holds for W , Tk−1 is a forcing tree

in W too. Thus the vertices of Tk−1 get forced in the same order as they get forced in

G′. Therefore we can complete colouring the graph G by adding the black vertex y to

the initial set of black vertices. Thus, Zp = Z ′
p ∪{y} is a PZFS of G with T1, T2 . . . , Tk

as the forcing trees in this positive zero forcing process. Thus, Z+(G) = T(G).

Now we need to show that the original minimal tree covering of the graph G also

coincides with a collection of forcing trees. Note that in the procedure of constructing

a pendant tree in the minimal tree covering of G, we modified two consecutive trees

T1 and T2 to obtain a pendant tree Tk in a new minimal forcing tree covering. Assume

that v ∈ T2 has a neighbour, other than u, in T1 as is shown in Figure 6.7.
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Construction of a pendant tree in an outerplanar graph

Figure 6.7

Let T1 = T ′
1 +u T

′′
1 , where T ′′

1 involves all the vertices of T1 that have some neigh-

bours in T2. Similarly, let T2 = T ′
2 +v T

′′
2 , where T ′′

2 involves all the vertices of T2 that

have some neighbours in T1. Then the tree adjacent to Tk is the tree

Tk−1 = T2 +vu T
′
1.

The tree Tk is obtained by removing u from T ′′
1 . In other words T1 = Tk +wu

T ′
1 with

w ∈ V (Tk).

Now we show that, one can change the direction of forces in this positive zero
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forcing process, so that instead of forcing along the trees Tk and Tk−1, the forces are

performed along the original trees T1 and T2; consequently, we show that the original

tree covering of the graph is in fact a set of forcing trees for the graph.

Consider the positive zero forcing process starting with the vertices of Z ′
p. Let x

be the first black vertex of Tk−1 that is adjacent to a vertex in Tk.

If x ∈ T2, then according to Corollary 6.4.6, the vertex x determines a (not nec-

essarily unique) vertex y in Tk such that Z ′
p ∪ {y} is a PZFS for G. In this case the

level of vertex v is lower than the level of vertex u in the forcing tree Tk−1. Thus v

forces u. The set {x, y} is a PZFS for the graph H = G[V (T ′′
2 ) ∪ V (T ′′

1 )] which is a

double tree. Hence by the induction hypothesis {T ′′
1 , T

′′
2 } is a set of forcing trees for

H. Thus the colouring of vertex u can be performed by vertex w instead of vertex v.

From this we have that T ′
1 +u T

′′
1 = T1 with the root y and T2 with the root x are two

forcing trees in a positive zero forcing process of G.

Next, assume that x belongs to T ′
1. In this case according to Lemma 6.4.2 and

Observation 6.4.1, the set Z ′
p ∪ {w} is a PZFS for G. Also in this case the level of

vertex u is lower than the level of vertex v in the forcing tree Tk−1. Thus u forces

v. But since u has only two white neighbours in the component G[V (Tk) ∪ V (T ′′
2 )]

which are w and v, we can replace w by v in the PZFS of G. Then u forces w and

the rest of the forces will be performed along T1 and T2. Thus T1 with the root x and

T2 with the root v are two forcing trees in a positive zero forcing process of G.
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The following is a consequence of combining Theorem 6.4.9 and Corollary 6.3.6.

Corollary 6.4.10. Any subdivision of an outerplanar graph (which may no longer

be outerplanar) satisfies

Z+(G) = T (G).

It seems that the scope of graphs satisfying Z+(G) = T (G) goes well beyond

outerplanar graphs and even 2-trees. The graph in Figure 6.8 is an example of a

graph that is not a partial 2-tree but still satisfies Z+(G) = T (G). This graph includes

a K4 as a subgraph therefore Z+(G) ≥ 3. But the set {1,2,3} is a PZFS for G. Thus

Z+(G) = 3. It is not hard to verify that the tree cover number of this graph is no

less than 3 and since the positive zero forcing number is an upper bound for the tree

cover number we have T (G) = 3 as well.
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A non-outerplanar graph with Z+(G) = T (G)

Figure 6.8

6.5 Positive zero forcing and the tree cover number

Since the positive zero forcing number and tree cover number are very nicely

related it seems reasonable to study other families of graphs satisfying Z+(G) = T (G).

In this section we try to find other graph operations that preserve the equivalency of

these parameters for the graphs in which these parameters already agree. Moreover

we will compare these parameters for k-trees.
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6.5.1 Vertex-sum of two graphs

Theorem 6.5.1. For any graphs G and H with a vertex labeled v

T (G+
v
H) = T (G) + T (H) − 1,

and

Z+(G+
v
H) = Z+(G) +Z+(H) − 1.

Proof. In order to prove the first equality let T G and T H be the minimal tree coverings

of G and H, respectively, and T1 ∈ T G and T2 ∈ T H be the trees covering v. Let

Tv = T1 +v T2. Observe that Tv is an induced tree in G+
v
H that covers v. Therefore,

((T G ∪T H) /{T1, T2}) ∪ Tv is a tree covering of G+
v
H.

Next we show, in fact, the vertices of G+
v
H can not be covered with fewer trees.

Suppose that the vertices of G+
v
H can be covered with T (G) + T (H) − 2 induced

disjoint trees. Let T be the tree that covers v in such a tree covering of G+
v
H. At

least T (G) − 1 trees are needed to cover the vertices of G/T . Since the number of

trees in the covering of G+
v
H is T (G) + T (H) − 2, the vertices of H/T are covered

by at most (T (H) − 2) trees, but this is a contradiction with the fact that T (H) is

the least number of trees that cover the vertices of H. Thus

T (G+
v
H) = T (G) + T (H) − 1.

To prove the second equality, let T G and T H be the sets of forcing trees for a minimal

PZFS in G and H respectively. Let T1 ∈ T G and T2 ∈ T H be the trees that contain
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v. Then T1 +v T2 is a forcing tree in G+
v
H covering v. Then a similar reasoning as

above applies.

Corollary 6.5.2. For any graphs G and H with a vertex labeled v if Z+(G) = T (G)

and Z+(H) = T (H), then

Z+(G+
v
H) = T (G+

v
H).

In [7], it has been shown that

M+(G+
v
H) =M+(G) +M+(H) − 1.

Therefore we have the following as another consequence of Theorem 6.5.1.

Corollary 6.5.3. Let G and H be two graphs both with a vertex labeled v. If

Z+(G) =M+(G), then

Z+(G+
v
H) =M+(G+

v
H).

6.5.2 Coalescence of graphs

In Section 6.5.1, the positive zero forcing number and the tree cover number of

the vertex-sum of two graphs were studied. This provides the motivation for verifying

the variations of these parameters in a more general way of merging two graphs.

Let H be a graph that is a subgraph of both the graphs G1 and G2, then the

coalescence of G1 and G2 on H, denoted by G1 +H G2, is obtained by the process of
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merging these graphs through the subgraph H. The coalescence of two graphs G1

and G2 on H is obtained by identifying the subgraph H in these two graphs. As an

example see Figure 6.9.u u
u u
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Coalescence of two graphs Figure 6.9

The following theorem gives a lower bound for the tree cover number of the coa-

lescence of a graph G and itself on an induced subgraph H.

Theorem 6.5.4. Let H be a subgraph of G. Then

T (G+
H
G) ≥ 2T (G) − k,
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where k is the maximum number of trees that cover the vertices of H in any minimal

tree covering of G.

Proof. Suppose that T (G+
H
G) < 2T (G)−k. Thus we can cover the vertices of G+

H
G

with ∣ T ∣ = 2T (G) − k − 1 trees. In this covering assume that the vertices of H have

been covered by m (m ≤ k) trees. To cover the vertices of G/H at least T (G) −m

trees are needed, where m ≤ k. On the other hand since the entire graph has been

covered by 2T (G) − k − 1 trees, G/H must be covered by at most T (G) − k − 1 trees,

which contradicts the definition of k and the fact that T (G) is the least number of

trees that cover the vertices of G.

Recall that the positive zero forcing number of a graph is in fact the number of

forcing trees in a minimal positive zero forcing process of G. Using similar reasoning

as in Theorem 6.5.4 we obtain the following.

Theorem 6.5.5. Let H be a subgraph of G. Then

Z+(G+
H
G) ≥ 2Z+(G) − k,

where k is the maximum number of forcing trees that cover the vertices of H in any

minimal positive zero forcing process of G.

The following is easy to prove.

Lemma 6.5.6. Let Kn be a subgraph of G. In any positive zero forcing process of

G at most two of the vertices of Kn are in the same forcing tree.
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Corollary 6.5.7. If G is a graph that contains a complete graph on n vertices as a

subgraph, then

T (G+
Kn
G) = 2T (G) − k,

where k is the maximum number of trees that cover the vertices of Kn in any minimal

tree covering of G.

Proof. To prove this, we show that, in fact, there is a tree covering of size 2T (G) − k

for G+
Kn
G. Let T be a minimal tree covering for G with ∣ T ∣ = T (G) in which k trees

cover all the vertices of Kn. Clearly, a vertex v of Kn is either covered in a tree in

T ∈ T that covers no other vertices of Kn , or only one other vertex of Kn say u is

covered in the same tree too. In the first case T +
v
T is a tree and in the second case

T +
vu
T is a tree formed by coalescencening the covering trees of T . Thus there is a

tree covering of G+
Kn
G of size 2T (G) − k.

If we replace trees in a minimal tree covering of the graph by forcing trees in a

minimal positive zero forcing process of the graph in Corollary 6.5.7 and combine this

with Lemma 6.5.6, we obtain the following corollary.

Corollary 6.5.8. If G is a graph that has Kn as a subgraph, then

Z+(G+
Kn
G) = 2Z+(G) − k,
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where k is the maximum number of forcing trees that cover the vertices of Kn in any

minimal positive zero forcing process of G.

The following is a consequence of combining Corollaries 6.5.7 and 6.5.8.

Theorem 6.5.9. If the graph G satisfies Z+(G) = T (G) and has Kn as a subgraph

and any minimal family of forcing trees coincides with a collection of forcing trees,

then

Z+(G+
Kn
G) = T (G+

Kn
G).

6.5.3 k-trees

Being motivated by the fact that all partial 2-trees (including 2-trees) satisfy

Z+(G) = T (G), in this section we try to track the variations between the positive

zero forcing number and the tree cover number in k-trees with k > 2. Our results in

this section demonstrate that 2-trees are rather special when it comes to comparing

Z+(G) and T (G). In particular, we show that these two parameters need not agree

for “k-trees” with k > 2.

A k-tree is constructed inductively by starting with Kk+1 and at each step a new

vertex is added to the graph and this vertex is adjacent to the vertices of an existing

Kk. Based on this definition we can deduce that the minimum degree of a k-tree is k

(the degree of the last vertex added). We will consider a special subfamily of k-trees

that we call a cluster.

111



Let G be a k-tree that is constructed in the following way: start with a H =Kk+1.

Add new vertices that are adjacent to a sub-clique Kk of H. Let S be the set of all

distinct subcliques Kk of H such that Kk ∪ v is a clique of size k + 1 in G for some

v ∈ V (G)/V (H). Therefore for each vertex not in H there is exactly one vertex in H

that is not adjacent to it. We call this type of k-tree a cluster. Obviously the vertices

of H form a PZFS for a cluster.

Theorem 6.5.10. Let G be a k-tree that is also a cluster.

1. If ∣S∣ ≥ 3, then Z+(G) = k + 1.

2. If ∣S∣ < 3, then Z+(G) = k.

3. If ∣S∣ = k + 1 and k is even, then T (G) = ⌈k+12 ⌉ + 1.

4. If ∣S∣ < k + 1 and k is even, then T (G) = ⌈k+12 ⌉.

Proof. Since the minimum degree of G is k by Corollary 6.6.2, Z+(G) ≥ k. Suppose

H is the first Kk+1.

To prove the first statement suppose B is a PZFS of G with ∣B∣ = k. First assume

that B ⊂ V (H). Let u and v be a black and a white vertex of H, respectively.

According to the definition of the graph G, along with the fact that ∣S∣ ≥ 3, v and u

have at least one common neighbour, say w, in V (G)/V (H). Thus u has two white

neighbours v and w in the component consisting of v and w. This is true for all vertices

of B which contradicts the fact that B is a PZFS for G. Second assume B /⊆ V (H).
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Then there is a vertex z ∈ B such that z /∈H. If z has only one white neighbour, then

z can force it and we return to the first case. If z has more white neighbours, then

no vertex of B can perform any force and again we reach a contradiction. Obviously,

the set V (H) is a PZFS for G. Thus Z+(G) = k + 1.

To verify the second statement observe that if ∣S∣ < 3, then there is at least one

vertex in V (H), call it v, that has at most one neighbour in V (G)/V (H), call it

u. Thus u along with all its neighbours except v forms a PZFS for G. If v has no

neighbour in V (G)/V (H), then any subset of size k of the vertices of H including v

is a PZFS for G.

For the third statement assume k is even and ∣S∣ = k+1. Since Kk+1 is a subgraph

of G, the tree cover number of G is no less than ⌈k+12 ⌉. Suppose that T is a minimal

tree covering for G with ∣ T ∣ = ⌈k+12 ⌉. No tree in T can contain more than two vertices

of H. Also since T (G) = ⌈k+12 ⌉ there is no more than one tree in T that covers only

one vertex of H. Each tree in T except one, say T1, contains exactly two vertices

of H and T1 contains only a single vertex of H. Since ∣S∣ = k + 1, for any vertex,

w ∈ V (H), there is a corresponding vertex in V (G)/V (H) which is adjacent to all of

the vertices of H except w. In particular, if v is the single vertex of H in the tree

T1, then there is a vertex u which is adjacent to all vertices in H except v. Since

NG(u) = V (H)/{v}, the vertex u can not be covered by extending any of the trees of

T and as u is adjacent to both vertices in any tree from T . This contradicts T being
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a minimal tree covering for G. Thus

T (G) ≥ ⌈k + 1

2
⌉ + 1.

Finally we will show that we can construct a tree covering of this size. Let T ′ be a

minimal tree covering for H. Thus ∣ T ′ ∣ = ⌈k+12 ⌉. By considering the construction of

G for any u ∈ V (G)/V (H) except one, call it v, there is a tree T in T ′ that is an

edge, say xy, such that xu ∈ E(G) and yu /∈ E(G). Hence we can extend T to cover

u. Thus T ′ ∪{v} is a tree covering of size ⌈k+12 ⌉ + 1 of G. Therefore T (G) = ⌈k+12 ⌉ + 1.

Finally for the last statement assume ∣S∣ < k + 1 and k is even. Thus there is a

vertex, v, in H that is adjacent to all of the vertices in the graph G. If we consider

a tree covering T ′ for Kk+1 in which T = {v} is a covering tree. we can extend T to

cover all the vertices of V (G)/V (H). Thus T (G) = ∣ T ′ ∣ = ⌈k+12 ⌉, which proves the

last statement.

Note that if in Theorem 6.5.10 we have k = 2, then the positive zero forcing number

and the tree cover number coincide.

Theorem 6.5.11. Let G be a k-tree for some odd k. Then T (G) = k+1
2 .

Proof. The proof is by induction on the number of vertices. It is clearly true for K4

(the smallest 3-tree). Assume that the statement is true for all G′ with ∣V (G′)∣ < n.

Let G be a k-tree with ∣V (G)∣ = n. Let v ∈ V (G) be a vertex of degree k. Thus

by the induction hypothesis T (G/v) = k+1
2 . Let T be a tree covering of G/v with
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∣ T ∣ = T (G/v). By the definition of a k-tree, the neighbours of v form a clique on k

vertices. The neighbours of v form a clique, so any tree in T covers at most two of the

neighbours of v. Since v has an odd number of neighbours, there is at least (in fact

exactly) one tree, say T , in T that covers only one of the neighbours of v. Therefore

we can extend T to cover v. Thus T (G) = k+1
2 .

The equality between the positive zero forcing number and the tree cover number

of 2-trees along with our approach in the proof of Theorem 6.5.10 and Theorem 6.5.11

leads us to the following conjecture.

Conjecture 6.5.12. If a k-tree G, has t clusters as subgraphs, each with ∣S∣ ≥ 3, such

that each pair of them share at most k − 1 cliques of size k + 1 then Z+(G) = k + t.

6.6 The positive zero forcing number and other graph pa-

rameters

This section is devoted to comparing the positive zero forcing number and other

combinatorial graph parameters such as the chromatic number and the independence

number.
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6.6.1 The positive zero forcing number and the chromatic

number

Again it seems logical to ask if there is any relationship between the positive

zero forcing number of a graph and the chromatic number of the graph since both

parameters arise from a type of graph colouring. This, along with the last question

of Section 4.7 motivates us to prove an inequality between the positive zero forcing

number and the chromatic number of a graph. According to Conjecture 4.7.4 and

inequalities (6.1.4) and (4.8), a weaker comparison can be stated as follows:

The following inequality holds for any graph G,

χ(G) ≤ Z+(G) + 1.

This section is devoted to verifying the above inequality for any graph G.

Theorem 6.6.1. Let G be a graph. Then we have

Z+(G) ≥ max{δ(H ′) ∣ H ′ is an induced subgraph of G}.

Proof. Let H be an induced subgraph of G such that

δ(H) = max{δ(H ′) ∣ H ′ is an induced subgraph of G}.

Also assume Zp is a PZFS of G of size Z+(G). Having Zp as a PZFS results in a

set of covering forcing trees T , with ∣T ∣ = Z+(G), the roots of which are the distinct

members of Zp.
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We construct a new graph G′ which is spanned by H and for which Z+(G′) ≤

Z+(G). Define G′ as follows. Fix a forcing tree T in T ; assume that l is the first level

of T having some vertices of H and let S = {v1, . . . , vk} be the set of vertices of H

appearing in level l of T . Set X ′′
T to be the subgraph of G induced by V (H) ∩ V (T ).

Add an edge between u, v ∈ V (X ′′
T ), if u is in a level in T lower than the level of v in

T and the (unique) path in T between u and v, neither contains a vertex of H nor

a vertex in a level lower than the level of u, call this new graph X ′
T . Finally define

XT to be the graph obtained from X ′
T by adding the edges connecting v1 to vi, for

i = 2, . . . , k. Then set G′ to be the subgraph of G induced by

⋃
T ∈T

XT .

Note that XT will be a rooted tree with the root v1.

We claim that T ′ = {XT ∣T ∈ T } is a set of forcing trees in G′. It is enough to show

that each force in XT is allowed in G′, for any XT ∈ T ′. First, note that v1 can force

all the vertices in S/v1 since after removing the vertices of G/H from T , the vertices

of S will be in different components. Also u ∈ V (G′) can force v ∈ V (G′) in G′ if they

are adjacent in XT and u lies in a higher level than v. To see this, let u,u1, . . . , us, v

be the only path connecting u to v in T . Since u forces u1 in T , u1 must be the only

white neighbour of u in its component. Therefore by removing the vertices u1, . . . , us

and adding the edge uv to the graph, v will be the only white neighbour of u in its
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component. Thus u forces v in XT . We, therefore, have

∣T ′∣ ≥ Z+(G′);

and since H spans G′, we have δ(G′) ≥ δ(H). Thus

Z+(G) = ∣T ∣ ≥ ∣T ′∣ ≥ Z+(G′) ≥ δ(H),

which proves the desired inequality.

Using this result we deduce the following.

Corollary 6.6.2. For any graph G we have

Z+(G) ≥ δ(G).

Note that, the bound in the above inequality is tight for some graphs such as

trees, complete graphs and even cycles.

Using Theorem 6.6.1 and Lemma 4.8.2, we can deduce the following.

Corollary 6.6.3. For any graph G we have

χ(G) ≤ Z+(G) + 1. (6.12)

Observe that Corollary 6.6.3 is stronger than Corollary 4.8.3 as

Z+(G) ≤ Z(G).

In 1943 Hadwiger proposed the following conjecture [19]:

“Every n-chromatic graph contains a Kn minor, a complete graph on n points”.
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By establishing Inequality (6.12), it seems tempting to verify Hadwiger’s conjec-

ture for Z+(G) i.e., to verify the truth of the following statement: “If Z+(G) ≥ n − 1

then G contains a Kn minor.” It turns out that this equality fails for outerplanar

graphs. According to Corollary 6.6.3 we have Z+(G) = T (G) if G is an outerplanar

graph. The tree cover number and consequently the positive zero forcing number of

an outerplanar graph, G, can be arbitrarily large while G does not contain even a K4

minor.

6.6.2 The positive zero forcing number and the independence

number

An independent set, or coclique, is a set of vertices of a graph G of which no pair

is adjacent. The independence number, which is denoted by α(G), of G is the size of

the largest independent set of G. Based on the definition of the positive zero forcing

number of a graph G it seems reasonable that it should be related to the independence

number of G. In this section we establish a lower bound and an upper bound for the

positive zero forcing number of a graph G using the independence number of G.

Lemma 6.6.4. Let G be a graph with chromatic number χ(G) and independence

number α(G). Then

χ(G) ≥ ⌈ ∣G∣
α(G)⌉ .

119



Proof. The inequality follows from the fact that in a proper colouring of G every

colour can be used at most α(G) times.

Theorem 6.6.5. Let Z+(G) and α(G) be the positive zero forcing number and the

independence number of the graph G respectively. Then,

⌈ ∣G∣
α(G)⌉ − 1 ≤ Z+(G) ≤ ∣G∣ − α(G).

Proof. The first inequality follows from combining Corollary 6.6.3 and Lemma 6.6.4.

To show the second inequality, let H be a set of vertices in G, no two of which are

adjacent with ∣H ∣ = α(G). Let L = V (G)/V (H). Then L is a positive zero forcing set

for G, since removing L from G results in having α(G) isolated vertices which can be

coloured black by the vertices in L. Thus Z+(G) ≤ ∣L∣.

Note that in Theorem 6.6.5 both upper and lower bounds can be tight. For exam-

ple the lower bound holds with equality for odd cycles and the graphs C2k+1 +v P2k′+1,

where k, k′ ≥ 1 and v is an endpoint of the path. On the other hand, complete graphs

and complete bipartite graphs are examples for which the upper bound is tight.

If Z+(G) = n − 2, then according to Theorem 6.6.5, α(G) ≤ 2. If α(G) = 1, then

G is a complete graph, hence Z+(G) = n − 1. Thus α(G) = 2. Therefore graphs with

Z+(G) = n− 2 are other examples for which the second inequality in Theorem 6.6.5 is

tight.
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Chapter 7

Conclusion

The graph parameters zero forcing number and positive zero forcing number, offer

a wide range of prospective research. It is very appealing to try to find bounds or

the exact value of the maximum nullity and minimum rank of graphs without going

through direct algebraic calculations. Therefore, discovering more families of graphs

satisfying M(G) = Z(G) or M+(G) = Z+(G), is an interesting project.

Problem 1. For which families of graphs G do we have M(G) = Z(G) or M+(G) =

Z+(G)?

In Section 4.5, we introduced families of graphs for which the zero forcing number

and the path cover number coincide. In fact, we showed that for the family of block-

cycle graphs this is true. It seems, however, that there are more families for which

the equality holds between these two parameters. For example, the graph G =K4−e,

where e is an edge of K4, has Z(G) = P (G). It is, therefore, natural to propose the
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following.

Problem 2. Characterize all the graphs G for which Z(G) = P (G).

We showed in Section 4.1 that for trees, any minimal path cover coincides with

a collection of forcing chains. It seems that this is also the case for the block-cycle

graphs. Note that, if this is true for any graph G satisfying Z(G) = P (G), then

Conjecture 5.2.3 follows from Theorem 5.2.1 and Observation 5.2.2. Hence, we state

the following.

Problem 3. Let G be a graph with Z(G) = P (G). Is it true that any minimal path

cover of G coincides with a collection of forcing chains of G?

In Section 6.2, we proved the equality Z+(G) = T (G) where G is an outerplanar

graph. The structure of a planar embedding of outerplanar graphs was the key point

to establish the equality. It looks like there are some non-outerplanar graphs whose

pattern follows the same structure. Hence an approach consisting of discovering

more graphs satisfying Z+(G) = T (G), seems promising. We, therefore, propose the

following problem.

Problem 4. Characterize all the graphs G for which Z+(G) = T (G).

In Chapter 4 we discussed the zero forcing number of the corona of graphs as well

as the join of graphs. In addition, in Chapter 6 we studied the problem of finding

the positive zero forcing number for the coalescence of graphs. Thus the problem of
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evaluating the (positive) zero forcing number for some other graph operations such

as the Cartesian product, the direct product, the strong product or the complement

of graphs may also be interesting.

Problem 5. What can we say about the (positive) zero forcing number of graph

operations such as different products and complements of graphs?

Recall from Section 4.6 that the equality M(G) = Z(G) does not hold for all

chordal graphs. On the other hand, however, we showed that for some families of

chordal graphs, the equality does indeed hold. It might be possible to describe the

conditions under which a chordal graph satisfies the equality M(G) = Z(G). We

phrase this problem as follows.

Problem 6. For which chordal graphs G does the equality M(G) = Z(G) hold?

Recall from Subsection 6.5.3 that the equality Z+(G) = T (G) holds for 2-trees

but fails to hold for general k-trees. Recall, also, that we evaluated the positive zero

forcing number and the tree cover number for some families of k-trees, namely the

clusters. We are, therefore, interested in finding the positive zero forcing number and

the tree cover number of the general k-trees. Hence solving Conjecture 6.5.12 is one

of the most interesting future works in this area.

Problem 7. If a k-tree G, has t clusters as subgraphs, each with ∣S∣ ≥ 3, such that

each pair of them share at most k − 1 clique(s) of size k + 1 then does the equality
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Z+(G) = k + t hold?

Finally, note that the parameters µ and ν discussed in Chapter 4 are of great

importance because of their minor monotonicity property. Studying Conjecture 4.7.3

and Conjecture 4.7.4 is yet another interesting direction to follow. In particular,

a follow up project could consist of investigating the Hadwiger conjecture which

is one of the deepest unsolved problems in graph theory and would directly verify

Conjecture 4.7.3 and Conjecture 4.7.4.
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Naturforsch. Ges. Zürich, 88:133–142, 1943.

127



[20] A. J. Hoffman. Eigenvalues and partitionings of the edges of a graph. Linear

Algebra and Appl., 5:137–146, 1972.

[21] Kenneth Hoffman and Ray Kunze. Linear Algebra. Second edition. Prentice-Hall

Inc., Englewood Cliffs, N.J., 1971.

[22] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University

Press, Cambridge, 1985.

[23] Liang-Yu Hsieh. On Minimum Rank Matrices Having a Prescribed Graph. Pro-

Quest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–The University of Wisconsin

- Madison.

[24] Liang-Hao Huang, Gerard J. Chang, and Hong-Gwa Yeh. On minimum rank

and zero forcing sets of a graph. Linear Algebra Appl., 432(11):2961–2973, 2010.

[25] C. R. Johnson and António Leal Duarte. The maximum multiplicity of an eigen-

value in a matrix whose graph is a tree. Linear and Multilinear Algebra, 46(1-

2):139–144, 1999.

[26] Charles R. Johnson. Olga, matrix theory and the Taussky unification problem.

Linear Algebra Appl., 280(1):39–49, 1998.

128



[27] Charles R Johnson, Raphael Loewy, and Paul Anthony Smith. The graphs for

which the maximum multiplicity of an eigenvalue is two. Linear and Multilinear

Algebra, 57(7):713–736, 2009.

[28] Thomas Kratzke, Bruce Reznick, and Douglas West. Eigensharp graphs: de-

composition into complete bipartite subgraphs. Trans. Amer. Math. Soc.,

308(2):637–653, 1988.
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