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Linearly Degenerate Hamiltonian PDEs and a New

Class of Solutions to the WDVV Associativity

Equations

B. A. Dubrovin, M. V. Pavlov, and S. A. Zykov

Abstract. We define a new class of solutions to the WDVV associativity equations.
This class is determined by the property that one of the commuting PDEs associated with
such a WDVV solution is linearly degenerate. We reduce the problem of classifying such
solutions of the WDVV equations to the particular case of the so-called algebraic Riccati
equation and, in this way, arrive at a complete classification of irreducible solutions.
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1. Introduction

The Witten–Dijkgraaf–E. Verlinde–H. Verlinde (WDVV) system of associativity equa-
tions is the overdetermined system of partial differential equations

∂3F

∂vα∂vβ∂vλ
ηλµ

∂3F

∂vµ∂vγ∂vδ
=

∂3F

∂vδ∂vβ∂vλ
ηλµ

∂3F

∂vµ∂vγ∂vα
, α, β, γ, δ = 1, . . . , n, (1.1)

Key words and phrases. Frobenius manifold, WDVV associativity equations, linearly degenerate
PDEs, algebraic Riccati equation.
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for a function F = F (v), v = (v1, . . . , vn), satisfying the conditions

∂3F

∂vα∂vβ∂v1
= ηαβ.

Here (ηαβ)1≤α,β≤n and (ηαβ)1≤α,β≤n are mutually inverse constant symmetric nonsingular
matrices, that is, ηαλη

λβ = δβα. Throughout this section summation over repeated Greek
indices will be assumed.

Recall [5] that the solutions to the WDVV associativity equations are in one-to-one
correspondence with the n-parameter families of n-dimensional commutative associative
algebras

A
v
= span(e1, . . . , en)

with a unit e = e1 equipped with a symmetric nondegenerate invariant bilinear form ( , )
such that the structure constants are expressed via the third derivatives of a function F ,
called the potential :

eα · eβ = cγαβ(v)eγ , α, β = 1, . . . , n,

e1 · eα = eα for any α,

(eα, eβ) = ηαβ,

(eα · eβ, eγ) = (eα, eβ · eγ) = ηγλc
λ
αβ(v) =

∂3F (v)

∂vα∂vβ∂vγ
.

If, in addition, the function F satisfies a certain quasi-homogeneity condition, then
one arrives at a local description of Frobenius manifolds (see details in [5]). On these
manifolds the natural metric

ds2 = ηαβ dv
α dvβ (1.2)

(not necessarily positive definite) is defined. The variables v1, . . . , vn are flat coordinates
for this metric. The algebra A

v
is identified with the tangent space to the manifold at

the point v:

eα ↔ ∂

∂vα
;

see [5] for more details about the coordinate-free geometric description of Frobenius man-
ifolds.

A solution to the associativity equations (1.1) is called semisimple if the algebra
A

v
has no nilpotent elements for a generic point v. It was proved in [4] that, in the

semisimple case, there exist local canonical coordinates ui = ui(v), i = 1, . . . , n, such that
the multiplication table takes the standard form

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
.

The metric (1.2) becomes diagonal in these canonical coordinates:

ds2 =
n∑

i=1

h2i (u) du
2
i .

Moreover, this is a Egorov metric (see [7]), which means that the rotation coefficients

γij(u) =
1

hj

∂hi
∂uj

(1.3)
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are symmetric in i and j, i.e., γji = γij. They satisfy the following system of Darboux–
Egorov equations [1]:

∂γij
∂uk

= γikγkj for distinct i, j, k, (1.4)

n∑

k=1

∂γij
∂uk

= 0 for i 6= j. (1.5)

Any solution to the Darboux–Egorov equations comes from a semisimple solution to
the WDVV associativity equations. The reconstruction procedure of the latter involves
solutions to the following system of linear differential equations for a vector-function
ψ = (ψ1(u), . . . , ψn(u)):

∂ψi

∂uj
= γijψj , i 6= j, (1.6)

n∑

k=1

∂ψ

∂uk
= 0. (1.7)

Let ψiα = ψiα(u), α = 1, . . . , n, be a system of n linearly independent solutions to
system (1.6), (1.7). The reconstruction depends on a choice of one of these solutions to
be identified with the Lamé coefficients of the invariant metric (1.2); suppose that the
chosen solution corresponds to α = 1, that is, hi = ψi1. Then

ηαβ =

n∑

i=1

ψiαψiβ ,

dvα =
n∑

i=1

ψiαψi1 dui,

∂3F

∂vα∂vβ∂vγ
=

n∑

i=1

ψiαψiβψiγ

ψi1
.

We also mention the following formula for the differentials of the second derivatives

Ωαβ =
∂2F

∂vα∂vβ
(1.8)

of the potential F :

dΩαβ =
n∑

i=1

ψiαψiβ dui. (1.9)

As shown in [3], the Darboux–Egorov system (1.4)–(1.5) can be identified with a
special reduction of the n-wave system well known in the theory of integrable PDEs and
written in the form suggested in [2]. It can also be embedded in the framework of the
nKP system (see, e.g., [10]). All known particular solutions to the associativity equations
correspond to further reductions of the n-wave system to a system of ODEs. For example,
the semisimple Frobenius manifolds are determined by the homogeneity condition on the
rotation coefficients, or the scaling reduction

n∑

k=1

uk
∂γij
∂uk

= −γij , i 6= j.
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This condition corresponds to the quasi-homogeneity axiom of the theory of Frobenius
manifolds (see [4] and [5]). Other particular classes of solutions (such as solitons, algebro-
geometric solutions, and degenerate Frobenius manifolds) also naturally arise in the frame-
work of the n-wave system.

In this paper we introduce another class of solutions to the WDVV equations. Before
describing this class, we recall the connection between the associativity equations and
integrable hierarchies. Let θ = θ(v) be a solution to the system of linear differential
equations

∂2θ

∂vα∂vβ
= cγαβ

∂2θ

∂v1∂vγ
, α, β = 1, . . . , n. (1.10)

Consider the following system of first-order quasilinear PDEs for the vector-function v =
v(x, t):

vt = [∇θ(v)]x. (1.11)

This is a Hamiltonian PDE with HamiltonianH =
∫
θ(v) dx and Poisson bracket {vα(x), vβ(y)} =

ηαβδ′(x − y) (see [6]). All Hamiltonian systems of the form (1.10), (1.11) pairwise com-
mute. Moreover, Hamiltonians (1.10) satisfy certain completeness conditions (see [11]).
Thus, any such system (1.11) can be considered as a completely integrable Hamiltonian
system of PDEs.

In the semisimple case all such PDEs diagonalize in the canonical coordinates, i.e.,

ut = Λ(u)ux, Λ(u) = diag(λ1(u), . . . , λn(u)). (1.12)

Thus, the canonical coordinates are Riemann invariants for the quasilinear systems (1.11).
For a generic solution to (1.10), the characteristic velocities are pairwise distinct, i.e.,

λi(u) 6= λj(u), i 6= j, (1.13)

at a generic point u.

Definition 1.1. A semisimple solution F (v) to the WDVV associativity equations
is called linearly degenerate if among the commuting PDEs (1.10)–(1.12) there exists at
least one satisfying (1.13) along with the condition

∂λi(u)

∂ui
= 0, i = 1, . . . , n.

The motivation for our terminology is that one of the quasilinear systems of the
commuting family (1.10)–(1.12) is linearly degenerate, i.e., the ith characteristic velocity
λi does not depend on the ith Riemann invariant ui for every i from i = 1 to i = n.

The main goal of the present paper is to classify linearly degenerate solutions to the
WDVV associativity equations. Such a solution is called reducible if, for some i, one has
γij(u) ≡ 0 for all j 6= i. Otherwise it will be called irreducible. It suffices to classify
irreducible linearly degenerate solutions.

Theorem 1.2. The rotation coefficients of an irreducible linearly degenerate solution
to the WDVV associativity equations has the form

γij(u) =
[G(1− 1

ρ
tanh ρU ·G)−1]ij

cosh ρui cosh ρuj
, i, j = 1, . . . , n, i 6= j, (1.14)

where U = diag(u1, . . . , un) and G is a symmetric matrix satisfying the condition G2 =
ρ2 · 1, in which ρ is an arbitrary complex parameter.
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For ρ = 0, the above formulas are considered in the sense of the limits

1

ρ
tanh ρU → U, cosh ρui → 1.

The paper is organized as follows. In Section 2 we recall the necessary constructions of
the theory of the WDVV associativity equations and derive the basic system of differential
equations (2.6) of the theory of linearly degenerate solutions to the WDVV equations. In
Section 3 we solve the basic system and describe its symmetry group acting by fractional
linear transformations. In Section 4 we select those solutions to the basic system that
give rise to the WDVV equations and derive the matrix algebraic Riccati equation. Using
the symmetries of this equation, we classify all irreducible linearly degenerate solutions
to the WDVV associativity equations.

Acknowledgments

The authors thank Evgenii Ferapontov and Sergei Tsarev for stimulating and clarifying
discussions.

2. Linearly Degenerate Solutions to the WDVV Associativity Equations

Let Γ = (γij(u))1≤i,j≤n be the symmetric matrix of rotation coefficients1 (1.3) of a
linearly degenerate irreducible solution to the associativity equations.

Lemma 2.1. The matrix-valued function Γ = Γ(u) satisfies the differential equations

∂Γ

∂uk
= ΓEkΓ + σk(uk)Ek, k = 1, . . . , n, (2.1)

with some functions σ1(u1), . . . , σn(un). Here Ek is a matrix with only one nonzero entry,
namely,

(Ek)ij = δikδjk. (2.2)

Proof. Proof By construction the equations

∂γij
∂uk

= γikγkj (2.3)

hold true for distinct values of the indices i, j, and k. Let us first prove that (2.3) also
holds when k = i or k = j and i 6= j or when i = j but k 6= i.

According to [4], the characteristic velocities λk(u) of the commuting PDEs (1.10)–
(1.12) can be represented in the form

λk(u) =
φk(u)

hk(u)
, k = 1, . . . , n,

where the vector-function φ = (φ1(u), . . . , φn(u)) satisfies the system of linear differential
equations

∂φi

∂uj
= γijφj, i 6= j. (2.4)

1Actually, in the differential geometry of curvilinear orthogonal coordinate systems only the off-
diagonal entries of the matrix Γ are called rotation coefficients. However, in our case it will be convenient
to add the diagonal entries γii = ∂ log hi/∂ui.
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In particular, φk = hk is one of the solutions to (2.4). Let φ be the solution to (2.4)
corresponding to a linearly degenerate member of the commuting family (1.10)–(1.12).
Differentiating the equation

∂

∂uk

(
φk

hk

)
= 0

in ui with i 6= k, we obtain the equation

hi
hk

(λi − λk) γik
∂

∂uk
[log γik − log hk] = 0.

Due to the assumptions of irreducibility and (1.13), we arrive at the equation

∂ log γik
∂uk

=
∂ log hk
∂uk

= γkk.

This proves (2.3) for the case where k = j and i 6= j. Next, assuming that k 6= i, one has

∂γii
∂uk

=
∂

∂ui

∂ log hi
∂uk

=
∂

∂ui

(
γik

hk
hi

)
= γ2ik.

Thus, Eq. (2.3) with i = j and k 6= i is also verified. The last step is to verify that the
difference σi := ∂γii/∂ui − γ2ii depends only on ui. Indeed, for k 6= i,

∂

∂uk

(
∂γii
∂ui

− γ2ii

)
=

∂

∂ui

∂γii
∂uk

− 2γiiγ
2
ik =

∂γ2ik
∂ui

− 2γiiγ
2
ik = 0. �

�

Now, let us describe a class of transformations

uk 7→ ũk, γij 7→ γ̃ij

which leave system (2.1) invariant.

Lemma 2.2. The substitution

ũk = fk(uk), k = 1, . . . , n,

γ̃ij =
γij√

f ′
i(ui)f

′
j(uj)

− f ′′
i (ui)

2[f ′
i(ui)]

2
δij, i, j = 1, . . . , n, (2.5)

with arbitrary nonconstant smooth functions f1(u1), . . . , fn(un) leaves invariant the form
of
Eqs. (2.1), which transform into

∂Γ̃

∂ũk
= Γ̃EkΓ̃ + σ̃k(ũk)Ek, k = 1, . . . , n,

with f ′
k
2σ̃k = σk − 1

2
Suk

(fk). Here Su(f) is the Schwarzian derivative of a function f =
f(u), that is,

Su(f) =
f ′′′

f ′
− 3

2

f ′′2

f ′2
.

This lemma is proved by a straightforward calculation. �
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Corollary 2.3. A suitable transformation of the form (2.5) reduces system (2.1) to
the form

∂Γ̃

∂ũk
= Γ̃EkΓ̃, k = 1, . . . , n. (2.6)

Proof. Proof The needed transformation ũk = fk(uk) is determined from the Schwarzian
equations

Suk
(fk) = 2σk(uk), k = 1, . . . , n. �

�

Recall that the solution to the general Schwarzian equation Su(f(u)) = 2σ(u) can be
represented as the ratio of two solutions to the linear second-order equation

y′′ + σ(u)y = 0.

Remark 2.4. System (2.6) was studied in [8] in the investigation of the so-called multi-
flow cold gas reductions of the nonlocal kinetic equation derived as the thermodynamical
limit of the averaged multi-phase solutions of the KdV equation by the Whitham method.

In the next section we shall solve system (2.6).

3. Basic System

In this section we shall describe solutions to the basic system

∂Γ

∂uk
= ΓEkΓ, k = 1, . . . , n. (3.1)

Here

Γ = (γij(u))1≤i,j≤n

is a symmetric matrix (the tildes used in the previous section are omitted). The compat-
ibility conditions

∂

∂ul

∂Γ

∂uk
=

∂

∂uk

∂Γ

∂ul
for any k and l can be readily verified. So, locally, any solution to (3.1) is uniquely
determined by the initial data

Γ0 = Γ(u0).

Here u0 is any point in the space of independent variables. Therefore, the space of
solutions to the system (3.1) has dimension n(n + 1)/2.

Without loss of generality, one can assume that u0 = 0. The solution to system (3.1)
with given initial data at the point u = 0 can be written explicitly.

Proposition 3.1. The solution Γ = Γ(u) to the basic system (3.1) with initial data

Γ(0) = G,

where G = (gij) is a given symmetric matrix, is determined by the formula

Γ = G(1− UG)−1, (3.2)

where 1 is the n× n identity matrix and U = diag(u1, . . . , un).



8 B. A. DUBROVIN, M. V. PAVLOV, AND S. A. ZYKOV

Proof. Proof The symmetry of the matrix (3.2) is tantamount to the relation

G(1− UG)−1 = (1−GU)−1G.

To prove this relation, we multiply it by 1−GU on the left and by 1−UG on the right and
arrive at the obvious identity (1 −GU)G = G(1− UG) = G−GUG. Clearly, Γ(0) = G.
The proof of the proposition is completed by applying the well-known rule

∂Γ

∂uk
= −G(1 − UG)−1∂(1 − UG)

∂uk
(1− UG)−1 = G(1− UG)−1EkG(1− UG)−1 = ΓEkΓ

for differentiating inverse matrices. � �

Example 3.2. For a matrix gij = ωiωj of rank 1, one obtains the following solution
to the basic system:

γij =
ωiωj

1−∑n
k=1 ω

2
kuk

. (3.3)

Now, let us describe a subclass of transformations (2.5) leaving invariant the basic
system (3.1).

Proposition 3.3. The basic system (3.1) is invariant with respect to transformations
(2.5) if and only if fk(uk) for every k = 1, . . . , n is a fractional linear transformation

fk(uk) =
akuk + bk
ckuk + dk

, akdk − bkck = 1.

Proof. Proof It is well known that the general solution to the homogeneous Schwarzian
equation

f ′′′

f ′
− 3

2

f ′′2

f ′2
= 0

is given by a fractional linear function. � �

Corollary 3.4. The basic system (3.1) is invariant with respect to the transforma-
tions

ũk =
akuk + bk
ckuk + dk

,

(
ak bk
ck dk

)
∈ SL2(R), k = 1, . . . , n,

γ̃ij = (ciui + di)(cjuj + dj)γij + ci(ciui + di)δij , i, j = 1, . . . , n.

(3.4)

The matrix version of transformation (3.4) is

Ũ = (AU +B)(CU +D)−1, Γ̃ = (CU +D)Γ(CU +D) + C(CU +D), (3.5)

where A = diag(a1, . . . , an), B = diag(b1, . . . , bn), C = diag(c1, . . . , cn),D = diag(d1, . . . , dn),
and AD −BC = 1.

Example 3.5. The substitution

ũk = ω2
kuk, γ̃ij =

γij
ωiωj

reduces solution (3.3) to the standard form

γ̃ij =
1

1−
∑n

k=1 ũk
, i, j = 1, . . . , n.

The action of the [SL2(R)]
n transformations (3.4) on solutions (3.2) is given by the

following analogue of Siegel modular transformations.
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Proposition 3.6. Let the symmetric matrix G satisfy the condition det(A+BG) 6= 0.
Then transformation (3.4) transforms the solution Γ(u) with initial data Γ(0) = G into

Γ̃ = G̃(1− ŨG̃)−1

with

G̃ = (C +DG)(A+BG)−1. (3.6)

Proof. Proof An easy calculation employing (3.5) yields

Γ̃ = (−CŨ + A)−1G[A +BG− Ũ(C +DG)]−1 + C(−CŨ + A)−1.

Computing the initial data of this solution at ũ = 0, we arrive at Γ̃(0) = G̃ with the
matrix G̃ given by (3.6). � �

Definition 3.7. Two solutions Γ and Γ̃ to the basic system are called equivalent if
they are related by a symmetry transformation of the form (3.5). Two symmetric matrices

G and G̃ related by transformation (3.6) will also be called equivalent.

Note that the useful identity

(C +DG)(A+BG)−1 = (A+GB)−1(C +GD) (3.7)

is equivalent to the symmetry of the matrix G.

4. From Solutions of the Basic System to Linearly Degenerate Solutions of

the Associativity Equations

In this section we address the problem of selecting those solutions to the basic system
(3.1) that come from a linearly degenerate solution to the associativity equations.

Given a symmetric matrix-valued function Γ(u) satisfying (3.1), we look for a substi-

tution of the form (2.5) such that the transformed matrix Γ̃ satisfies also the last equation
(1.5) of the Darboux–Egorov system, that is,

n∑

k=1

∂Γ̃

∂ũk
is a diagonal matrix. (4.1)

Recall that the equations

∂γ̃ij
∂ũk

= γ̃ikγ̃kj for distinct i, j, and k,

which are the first part of this system (Eqs. (1.4)), follow from the basic system by Lemma
2.2.

Applying Lemma 2.2, we arrive at the following simple statement.

Proposition 4.1. Let Γ(u) be a solution to the basic system (3.1). Suppose that the
functions f1(u1), . . . , fn(un) are chosen in such a way that the transformed matrix (2.5)

satisfies (4.1). Then the off-diagonal entries of the transformed matrix Γ̃ are the rotation
coefficients of some Egorov metric.
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We introduce the diagonal matrices

S = diag(s1, . . . , sn), si =
1

f ′
i

, (4.2)

S ′ = diag(s′1, . . . , s
′
n), s′i =

dsi
dui

= − f ′′
i

[f ′
i ]
2
. (4.3)

Here and in the sequel we use the short notation

f ′
i = f ′

i(ui), f ′′
i = f ′′

i (ui), etc.

In this notation the transformation law (2.5) reads

Γ̃ = S1/2ΓS1/2 + 1
2
S ′.

Thus, condition (4.1) can be represented in the form

ΓSΓ + 1
2
S ′Γ + 1

2
ΓS ′ + P = 0 (4.4)

for some diagonal matrix P .

Definition 4.2. A solution Γ is called reducible if, for some i,

γij ≡ 0 for any j 6= i.

Otherwise it is called irreducible.

A reducible solution is expressed in terms of functions depending on a smaller number
of variables.

Theorem 4.3. For an irreducible solution

Γ = G(1− UG)−1 = (1−GU)−1G,

a transformation of the form (2.5) satisfying (4.1) exists if and only if the matrix G
satisfies the quadratic equation

GRG+QG+GQ+ P = 0 (4.5)

for some constant diagonal matrices

P = diag(p1, . . . , pn), Q = diag(q1, . . . , qn), R = diag(r1, . . . , rn).

The transformation in question is determined by

dũi
dui

=
1

piu
2
i + 2qiui + ri

, i = 1, . . . , n.

Proof. Proof Differentiating (4.4) in ui and using (3.1) and the obvious formulas

∂S

∂ui
= s′iEi,

∂S ′

∂ui
= s′′iEi,

etc., one obtains (
1

2
s′′i − pi

)
(ΓEi + EiΓ) +

∂P

∂ui
= 0. (4.6)

All entries of the matrix ΓEi +EiΓ vanish, except the ith row and the ith column, which
coincide with (γ1i, . . . , γni). Due to the irreducibility assumption, it follows from (4.6)
that

pi =
1

2
s′′i . (4.7)
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Substituting this into (4.6) yields
∂P

∂ui
= 0.

Repeating this procedure for every i = 1, . . . , n, one proves that the matrix P is constant.
Using (4.7), we conclude that si = si(ui) is a quadratic polynomial, i.e., si = piu

2
i +2qiui+

ri. Finally, multiplying Eq. (4.4) by 1 − GU on the left and by 1 − UG on the right, we
arrive at the quadratic equation (4.5). � �

Definition 4.4. A symmetric matrix G is called admissible if it satisfies the matrix
quadratic equation (4.5). A solution of the form Γ = G(1− UG)−1 is called admissible if
the parameter matrix G is admissible.

The matrix quadratic equation (4.5) for the symmetric matrix G is a particular case
of the so-called algebraic Riccati equation (see, e.g., [9]). The class of such equations is
invariant with respect to fractional linear transformations, as the following lemma shows.

Lemma 4.5. If a symmetric matrix G satisfies the matrix quadratic equation

GRG+QG+GQ+ P = 0

with some diagonal matrices P , Q, and R, then the equivalent matrix G̃ = (C+DG)(A+
BG)−1 satisfies an equation of the same form

G̃R̃G̃+ Q̃G̃+ G̃Q̃+ P̃ = 0

with
P̃ = D2P − 2CDQ+ C2R,

Q̃ = −BDP + (AD +BC)Q− ACR,

R̃ = B2P − 2ABQ + A2R.

(4.8)

The proof of this lemma is straightforward and uses identity (3.7). �

Corollary 4.6. The class of admissible solutions to the basic system (3.1) is invari-
ant with respect to the [SL2]

n action (3.5).

The entries ∆1, . . . ,∆n of the diagonal matrix

∆ = Q2 − PR (4.9)

are invariants of the [SL2]
n action (4.8).

The next step is to parameterize linearly degenerate solutions to the associativity
equations by solutions to the algebraic Riccati equation (4.5) with prescribed coefficients
satisfying the condition

|pi|2 + |qi|2 + |ri|2 6= 0, i = 1, . . . , n.

Let us first simplify the matrix quadratic equation by means of transformations (4.8).

Lemma 4.7. (1) For an irreducible admissible matrix G, the matrix quadratic equation
(4.5) is equivalent, up to transformations (4.8), to

G2 = ∆, (4.10)

where ∆ is given by (4.9).
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(2) For an admissible irreducible G, the matrix ∆ is proportional to the identity matrix,
i.e.,

∆1 = · · · = ∆n =: ρ2.

Proof. Proof If all entries of the matrix R are different from zero, then Eq. (4.5) can
be reduced to the canonical form (4.10) by a transformation of the form

G 7→ AGA +B

with suitable diagonal matrices A and B. This is a particular class of transformation (4.8).
If ri = 0 for some i, then one can assume that pi 6= 0. Let us apply the fractional linear
transformation of the form (3.6) with A = 1 − Ei, B = −Ei, C = Ei, and D = 1 − Ei,

that is, G 7→ G̃ = [G + Ei(1 − G)][1 − Ei(1 + G)]−1, where the matrix Ei is of the form
(2.2). Such a transformation is applicable only if the matrix 1−Ei(1+G) is nonsingular.
It is easy to see that the determinant of this matrix is equal to ±gii = γii(0). If gii = 0 but
the solution is irreducible, then one can perform a shift u 7→ u + u0 to obtain a matrix
G′ = Γ(u0) with g′ii 6= 0. After the transformation, one obtains r̃i = pi 6= 0.

To prove the second part of the lemma, it suffices to observe that any eigenvector f of
the matrix G with eigenvalue λ is an eigenvector of G2 with eigenvalue λ2. So, if ei and ej
are the ith and jth basic vectors and ∆i 6= ∆j, then these vectors belong, respectively, to
the sums of root subspaces R(

√
∆i)⊕R(−

√
∆i) and R(

√
∆j)⊕R(−

√
∆j) of the matrix

G. Such root subspaces of symmetric matrices are orthogonal; hence the matrix G must
have block-diagonal form in the same basis. � �

The main Theorem 1.2 readily follows from the above considerations.
Recall that the reconstruction of the solution to the associativity equations with given

rotation coefficients (1.14) depends on the choice of a solution to the linear system (1.6),
(1.7). Below we apply this procedure to produce examples of linearly degenerate WDVV
solutions. It is convenient to separately consider the cases ρ 6= 0 and ρ = 0.

Case 1. The eigenvalues of a symmetric matrix G satisfying G2 = ρ2 · 1 are equal to
±ρ. Let k denote the number of eigenvalues equal to −ρ. We consider the case k = 1 in

more detail. It is more convenient to deal with the matrix G̃ = G− ρ · 1, which satisfies
the equation G̃2+2ρG̃ = 0. In the case k = 1, this matrix can be represented in the form

G̃ = (ωiωj),
n∑

i=1

ω2
i = −2ρ.

To this matrix there corresponds a family of solutions of the form (3.3). The substitution
ũk = − log[ω2

k(uk − u0k)], k = 1, . . . , n, with arbitrary constants u0k satisfying
∑n

k=1 u
0
k = 0

yields the following rotation coefficients satisfying the Darboux–Egorov equations:

γ̃ij =
e−(ũi+ũj)/2

∑n
k=1 e

−ũk
, i 6= j.

In the sequel, we omit the tildes. System (1.6)–(1.7) can be easily solved:

ψii =
2e−ui

D
− 1, ψij =

2e−(ui+uj)/2

D
, i 6= j, where D =

n∑

k=1

e−uk .
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The calculation of the quadratures (1.9) gives the following expression for the matrix Ω
of the second derivatives of the potential (see (1.8)):

Ωij = uiδij +
4e−(ui+uj)/2

D
. (4.11)

Flat coordinates are obtained by choosing a linear combination of the columns of this
matrix. The choice of the first column yields the Egorov metric

ds2 =

(
1− 4

e−u1

D

)
du21 + 4

n∑

i=1

e−u1−ui

D2
du2i

with the flat coordinates

v1 = u1 +
4e−u1

D
, vi =

4e−(u1+ui)/2

D
for i 6= 1.

Solving these equations for the canonical coordinates ui, we obtain

u1 = v1 −
√
4− σ − 2, ui = v1 −

√
4− σ − 2 + 2 log

2 +
√
4− σ

vi
for i 6= 1

with σ =
∑n

k=2 v
2
k, and integrating quadratures (4.11), we arrive at the following expres-

sion for the potential being the corresponding linearly degenerate solution to the WDVV
associativity equations:

F =
1

6
v31 +

1

2
v1σ −

n∑

k=2

v2k log vk −
1

3
(2 + σ)

√
4− σ + σ log(2 +

√
4− σ). (4.12)

One can also obtain an explicit realization of the integrable hierarchy associated, in
the sense of [4], with (4.12). Recall that the hierarchy is an infinite family of commuting
flows labeled by pairs (α, p), α = 1, . . . , n, p = 0, 1, 2, . . . . The flows have the form

∂vγ

∂tα,p
= ∂x(∇γθα,p+1(v)).

The generating functions

θα(v, z) =

∞∑

p=0

θα,p(v)z
p

of θα,p(v) (deformed flat coordinates) can be found in quadratures; we have

dθα(v, z) =

n∑

i=1

hiΨi αdui, α = 1, . . . , n,

where the Ψiα(v, z), α = 1, . . . , n, form a basis for the “wave functions” determined by
the system

∂Ψi

∂uj
= γijΨj, i 6= j,

n∑

k=1

∂Ψi

∂uk
= zΨi.
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The basis Ψiα can be conveniently orthonormalized by the conditions

n∑

α=1

Ψiα(v,−z)Ψjα(v, z) = δij .

In our case the normalized wave functions have the form

Ψiα =
2ez uα

√
1− 4z2

[(
z − 1

2

)
δiα +

e−
ui+uα

2

D

]
.

This gives

θα =
1√

1− 4z2

{[
1

z
(ezu1 − 1)− ezu1(u1 + 2) + 2

]
δα1 + vαe

zuα

}
, α = 1, . . . , n.

Case 2. Now, consider the second type of solutions, namely, those parametrized by
symmetric matrices G satisfying G2 = 0. In this case, one again obtains a solution to the
WDVV equations which satisfies the quasihomogeneity condition.

All eigenvalues of G are equal to 0. All Jordan blocks are of order 1 or 2. Consider
the simplest case of only one block of order 2. The entries of the matrix G = (gij) can be
written in the form

gij = ωiωj,

n∑

i=1

ω2
i = 0.

The corresponding solution to the WDVV system can be obtained from the trivial (i.e.,
cubic) solution

F (v) =
1

6

∑

i,j,k

cijkv
ivjvk

by applying the inversion symmetry described in [5] (see Appendix B and Proposition
3.14 in [5]). Here the cijk are the structure constants of the semisimple Frobenius algebra

A = span(e1, . . . , en), 〈ei · ej, ek〉 = cijk, 〈ei, ej〉 = δi+j,n+1

with a unit e1 and trivial grading deg ei = 0 for all i. Recall that the structure constants
can be represented in the form

cijk =

n∑

s=1

asiasjask
as1

,

where the matrix (aij) satisfies the condition

n∑

s=1

asiasj = δi+j,n+1.

For our construction, we can choose the matrix in such a way that

ai1 = ωi, i = 1, . . . , n.
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After the substitution of

v̂1 =
1

2

vαv
α

vn
,

v̂α =
vα

vn
, α 6= 1, n,

v̂n = − 1

vn

one obtains the needed solution F̂ to the WDVV equations in the form

F̂ (v̂) =
1

2
v̂1v̂αv̂

α + (v̂n)2F (v) =
1

2
(v̂1)2v̂n +

1

2

n−1∑

α=2

v̂1v̂αv̂n−α+1 +
P (v̂2, . . . , v̂n−1)

v̂n
. (4.13)

Here2 P (v̂2, . . . , v̂n−1) is a certain polynomial of degree 4. The potential F̂ satisfies the
quasihomogeneity condition

ÊF̂ = F̂ , Ê = v̂1
∂

∂v̂1
− v̂n

∂

∂v̂n
.
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