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On Cox-Kemperman moment inequalities for independent centered random
variables

P.S.Ruzankin'!

Abstract

In 1983 Cox and Kemperman proved that Ef(§) + Ef(n) < Ef(£+ n) for all functions f, such that f(0) = 0 and the
second derivative f”(y) is convex, and all independent centered random variables £ and 7 satisfying certain moment
restrictions. We show that the minimal moment restrictions are sufficient for the inequality to be valid, and write out
a less restrictive condition on f for the inequality to hold.

Besides, Cox and Kemperman (1983) found out the optimal constants A, and B, for the inequalities A,(E|[¢|” +
En|*) <E|§ +n|? < B,(E|{|” + E|n|”), where p > 1, { and 7 are independent centered random variables. We write
out similar sharp inequalities for symmetric random variables.

Keywords:  Cox-Kemperman inequalities, moment inequalities, centered random variable, symmetric random
variable, two-point distribution.

1. Introduction and formulation of the results

Cox and Kemperman have proved the following theorem:
Theorem A [Cox and Kemperman, 1983].
Let random variables & and n be such that

E(¢ln) =0, Em§) =0 as. (1)

Then, for each p > 1, the following inequalities hold:

2°72(E|¢|” + E[n]”) < E[¢ +1|” < (01;135 U(p, z)) (EEI”+E[n”) ifl1<p<2, (2)
<o‘<n,3‘<11 v, Z)) (E[¢]” + En]?) <E[E+n|° <2°72(E[()” + E[n|*) f2<p<3, (3)
E[(|” + Eln|* <E|+n? <22 *(E|E)P +Enl’)  ifp>3 (4)

whenever E|£]P < oo and E|n|? < oo, where
G(p,2) =207z + 2P 4 (1= 2)7) /(L +2) (1 + 277,

All the estimates in [2) — {@l) for E|£ +n|° are sharp in the sense that, for each inequality, there exist distributions
of € and m, such that £ # 0 and the inequality turns into equality for independent & and n with these distributions.

This theorem does not consider the case 0 < p < 1 because in the case the sharp inequalities are trivial ones:
0 < E[§ +n|” <E[§|” + E[n|*.

Besides, Cox and Kemperman (1983) noted that, for i.i.d. £ and 5 having a symmetric two-point distribution,

El¢ +n|° = 2°"2(El¢|” + E[n|?) for all p > 0. (5)
It is also known (e.g. see Rosenthal (1972)) that, for symmetric independent random variables £ and 7,
E[(]” + Eln|” <E[{ +n|” ifp>2 (6)

when E|{]? < oo and E|n]? < cc.
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Besides of estimates for expectations of power functions, there have been obtained certain inequalities for expec-
tations for some other classes of functions.

Theorem B [Cox and Kemperman, 1983|. Let a function f on the real line be such that f(0) <0 and the second
derwative f"(y) exists for all y and is convex. Let random variables & and n satisfy condition [l) and be such that

E[f' (O] < oo, E|f'(n)] < oc. (7)

Then
Ef(§)+Ef(n) <Ef({+n).

Note that by Theorem E below condition (7)) can be omitted for independent £ and 7.

Appendix A below contains a simple proof of this theorem proposed by Borisov. (The proof is valid under certain
moment restrictions which can also be omitted for independent £ and n by Theorem E.)

Note that the function f(y) = |y|? satisfies the conditions of this theorem only if p = 2 or p > 3.

Utev has obtained the following corresponding result:

Theorem C [Utev, 1985]. Let a function f on the real line have f"(y) for all y. Then the following three conditions
are equivalent

1). f" is convex.

2). For all independent symmetric random variables & and n and for all y, the inequality

Ef(y+& +Ef(y+n) < fly) +Ef(y+&§+n)

holds whenever these expectations ezist.
3). For all independent bounded random variables & and 1, such that EE = En =0, and for all y, the inequality

Ef(y+& +Ef(y+n) < fly) +Ef(y+&§+n)

holds.

In fact, Utev formulated and proved this theorem for Hilbert space - valued random variables. However such spaces
will not be discussed in the present paper.

Note that the restriction that the random variables £ and 7 in condition 3) be bounded can be omitted by Theorem E
below.

Another class of functions is considered in the following statement.

Theorem D [Figiel, Hitczenko, Johnson, Schechtman, and Zinn, 1997]. Let a function f, f(0) < 0, be even and
such that the function y +— f(\/]y]) is conver. Then

Ef(¢) +Ef(n) <Ef(§{+n)

for all random wvariables & and n, such that the conditional distribution of n under the condition & = x is symmetric
for all x.

Note that the function |y|” satisfies conditions of this theorem only if p > 2.

We will call a function f on the real line twice differentiable if f'(y) exists for all y, f”(y) exists for almost all
(with respect to the Lebesgue measure) y, and, for all a < b, f'(b) — f'(a) = f; "(y)dy.

Theorem 1. Let a function f be twice differentiable, f(0) <0, and the function f"(t) + f"”(—t) be nondecreasing
fort>0.

Then, for all independent symmetric random variables € and 7,

Ef(§) +Ef(n) <Ef(§+n)

whenever the expectations exist.
A useful corollary of the theorem is the following one.
Corollary 1. For independent symmetric random variables & and n, the following inequalities are valid:

2°"%(El¢]” + Elnl”) < ElE+ 0" <E[Ef +Epl*  f0<p<2, (8)

E[¢]” + Eln|’ <E[¢+nl” < 27(B¢] + Eln|*)  if p>2 9)

when E|¢]P < 0o and E|n|P < co. The four estimates for E|{ + n|? are sharp in the sense that, for each inequality,
there exist distributions of & and n, such that £ # 0 and the inequality turns into equality for these distributions.



Note that @) and @) for p = 1 follow directly from Theorem A and relations (B) and (@l). Besides, the left
inequality in @) for 1 < p < 2 follows directly from Theorem A and relation (&l).

Note also that the right inequality in (8) for 0 < p <1 is trivial because |a+ 3|? < |a|? + |8]? for any real numbers
aand B,0< p<1.

Theorem 2. Let a function f be twice differentiable and such that f(0) <0 and

F'(=a) + f"(B) = " (—a+v) + f(B—7), (10)

forany a >0, 5>0,0 <~ <a-+ 3 such that " is defined at the points —a, 3, —a+~ and B — 7.
Then, for all independent centered random variables £ and 7,

Ef(§) +Ef(n) <Ef(§+n)

whenever the expectations exist.

Note that if f” is convex then it satisfies the condition ([I0]). But the class of functions subject to condition (ITI)
is wider than the class of functions with convex second derivative.

For instance, if f”(y) = |h(y)], where h(y) is nonnegative and convex, h(0) = 0, then f(y) satisfies condition (0.
|| denotes integer part of a number.

As another example, we can take f/(y) = —y if y < 1, f’(y) = ly] — (y — |y]) if y > 1. Such f(y) also satisfies
(@a.

Remark. In Theorem 2, if £ + 1 € [— B, C] a.s. then it is sufficient to require that the function f satisfy condition
(@) only for «, g lying in (—B,C).

In Theorem 1, if £ + 7 < C a.s. then it is sufficient to require that f”(¢) + f”(—t) be nondecreasing for 0 < ¢t < C.

The proof of Theorem 1 is based on the fact that any symmetric distribution can be “decomposed” into a mixture
of symmetric distributions (e.g. see Figiel, Hitczenko et al. (1997)). As for Theorem 2, any centered distribution can
be “decomposed” into a mixture of two-point centered distributions (e.g. see Pinelis (2009) and references therein).
So one can prove the corresponding inequalities for two-point distributions only:

Theorem E. Let a function g of m + n arguments, m > 0 and n > 0, be such that

Eg(é.la "'5§m57717 77777.) Z 0

for all independent random wvariables & and m;, where each of the random variables £; has a centered two-point
distribution or equals zero, and each of n; has a symmetric two-point distribution or equals zero.

Then, for all independent random variables &1, ...,&m, N1, ..., M, where the random variables ; are centered and n;
are symmetric, the following inequality is valid:

Eg(é.la "'5§m57717 77777.) Z 0

whenever the expectation exists.

2. Proofs

2.1. Proof of Theorem E

For the sake of convenience we give here the proof of Theorem E, but for the case m = 2, n = 0 only. The case of
arbitrary m and n can be considered analogously.

Denote € = &1, n = &. If £ and n have centered two-point distributions, £ takes values —a,b and 7 takes values
—c, d then

P(€=—a)=b/(a+b), P€=b)=a/(a+b), P(y=—c)=d/(ct+d), P=d) =c/(c+d).

Thus we have

1

Ef(fﬂ?):m

(bd f(—a,—c) +be f(—a,d) + ad f (b, —c) + ac f(b,d)) >0 (11)

for all a,b,c,d > 0.
Now let £ and n have arbitrary centered distributions such that P(£ #0) = P(n # 0) = 1. Put

p=P(E>0), Fe(u)=PE<u)—(1-p), Ge(u)=P(=§<u)-p.



Put also

s(y) = / ng—”(u)du, t(z) = / ’ GV (u)du,

0 0

where Fg(_l)(u) :=sup{x : Fe(x) < u} is the quantile transformation of F¢,
Then s(y) and t(z) are (strictly) increasing continuous functions on [0, p] and [0,1 — p], respectively, and

(p) = Emax{0, €} = Emax{0, ¢} = £(1 — p).
Put
2(y) =t (s())-
We have t(z(y)) = s(y), hence dt(z(y)) = ds(y) which can be rewritten as
GV () dzly) = V) dy.
For a function h,

P 1-p
Eh(g):/o h(ESV () dy+/0 h( -G () da.

Substituting = z(y) into the last integral yields

P (=1
Eh(€) :/0 (h(FE(1)(y))+h(—Gél)(z(y))FE7(y)))> dy. (12)

Let us introduce the same notations for n. Put
¢g=P(n>0), Fl)=Ph<u)-(1-9q), Gt)=P(=n<u)—qg
and let w(v) be defined by the relations
w(0) =0, Gy Y(w(v)dw(v) = F{ (v)dv.

Using the above notations we can write

Eg(¢,n) = /Oq /Opdf(y,v)dy dv,

where
(-1) (—1) (—1) (—1) Fy Y (v)
Y(y,v) 5:9(Fg (), F, (U))+9(Fg (), -G, (w(v)))?+
Gy (w(v))
F ) FV0)  FSY)

9(= GV W), By ) +9( - GEV (), —GL ) (w(w)))

GV ) G Ew) G5 ()

and ¥ (y,v) > 0 by relation (II)).
We have proved the statement of the theorem for the case P(§ # 0) = P(n # 0) = 1. The case P(§¢ =0) > 0 or
P(n =0) > 0 can be easily dealt with using mixtures of zero and nonzero distributions.

2.2. Proof of Theorem 2

Without loss of generality we can assume f(0) = 0.

By Theorem E it is sufficient to prove the statement of Theorem 2 for all £ and n with centered two-point
distributions.

Take € € {—a,b}, n € {—c,d}, where a,b,¢c,d > 0. We have

Bf(€-+1) = B(€) = Bf(n) = o pdlabeud),
where
o(r, s,t,u) su —r—t)— f(-r)— f(—t))
st

r

£)
vt (Fs+u) = £(s) = f(w).

+ 4+
<



Note that ¢(r,s,t,u) =0if r=0o0r s =0 or t = 0 or u = 0. Moreover,

84 7" 7 1 ”
(s ) = (= ) (s w) = [ () = s — 1) 2 0

for positive r, s, t, u by condition (I0Q).

Therefore
/ / / / 8T858t8u 7“ 5,1 U) drdsdtdu =

Z )Sgnr+sgns+sgnt+sgnu¢(T7 S? t’ u) ¢(a7 b) C7 d)?
re{o,a},se{o,b},te{o,c},ue{o,d}

where sgnr = 0 if » =0 and sgnr =1 if » > 0. Thus
¢(a7 b’ C7 d) Z 07
and hence the theorem is proved.

2.8. Proof of Theorem 1

The proof is analogous to that of Theorem 2.

Without loss of generality we can assume f(0) = 0.

By Theorem E it is sufficient to prove the statement of Theorem 1 for all £ and n with symmetric two-point
distributions.

Take € € {—a,a}, n € {—b,b}, where a,b > 0. We have

B (¢ +n) ~ B (§) - Bf() = 16(a.b)
where
8 8) = (F(=7 =) = f(=1) = F(=8)) + (f(=r +5) = f(=r) = {(5))
H(F = 1) = F) = F-9)) + (74 5) = £() = £(5)):

Further,
2

o= 0(r,5) = £'(—1 =) & "+ 5) = (o1 +5) — (= 5) 2 0

for positive r, s because f”(t) + f”/(—t) is nondecreasing for positive t.
Thus

b a 2
0
0< [ [ grsolrs)drds = oa,) = 0(a.0) = 6(0.8) + 6(0.0) = o(a. )
o Jo Oros
Therefore ¢(a,b) > 0, and hence the theorem is proved.

2.4. Proof of Corollary 1
In the case 1 < p < 2 the function f(y) = —|y|? satisfies the conditions of Theorem 1. Hence, (8) is valid for
I<p<2
It remains to show that the left inequality in (&) holds for 0 < p < 1. By Theorem E it suffices to show that, for
any ¢ and b, 0 < a < b,
é(a,b) = (a+b)” + (b—a)’ —2°"1a? — 20710 > 0.

We have ¢(a,b) = a”h(z), where z = b/a,
h(z) = (14 2)" + (2= 1) =207t —2p7 1P,

Thus h(z) > 0 for z > 1 because h(1) = 0, h'(z) > 0 for z > 1.
Hence, () is valid for 0 < p < 1.
The corollary is proved.



Appendix A. A simple proof of Theorem B

1.S. Borisov in an oral conversation has proposed the following proof of Theorem B. We have
1
fle+m) = FO + F@n+rt [ (1= 2f "€+ )
Now let us consider the expectation of the last integral. By convexity of f”,

E <772/0 (1= 2)f"(€+ 2n)dz 77) > 772/0 (1 =2)f"(zn)dz = f(n) = £(0) — f'(0)n.

Thus
Ef(§+n) > Ef(€) +Ef(n) +Ef (n—Ef'(0)n.

The restriction of this proof is that all the needed moments, such as En?f”(¢ + 2n) for 0 < z < 1, must exist.
For, roughly speaking, “regular” functions f(y) growing not faster than eclvl| ¢ = const, the existence of the moments
follows from the monotonicity of the functions f”(y), f'(y), f(y) for sufficiently large y and for sufficiently large —y.

As was noted above, for independent £ and 7, these moment restrictions can be omitted by virtue of Theorem E.
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