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DERIVED ALGEBRAIC GEOMETRY

BERTRAND TOEN

ABSTRACT. This text is a survey of derived algebraic geometry. It covers a

variety of general notions and results from the subject with a view on the
recent developments at the interface with deformation quantization.
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INTRODUCTION

Derived algebraic geometry is an extension of algebraic geometry whose main
purpose is to propose a setting to treat geometrically special situations (typically
bad intersections, quotients by bad actions,...), as opposed to generic situations
(transversal intersections, quotients by free and proper actions,...). In order to
present the main flavor of the subject we will start this introduction by focussing
on an emblematic situation in the context of algebraic geometry, or in geometry in
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general: basic intersection theory. The setting is here a smooth ambient algebraic
variety X (e.g., X = C") and two algebraic smooth subvarieties ¥ and Z in X,
defined by some system of algebraic equations. The problem is to understand, in
a refined and meaningful manner, the intersection Y N Z of the two subvarieties
inside X. The nice, generic situation happens when they meet transversally in
X, i.e., when the tangent spaces of Y and Z generate the whole tangent space
of X. In this case their intersection is itself a subvariety which possesses all the
expected properties. For example, its codimension is the sum of the codimensions
of the two subvarieties. Pathologies appear precisely when the intersection ceases to
be transversal, so that Y and Z may meet with higher order multiplicities or their
intersection may have some the components that are not of the expected dimension.
In such cases, the naive intersection in X fails to represent the correct intersection.

The geometric treatment of these special situations is classically based on coho-
mological methods, for which the correct intersection is obtained as a cohomology
class on X (e.g., an element in de Rham cohomology, in complex cobordism, in
algebraic K-theory or in the intersection ring, possibly with a support condition).
In this approach the two varieties Y and Z must first be slightly deformed in X, in
order to obtain a generic situation for which the intersection of the deformed subva-
rieties becomes nice. This cohomological approach has shown itself to be extremely
powerful, particularly when concerned with questions of a numerical nature (as is
typical in enumerative geometry). However, its main drawback is that the intersec-
tion Y N Z is exhibited as a cohomology class, thus depriving it of any geometric
content.

Derived algebraic geometry offers a setting in which the intersection Y N Z is
realized as a derived scheme,, an object that encompasses the cohomological and
numerical aspects of the intersection, but at the same time remains of a geometric
nature. This derived intersection is obtained by a certain homotopical perturbation
of the naive intersection Y N Z, which now comes equipped with an additional
structure, called the derived structure, that reflects the different possible pathologies
such as the existence of multiplicities and defect of expected dimension. Intuitively,
the derived intersection consists of triples (y, z, &), where y is a point in Y, z a point
in Z, and « is a infinitesimally small continuous path on X going from y to z. The
third component, the path «, is here the new feature, and is responsible for the
derived structure existing on the naive intersection Y N Z, which itself sits inside
the derived intersection as the locus where « is constant. It is however difficult
to provide a precise mathematical meaning of the expression infinitesimally small
continuous path on X, without having to delve deep into the technical details of
the definition of a derived scheme (see definitions 2.1 and 2.5). Indeed, the path «
above is of higher categorical nature, and consists of a homotopy (or equivalently
a 2-morphism) in the co-category of derived schemes that will be introduced in
our paragraph §2.2 after we have reviewed the basics of oco-category theory. We
therefore kindly ask to the reader to use his or her imagination, and to believe that
these concepts can be mathematically incarnated in a meaningful manner which will
be discussed later on in the main body of this paper. It turns out that this point
of view on the specific problem of intersecting two subvarieties is very general, and
can also be applied to deal with other instances of special situations encountered
in algebraic geometry, or in geometry in general.
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Another important example we would like to mention is the problem of consid-
ering the quotient X/G of a nonfree action of an algebraic group G on a variety X.
In the same way that we have perturbed the naive intersection by introducing a
small path « as explained above, we can introduce a refined quotient by requiring
that for z € X and g € G, the points  and gz are not necessarily equal in X/G,
but are homotopic, or equivalently linked by a path. Taking the quotient of X by
G in this new sense consists of formally adding a path between each pair of points
(z, gx). The result is a well-known and already well-identified object: the guotient
stack of X by G (see [Laum-More, 2.4.2]), or equivalently the quotient groupoid
(see [Laum-More, 2.4.3]).

This important idea to replace an intersection Y N Z, which amounts of points
(y,z) with y = z, by the triples (y, z,«) as above, or to treat a quotient X/G as
explained before, is not new and belongs to a much more general stream of ideas
often referred as homotopical mathematics (whose foundations could be said to be
the homotopy theory of type developed by Voevodsky and al., see [TUFP]). Very
briefly, the expression homotopical mathematics reflects a shift of paradigm in which
the relation of equality relation is weakened to that of homotopy!. Derived algebraic
geometry is precisely what happens to algebraic geometry when it is considered from
the point of view of homotopical mathematics. The purpose of this survey is on the
one hand to explain how these ideas have be realized mathematically, and on the
other to try to convince the reader that derived algebraic geometry brings a new
and interesting point of view on several aspects and questions of algebraic geometry.

The mathematical foundations of derived algebraic geometry are relatively re-
cent. They date mostly from the first decade of this century and appear in a series
of works: [Toén-Vezzl], [Toén-Vezz2], [Toén-Vezz3|, [Luri3], [Toén2], [Lurid]. It is
built on seminal work and important ideas in algebraic geometry, algebraic topology
and mathematical physics, some of which goes back to the early 1950’s (see §1 for
a selection of these pieces of history). Derived algebraic geometry developed very
fast during the last decade, due to the works of various authors. Today the subject
possesses a very solid foundation and has a rather large spectrum of interactions
with other mathematical domains, ranging from moduli spaces in algebraic geome-
try to aspects of arithmetic geometry and number theory, not to mention geometric
representation theory and mathematical physics. Let us single out recent progress
in some of these areas, made possible by derived algebraic geometry.

(1) Geometric Langlands. The geometric version of the Langlands corre-
spondence, as introduced by Beilinson and Drinfeld (see [Beil-Drin]), pre-
dicts the existence of an equivalence between two derived categories at-
tached to a given smooth and proper complex curve C' and a reductive
group G. On the one hand, we have the moduli space (it is really a stack,
see [Laum-More]) Bung(C) of principal G-bundles on C, and the corre-
sponding derived category of D-modules D(Dpyng(x)). On the other hand,
if GV denotes the Langlands dual of G, we have the moduli space (again a
stack) Locgv (C) of principal GY-bundles on C' endowed with flat connec-
tions, as well as its quasi-coherent derived category D gcon(Locav (C)). The
geometric Langlands correspondence essentially predicts the existence of an
equivalence of categories between D con(Locgv (C)) and D(Dpyng(x)) (see

It is is very similar to the shift of paradigm that has appeared with the introduction of
category theory, for which being equal has been replaced by being naturally isomorphic.
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[Gait2]). Derived algebraic geometry interacts with the subject at various
places. First of all, the moduli space Locgv(C') naturally comes equipped
with a nontrivial derived structure, concentrated around the points cor-
responding to flat GV-bundles with many automorphisms. This derived
structure must be taken into account for the expected equivalence to exist,
as it modifies nontrivially the derived category Dgycon(Locgv (C')) (see for
instance [Toén2, §4.4(5)]). Moreover, the statement that the two above de-
rived categories are equivalent is only a rough approximation of the correct
version of the geometric Langlands correspondence, in which the notion
of singular supports of bounded coherent complexes on Locgv (C) must be
introduced, a notion that is of a derived nature (see [Arin-Gait]).
Topological modular forms. The notion of topological modular forms
lies at the interface between stable homotopy theory, algebraic geometry
and number theory (see [Hopk]). It has been observed that the formal de-
formation space of an elliptic curve E gives rise to a generalized cohomology
theory ellg, or equivalently a ring spectrum, called elliptic cohomology as-
sociated to E. The spectrum of topological modular forms itself appears
by an integration over the whole moduli space of elliptic curves of the spec-
tra ellg. The integration process has been considered as a very technical
question for a long time, and has first been solved by deformation theory
(see [Goer] for more about the subject). More recently, a completely new
approach, based on derived algebraic geometry (or more precisely its topo-
logical analogue, spectral geometry, see §3.4) has been proposed in [Luri5],
in which the various spectra ellg are interpreted of the natural structure
sheaf of a certain spectral scheme (or rather stack) of elliptic curves. This
approach not only provided a natural and functorial point of view on el-
liptic cohomology, but also had important impact (e.g., the existence of
equivariant version of elliptic cohomology, and later on the construction of
the topological automorphic forms in [Behr-Laws]).

Deformation quantization. In [Pant-Toén-Vaqu-Vezz|, the authors have
started developing a derived version of symplectic geometry motivated by
the search of natural quantizations of moduli spaces such as Donaldson-
Thomas moduli of sheaves on higher dimensional Calabi-Yau varieties. This
is the first step of derived Poisson geometry and opens up a new field of
investigations related to a far reaching generalization of deformation quan-
tization (see [Toén6]). This research direction will be partially presented in
this manuscript (see §5). In a similar direction derived symplectic geome-
try has been used to construct and investigate quantum field theories (see
[Grad-Gwil, Cost]). In these works, derived algebraic geometry is essential.
Many of the moduli spaces involved here are extremely singular (e.g., prin-
cipal G-bundles on a Calabi-Yau 3-fold), and it is only when we consider
them as derived schemes (or derived stacks) that we can notice the very
rich geometric structures (such as a symplectic or a Poisson structure) that
they carry.

(4) p-adic Hodge theory. Finally, Bhatt (see [Bhatl, Bhat2]), building on

Beilinson’s groundbreaking new proof of Fontaine’s Cqr conjecture ([Beil]),
has given strikingly short new proofs of the generalized Fontaine-Jannsen
Cst and Cgpys, relating the algebraic de Rham cohomology of algebraic
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varieties over p-adic local fields and their étale p-adic cohomology. This
work used in an essential manner the properties of the derived de Rham
cohomology, which computes the de Rham cohomology in the setting of
derived algebraic geometry (see our §4.4 and §5.1), and its relation with
crystalline cohomology.

This survey of derived algebraic geometry will, besides giving the basic defini-
tions and concepts of the theory, also touch on recent developments with a particular
focus on the interactions with symplectic/Poisson geometry and deformation quan-
tization. Our approach is to present as far as possible mathematical facts, without
insisting too much on formal aspects, matters of definition, or technical issues. For
instance, no proofs will be given or even sketched. This text is therefore aimed
at readers interested in having a first look at derived algebraic geometry, but also
at readers familiar with the basics of the subject who wish to have an overview
that includes the most recent developments. In any case, the reader is assumed to
have familiarity of algebraic geometry, homological algebra, as well as basic model
category theory (as briefly recalled in §2.1.1).

The text is organized in 5 sections. In Section 1, I have gathered some historical
facts concerning the various ideas that led to derived algebraic geometry. Its con-
tent does not pretend to be exhaustive, and also reflects some personal taste and
interpretation. I have tried however to cover a large variety of mathematical ideas
that, I think, have influenced the modern development of the subject. This first
section is of course independent of the sequel and can be skipped by the reader if
he or she wishes (the mathematical content truly starts in §2.1), but I have the
feeling that it can explain at the same time the motivation for derived algebraic
geometry as well as some of the notions and the definitions that will be presented
in subsequent sections. In a way, it can serve as an expanded introduction to the
present paper.

Section 2 is devoted to introducing the language of derived algebraic geometry,
namely higher category theory, and to present the notion of derived schemes. The
section starts with a first paragraph on model category theory and oo-category
theory, by presenting all the basic definitions and facts that will be used all along
this paper. I have tried to present the strict minimum needed for the subject, and
a priori no knowledge of higher category theory is required for this. The second
paragraph contains the first mathematical definition of derived schemes as well
as some basic properties. More properties, such as base change, virtual classes,
tangent complexes, ..., are given in Section 3. This is again not exhaustive and
I have tried to focus on characteristic properties of derived schemes (i.e., what
makes them better behaved than ordinary schemes). In the next two paragraphs
I introduce the functorial point of view: derived schemes are then considered as
certain oco-functors from the oco-category of simplicial rings. This leads to more
examples such as the derived Hilbert schemes of the derived scheme of characters,
and also leads to the notion of derived Artin stacks, which is necessary in order
to represent most of the moduli problems appearing in derived algebraic geometry.
Finally, in the last paragraph I have presented a short overview of derived algebraic
geometry in other contexts, such as derived analytic geometry, spectral geometry,
and the like.

The purpose of Section 4 is to present the formal geometry of derived schemes and
derived stacks. It starts with a paragraph on cotangent complexes and obstruction
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theory. The second paragraph concerns what I call formal descent, which is a purely
derived phenomenon inspired by some previous work in stable homotopy theory,
and which explains how formal completions appear by taking certain quotients by
derived groupoids. The third paragraph presents the so-called tangent dg-lie algebra
of a derived scheme or more generally a derived stack, which is a global counterpart
of formal geometry centered around a closed point. The last paragraph focuses on
the notion of derived loop schemes and derived loop stacks, which are algebraic
analogues of the free loop spaces studied in string topology. We also explain how
these derived loop spaces are related to differential forms and de Rham theory.

Section 5 presents symplectic and Poisson structures in the derived setting. It
starts by a discussion of the notion of differential forms and closed differential forms
on derived schemes and on derived stacks. In the next paragraph shifted symplec-
tic and Lagrangian structures are introduced, together with some basic examples
coming from classifying stacks and Lagrangian intersection theory. I have also pre-
sented the relations with some classical notions such as symplectic reduction and
quasi-Hamiltonian actions. Paragraph 3 presents the existence results of symplectic
and Lagrangian structures, as well as some generalizations. The last paragraph of
this section contains the notion of polyvectors, Poisson structures and their quan-
tizations in the derived setting. This is work still in progress and is presented here
as it offers several open questions for future research.

Acknowledgements. I am very grateful to B. Keller for bringing to me the idea
to write a survey on derived algebraic geometry, and for his enthusiastic support.
I would also like to thank D. Calaque, B. Hennion, T. Pantev, M. Robalo and
G. Vezzosi for numerous conversations that have helped me during the writing of
this paper.

Finally, I am also thankful to the referee for his or her suggestions and comments
on an earlier version of this manuscript.

1. SELECTED PIECES OF HISTORY

In this part we try to trace back a brief, and thus incomplete, history of the
mathematical ideas that have led to the modern developments of derived algebraic
geometry and more precisely to the notion of derived Artin stacks. Not only be-
cause we think that this might be of some general interest, but also because derived
algebraic geometry as we will describe later in this work is a synthesis of all these
mathematical ideas. As we will see the subject has been influenced by ideas from
various origins, such as intersection theory in algebraic geometry, deformation the-
ory, abstract homotopy theory, moduli and stacks theory, stable homotopy theory,
and so on. Derived algebraic geometry incorporates all these origins, and there-
fore possesses different facets and can be comprehended from different angles. We
think that knowledge of some of the key ideas that we describe below can help to
understand the subject from a philosophical as well as from technical point of view.

The content of the next few pages obviously represents a personal taste and
pretends by no means to be exhaustive or very objective (though I have tried to
refer to available references as much as possible). I apologize for any omission and
misinterpretation that this might cause.
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The Serre intersection formula. Serre’s intersection formula [Serr] is commonly con-
sidered to be the origin of derived algebraic geometry. It is probably more accurate
to consider it as the beginning of the prehistory of derived algebraic geometry and
to regard the later work of Grothendieck, Illusie and Quillen (see below) as the
starting point of the subject.

The famous formula in question expresses an intersection multiplicity in the al-
gebraic setting. For two irreducible algebraic subsets Y and Z inside a smooth
algebraic variety X, the multiplicity i(X,Y.Z, W) is a number expressing the num-
ber of time that of Y and Z meet along a fixed irreducible component W of Y N Z.
For us, the important property is that it is equal to one when Y and Z are smooth
and meet transversely in X. For a nontransverse intersection things become more
complicated. Under a special condition called Tor-independence, the intersection
number (X, Y.Z, W) can be recovered from the schematic intersection Y N Z: it is
the generic length of the structure sheaf along the component W

i(X,Y.Z,W) = lengthoy  (Ov,w ®ox w Oz,w),

where Ox w is the local ring of functions on X defined near W, similarly Oy w

(resp. Oz w) is the local ring of functions on Y (resp. on Z) defined near W.
The Serre intersection formula explains that in general the above formula should

be corrected by higher order homological invariants in a rather spectacular way:

(X, Y.ZW) = (-1)lengthoy ,, (Tory > (Oy.w, Ozw)).

1
One possible manner to understand this formula is that the schematic intersection
of Y and Z inside X is not enough to understand the number i(X,Y.Z, W), and
that the correcting terms TOT?X’W(OY’W, Ozw) should be introduced. From the
point of view of derived algebraic geometry the presence of the correcting terms
tells us that for understanding intersection numbers, the notion of a scheme is
not fine enough. In generic situations, for instance under the assumption that Y
and W are smooth and meet transversely inside X, the leading term equals the
multiplicity (X, Y.Z, W) and the higher terms vanish. The intersection formula is
therefore particularly useful in nongeneric situations for which the intersection of
Y and Z has a pathology along W, the worst pathology being the case Y = Z.
As we shall see, the main objective of derived algebraic geometry is to precisely
understand nongeneric situations and bad intersections. The intersection formula
of Serre is obviously a first step in this direction: the schematic intersection num-
ber lengthoy (Tor(?x’w (Oy,w,Ozw)) is corrected by the introduction of higher
terms of homological nature.

In modern terms, the formula can be interpreted by saying that i(X,Y.Z, W)
can be identified with the generic length of Y N Z (along W) considered as a
derived scheme as opposed as merely a scheme, as this will be justified later on
(see §2.2). However, in the setting of the Serre intersection formula the object
Torf? *(Oy,w, Oz w) is simply considered as a module over Ox v, and the whole
formula is of linear nature and only involves homological algebra. Derived algebraic
geometry truly starts when Torf) X’W(OY’W,OZ’W) is endowed with its natural
multiplicative structure and is at the very least considered as a graded algebra. In
a way, the intersection formula of Serre could be qualified as a statement belonging
to proto-derived algebraic geometry: it contains some of the main ideas of the
subject but is not derived algebraic geometry yet.
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The cotangent complex. In my opinion the true origin of derived algebraic geometry
can be found in the combined works of several authors, around questions related to
deformation theory of rings and schemes. On the algebraic side, André and Quillen
introduced a homology theory for commutative rings, now called André-Quillen
homology ([Andr, Quill]), which already had incarnations in some special cases in
the work of Harrison ([Harr]), and Lichtenbaum-Schlessinger ([Lich-Schl]). On the
algebro-geometric side, Grothendieck ([Grotl])) and later Illusie ([Illu]) globalized
the definition of André and Quillen and introduced the cotangent complex of a
morphism between schemes. These works were motivated by the study of the
deformation theory of commutative rings and more generally, of schemes. The
leading principle is that affine smooth schemes have a very simple deformation
theory: they are rigid (do not have nontrivial formal deformations), and their group
of infinitesimal automorphisms is determined by global algebraic vector fields. The
deformation theory of a general scheme should then be understood by performing
an approximation by smooth affine schemes. Algebraically, this approximation can
be realized by simplicial resolving of commutative algebras by smooth algebras,
which is a multiplicative analogue of resolving, in the sense of homological algebra,
a module by projective modules. For a commutative algebra A (say over some base
field k), we can choose a smooth algebra Ay and a surjective morphism Ag — A,
for instance by choosing Ay to be a polynomial algebra. We can furthermore find
another smooth algebra A; and two algebra maps A; = Ay in a way that A
becomes the coequalizer of the above diagram of commutative k-algebras. This
process can be continued further and provides a simplicial object A, made out of
smooth and commutative k-algebras A,,, together with an augmentation A4, — A.
This augmentation map is a resolution in the sense that if we consider the total
complex associated to the simplicial object A, we find that the induced morphism
Tot(A,) — A induces isomorphisms in cohomology. The deformation theory of A is
then understood by considering the deformation theory of the simplicial diagram of
smooth algebras A,, for which we know that each individual algebra A,, possesses a
very simple deformation theory. For this, the key construction is the total complex
associated with the simplicial modules of Kéhler differentials

La :=Tot(n+— QY ).

Up to a quasi-isomorphism this complex can be realized as a complex of A-modules
and is shown to be independent of the choice of the simplicial resolution A, of A.
The object IL 4 is the cotangent complex of the k-algebra A, and is shown to control
the deformation theory of A: there is a bijective correspondence between infinites-
imal deformations of A as a commutative k-algebra and Extl(La, A). Moreover,
the obstruction to extend an infinitesimal deformation of A to an order three de-
formation (i.e., to pass from a family over k[z]/z? to a family over k[z]/x3) lies
in Ext?(Ly, A). André and Quillen also gave a formula for the higher extension
groups Ext’(L s, M) by using the notion of derivations in the setting of simplicial
commutative algebras.

The algebraic construction of the cotangent complex has been globalised for
general schemes by Grothendieck ([Grot1]) and Illusie ([Illu]). The idea here is that
the above construction involving simplicial resolutions can be made at the sheaf
level and is then applied to the structure sheaf Ox of a scheme X. To put things
differently: a general scheme is approximated in two steps, first by covering it by
affine schemes and then by resolving the commutative algebras corresponding to
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these affine schemes. The important issue of how these local constructions are glued
together is dealt with by the use of standard simplicial resolutions involving infinite
dimensional polynomial algebras. For a scheme X (say over the base field k), the
result of the standard resolution is a sheaf of simplicial commutative k-algebras A,
together with an augmentation A, — Ox having the property that over any open
affine U = Spec A C X, the corresponding simplicial algebra A, (U) is a resolution
of A by polynomial k-algebras (possibly with an infinite number of generators).
Taking the total complex of Kéhler differentials yields a complex of Ox-modules
Lx, called the cotangent complex of the scheme X. As in the case of commutative
algebras, it is shown that Ly controls deformations of the scheme X. For instance,
first order deformations of X are in bijective correspondence with Exzt!(Lyx,Ox),
which is a far reaching generalization of the Kodaira-Spencer identification of the
first order deformations of a smooth projective complex manifolds with H'(X, Tx)
(see [Koda-Spen]). In a similar fashion the second extension group Ext?(Ly,Ox)
receives obstructions to extend first order deformations of X to higher order formal
deformations.

I tend to consider the introduction of André-Quillen cohomology as well as cotan-
gent complexes of schemes as the origin of derived algebraic geometry. Indeed, the
natural structure behind this construction is that of a pair (X, .A,), where X is the
underlying topological (Zariski) space of a scheme and A, is a sheaf of simplicial
commutative algebras together with an augmentation A, — Ox. Moreover, this
augmentation is a resolution in the sense that the induced morphism of complexes
of sheaves Tot(A,) — Ox induces and isomorphism on cohomology sheaves. This
makes the pair (X, A.) a derived scheme in the sense of definition 2.1 (see also 2.5).
Here the derived scheme (X, .A,) is equivalent to a scheme, namely (X, Ox) itself,
which reflects the fact that A, is a resolution of Ox. But if we drop the resolution
condition and simply ask for an isomorphism H®(Tot(A.)) ~ Ox, then we find the
general definition of a derived scheme. With this weaker condition, the cohomology
sheaves H'(Tot(A.)) might not vanish for i # 0: they tell us how far the derived
scheme (X, A,) is from being equivalent to a scheme. Without trying to be very
precise, we note here that in the context of Serre’s intersection formula above, the
derived scheme obtained by intersecting Y and Z in X has the scheme intersection
Y N Z as its underlying scheme. The sheaf of simplicial commutative algebras A,
will then be such that the module TOT’Z»OX’W (Oy,w,Ozw)) is the stalk of the sheaf
H~%(Tot(A,)) over the generic point of W.

In a way André-Quillen went further than Grothendieck-Illusie in the direction
of what derived algebraic geometry is today, in the sense that they did consider in
an essential way simplicial commutative algebras A, that might not be resolutions
of algebras, and thus can have nontrivial cohomology H*(Tot(A,)). This is a
major difference with the work of Grothendieck and Illusie in which all the spaces
endowed with a sheaf of simplicial commutative rings considered are resolutions of
actual schemes. In the context of André-Quillen homology the general simplicial
rings appear in the important formula (see [Quill]):

BExti(La, M) ~ [A, A® MIi]].

Here A is a commutative ring, L4 its cotangent complex, M any A-module and
A & M]Ji] the simplicial algebra that is the trivial square zero extension of A by
the Eilenberg-MacLane space K(M,i) (H *(Tot(A @ M[i])) = M). The bracket
on the right hand side stands for the set of maps in the homotopy category of
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simplicial algebras over A. This universal property of the cotangent complex of A
does not appear in the works [Grotl] and [Illu], even though the question of the
interpretation of the cotangent complex is spelled out in [Grotl, p. 4].

To finish this brief review of work on cotangent complexes and simplicial res-
olutions of commutative rings, we mention that there is at least one other text
in which ideas along the same line appear: a letter from Grothendieck to Serre
([Grot-Serr]) and the manuscript pursuing stacks ([Grot2]). In [Grot-Serr, p. 110]
Grothendieck suggests a construction of higher Jacobians of an algebraic variety.
A first construction is proposed when the variety is smooth, and is based on re-
sults in local cohomology. For a singular variety Grothendieck suggests to use
a simplicial resolution by smooth algebras and to apply the construction in the
smooth case degreewise. This is of course very much in the style of the definition
of the cotangent complex that was conceived years later. Finally, in [Grot2, p. 554]
(end of item 132) Grothendieck mentions the question of representing complexes of
projective k-modules geometrically: when the complex is in the “right quadrant”
(according to Grothendieck’s own terms), the answer is a linear higher stack (see
§3.3). However, in the “wrong quadrant” case, i.e., for complex concentrated in
negative cohomological degrees Grothendieck asks the question as to what type of
structure that could represent such complexes: the answer is of course a derived
scheme §3.3).

Derived deformation theory (DDT). As mentioned above, the introduction of cotan-
gent complexes have been mainly motivated by the deformation theory of algebras
and schemes. The interactions between deformation theory and derived techniques
have had a new impulse with a famous letter of Drinfeld to Schechtman [Drin].
This letter is now recorded as the origin of what is known as the derived deforma-
tion theory (DDT for short), and contains many of the key ideas and notions of
derived algebraic geometry at the formal level. It has influenced a lot of work on
the subject, as for instance [Hini, Mane|, culminating with the work of Lurie on
formal moduli problems [Luril]. The main principle of derived deformation theory
stipulates that any reasonable deformation theory problem (in characteristic zero)
is associated to a differential graded Lie algebra (dg-lie algebra for short).

A typical example illuminating this principle is the deformation theory of a pro-
jective complex manifold X. The corresponding dg-lie algebra is here C* (X, Tx),
the cochain complex of cohomology of X with coefficients in its holomorphic tan-
gent sheaf, turned into a dg-lie algebra using the Lie bracket of vector fields. The
space H!(X,Tx) can be identified with the first order deformation space of X.
The space H?(X,Tx) is an obstruction space, for a given first order deformation
n € HY(X, Tx) the element [, n] € H?(X, Tx) vanishes if and only if the first order
deformation of X corresponding to 1 extends to a higher order deformation. More
is true, formal deformations of X can all be represented by the so-called solutions
to the Mauer-Cartan equation: families of elements x;, for ¢ > 1, all of degree 1 in
C* (X, Tx) satisfying the equation

d(z) + 3[z,2] =0,

where z = Y, z;.t' is the formal power series (thus the equation above is in
C*(X,Tx) ® k[[t]]).

This principle of derived deformation theory was probably already in the air at
the time of the letter [Drin], as dg-lie algebras were used already around the same
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time to describe formal completions of moduli spaces (see [Schl-Stas, Gold-Mill])
whose authors also refer to a letter of Deligne. However, the precise relation between
the formal deformation theory and the dg-lie algebra was not clearly explained
at that time. For instance, various non quasi-isomorphic dg-lie algebras could
describe the same formal deformation problem (there are famous examples with
Quot schemes?). It seems to me that one of the most important points of the letter
of Drinfeld [Drin] is to spell out clearly this relation: a formal deformation problem
is often defined as a functor on (augmented) artinian algebras (see [Schl]), and in
order to get a canonical dg-lie algebra associated to a formal deformation problem
we need to extend this to functors defined on artinian dg-algebras. This is a highly
nontrivial conceptual step, which has had a very important impact on the subject.

To a dg-lie algebra g we can associate a functor F, g defined on artinian algebras,
by sending such an algebra A to the set of elements x of degree 1 in g® A satisfying
the Mauer-Cartan equation d(x) + %[x,;v] = 0. The main observation made in
[Drin] is that this functor extends naturally to a new functor Fy now defined on
all artinian dg-algebras (here these are the commutative dg-algebras A with finite
total dimension over k), by using the very same formula: Fj(A) consists of elements
z of degree 1 in g ® A such that d(z) + [z, z] = 0. Moreover, Drinfeld introduces
the Chevalley complex C*(g) of the dg-lie algebra g, which is by definition the pro-
artinian dg-algebra Symm—l]) endowed with a total differential combining the
cohomological differential of g and its lie structure. This pro-artinian dg-algebra
pro-represents the functor Fy, and thus is thought of as the ring of formal functions
on the hypothetical formal moduli space associated to functor Fy. These ideas has
been formalized and developed by many authors after Drinfeld, as for instance in
[Hini, Mane]. The ultimate theorem subsuming these works is proven in [Luril] and
states that the construction g — Fy can be promoted to an equivalence between
the category of dg-lie algebras up to quasi-isomorphism, and a certain category
of functors from augmented artinian commutative dg-algebras to the category of
simplicial sets, again up to weak equivalences.

We should add a comment here, concerning the relation between the functor Fg
restricted to artinian non-dg algebras, and the dg-lie algebra g. It happens often
that the functor F] g is representable by a (pointed) scheme M, in other words that
a global moduli space X exists for the moduli problem considered (e.g. g can be
C*(X,Tx) for a variety X having a global moduli space of deformations M). By
the construction of [Grotl, Illu], we know that M is a tangent complex T. It is
striking to notice that in general T[—1] and g are not quasi-isomorphic, contrary to
what is expected. Even worse, the underlying complex g cannot in general be the
tangent complex of any scheme locally of finite presentation: it has usually finite
dimensional total cohomology and we know by [Avra] that this cannot happen for
the tangent complex of a scheme in general. Put differently: not only can we not
reconstruct g from the functor Fg , but if we try to extract a dg-lie algebra out of
it the result will be not as nice as g (e.g., it will have infinite dimensional total
cohomology, and is probably impossible to describe).

2If Z C X is a closed immersion of smooth varieties, with sheaf of ideals Zy the two dg-lie
algebras RHomo, (/\fg’x[l],(ﬁz) and are not quasi-isomorphic but determine the same functor
on artinian (non-dg) rings, namely the deformation problem of Z as a closed subscheme in X.
The first dg-lie algebra considers Z as a point in the Hilbert scheme of X whereas the second
dg-lie considers it as a point in the quot scheme Quot(Ox).
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What we have thus learned from derived deformation theory is that the formal
moduli space associated to a dg-lie algebra is itself a (pro-artinian) commutative
dg-algebra, and not merely a commutative algebra. We also learned that in order to
fully understand a deformation problem, it is not enough to have a functor defined
on just artinian algebras, but that what is needed is one defined on all artinian
dg-algebras. We are here extremely close to saying that the main objects of study
of derived deformation theory are commutative dg-algebras and more generally,
functors on commutative dg-algebras. This step of passing from the standard view
of point of deformation theory based on functors on artinian algebras to functors
on artinian dg-algebras is one of the most important steps in the history of the
subject: obviously the DDT has had an enormous influence on the development of
derived algebraic geometry.

Virtual classes, quasi-manifolds and dg-schemes. Among the most influential work
concerning the global counterpart of the derived deformation theory is [Kontl].
The starting point is the moduli space (or rather stack, orbifold, ...) M, (X, 3),
of stable maps f : C — X with f.[C] = 8 € Hz(X,Z) fixed, where C' is a curve of
genus g with n marked points, and its relation to the Gromov-Witten invariants of
the projective manifold X. The moduli space ngn(X ,B) is in general very singular
and trying to define the GW invariants of X by performing some integration on
it would lead to the wrong answer. However, following the DDT philosophy, the
space M, (X, ) can be understood locally around a given point f : C — X by
a very explicit hypercohomology dg-lie algebra
g :=C*(C, To(=D) = f(Tx)),

where Tc(—D) is the sheaf of holomorphic vector fields on C' vanishing at the
marked points, and the map To(—D) — f*(Tx) is the differential of the map f,
which defines a two term complex of sheaves on C'. The dg-lie structure on g; is
not so obvious to see, and is a combination of the Lie bracket of vector fields on C
and the Atiyah class of the sheaf Tx. As in [Drin] we can turn this dg-lie algebra
gs into a pro-artinian dg-algebra by taking its Chevalley complex

Ap = C"(g).

The stability of the map f implies that the dg-algebra A\f is cohomologically con-
centrated in negative degrees and is cohomologically bounded. The algebra H O(A\ )
simply is the ring of formal functions at f € M, (X, 3). The higher cohomologies
H Z(/T ), which in general do not vanish for ¢ < 0, provide coherent sheaves locally
defined around f on the space M, (X, 3).

In [Kont1], Kontsevich states that the local sheaves H?(Af) can be glued when
the point f now varies and can be defined globally as coherent sheaves H® on
Mgm(X ,B). The family of sheaves H® are called higher structures, and is an incar-
nation of the globalization of what the DDT gives us at each point f € M, (X, B).
Kontsevich then defines the virtual K-theory class of M, (X, 3) by the formula

[Myn(X,B)] 7 = (~1)'[H] € Go(Myn(X, 5)).
i<0
In a similar way, the complex g[1] has only nonzero cohomology in degree 0 and

1, and thus defines a complex of vector bundles of length 2 locally around f. These
local complexes can again be glued to a global perfect complex of amplitude [0, 1],
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which is called the virtual tangent sheaf of M, ,,(X, 3). It is not strictly speaking a
sheaf but rather the difference of two vector bundles and defines a class in K-theory

[ij\/ﬁirg,n(x,ﬂ)] € Ko(M g, (X, B)). Finally, the virtual homological class of M, (X, )

is defined by the formula

[Mg,n(Xv B)JMT::T([MQW(X’ B)}K_MT) N Td(TF%gm(X,B)])_l € H, (Mg,n (X,8),Q),

where T'd is the Todd class and 7 the homological Chern character (also called the
Riemann-Roch natural transformation from the K-theory of coherent sheaves to
homology, see [Fult, §18]).

From the perspective of derived algebraic geometry the important point is that
Kontsevich not only introduced the above formula but also provides an explanation
for it based on the concept of quasi-manifolds. For an algebraic variety S the struc-
ture of a quasi-manifold on S is a covering {U;} of S, together with presentations
of each U; as an intersection ¢; : U; ~ Y; N Z; for Y; and Z; smooth algebraic
subvarieties inside a smooth ambient variety V;. The precise way the various local
data Y;, Z;, V; and ¢; patch together is not fully described in [Kontl], but it is
noticed that it should involve an nontrivial notion of equivalence, or homotopy,
between different presentations of a given algebraic variety S as an intersection of
smooth algebraic varieties. These patching data, whatever they are, are certainly
not patching data in a strict sense: the local ambient smooth varieties V; in which
U; embed cannot be glued together to obtain a smooth space V' in which S would
embed. For instance, the dimensions of the various pieces V; can be nonconstant
and depend of i. The precise way to express these compatibilities is left somewhat
open in [Kontl]. However, Kontsevich emphasizes that the locally defined sheaves

Torio % (Oy,,0z,), which are coherent sheaves on U;, glue to the globally defined
coherent sheaves H! we mentioned before. Therefore, the structure of a quasi-
manifold on M, (X, 3) does determine the higher structure sheaves ¢ and thus
the K-theory virtual class [M, (X, 8)]%*". The virtual tangent sheaf can also be
recovered from the quasi-manifold structure, again by gluing local constructions.
To each U;, we can consider the complex of vector bundles on U;

T, := (Tyl. STz, — Tvi).

Although the individual sheaves Ty, ® Tz, and Ty, do not glue globally on S (again
the dimension of V; can jump when ¢ varies), the local complexes T; can be glued
to a globally defined perfect complex T%", thus recovering the virtual tangent
sheaf by means of the quasi-manifold structure. One technical aspect of this gluing
procedure is that the patching can only be done up to some notion of equivalence
(typically that of quasi-isomorphism between complexes of sheaves) that requires a
rather nontrivial formalism of descent which is not discussed in [Kont1]. However,
the theory of higher stacks, developed around the time by Simpson (see below),
suggests a natural way to control such gluing.

The notion of quasi-manifolds has been taken and declined by several authors
after Kontsevich. Behrend and Fantechi introduced the notion of perfect obstruction
theories on a scheme X (see [Behr-Fant]) that consists of a perfect complex T
on X that formally behaves as the virtual tangent sheaf of a structure of quasi-
manifold on X. In [Cioc-Kaprl] Kapranov and Ciocan-Fontanine defined the notion
of dg-schemes, close to the notion of supermanifolds endowed with a cohomological
odd vector field @) used in mathematical physics, which by definition consists of a
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scheme X endowed a sheaf of commutative coherent Ox-dg-algebras. Later a 2-
categorical construction of dg-schemes appeared in [Behr]. All of these notions are
approximations, more or less accurate, of the notion of a derived scheme. They can
all be used in order to construct virtual classes, and hence suffice to define Gromov-
Witten invariants in the algebro-geometric context. However, they all suffer from
a bad functoriality behaviour and cannot be reasonably used as the fundamental
object of derived algebraic geometry (we refer to the end of §3.1 for a more detailed
discussion).

Interaction with homotopy theory, stacks and higher stacks. A stack is a categorical
generalization of a sheaf. They are of particular interest in moduli theory, as it is
often the case that a given moduli problem (e.g. the moduli of curves of a given
genus) involves objects with nontrivial automorphism groups. In such a situation
the moduli functor becomes a functor from schemes to groupoids, and the sheaf
condition on this functor is called the descent or stack condition.

In the context of algebraic geometry stacks already appear in the late 1950s,
as for instance in [Grot3], as well as in [Grot4]. They have been introduced to
formalize the problem of descent, but also in order to represent moduli problems
with no fine moduli spaces (it is already noted in [Grot4, Prop. 7.1] that a fine
moduli space of curves does not exist). The formal definitions of algebraic stacks
appear in [Deli-Mumf] in which it is shown that the stack of stable curves of a
fixed genus is an algebraic stack that is smooth and proper over SpecZ. It is
interesting however to note that many notions, such as fibered categories, descent,
quotient stack, stack of principal bundles, can be found in [Grot4]. The definition
of algebraic stack of [Deli-Mumf] has then been generalized by Artin in [Arti] in
order to encompass also moduli problems for which objects might admit algebraic
groups of automorphisms (as opposed to discrete finite groups). In the differential
context stacks appeared even earlier in the guise of differential groupoids for the
study of foliations (see for example [Heaf], [Ehre]).

The insight that a notion of higher stack exists and might be useful goes back
to [Grot2]. Higher stacks are higher categorical analogues of stacks, and thus of
sheaves, and presume to classify objects for which not only nontrivial automor-
phisms exist, but also automorphisms between automorphims, and automorphisms
between automorphisms of automorphisms (and so on) exist. These higher auto-
morphisms groups are now encoded in a higher groupoid valued functor, together
with a certain descent condition. In [Grot2] Grothendieck stressed the fact that
several constructions in rational homotopy theory could be formalized by consid-
ering a nice class of higher stacks called schematic homotopy types, which are very
close to being a higher version of the Artin algebraic stacks of [Arti]. One of the
technical problem encountered in the theory of higher stacks is the fact that it has
to be based on a nice theory of higher categories and higher groupoids that has not
been fully available until recently, and this aspect has probably delayed the devel-
opment of higher stack theory. However, in [Simp1l] Simpson proposed a definition
of algebraic n-stacks based on the homotopy theory of simplicial presheaves (due
to Jardine and Joyal and largely used in the setting of algebraic K-theory of rings
and schemes), using the principle that any good notion of n-groupoids should be
equivalent to the theory of homotopy n-types (a principle refered to as the homo-
topy hypothesis in [Grot2], the higher automorphisms groups mentioned above are
then incarnated by the higher homotopy groups of a simplicial set). The definition
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of algebraic n-stack of [Simpl] is inductive and based on a previous observation of
Walter that algebraic stacks in the sense of Artin can be defined in any geometric
context in which the notion of a smooth morphism make sense. This simplicial
approach has been extremely fruitful, for instance in the context of higher non-
abelian Hodge theory (see [Simp2, Simp3]), to pursue the schematization direction
of Grothendieck’s program [Grot2], namely the interpretation of rational homotopy
theory and its extension over more general bases (see [Simpl, Thm. 6.1], and also
[Toénl]), or to understand the descent problem inside derived and more generally
triangulated categories (see [Hirs-Simp]).

The introduction of simplicial presheaves as models for higher stacks has had
a huge impact on the subject. First of all it overcomes the technical difficulties
of the theory of n-groupoids and use the power of Quillen’s homotopical algebra
in order to describe some of the fundamental constructions (e.g. fiber products,
quotients, stack associated to a prestack, ...). It also had the effect of bringing the
model category language in the setting of higher category theory (see [Simp4]): it is
interesting to note that most, if not all, of the established theory of higher categories
are based on the same idea and rely in an essential way on model category theory
([Simp5], [Luri2], [Rezk] to mention the most important ones). Another aspect is
that it has reinforced the interactions between higher stack theory and abstract
homotopy theory. The interrelations between ideas from algebraic geometry and
algebraic topology is one of the feature of derived algebraic geometry, and the
simplicial point of view of Simpson on higher stacks has contributed a lot to the
introduction of the notions of derived schemes and derived stacks.

The influence of stable homotopy theory. Abstract homotopy theory, and the ho-
motopy theory of simplicial presheaves in particular, have played an important role
in the development of higher stacks. Derived algebraic geometry has also been in-
fluenced by stable homotopy theory and to be more precise by the so-called brave
new algebra (an expression introduced by Waldhausen, see [Vogt]). Brave new al-
gebra is the study of ring spectra, also called brave new rings, or equivalently of
multiplicative generalized cohomology theories. It is based on the observation that
the homotopy theory of brave new rings behaves very similarly to the theory of
rings, and that many notions and results of algebra and linear algebra over rings
extend to this setting. First of all, rings embed fully faifthfully into brave new rings
and correspond to the discrete ring spectra. Moreover, the stable homotopy cate-
gory possesses a nondegenerate t-structure whose heart is the category of discrete
spectra (abelian groups), so in a sense discrete rings generate the whole category
of brave new rings. An efficient way of thinking consists of seeing the category of
brave new rings as a kind of small or infinitesimal perturbation of the category of
rings, which is reflected by the fact that the absolute brave new ring, the sphere
spectrum S can be considered as an infinitesimal perturbation of the ring Z.

One fundamental work in this direction is the work of Waldhausen on alge-
braic K-theory of spaces [Wald]. This has been later pursued with the introduc-
tion of Hochschild and cyclic homology for ring spectra, also called topological
Hochschild and topological cyclic homology, together with a Chern character map
(see for instance [Boks, Boks-Hian-Mads, Pira-Wald, Schw-Vogt-Wald]). Another
important impulse has been the introduction of the Morava K-theories, and their
interpretations as the points of the hypothetical object SpecS, the spectrum (in
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the sense of algebraic geometry!) of the sphere spectrum (in the sense of topol-
ogy!). This general philosophy has been spread by many authors, see for instance
[Mora, Devi-Hopk-Smit, Hopk-Smit, Rave]. It has also been pushed further with
the introduction of the new idea that ring spectra should also have an interesting
Galois theory (see [Rogn, Schw-Wald, McCa-Minal), leading to the feeling that
there should exists an étale topology for ring spectra that extends the usual étale
topology for schemes. In a similar direction, the theory of topological modular forms
(see [Goer] for a survey) enhances the stack of elliptic curves with a certain sheaf
of generalized cohomology theories, and thus with a sheaf of ring spectra, creating
an even closer relation between stable homotopy theory and algebraic geometry. It
is notable that the modern approach to the theory of topological modular forms is
now based on spectral algebraic geometry, a topological version of derived algebraic
geometry (see [Luri]).

I believe that all of these works and ideas from stable homotopy theory have
had a rather important impact on the emergence of derived algebraic geometry, by
spreading the idea that not only rings have spectra (in the sense of algebraic geome-
try) but more general and complicated objects such as ring spectra, dg-algebras and
so on. Of course, the fact that ring-like objects can be used to do geometry is not
new here, as for instance a very general notion of relative schemes appears already
in [Haki]. However, the brand new idea here was that the same general philosophy
also applies to ring-like objects of homotopical nature in a fruitful manner.

Mathematical physics. Last, but not least, derived algebraic geometry has certainly
benefited from a stream of ideas from mathematical physics. It seems clear that
some of the mathematical structures introduced for the purpose of supersymmetry
and string theory have conveyed ideas and concepts closely related to the concept
of derived schemes.

A first instance can be found in the several generalizations of manifolds in-
troduced for the purpose of supersymmetry: supermanifolds, @-manifolds, QP-
manifolds etc (see [Bere-Leit, Kost, Schwl, Schw2]). Supermanifolds are manifolds
endowed with the extra data of odd functions, represented by a sheaf of Z/2-graded
rings. The @-manifolds are essentially supermanifolds together with an vector
field @ of degree 1 (i.e. a derivation sending odd functions to even functions, and
vice-versa), which squares to zero Q% = 0. The supermanifold together with the
differential @ gives thus rise to a manifold endowed with a sheaf of (Z/2-graded)
commutative dg-algebras, which is quite close to what a derived scheme is. One
of the main differences between the theory of supermanifolds and the theory of
derived schemes is the fact that supermanifolds were not considered up to quasi-
isomorphism. In a way, Q-manifolds can be thought as strict models for derived
schemes. The influence of this stream of ideas on derived algebraic geometry is
not only found at the level of definitions, but also at the level of more advanced
structures. For instance, the @ P-manifolds of [Alex-Kont-Schw-Zabo] are certainly
an avatar of the shifted symplectic structures recently introduced in the context
of derived algebraic geometry in [Pant-Toén-Vaqu-Vezz]. In the same way, the
BV-formalism of [Bata-Vilk] has recent versions in the setting of derived algebraic
geometry (see [Cost-Gwil, Vezzl]).

A second instance is related to mirror symmetry, and more particularly to the
homological mirror symmetry of Kontsevich (see [Kont-Soib]). Mirror symmetry
between two Calabi-Yau varieties X and XV is here realized as an equivalence
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of derived categories D(X) ~ Fuk(XV), between on the one side the bounded
coherent derived category of X (the B-side) and on the other side the Fukaya
category of the mirror XV (the A-side). This equivalence induces an equivalence
between the formal deformation spaces of D(X) and of Fuk(X"), which can be
identified with the de Rham cohomology of X and the quantum cohomology of XV.
Here we find again the DDT in action, as the identification between the deformation
spaces of these two categories and the mentioned cohomologies requires to consider
these moduli spaces as formal derived moduli spaces. This has led to the idea
that the correct deformation space of D(X) is the full de Rham cohomology of
X (and similarly for the Fukaya category), which again convey the idea that the
deformations of D(X) live in a certain derived moduli space.

Finally, a third instance is deformation quantization. First of all, Kontse-
vich’s proof of the existence of deformation quantization of a Poisson manifold
(see [Kont2]) is based on the identification of two deformation problems (Poisson
algebras and associative algebras), which is obtained by the construction of an
equivalence between the two dg-lie algebras controlling these deformations prob-
lems. This is once again an example of the DDT in action. The recent interactions
between derived algebraic geometry and quantization (see our §5, see also [Toén6))
also suggests that some of the concepts and ideas of derived algebraic geometry
might have come from a part of quantum mathematics (my lack of knowledge of
the subject prevents me to make precise statements here).

Derived schemes and derived stacks. The modern foundations of derived algebraic
geometry have been set down in a series of papers, namely [Toén-Vezz1], [Toén-Vezz2],
[Toén-Vezz3], [Luri3], [Toén2], [Luri4]. In my opinion all of the works and ideas pre-
viously mentioned have had an enormous influence on their authors. A particularly
interesting point is that not all of the ideas and motivations came from algebraic
geometry itself, as many important ideas also come from abstract homotopy the-
ory and stable homotopy theory. This probably explains many of the topological
flavours encountered in derived algebraic geometry, which adds to the richness of
the subject.

The subject has been developing fast in the last decade, thanks to the work
of many authors: B. Antieau, D. Arinkin, O. Ben-Bassat, D. Ben-Zvi, B. Bhatt,
D. Borisov, C. Brav, V. Bussi, D. Calaque, K. Costello, J. Francis, D. Gaitsgory,
D. Gepner, G. Ginot, O. Gwilliam, B. Hennion, I. Iwanari, D. Joyce, P. Lowrey,
J. Lurie, D. Nadler, J. Noel, T. Pantev, A. Preygel, J. Pridham, N. Rozenblyum,
T. Schiirg, M. Spitzweck, D. Spivak, M. Vaquié, G. Vezzosi, J. Wallbridge, and
others. We shall obviously not cover all this work in the present survey, but will try
to mention some of it with emphasis on the interface with deformation quantization.

2. THE NOTION OF A DERIVED SCHEME

In this first part we start by presenting the central object of study of derived
algebraic study: derived schemes. The definition of derived scheme will appear first
and is rather straightforward. However, the notions of morphisms between derived
schemes is a bit subtle and require first some notions of higher category theory,
or equivalently of homotopical algebra. We will start by a (very) brief overview
of model category theory, which for us will be a key tool in order to understand
the notion of co-category presented in the second paragraph and used all along
this manuscript. We will then proceed with the definition of the (oo-) category
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of derived schemes and provide basic examples. More evolved examples, as well
as the further notion of derived moduli problems and derived algebraic stacks are
presented in the next section.

We start by extracting two principles mentioned from the variety of ideas recalled
in §1, which are the foundation principles of derived algebraic geometry. For this
we begin by the following metamathematical observation. A given mathematical
theory often aims to study a class of specific objects: algebraic varieties in algebraic
geometry, topological spaces in topology, modules over a ring in linear algebra

These objects are in general very complicated (unless the theory might be
considered as uninteresting), but it is most often that a subclass of nice objects
naturally shows up. As their names show the nice objects behave nicely, or at least
behave nicer than a generic object. In such a situation, mathematicians want to
believe that we fully understand the nice objects and that a generic object should
be approximated, with the best approximation possible, by nice objects. This
metamathematical observation can be seen in action in many concrete examples,
two of them are the following (there are myriads of other examples).

o (Linear algebra) Let A be a ring and we consider A-modules. The nice ob-
jects, for instance with respect to short exact sequences, are the projective
modules. For a general A-module M the best possible approximation of M
is a resolution of M be means of projective modules

...P,—>P,1—...Py—~M—0.

e (Topology) We consider topological spaces, and more particularly their co-
homological properties. Spheres are the nice objects (for instance from the
cohomological point of view). For a space X the best possible approxima-
tion of X is a cellular approximation, that is, a CW complex X’ weakly
equivalent to X.

These two examples possess many possible variations, for instance by replacing
modules over a ring by objects in an abelian category, or topological spaces by
smooth manifolds and cellular approximation by handle body decompositions. The
common denominator to all of these situations is the behavior of the approximation
construction. A delicate question is the uniqueness: approximations are obviously
not unique in a strict sense (e.g., for the two examples above, but this is a gen-
eral phenomenon) and we have to introduce a new notion of equivalence in order
to control uniqueness and more generally functorial properties. In the examples
above this notion is an obvious one: quasi-isomorphism of complexes in the first
example and weak homotopy equivalences in the second. As we will see in the next
paragraph, the introduction of a new notion of equivalence automatically creates a
higher categorical, or higher homotopical, phenomenon. This is one reason of the
ubiquity of higher categorical structures in many domains of mathematics.

Derived algebraic geometry is the theory derived from algebraic geometry (no
pun intended) by applying the same general principle as above, and by declaring
that the good objects are the smooth varieties, smooth schemes and more gener-
ally smooth maps. The approximation by smooth varieties is here the simplicial
resolution of algebras by polynomial algebras as mentioned in §1. To sum up:
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e (Principle 1 of derived algebraic geometry) The smooth algebraic varieties,
or more generally smooth schemes and smooth maps, are good. Any non-
smooth variety, scheme or map between schemes, must be replaced by the
best possible approximation by smooth objects.

e (Principle 2 of derived algebraic geometry) Approximations of varieties,
schemes and maps of schemes, are expressed in terms of simplicial resolu-
tions. The simplicial resolutions must only be considered up to the notion of
weak equivalence, and are controlled by higher categorical, or homotopical,
structures.

Based on these two principles we can already extract a general definition of a
derived scheme, simply by thinking that the structure sheaf should now be a sheaf
of simplicial commutative rings rather than a genuine sheaf of commutative rings.
However, principle 2 already tells us that morphisms between these derived schemes
will be a rather involved notion and must be defined with some care.

Definition 2.1. (First definition of derived schemes) A derived scheme consists of
a pair (X,Ox), where X is a topological space and Ay is a sheaf of commutative
simplicial rings on X such that the following two conditions are satisfied.

(1) The ringed space (X, m9(Ox)) is a scheme.
(2) For all 4 > 0 the homotopy sheaf 7;(Ox) is a quasi-coherent sheaf of mod-
ules on the scheme (X, m(Ox)).

Some comments about this definition.

e A scheme (X,0Ox) can be considered as a derived scheme in an obvious
manner, by taking Ox to be the constant simplicial sheaf of rings Ox.

e In the other way, a derived scheme (X, Ox) underlies a scheme (X, 79(Ox))
that is called the truncation of (X, Ox).

e A scheme can also be considered as a derived scheme (X, O’ ) where now

'v is any simplicial resolution of Ox, that is

71'0(0%)20){ Wl(OfX):OVZ>O

As we will see, the derived scheme (X, O%) is equivalent to (X, Ox) (exactly
as a resolution P, of a module M is quasi-isomorphic to M concentrated
in degree 0).

e For a derived scheme (X,Ox), the truncation (X,7o(Ox)) contains all
the geometry. The sheaves m;(Ox) on (X, 7(Ox)) are pieces reflecting
the derived structure and should be thought as extraordinary nilpotent
functions. The sheaves m;(Ox) are analogous to the graded pieces Z /Z" !
where Z is the nilradical of a scheme Y, which are sheaves on the reduced
subscheme Y,.q. It is good intuition and also accurate to think of Ox as
coming with a natural filtration (incarnated by the Postnikov tower, see
§2.2) whose graded pieces are the m;(Ox).

The above definition makes derived schemes an easy notion, at least at first
sight. However, as already mentioned, morphisms between derived schemes require
some care to be defined in a meaningful manner. In the sequel of this section we
will explain how to deal with derived schemes, how to construct and define their
(0c0)-category, but also how to work with them in practice.
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2.1. Elements of the language of co-categories. In this paragraph we intro-
duce the language of co-categories. The theory of co-categories shares very strong
interrelations with the theory of model category, and most of the possible working
definitions of co-categories available today haven been set down in the context of
model category theory. Moreover, model categories also provide a rich source of
examples of oo-categories, and from the user point of view a given model category
M can be (should be?) considered as a concrete model for an co-category. It is be-
cause of this strong interrelations between oco-categories and model categories that
this section starts with a brief overview of model category theory, before presenting
some elements of the language of co-category theory. This language will be used in
order to present the expected notion of maps between derived schemes, incarnated
in the co-category dSch of derived schemes presented in the next paragraph.

A glimpse of model category theory. Model category theory deals the localization
problem, which consists of inverting a certain class of maps W in a given cate-
gory C. The precise problem is to find, and to understand, the category W—1C
obtained out of C' by freely adding inverses to the maps in W. By definition, the
category W—1C comes equipped with a functor [ : C — W~'C, which sends
maps in W to isomorphisms in W~1C, and which is universal with respect to this
property. Up to issues of set theory, it can be shown that W~1C always exists (see
[Gabr-Zism, §1.1.1]). However, the category W ~1C is in general difficult to describe
in a meaningful and useful manner, and its existence alone is often not enough from
a practical point of view (see [Toén7, §2.2] for more about the bad behavior of the
localization construction).

Definition. A model category structure on a pair (C, W) as above consists of extra
pieces of data, involving two other class of maps, called fibrations and cofibrations,
satisfying some standard axioms (inspired by the topological setting of topological
spaces and weak equivalences), and ensuring that the sets of maps inside localized
category W ~1C possess a nice and useful description in terms of homotopy classes
of morphisms between certain objects in C. The typical example of such a situation
occurs in algebraic topology: we can take C' = Top, be the category of topological
spaces and continuous maps, and W be the class of weak homotopy equivalences
(continuous maps inducing isomorphisms on all homotopy groups). The localized
category W~1C is equivalent to the category [CW], whose objects are CW com-
plexes and whose set of maps are homotopy classes of continuous maps. The upshot
of model category theory is that this is not an isolated or specific example, and that
there are many situations of different origins (topological, algebraic, combinatorial,

..) in which some interesting localized categories can be computed in a similar
fashion.

By definition, a model category consists of a complete and cocomplete category
C, together with three classes of maps W (called weak equivalences, or simply
equivalences), Fib (called fibrations), and Cof (called cofibrations), and satisfying
the following axioms (see [Quill, §I.1] or [Hove, §1.1] for more details®).

3We use in this work the definition found in [Hove], which differs slightly from the original one
in [Quill] (e.g., the functoriality of factorizations). The mathematical community seems to have
adopted the terminology of [Hove] as the standard one.
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(1) If X AN Y 2~ 7 are morphisms in C, then f, g and gf are all in W
if and only if two of them are in W.
(2) The fibrations, cofibrations and equivalences are all stable by compositions
and retracts.
(3) Let
f

AL

X

ii lp

B——=Y
g

be a commutative square in C with ¢ € Cof and p €Fib. If either 7 or p is
also in W then there is a morphism h : B — X such that ph = g and
hi=f.

(4) Any morphism f : X — Y can be factored in two ways as f = pi and
f = qj, with p €Fib, i € CofN\W, q € FibNW and j € Cof. Moreover, the
existence of these factorizations are required to be functorial in f.

The morphisms in Cof "W are usually called trivial cofibrations and the mor-
phisms in FibNW trivial fibrations. Objects x such that ) — z is a cofibration are
called cofibrant. Dually, objects y such that y — x is a fibration are called fibrant.
The factorization axiom (4) implies that for any object = there is a diagram

7 P
Qxr —— r —— Rz,

where 7 is a trivial fibration, p is a trivial cofibration, Qx is a cofibrant object and
Rz is a fibrant object. Moreover, the functorial character of the factorization states
that the above diagram can be, and always will be, chosen to be functorial in .

The homotopy category of a model category. A model category structure is a rather
simple notion, but in practice it is never easy to check that three given classes Fib,
Cof and W satisfy the four axioms above. This can be explained by the fact that
the existence of a model category structure on C has a very important consequence
on the localized category W ~1C, which is usually denoted by Ho(C) and called the
homotopy category in the literature?. For this, we introduce the notion of homotopy
between morphisms in M in the following way. Two morphisms f,g: X — Y are
called homotopic if there is a commutative diagram in M

satisfying the following two properties:

(1) There exists a morphism p : C(X) — X, which belongs to FibN W, such
that pi = pj = id.

4This is often misleading, as Ho(C') is obtained by localization and is not a category obtained
by dividing out the set of maps by a homotopy relation.
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(2) The induced morphism
il |7 x| ]x —cx)

is a cofibration.

When X is cofibrant and Y is fibrant in M (i.e. § — X is a cofibration and
Y — « is a fibration), it can be shown that being homotopic as defined above is
an equivalence relation on the set of morphisms from X to Y. This equivalence
relation is shown to be compatible with composition, which implies the existence
of a category C°f/ ~, whose objects are cofibrant and fibrant objects and whose
morphisms are homotopy classes of morphisms in C.

It is easy to see that if two morphisms f and g are homotopic in C' then they
are equal in W~!C. Indeed, in the diagram above defining the notion of being
homotopic, the image of p in Ho(C) is an isomorphism. Therefore, so are the
images of ¢ and j. Moreover, the inverses of the images of ¢ and j in Ho(C)
are equal (because equal to the image of p), which implies that ¢ and j have the
same image in Ho(C'). This implies that the image of f and of g are also equal.
From this, we deduce that the localization functor C' — Ho(C) restricted to the
subcategory of cofibrant and fibrant objects C°f induces a well defined functor
C¢' | ~— Ho(C). One major statement of model category theory is that this last
functor is an equivalence of categories.

Theorem 2.1 (see [Quil2, §I Thm. 1], [Hove, Thm. 1.2.10]). The above functor
C ) ~— W™LC = Ho(C).
is an equivalence of categories.

The above theorem is fundamental as it allows us to control, and to describe
in an efficient manner, the localized category W—'C in the presence of a model
structure.

Three examples. Three major examples of model categories are the following.

e We set C' = Top be the category of topological spaces, and W the class of
weak equivalences (continuous maps inducing bijections on all homotopy
groups). The class F'ib is taken to be the Serre fibrations, the morphism
having the lifting property with respect to the inclusions |[A"| C |A"|,
of a horn (the union of all but one of the codimension 1 faces) into a
standard n-dimensional simplex. The cofibrations are the retracts of the
relative cell complexes. This defines a model category (see [Hove, §2.4]),
and the theorem above states the well known fact that Ho(Top) can be
described as the category whose objects are CW complexes and morphisms
are homotopy classes of continuous maps.

e For a ring R we set C(R) the category of (possibly unbounded) complexes
of (left) R-modules. The class W is taken to be the quasi-isomorphisms (the
morphisms inducing bijective maps on cohomology groups). There are two
standard possible choices for the class of fibrations and cofibrations, giving
rise to two different model structures with the same class of equivalences,
called the projective and the injective model structures. For the projective
model structure the class of fibrations consists of the the epimorphisms
(i.e. degreewise surjective maps) of complexes of R-modules, and the cofi-
brations are defined by orthogonality (see [Hove, §2.3]). Dually, for the
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injective model structure the class of cofibrations consists of the monomor-
phisms (i.e. degreewise injective maps) of complexes of R-modules (see
[Hove, §2.3]). These two model categories share the same homotopy cate-
gory Ho(C(R)) = D(R), which is nothing else than the derived category
of (unbounded) complexes of R-modules. In this case, the theorem above
states that the category D(R) can also be described as the category whose
objects are either K-injective, or K-projective, complexes, and morphisms
are homotopy classes of maps between these complexes (see [Hove, §2.3]).

e We set C' = sSet := Fun(A°P, Set), the category of simplicial sets. For
W we take the class of weak equivalences of simplicial sets (i.e., the maps
inducing weak equivalences on the corresponding geometric realizations).
The cofibrations are defined to be the monomorphisms (i.e., the levelwise
injective maps), and the fibrations are the so-called Kan fibrations, defined
as the maps having the lifting property of the inclusions of the simplicial
horns A¥™ C A" (see [Quill, IT §3], [Hove, 3.2]). The homotopy category
Ho(sSet) is equivalent to the category Ho(Top), via the geometric realiza-
tion functor, and can be described as the fibrant simplicial sets (also known
as the Kan complezes) together with the homotopy classes of maps.

Quillen adjunction, homotopy (co)limits and mapping spaces. To finish this para-
graph on model category theory we mention quickly the notions of Quillen ad-
junctions (the natural notion of functors between model categories), as well as the
important notions of homotopy (co)limits and mapping spaces.

First of all, for two model categories C' and D, a Quillen adjunction between C'
and D consists of a pair of adjoint functors g : C = D : f (here g is the left ad-
joint), such that either f preserves fibrations and trivial fibrations, or equivalently
g preserves cofibrations and trivial cofibrations. The main property of a Quillen
adjunction as above is to induce an adjunction on the level of homotopy categories,
Lg: C = D : Rf. Here Lg and Rf are respectively the left and right derived
functor deduced from f and g, and defined by pre-composition with a cofibrant
(resp. fibrant) replacement functor (see [Quill, I §4 Thm. 3], [Hove, §1.3.2]). The
typical example of a Quillen adjunction is given by the geometric realization, and
the singular simplex constructions |—| : sSet = Top : Sing, between simplicial sets
and topological spaces. This one is moreover a Quillen equivalence, in the sense
that the induced adjunction at the level of homotopy categories is an equivalence of
categories (see [Hove, §1.3.3]. Another typical example is given by a morphism of
rings R — R’ and the corresponding base change functor R'®r— : C(R) — C(R')
on the level of complexes of modules. This functor is the left adjoint of a Quillen ad-
junction (also called left Quillen) when the categories C(R) and C'(R') are endowed
with the projective model structures described before (it is no longer a Quillen ad-
junction for the injective model structures, except in some very exceptional cases).

For a model category C' and a small category I, we can form the category C’
of functors from I to C. The category C! possesses a notion of equivalences in-
duced from the equivalences in C, and defined as the natural transformations that
are levelwise in W (i.e., their evaluations at each object ¢ € T is an equivalence
in C). With mild extra assumptions on C, there exists two possible definitions
of a model structure on C! whose equivalences are the levelwise equivalences: the
projective model structure for which the fibrations are defined levelwise, and the in-
jective model structure for which the cofibrations are defined levelwise (see [Luri2,
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Prop. A.2.8.2]). We have a constant diagram functor ¢ : ¢ — O, sending an
object of C' to the corresponding constant functor I — C. The functor c¢ is left
Quillen for the injective model structure on C!, and right Quillen for the projec-
tive model structure. We deduce a functor at the level of homotopy categories
¢ : Ho(C) — Ho(CT), which possesses both a right and a left adjoint, called
respectively the homotopy limit and homotopy colimit functors, and denoted by
Holimy, Hocolim; : Ho(C') — Ho(C) (see [Luri5, Prop. A.2.8.7] as well as
comments [Luri5, A.2.8.8,A.2.8.11]).

The homotopy limits and colimits are the right notions of limits and colimits in
the setting of model category theory and formally behave as the standard notions
of limits and colimits. They can be used in order to see that the homotopy category
Ho(C) of any model category C has a natural further enrichment in simpicial sets.
For an object z € C and a simplicial set K € sSet, we can define an object
K ®x € Ho(C), by setting

K ® x := Hocolimaxyz € Ho(C),

where A(K) is the category of simplices in K (any category whose geometric real-
ization gives back K up to a natural equivalence would work), and z is considered
as a constant functor A(K) — C. With this definition, it can be shown that for
two objects z and y in C, there is a simplicial set Mapc(x,y) € sSet, with natural
bijections

[Kv MapC(x’y)} = [K ®xay]v

where the left hand side is the set of maps in Ho(sSet), and the right hand side
the set of maps in Ho(C). The simplicial sets Mapc(z,y) are called the map-
ping spaces of the model category C, and can alternatively be described using
the so-called simpicial and cosimplicial resolutions (see [Hove, §5.4]). Their exis-
tence implies that the localized category Ho(C') inherits of an extra structure of a
simplicial enrichment, induced by the model category C'. It is important to under-
stand that this enrichment only depends on the pair (C, W) of a category C' and
a class of equivalences W. We will see in the next paragraph that this simplicial
enrichment is part of an oco-categorical structure, and that the correct manner to
understand it is by introducing the oco-categorical version of the localization con-
struction (C, W) +— W ~1C. This refined version of the localization produces a very
strong bridge between model categories and oco-categories, part of which we will
recall in below.

oo-Categories. An oo-category® is a mathematical structure very close to that of a
category. The main difference is that morphisms in an co-category are not elements
of a set anymore but rather points in a topological space (and we think of a set
as discrete topological space). The new feature is therefore that morphisms in
an oco-category can be deformed by means of continuous path inside the space of
morphisms between two objects, and more generally morphisms might come in
continuous family parametrized by an arbitrary topological space, as for instance
a higher dimensional simplex. This is a way to formalize the notion of homotopy
between morphisms often encountered, for instance in homological algebra where
two maps of complexes can be homotopic.

5Technically speaking we are only considering here (1, co)-categories, which is a particular case
of the more general notion of a co-category that we will not consider in this paper.
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In the theory of oo-categories the spaces of morphisms are only considered up
to weak homotopy equivalence for which it is very common to use the notion of
simplicial sets as a combinatorial model (see [Hove, §3] for more about the homotopy
theory of simplicial sets that we use below). This justifies the following definition.

Definition 2.2. An oco-category T is a simplicial enriched category.

Unfolding the definition, an oco-category consists of the following data.

(1) A set Ob(T), called the set of objects of T'.

(2) For two objects z and y in T a simplicial set of morphisms T'(x,y).

(3) For any object = in T a O-simplex id, € T(x,x)o.

(4) For any triple of objects z, y and z in T' a map of simplicial sets, called the
composition

T(x,y) x T(y,z) — T(x, 2).

These data are moreover required to satisfy an obvious associativity and unit con-
dition.

Remark 2.2. The notion of oco-category of 2.2 is not the most general notion
of oco-category, and rather refers to semi-strict oco-categories. Semi-strict refers
here to the fact that the associativity is strict rather than merely satisfied up to a
natural homotopy, which itself would satisfy higher homotopy coherences. Various
other notions of co-categories for which the compositions is only associative up to
a coherent set of homotopies are gathered in [Berg, Lein]. We will stick to the
definition above, as it is in the end equivalent to any other notion of co-category
and also because it is very easily defined. A drawback of this choice will be in the
definition of oco-functors and co-categories of oco-functors which will be described
below and for which some extra care is necessary. The definition 2.2 seems to us
the most efficient in terms of energy one must spend on learning the notion of the
oo-category theory, particularly for readers who do not wish to devote too much
effort on the foundational aspects of derived algebraic geometry. The theory of co-
categories as defined in 2.2 and presented below is however the minimum required
in order to deal with meaningful definitions in derived algebraic geometry.

There is an obvious notion of a morphism f : T — T’ between oo-categories.
It consists into the following data.
(1) A map of sets f: Ob(T) — Ob(T").
(2) For every pair of objects (x,y) in T', a morphism of simplicial sets

foy 1 T(x,y) — T'(f(2), f(y))-

These data are required to satisfy an obvious compatibility with units and com-
positions in T and T”. These morphisms will be called strict oo-functors, as opposed
to a more flexible, and not equivalent, notion of co-functors that we will introduce
later. The co-categories and strict co-functors form a category denoted by co-Cat.
A category C defines an oo-category by considering the set of morphisms in C as
constant simplicial sets. In the same way, a functor between categories induces
a strict oo-functor between the corresponding oo-categories. This defines a full
embedding C'at — oo-Cat, from the category of categories to the category of co-
categories and strict co-functors. This functor admits a left adjoint

[—] : 0o-Cat — Cat.
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This left adjoint sends an oo-category T to the category [T] having the same set
of objects as T' and whose set of morphisms are the set of connected components
of the simplicial sets of morphisms in 7. With a formula: [T](z,y) = mo(T(x,v)).
The category [T] will be referred to the homotopy category of T.

The oo-categories of spaces and of complexes. We mention here two major exam-
ples of oo-categories, the oo-category of Kan complexes, and the oo-category of
complexes of cofibrant modules over some ring R. Let sSets be the category of
simplicial sets which is naturally enriched over itself by using the natural simplicial
sets of maps, and thus is an co-category in the sense above. We let S be the full
sub-oo-category of sSets consisting of Kan simplicial sets (i.e. fibrant simplicial
sets, see [Hove, §3.2]). The homotopy category [S] is naturally equivalent to the
usual homotopy category of spaces.

For a ring B, we let C(B) be the category of (unbounded) cochain complexes of
B-modules. It has a natural enrichment in simplicial sets defined as follows. For
two complexes M and N, we define the simpicial set Map(M, N) by defining the
formula

Map(M, N), = HomC(B)(M ®z C+(A™),N),
where C(A™) denotes the normalized chain complex of homology of the standard
simplex A™. This makes C(B) into an co-category. We consider L(B) C C(B) the
full sub-oco-category of C(B) consisting of all cofibrant complexes of B-modules (see
[Hove, §2.3]). The homotopy category of L(B) is naturally equivalent to D(B), the
unbounded derived category of complexes of B-modules.

The homotopy theory of co-categories. Before going further into co-category theory
we fix some terminology. A morphism in a given oo-category is simply a 0-simplex
of one of the simplicial sets of maps T'(x,y). Such a morphism is an equivalence in
T if its projection as a morphism in the category [T] is an isomorphism. Finally,
we will sometimes use the notation Mapr(x,y) for T(x,y).

A key notion is the following definition of an equivalence of co-categories.

Definition 2.3. A strict co-functor f : T — T” is an equivalence of co-categories
if it satisfies the two conditions below.

(1) f is fully faithful: for all objects  and y in T the map T(z,y) —
T'(f(x), f(y)) is a weak homotopy equivalence of simplicial sets.

(2) f is essentially surjective: the induced functor [f] : [T] — [T”] is an
essentially surjective functor of categories.

The theory of co-categories up to equivalence will be our general setting for de-
rived algebraic geometry, it replaces the setting of categories and functors that is
customary in algebraic geometry. This is unfortunately not an easy theory and it
requires a certain amount of work in order to extend some of the standard construc-
tions and notions of usual category theory. The good news is that this work has been
done and written down by many authors, we refer for instance to [Luri2, Simp5]
(see also [Toén-Vezz6, §1]). In the paragraph below we extract from these works
the minimum required for the sequel of our exposition. These properties state that
oo-categories up to equivalence behave very much likely as categories up to equiva-
lence of categories, and thus that the basic categorical notions such as categories of
functors, adjunctions, limits and colimits, Yoneda embedding, Kan extensions. ..,
all have extensions to the setting of oco-categories.
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We have seen that the category oo- Cat of co-categories and strict co-functors pos-
sesses a class W of equivalences of co-categories. We set Ho(oco-Cat) := W ~Loo-Cat
the category obtained from co-Cat by formally inverting the morphisms in W, and
call it the homotopy category of co-categories. The set of morphisms in Ho(co-Cat)
will be denoted by [T,T'] := Ho(oo-Cat)(T,T"). The category H (oo-Cat) is a rea-
sonable object because of the existence of a model structure on the category co-Cat
which can be used in order to control the localization along equivalences of oo-
categories (see [Berg]). The sets of morphisms in Ho(co-Cat) also have explicit
descriptions in terms of equivalent classes of bi-modules (see for instance [Toén7,
§4.1 Cor. 1], for the statement on the setting of dg-categories).

(nonstrict) co-Functors. By definition an (nonstrict) oo-functor between two oo-
categories T and T" is an element in [T,7T']. This definition only provides a set
[T, T'] of oo-functors, which can be promoted to a full oco-category as follows. It
can be proved that the category Ho(oco-Cat) is cartesian closed: for any pair of
oo-categories T and T” there is an object Fun®(T,T') € Ho(oco-Cat), together
with functorial (with respect to the variable U) bijections

[U, Fun®> (T, T")] ~ [U x T, T"].

The oo-category Fun® (T, T") is by definition the co-category of co-functors from
T to T'. Tt is only well defined up to a natural isomorphism as an object in
Ho(oo-Cat). As for the case of the sets of maps in Ho(oo-Cat), the whole object
Fun® (T, T") can be explicitly described using a certain oo-category of fibrant and
cofibrant bi-modules.

Adjunctions, limits and colimits. The existence of co-categories of co-functors can
be used in order to define adjunctions between oco-categories, and related notions
such as limits and colimits. We say that an co-functor f € Fun®(T,T") has a right
adjoint if there exists g an object in Fun®(T',T) and a morphism h : id — gf in
Fun®>(T,T), such that for all x € T and y € T" the composite morphism

T'(f(a),b) —=T(gf(a), g(b)) —>T(a, g(b))

is a weak equivalence of simplicial sets. It can be shown that if f has a right adjoint
then the right adjoint g is unique (up to equivalence). The notion of left adjoint
is defined dually. We say that an oo-category T possesses (small) colimits (resp.
limits) if for all (small) co-category I the constant diagram oo-functor ¢ : T —
Fun®(I,T) has a left (resp. right) adjoint. The left adjoint (resp. right adjoint),
when it exists is simply denoted by colim; (resp. limy).

Yoneda, prestacks and left Kan extensions. We remind the co-category S consisting
of Kan simplicial sets. Any oco-category T has an oo-category of prestacks Pr(T),
also denoted by f, and defined to be Fun® (T°P,S), the oo-category of contravariant
oo-functors from T to S. There is a Yoneda oo-functor h: T —s T , which is adjoint
to the co-functor T : T'x T°? — S sending (z,y) to T'(z,y) (when T does not have
fibrant hom simplicial sets this definition has to be pre-composed with chosing a
fibrant replacement for T'). The oco-functor h is full faithful, and moreover, for all
F € T we have a canonical equivalence of simplicial sets f(hz,F) ~ F(x). The
Yoneda embedding h : T — T can also be characterized by the following universal
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property. For every oo-category T that admit colimits, the restriction co-functor
—oh: Fun®(T,T') — Fun™(T,T")

is an equivalence of oco-categories, where F ungo(f, T’) is the full sub-oo-category
of Fun™ (T, T') consisting of co-functors that commute with colimits (see [Luri2,
Thm. 5.1.5.6]). The inverse co-functor Fun®(T,T") — Fungo(f, T’) is called the
left Kan extension.

Localization and model categories. An important source of co-categories come from
localization, the process of making some morphisms to be invertible in a universal
manner. For a category C' and a subset W of morphisms in C, there is an oco-
category L(C, W) together with an co-functor [ : C — L(C, W), such that for any
oo-category T', the restriction through ! induces an equivalence of co-categories

Fun®™(L(C,W),T) ~ Funiy(C,T),

where Fun{y(C,T) denotes the full sub-co-category of Fun™(C,T) consisting of
all co-functors sending W to equivalences in T'. It can be shown that a localization
always exists (see [Hirs-Simp, Prop. 8.7], see also [Toén7, §4.3] for dg-analogue),
and is equivalent to the so-called Dwyer-Kan simplicial localization of [Dwye-Kanl].
The homotopy category Ho(L(C,W)) is canonically equivalent to the localized
category W~1C in the sense of Gabriel-Zisman (see [Gabr-Zism, §1]). In general
L(C,W) is not equivalent to W~1C, or in other words its mapping spaces are
not O-truncated. The presence of nontrivial higher homotopy in L(C,W) is one
justification of the importance of co-categories in many domains of mathematics.
When C' is moreover a simplical model category, and W its subcategory of weak
equivalence, the localization L(C, W) is simply denoted by L(C), and can be de-
scribed, up to a natural equivalence, as the simplicially enriched category cef
of fibrant and cofibrant objects in C' (see [Dwye-Kan2]). Without the simplicial
assumption, for a general model category C a similar result is true but involves
mapping spaces as defined in [Dwye-Kan2] and [Hove, §5.4] using simplicial and
cosimplicial resolutions. For a model category C, and small category I, let C! be
the model category of diagrams of shape I in C. It is shown in [Hirs-Simp, §18] (see
also [Luri2, Prop. 4.2.4.4]) that there exists a natural equivalence of co-categories

L(M?") ~ Fun® (I, L(M)).

This is an extremely useful statement that can be used in order to provide nat-
ural models for most of the oco-categories encountered in practice. One impor-
tant consequence is that the oo-category L(M) always has limits and colimits,
and moreover that these limits and colimits in L(M) can be computed using the
well known homotopy limits and homotopy colimits of homotopical algebra (see
[Dwye-Hirs-Kan-Smit] for a general discussion about homotopy limits and colim-
its).

The oo-category of co-categories. The localization construction we just described
can be applied to the category oo-Cat, of co-categories and strict oo-functors, to-
gether with W being equivalences of oco-categories of our definition 2.3. We thus
have an oo-category of oo-categories

oo-Cat := L(co-Cat).
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The mapping spaces in oco-Cat are closely related to the co-category of co-functors

in the following manner. For two oco-categories T' and T”, we consider Fun®(T,T"),

and the sub-oo-category Fun® (T, T’)? consisting of co-functors and equivalences
between them. The oo-category Fun® (T, T’)? has a geometric realization |Fun® (T,T")%1|,
obtained by taking nerves of each categories of simplicies, and then the diagonal

of the corresponding bi-simplicial set (see below). We have a weak equivalence of
simplicial sets

Map s Cat(T:T') ~ [Fun®™ (T, T")*,

which expresses the fact that mapping spaces in co-Cat are the spaces of co-functors
up to equivalence. Another important aspect is that co-Cat possesses all limits
and colimits. This follows for instance from the existence of a model structure on
simplicially enriched categories (see [Berg]). We refer to [Hirs-Simp, Cor. 18.7] for
more about how to compute the limits in co-Cat in an explicit manner.

A second important fact concerning the oco-category of co-categories is the no-
tion of oco-groupoids. The oco-groupoids are defined to be the oco-categories T for
which the homotopy category [T] is a groupoid, or in other words for which ev-
ery morphism is an equivalence. If we denote by co-Gpd the full sub-co-category
of co-Cat consisting of co-groupoids, then the nerve construction (also called the
geometric realization) produces an equivalence of co-categories

| —|:00-Gpd ~S.

The inverse of this equivalence is the fundamental co-groupoid construction Il
(denoted by IIj g, in [Hirs-Simp, §2]). The use of the equivalence above will be
mostly implicit in the sequel, and we will allow ourselves to consider any simplicial
sets K € S as an oco-category through this equivalence.

oo-Topos and stacks. For an oo-category T, a Grothendieck topology on T is by
definition a Grothendieck topology on [T (see e.g. [SGA4-1, Exp. IT]). When such a
topology 7 is given, we can define a full sub-oo-category St(T,7) C Pr(T), consist-
ing of prestacks satisfying a certain descent condition. The descent condition for
a given prestack F': T°P — S, expresses that for any augmented simplicial object
X+« — X in Pr(T), which is a 7-hypercoverings, the natural morphism

Mapp, ) (X, F) — lim Mapp,7)(Xn, F)
[n]leA

is a weak equivalence in S (and lim is understood in the oo-categorical sense,
or equivalently as a homotopy limit of simplicial sets). Here, 7-hypercoverings are
generalizations of nerves of covering families and we refer to [Toén-Vezz2, Def. 3.2.3]
for the precise definition in the context of co-categories. The condition above is the
oo-categorical analogue of the sheaf condition, and a prestack satisfying the descent
condition will be called a stack (with respect to the topology 7). The co-category
St(T, 7), also denoted by 777 is the oco-category of stacks on T (with respect to
7) and is an instance of an oo-topos (all co-topos we will have to consider in this
paper are of this form). The descent condition can also be stated by an oo-functor
F :T°P — C, where C is another co-category with all limits. This will allow us
to talk about stacks of simplicial rings, which will be useful in the definition of
derived schemes we will give below (Def. 2.5). We refer to [Luri2] for more details
about oco-topos, and to [Toén-Vezz2] for a purely model categorical treatment of
the subject.
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Stable co-categories. Stable co-categories are the co-categorical counter-part of tri-
angulated categories. We recall here the most basic definition and the main prop-
erty as they originally appear in [Toén-Vezz4, §7], and we refer to [Luri4] for more
details.

We say that an oo-category T is stable if it has finite limits and colimits, if the
initial object is also final, and if the loop endo-functor €2 :  +— * X, * defines an
equivalence of co-categories €1, : T~ T. It is known that the homotopy category
[T] of a stable oo-category T possesses a canonical triangulated structure for which
the distinguished triangles are the image of fibered sequences in T'. If M is a stable
model category (in the sense of [Hove, §7]), then LM is a stable co-category. For
instance, if M = C(k) is the model category of complexes of modules over some
ring k, LM, the oo-category of complexes of k-modules, is stable.

Warning 2.4. Before we start using the language of co-categories, we warn the
reader that we will use this language in a rather loose way and that most of our
constructions will be presented in a naively manner. Typically a oco-category will
be given by describing its set of objects and simplicial sets of maps between two
given objects without taking care of defining compositions and units. Most of the
time the compositions and units are simply obvious, but it might also happen that
some extra work is needed to get a genuine co-category. This happens for instance
when the described mapping space is only well-defined up to a weak equivalences of
simplicial sets, or when composition is only defined up to a natural homotopy, for
which it might be not totally obvious how to define things correctly. This is one of
the technical difficulties of co-category theory that we will ignore in this exposition,
but the reader must keep in mind that in some cases this can be overcome only by
means of a substantial amount of work.

2.2. Derived schemes. We are now coming back to our first definition of derived
schemes 2.1, but from the oo-categorical point of view briefly reminded in the
last paragraph. We start by considering sComm, the co-category of simplicial
commutative rings, also called derived rings. It is defined by

sComm := L(sComm),

the co-categorical localization of the category of simplicial commutative rings sComm
with respect to the weak homotopy equivalences. The weak homotopy equivalences
are here morphisms of simplicial commutative rings A — B inducing a weak homo-
topy equivalence on the underlying simplicial sets. Any derived ring A provides a
commutative graded ring m,(A) = ®;>om;(A4), where the homotopy groups are all
taken with respect to 0 as a base point. The construction A — 7,(A) defines an
oo-functor from the oco-category sComm to the category of commutative graded
rings.

For a topological space X, there is an oo-category sComm(X) of stacks on
X with coefficients in the co-category of derived rings. If we let Ouv(X) the
category of open subsets in X, sComm can be identified with the full sub-co-
category of Fun®(Ouv(X)°?,sComm), consisting of oco-functors satisfying the
descent condition (see §2.1.2). For a continuous map u : X — Y we have an
adjunction of co-categories

™! :sComm(Y) 2 sComm(X) : u,.
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We start by defining an co-category dRgSp of derived ringed spaces. Its objects
are pairs (X, Ox), where X is a topological space and Ox € sComm(X) is a stack
of derived rings on X. For two derived ringed spaces (X, Ox) and (Y, Oy) we set

Map((X,Ox),(Y,0y)) := H Mapscomm(v)(Oy, us(Ox)).
u: X —=Y

This definition can be promoted to an co-category dRgSp whose objects are derived
ringed spaces and whose simplicial sets of maps are defined as above. Technically
speaking this requires the use of some more advanced notion such as fibered co-
categories, but can also be realized using concrete model category structures of
sheaves of simplicial commutative rings (this is a typical example for our warning
2.4 in a practical situation®).

Any derived ringed space (X, Ox) has a truncation (X, 7o(Ox)) that is a (under-
ived) ringed space, where 7y(Ox) denotes here the sheaf of connected components.
We define dRgSp'*° as a (nonfull) sub-co-category of dRgSp consisting of objects
(X, Ox) whose truncation (X, m(Ox)) is a locally ringed space, and maps induc-
ing local morphisms on the ringed spaces obtained by truncations. The inclusion
oo-functor dRgSp'*® — dRgSp is not fully faithful but it is faithful in the sense
that the morphisms induced on mapping spaces are inclusions of union of connected
components.

With this new language the oco-category of derived schemes is defined as follows.

Definition 2.5. The oco-category of derived schemes is defined to be the full sub-
oo-category of ngSploc consisting of all objects (X, Ox) with the two conditions
above satisfied.

(1) The truncation (X, m(Ox)) is a scheme.
(2) For all i the sheaf of mo(Ox)-modules m;(X) is quasi-coherent.

The oco-category of derived schemes is denoted by dSt.

A ring can be considered as a constant simplicial ring, and this defines a full
embedding i : Comm — sComm, from the category of commutative of rings to
the oo-category of derived rings. This inclusion has a left adjoint given by the
oo-functor my. This adjunction extends to an adjunction at the level of derived
ringed spaces, derived locally ringed spaces and derived schemes. We thus have an
adjunction

to : dSch = Sch : 7,

between the co-category of schemes and the category of schemes. The functor i is
moreover fully faithful, and therefore schemes sit inside derived schemes as a full
sub-oo-category. The oco-functor to sends a derived scheme (X, Ox) to the scheme
(X,m0(Ox)). We will often omit to mention the functor ¢ and simply considered
Sch as sitting inside dSch as a full subcategory. By adjunction, for any derived
scheme X there is a natural morphism of derived schemes

jito(X) — X.

Remark 2.3. It is an accurate analogy to compare the morphism j : to(X) —
X with the inclusion Y,.q < Y, of the reduced subscheme Y,.4 of a scheme Y.
In this way, the truncation to(X) sits inside the derived scheme X, and X can

6From now on we will not refer to the warning 2.4 anymore
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be thought as some sort of infinitesimal thickening of #o(X), but for which the
additional infinitesimals functions live in higher homotopical degrees.

The truncation ¢y possesses generalizations t<,, for various integers n > 0 (with
to = t<o). Let X be a derived scheme. The stack of derived rings Ox has a
Postnikov tower

It is characterized, as a tower of morphisms in the co-category of stacks of derived
rings on X, by the following two properties.
e For all ¢ > n, we have m;(t<,(Ox)) ~ 0.
e For all ¢ < n, the morp}_lism Ox — t<p(Ox) induces isomorphisms
mi(Ox) > 7i(t<n(Ox)).
Each derived ringed space (X,t<,(Ox)) defines a derived scheme, denoted by
t<n(X), and the above tower defines a diagram of derived schemes

to(X) = t<1(X) = - 2 t<pn(X) 2 t<pi(X) = - = XL

This diagram exhibits X as the colimit of the derived schemes t<, (X) inside the
oo-category dSch. The Postnikov tower of derived schemes is a powerful tool in
order to understand maps between derived schemes and more generall mapping
spaces. Indeed, for two derived schemes X and Y we have

Mapasen(X,Y) ~ Lig(l)MapdSch(tanytgnY) ~ }lig%)Ma'pdSCh(tan7 Y),

which presents that mapping spaces as a (homotopy) limit of simpler mapping
spaces. First of all, for a given n, the mapping space Mapdasech(t<nX,t<nY)
is automatically n-truncated (its nontrivial homotopy is concentrated in degree
less or equal to n). Moreover, the projection Mapasch(t<nt1X,t<n+1Y) —
Mapdasen(t<nX,t<,Y) can be understood using obstruction theory, as this will
be explained in our section §4.1): the description of the fibers of this projection
consists essentially into a linear problem of understanding some specific extensions
groups of sheaves of modules.

The above picture of Postnikov towers is very analogous to the situation with
formal schemes: any formal scheme X is a colimit of schemes X,, together with
closed immersions X,, < X, 41 corresponding to a square zero ideal sheaf on X, ;.
This analogy with formal scheme is a rather accurate one.

To finish this paragraph we mention some basic examples of derived schemes and
mapping spaces between derived schemes. More advanced examples will be given
in the next paragraph and later.

Affine derived schemes. We let dAfT be the full sub-co-category of dSch consisting
of derived schemes X whose truncation my(X) is an affine scheme. Objects in dAff
are called affine derived schemes. We have an oco-functor of global functions

H(—,Ox) : dAff°? — sComm,

sending an affine derived scheme X to H(X,Ox) := p.(Ox), where p : X — %
is the canonical projection, and p, is the induced oco-functor on oco-categories of
stacks of derived rings. The oo-functor H can be shown to be an equivalence of co-
categories. The inverse oo-functor of H is denoted by Spec, and can be described
as follows. Let A be a simplicial commutative ring. We consider the (underived)
affine scheme S = Spec Ay, the spectrum of the ring of 0-dimensional simplicies in
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A. The simplicial ring A is in a natural way a simplicial commutative Ag-algebra
(through the natural inclusion Ay — A) and thus defines a sheaf of simplicial
quasi-coherent Og-modules A on S. This sheaf defines a stack of derived rings on
S and thus an object on sComm(S). We denote by X C S the closed subset defined
by Specmo(A) (note that the ring mo(A) is a quotient of Ap). By construction, the
stack of derived rings A is supported on the closed subspace X, in the sense that its
restriction on S — X is equivalent to 0. This implies that it is equivalent to a stack
of derived rings of the form i,(Ox) for a well defined object Ox € sComm(X)
(i, produces an equivalence between stacks of derived rings on S supported on X
and stacks of derived rings on X). The derived ringed space (X, Ox) is denoted
by Spec A and is an affine derived scheme. The two constructions H and Spec are
inverse to each other.

Fibered products. The oo-category dSch of derived schemes has all finite limits
(see [Toén-Vezz3, §1.3.3]). The final object is of course * = SpecZ. On the level
of affine derived schemes fibered products are described as follows. A diagram
of affine derived schemes X ——= S <——Y defines, by taking global functions,
a corresponding diagram of derived rings A <——C —— B . We consider the
derived ring D := A ®% B € sComm. From the point of view of co-categories
the derived ring D is the push-out of the diagram A <—— C ——= B. It can be
constructed explicitly by replacing B by a simplicial C-algebra B’ that is a cellular
C-algebra (see [Toén-Vaqul, §2.1] for the general notion of cellular objects), and
then considering the naive levelwise tensor product A®¢ B’. For instance, when A,
B and C are all commutative rings then D is a simplicial commutative ring with the
property that m,(D) ~ Torl (A, B). In general, for a diagram of derived schemes
X ——= S5 <~——Y | the fibered product X xgY can be described by gluing the
local affine pictures as above. Again, when X, Y and S are merely (underived)
schemes, Z := X xg Y is a derived scheme whose truncation is the usual fibered
product of schemes. The homotopy sheaf of the derived structure sheaf O, are the
higher Tor’s
n(Oz) =~ Torf?s((’)x, Oy).

We see here the link with Serre’s intersection formula discussed at the beginning of
1.

We note that the inclusion functor i : Sch — dSch does not preserve fibered
products in general, except under the extra condition of Tor-independence (e.g.,
if one of the maps is flat). In contrast to this, the truncation co-functor t; sends
fibered products of derived schemes to fibered products of schemes. This is a source
of a lot of examples of interesting derived schemes, simply by constructing a derived
fibered product of schemes. A standard example is the derived fiber of a nonflat
morphism between schemes.

Self-intersections. Let Y C X be a closed immersion of schemes, and consider the
derived scheme Z :=Y xx Y € dSch. The truncation to(Z) is isomorphic to the
same fibered product computed in Sch, and thus is isomorphic to Y. The natural
morphism to(Z) ~ Y — Z is here induced by the diagonal Y — Y xx Y. The
projection to one of the factors produces a morphism of derived schemes Z — Y
that is a retraction of ¥ — Z. This is an example of a split derived scheme Z:
the natural map to(Z) — Z admits a retraction (this is not the case in general).
For simplicity we assume that Y is a local complete intersection in X, and we let
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T C Ox be its ideal sheaf. The conormal bundle of Y inside X is then NV ~ T /72,
which is a vector bundle on Y.

When X = Spec A is affine, and Y = Spec A/I, the derived scheme Z can be
understood in a very explicit manner. Let (fi,..., f.) en regular sequence gener-
ating I. We consider the derived ring K (A, f.), which is obtained by freely adding
a l-simplices h; to A such that do(h;) = 0 and dy(hy) = f; (see [Toén3], proof
of proposition 4.9, for details). The derived ring K (A, f) has a natural augmen-
tation K (A, f) — A/I which is an equivalence because the sequence is regular.
It is moreover a cellular A-algebra, by construction, and thus the derived ring
AJT ®Y A/I can be identified with B = K(A, f) ®4 A/I. This derived ring is an
A/I-algebra such that 7y (B) ~ I/I?. As I/I? is a projective A/I-module we can
represent the isomorphism 71 (B) ~ I/I? by a morphism of simplicial A/I-modules
I/I?[1] — B, where [1] denotes the suspension in the oo-category of simplicial
modules. This produces a morphism of derived rings Syma,;(I/1?[1]) — B,
where Sym 4,; denotes here the co-functor sending an A/I-module M to the de-
rived A/I-algebras it generates. This morphism is an equivalence in characteristic
zero, and thus we have in this case

Z =~ Spec (Sym.a;1(I/I*[1])).
In nonzero characteristic a similar but weaker statement is true, we have
Z ~ Spec B
where now the right hand side is not a free derived ring anymore, but satisfies
T (B) =~ @50 A (1/17)]i).

The local computation we just made shows that the sheaf of graded Oy -algebras
7(Oz) is isomorphic to Syme, (MV[1]). However, the sheaf of derived rings Oz
is not equivalent to Syme, (NV[1]) in general (i.e., in the non-affine case). It is
locally so in characteristic zero, but there are global cohomological obstructions for
this to be globally true. The first of these obstructions is a cohomology class in
ay € Ext? (NV,A2NY), which can be interpreted as follows. We have a natural
augmentation of stacks of derived rings O; — Oy, which splits as Oz ~ Oy x K,
where we consider this splitting in D g0, (Y), the derived category of quasi-coherent
complexes on Y. The complex K is cohomogically concentrated in degrees | — oo, 1],
and we can thus consider the exact triangle

H2(K)[2] — 75 _o(K) — H}(K)[1] —2> H~2(K)[3].
The class ay is represented by the boundary map 9.

The obstruction class ay has been identified with the obstruction for the conor-
mal bundle NV to extend to the second infinitesimal neighbourhood of Y in X. The
higher obstruction classes live in Exti (N, AY’A) and can be shown to vanish if
the first obstruction o does so. We refer to [Arin-Cald, Griv] for more details on
the subject, and to [Cala-Cald-Tu] for some refinement.

Remark 2.4. One of the most important derived self-intersection is the derived
loop scheme X X xxx X, which we will investigate in more detail in our §4.4. It
behaves in a particular fashion as the inclusion X — X x X possesses a global
retraction.
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FEuler classes of vector bundles. We let X be a scheme and V a vector bundle
on X (considered as a locally free sheaf of Ox-modules), together with a section
s € T(X,V). We denote by V = Spec Symo, (V") the total space of V, consid-
ered as a scheme over X. The section s and the zero section define morphisms

X—=Ssv<2 X , out of which we can form the derived fiber product X xvy X.

This derived scheme is denoted by Eu(V,s), and is called the Fuler class of V
with respect to s. The truncation to(Eu(V,s)) consists of the closed subscheme
Z(s) C X of zeros of s, and the homotopy sheaves of the derived structure sheaf
Opu(v,s) controls the defect of Tor-independence of the section s with respect to
the zero section.

Locally the structure of Eu(V,s) can be understood using Koszul algebras as
follows. We let X = Spec A and V be given by a projective A-module M of
finite type. The section s defines a morphism of A-modules s : MY — A. We
let K (A, M,s) be the derived ring obtained out of A by freely adding M" as 1-
simplicies, such that each m € M"Y has boundary defined by do(m) = s(m) and
dy(m) = 0. This derived ring K (A, M, s) is a simplicial version of Koszul resolutions
in the dg-setting, and Spec K (A, M, s) is equivalent to Eu(V,s). In characteristic
zero, derived rings can also be modelled by commutative dg-algebras (see §3.4), and
K (A, M, s) then becomes equivalent to the standard Koszul algebra Sym 4 (MY [1])
with a differential given by s.

3. DERIVED SCHEMES, DERIVED MODULI, AND DERIVED STACKS

In this section, we present the functorial point of view of derived algebraic ge-
ometry. It consists of viewing derived schemes as certain (oo)-functors defined on
simplicial algebras, similarly to the way schemes can be considered as functors on
the category of algebras (see for instance [Eise-Harr]). This will lead us to the
notion of derived moduli problems and to the representability by derived schemes
and more generally, by derived Artin stacks, a derived analogue of algebraic stacks
(see [Laum-More]), as well as to a far-reaching generalization of derived schemes
obtained by allowing certain quotients by groupoid actions. We will again provide
basic examples, as well as more advanced examples deduced from the Artin-Lurie
representability theorem. Finally, we will mention the existence of many variations
of derived algebraic geometry, such as derived analytic and differential geometry,
derived log geometry, spectral geometry, etc.

3.1. Some characteristic properties of derived schemes. We have gathered in
this paragraph some properties shared by derived schemes which are characteristic
in the sense that they do not hold in general for schemes without some extra
and nontrivial conditions. They provide a first motivation for the introduction of
derived schemes and clearly show that the theory of derived schemes has much more
regularity than the theory of schemes. We will later see many more examples.

Base change. A scheme X possesses a quasi-coherent derived category D yeon(X),
which for us will be the derived category of (unbounded) complexes of O x-modules
with quasi-coherent cohomology sheaves (see for instance [Bond-Vand]). In the
same way, a derived scheme X possesses a quasi-coherent derived oco-category
L gcon(X), defined as follows.
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We consider the co-category Zaff (X) of affine open derived subschemes U C X.
This co-category can be shown to be equivalent to a poset, in fact, through the func-
tor U +— to(U), to the poset of open subschemes in to(X) (see [Schu-Toén-Vezz,
Prop. 2.1]). For each object U € Zaff (X) we have its derived ring of func-
tions Ay := H(U,Op). The simplicial ring Ay can be normalized to a commu-
tative dg-algebra N(Ay), for which we can consider the category N(Ay)-Mod of
(unbounded) N(Ay)-dg-modules (see [Ship-Schw] for more about the monoidal
properties of the normalization functor). Localizing this category along quasi-
isomorphisms defines an oco-category Lgeon(U) := L(N(Ay)-Mod, quasi-isom). For
each inclusion of open subsets V' C U C X, we have a morphism of commuta-
tive dg-algebras N(Ay) — N(Ay) and thus an induced base change oo-functor
— ®HJ;[(AU) N(Av) : Lgeon(U) — Lgcon(V). This defines an oo-functor Lyeon(—) :
Zaff (X)°P — oo-Cat, which moreover is a stack (i.e., satisfies the descent condi-
tion explained in §2.1.2) for the Zariski topology. We set

choh(X) = UEZtlzijI'fr(lX)OPLqCOh(U) € OO-C&t,
where the limit is taken in the co-category of oco-categories, and call it the quasi-
coherent derived co-category of X. When X is a scheme, Lgcon(X) is an oo-
categorical model for the derived category Dgcon(X) of Ox-modules with quasi-
coherent cohomologies: we have a natural equivalence of categories
[choh(X)] = choh(X)~

When X = Spec A is affine for a derived ring A, then Lgc,(X) is naturally identi-
fied with L(A) the co-category of dg-modules over the normalized dg-algebra N(A).
We will for E € L(A) often use the notation m;(E) := H~%(FE). Similarly, for a
general derived scheme X, and E € Lcon(X), we have cohomology sheaves H'(E)
that are quasi-coherent on ¢y(X), and which we will also denote by m;(E)

For a morphism between derived schemes f : X —— Y there is an natural
pull-back co-functor f* : Lgcon(Y) — Lgeon(X), as well as its right adjoint the
push-forward fi : Lgycon(X) — Lgeon(Y). These are first defined locally on the
level of affine derived schemes: the oo-functor f* is induced by the base change
of derived rings whereas the oco-functor f, is a forgetful co-functor. The general
case is done by gluing the local constructions (see [Toén2, §4.2], [Toén4, §1.1] for
details).

By the formal property of adjunction, for any commutative square of derived
schemes

x 9. x
Y ——=Y

there is a natural morphism between oco-functors
h: f*pe = ¢«g" : Locon(X) — Lgeon(Y).

The base change theorem (see [Toénd, Prop. 1.4]) insures that h is an equiva-
lence of co-functors as soon as the square is cartesian and all derived schemes are
quasi-compact and quasi-separated. When all the derived schemes are schemes and
moreover [ is flat, then X’ is again a scheme and the base change formula recovers
the usual well known formula for schemes. When f and p are not Tor-independent
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the derived scheme X’ is not a scheme and the difference between X’ and its trun-
cation to(X"’) measures the excess of intersection (see e.g. [Fult-Lang, §6]). All the
classical excess intersection formulae can be recovered from the base change formula
for derived schemes.

Tangent complexes, smooth and étale maps. Let A be a derived ring and M a
simplicial A-module. We can form the trivial square zero extension A @ M of A by
M. It is a simplical ring whose underlying simplicial abelian group is A x M, and
for which the multiplication is the usual one (a,m).(a’,m') = (a.a’, am’ +a’m) (this
formula holds degreewise in the simplicial direction). If we denote by X = Spec A4,
then Spec (A® M) will be denoted by X[M], and is by definition the trivial square
zero extension of X by M. We note here that M can also be considered through its
normalization as a N(A)-dg-module and thus as an object in Lgcop(X) with zero
positive cohomology sheaves.

This construction can be globalized as follows. For X a derived scheme and F
an object in Lgqop(X) whose cohomology is concentrated in nonpositive degrees,
we can form a derived scheme X[M] as the relative spectrum Spec (Ox @ E).
Locally, when X = Spec A is affine, E corresponds to a simplicial A-module, and
X[M] simply is Spec (A ® M). The derived scheme X[M] sits under the derived
scheme X itself and is considered in the comma oco-category X/dSch of derived
schemes under X. The mapping space Mapx ascn(X[M], X) is called the space of
derivations on X with coefficients in M, and when E = Ox this can be considered
as the space of vector fields on X. It is possible to show the existence of an object
Lx together with a universal derivation X[Lx] — X. The object Lx together
with the universal derivation are characterized by the following universal property

Mapxjasen(X[M], X) ~ Mapy,,,x)(Lx, M).

The object Lx is called the absolute cotangent complex of X. Its restriction on an
affine open Spec A C X is a quasi-coherent complex L g.on(Spec A) which corre-
sponds to the simplicial A-module L4 introduced in [Quill].

The absolute notion has a relative version for any morphism of derived schemes
f: X — Y. There is a natural morphism f*(Ly) — Lx in Lgn(X), and the
relative cotangent complex of f is defined to be its cofiber

Lx,y =Ly := cofiber (f*(Ly) — Lx).

It is an object in Lgcon(X), cohomologically concentrated in nonpositive degrees,
and equiped with a universal derivation X[Lx/y] — X which is now a morphism
in the double comma co-category X/dSch/Y.

One of the characteristic properties of derived schemes is that cotangent com-
plexes are compatible with fibered products, as opposed to what is happening in
the case of schemes. For any cartesian square of derived schemes

x 9. x
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the natural morphism ¢*(Lx/y) — Lx//y- is an equivalence in Lcon(X'). This
property is true in the setting of schemes only under some Tor-independence con-
ditions insuring the pull-back square of schemes remains a pull-back in derived
schemes (e.g. when one of the morphism f or p is flat, see [Illu]).

We will see later on how cotangent complexes can also be used in order to
understand how morphisms decompose along Postnikov towers and more generally
how they control obstruction theories (see our §4.1). Let us simply mention here
that for any derived scheme X, the inclusion of i : to(X) — X induces a morphism
on cotangent complexes i*(Lx) — L, (x), which is always an obstruction theory
on to(X) in the sense of [Behr-Fant] (see [Schu] for more details about the relation
between derived scheme and the obstruction theories induced on the truncations).

Finally, cotangent complexes can be used in order to define smooth and étale
morphisms between derived schemes. A morphism f : X — Y in dSch will be
called étale (resp. smooth) if it is locally of finite presentation (see [Toén-Vezz3,
§2.2.2] for the definition of finite presentation in the homotopical context) and if
L vanishes (resp. Ly is a vector bundle on X'). An étale (resp. smooth) morphism
f: X — Y of derived schemes induces an étale (resp. smooth) morphism on
the truncations to(f) : to(X) — ¢o(Y), which is moreover flat: for all i the
natural morphism ¢o(f)*(m;(Oy)) — m(Ox) is an isomorphism of quasi-coherent
sheaves on to(X) (see [Toén-Vezz3, §2.2.2]). We easily deduce from this the so-
called Whitehead theorem for derived schemes: a morphism of derived scheme
f X — Y is an equivalence if and only if it induces an isomorphism on the
truncation and if it is moreover smooth.

Virtual classes. For a derived scheme X the sheaves m;(Ox) define quasi-coherent
sheaves on the truncation ¢o(X). Under the condition that ¢o(X) is locally noe-
therian, and that m;(Ox) are coherent and zero for ¢ > 0, we find a well defined
class in the K-theory of coherent sheaves on to(X)

[X]Er =3 " (=1) [m:(Ox)] € Golto(X)),
K3
called the K-theoretical virtual fundamental class of X.

The class [X |5V possesses another interpretation which clarifies its nature. We
keep assuming that to(X) is locally noetherian and that 7;(Ox) are coherent and
vanish for ¢ big enough. An object E € Lgcon(X) will be called coherent if it is
cohomologically bounded and if for all i, H(E) is a coherent sheaf on ¢o(X). The
oo-category of coherent objects in Dy, (X) form a thick triangulated subcategory
and thus can be used in order to define Go(X) as their Grothendieck group. The
group Go(X) is functorial in X for morphisms whose push-foward preserves coherent
sheaves. This is in particular the case for the natural map j : to(X) — X, and we
thus have a natural morphism j, : Go(to(X)) — Go(X). By devissage this map is
bijective, and we have

[X]5" = (7.)7H([Ox]).
In other words, [X]¥*" simply is the (nonvirtual) fundamental class of X, con-
sidered as a class on to(X) via the bijection above. This interpretation explains a
lot of things: as j.([X]¥"") = [Ox], integrating over to(X) with respect to the
class [ X5V is equivalent to integrating over X. Therefore, whenever a numerical
invariant is obtained by integration over a virtual class (typically a Gromov-Witten
invariant), then it is actually an integral over some naturally defined derived scheme.
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The virtual class in K-theory can also provide a virtual class in homology. As-
sume for instance that X is a derived scheme which is of finite presentation over
a field k, and that L/ is perfect of amplitude [—1,0] (i.e., is locally the cone of
a morphism between two vector bundles). Then ¢y(X) is automatically noetherian
and 7;(Ox) are coherent and vanish for ¢ big enough (see [Toén4, SubLem. 2.3]).
Moreover, the inclusion j : to(X) — X produces a perfect complex j*(LLx/;)
whose dual will be denoted by T¥" and called the virtual tangent sheaf. It has a
Todd class in Chow cohomology Td(T") € A*(to(X)) (see [Fult]). We can define
the virtual class in Chow homology by the formula

[X]Vr = ([ X] 5. Td(TV) 7 € AL (to(X)),

where 7 : Go(to(X)) — A.(to(X)) is the Grothendieck-Riemann-Roch transfor-
mation of [Fult, §18]. We refer to [Cioc-Kapr2, Lowr-Schu] for more on the subject.

Finally, K-theoretical virtual classes can be described for some of the basic exam-
ples of derived schemes mentioned in §2.2. For Y < X a local complete intersection
closed immersion of locally noetherian schemes, the virtual class of Y x x Y is given
by

YV xx YR = A (WY) =D (1) [NNY] € Go(Y),

where N is the normal bundle of Y in X. In the same way, for V a vector bundle
on a locally noetherian scheme X, with a section s, the virtual class of Eu(V,s) is
the usual K-theoretic Euler class of V

[Bu(V, )" = A_y(VY) € Go(Z(s)-

From this we get virtual classes of these two examples in Chow homology, as being
(localized) top Chern classes of the normal bundle N and of V.

Relations with obstruction theories and dg-schemes. Let X be a derived scheme of
finite presentation over some base ring k. The inclusion j : tq(X) — X provides
a morphism in L gcon(to(X))

I3 (Lxyk) — Lo x)/m

This morphism is a perfect obstruction theory in the sense of [Behr-Fant], and we
get this way a forgetful co-functor from the oco-category of derived schemes locally
of finite presentation over k to a certain oo-category of schemes (locally of finite
presentation over k) together with perfect obstruction theories. This forgetful oco-
functor is neither full nor faithful, but is conservative (as this follows from the
already mentioned Whitehead theorem, or from obstruction theory, see §4.1). The
essential surjectivity of this forgetful co-functor has been studied in [Schu]. The
notion of derived scheme is strictly more structured than the notion of schemes with
a perfect obstruction theory. The later is enough for enumerative purposes, typically
for defining virtual classes (as explained above), but is not enough to recover finer
invariants such as the quasi-coherent derived category of derived schemes.

The situation with dg-schemes in the sense of [Cioc-Kaprl] is opposite, there is
a forgetful functor from dg-schemes to derived schemes, which is neither full, nor
faithful nor essentially surjective, but is conservative. The notion of dg-schemes
is thus strictly more structured than the notion of derived schemes. To be more
precise, a dg-scheme is by definition essentially a pair (X, Z), consisting of a derived
scheme X, a scheme Z, and together closed immersion X — Z. Maps between
dg-schemes are given by the obvious notion of maps between pairs. The forgetful
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oo-functor simply sends the pair (X, Z) to X. Thus, dg-schemes can only model
embeddable derived schemes, that is derived schemes that can be embedded in a
scheme, and maps between dg-schemes can only model embeddable morphisms. In
general, derived schemes and morphisms between derived schemes are not embed-
dable, in the exact same way that formal schemes and morphisms between formal
schemes are not so. This explains why the notion of a dg-scheme is too strict
for dealing with certain derived moduli problems and only sees a tiny part of the
general theory of derived schemes.

Finally, there is also a forgetful co-functor from the category of derived schemes
(maybe of characteristic zero) to the 2-category of differential graded schemes of
[Behr]. This co-functor is again neither full, nor faithful, nor essentially surjective,
but is conservative. The major reason comes from the fact that differential graded
schemes of [Behr| are defined by gluing derived rings only up to 2-homotopy (i.e.,
in the 2-truncation of the co-category of derived rings), and thus misses the higher
homotopical phenomenon.

3.2. Derived moduli problems and derived schemes. In the last paragraph
we have seen the oo-category dSch of derived schemes, some basic examples as well
as some characteristic properties. In order to introduce more advanced examples
we present here the functorial point of view and embed the co-category dSch into
the co-topos dSt of derived stacks (for the étale topology). Objects in dSt are also
called derived moduli problems, and one major question is their representability.
We will see some examples (derived character varieties, derived Hilbert schemes
and derived mapping spaces) of derived moduli problems representable by derived
schemes. In order to consider more examples we will introduce the notion of derived
Artin stacks in our next paragraph §3.3, which will enlarge considerably the number
of examples of representable derived moduli problems.

We let dAF be the co-category of affine derived schemes, which is also equivalent
to the opposite oco-category of derived rings sComm. The oo-category can be
endowed with the étale topology: a family of morphisms between affine derived
schemes {U; — X} is defined to be an étale covering if

e each morphism U; — X is étale (i.e. of finite presentation and Ly, x ~ 0),
e the induced morphism on truncations [, to(U;) — to(X) is a surjective
morphism of schemes.

The étale covering families define a Grothendieck topology on dAff and we can
thus form the co-category of stacks (see §2.1.2). We denote it by

dSt := dAfF™.

Recall from §2.1.2 that the oo-category dSt consists of the full sub-oo-category of
Fun® (sComm, S) of co-functors satisfying the etale descent condition. By defini-
tion, dSt is the co-category of derived stacks, and is the oo-categorical version of
the category of sheaves on the big étale site of affine schemes (see e.g. [Laum-More,
§1]for the big étale site of underived schemes). Its objects are simply called derived
stacks or derived moduli problems, and we will be interested in their representabil-
ity by geometric objects such as derived schemes, or more generally derived Artin
stacks.
We consider the Yoneda embedding

h : dSch — dSt,
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which sends a derived scheme X to its oo-functor of points Mapascn(—, X) (re-
stricted to affine derived schemes). The oo-functor h is fully faithful, which follows
from a derived version of fpqc descent for schemes (see [Toén-Vezz3, Lurid]). A
derived moduli problem F' € dSt is then representable by a derived scheme X if
it is equivalent to hx. Here are below three examples of derived moduli problems
represented by derived schemes.

Derived character varieties. We first describe a derived version of character varieties
and character schemes, which are derived extensions of the usual affine algebraic
varieties (or schemes) of linear representations of a given group (see e.g. [Cule-Shal]).

We fix an affine algebraic group scheme G over some base field k. We let I' be a
discrete group and we define a derived moduli problem RMap(T', G), of morphisms
of groups from I' to G as follows. The group scheme G is considered as a derived
group scheme using the inclusion Schy < dSchy, of schemes over k to derived
schemes over k. The group object G defines an oco-functor

G : dAfFYY — S-Gp,

from affine derived schemes to the co-category of group objects in S, or equivalently
the oo-category of simplicial groups. We define RMap(T',G) : dAff}” — S by
sending S € dAfF}” to Maps.cp(T, G(9)).

The derived moduli problem RMap(T', G) is representable by an affine derived
scheme. This can be seen as follows. When I' is free, then RMap(I',G) is a
(maybe infinite) power of G, and thus is an affine scheme. In general, we can write
I" has the colimit in S-Gp of free groups, by taking for instance a simplicial free
resolution. Then RMap(T', G) becomes a limit of affine derived scheme and thus
is itself an affine derived scheme. When the group I' has a simple presentation by
generators and relations the derived affine scheme RMap(I', G) can be described
explicitly by means of simple fibered products. A typical example appears when I"
is fundamental group of a compact Riemann surface of genus g: the derived affine
scheme RMap(T', G) comes in a cartesian square

RMap(T, G) — G

|

Speck —— G,

where the right vertical map sends (z1,...,24,%1,...,Yy) to the product of com-
mutators [, [z, yi].

The tangent complex of the derived affine scheme RMap(T', G) can be described
as the group cohomology of G with coefficients in the universal representation
p: ' — G(RMap(T',G)). The morphism p defines an action of G on the trivial
principal G-bundle on RMap(T', G), and thus on the vector bundle V" associated to
the adjoint action of G on its Lie algebra g. The cochain complex of cohomology of I"
with coefficients in V' provides a quasi-coherent complex C*(T', V) on RMap(T', G).
The tangent complex is then given by the part sitting in degrees [1, 00| as follows

TRMap(F,G) ~ C’Zl(F, V)[l}

The algebraic group G acts on RMap(T',G), and when G is linearly reductive
we can consider the derived ring of invariant functions O(RMap(T,G))¢. The
spectrum of this derived ring Spec O(RMap(T', G))€ is a derived GIT quotient of
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the action of G on RMap(T', G) and deserves the name of derived character variety
of I' with coefficients in G.

It is interesting to note here that the above construction can be modified in a
meaningful manner. We assume that I' is the fundamental group of a connected
CW complex X. We can modify the derived moduli problem of representations
of I' by now considering rigidified local systems on the space X. In the underived
setting these two moduli problems are equivalent, but it is one interesting feature of
derived algebraic geometry to distinguish them. We define RLoc* (X, G) as follows.
We chose a simplicial group I', with a weak equivalence X ~ BT',, that is I'y is a
simplicial model for the group of based loops in X. We then define RMap(T'., G)
by sending a derived scheme S to Maps.gp(T's, G(S)). This new derived moduli
problem is again representable by a derived affine scheme RLoc* (X, G). The trun-
cations of RLoc™(X,G) and RMap(I',G) are both equivalent to the usual affine
scheme of maps from I" to G, but the derived structures differ. This can be seen
at the level of tangent complexes. As for RMap(I', G) then tangent complex of
RLoc* (X, Q) is given by

TrLoe* (x,6) = Cp (X, V)[1],

where now V is considered as a local system of coefficients on X and we consider
the cochain complex of cohomology of X with coefficients in V, and CZ(X,V)
denotes the reduced cohomology with respect to the base point = of X (the fiber
of C*(X,V) — C*({z},V) ~ g). Interesting examples are already obtained with
I' = % and X higher dimensional spheres. For X = S™, n > 1, and k of caracteristic
zero, we have

RLoc* (X, G) ~ Spec Symy,(g*[n — 1]).

The derived scheme of maps. We let k be a commutative ring and X be a scheme
which is projective and flat over Speck, and Y a quasi-projective scheme over
Speck. We consider the derived moduli problem of maps of derived k-schemes
from X to Y, which sends S € dSchy to Mapgscn, (X x S,Y). This is a derived
stack (over k) RMap,,(X,Y) € dSty, which can be shown to be representable by a
derived scheme RMap, (X,Y’) which is locally of finite presentation of Speck (see
corollary 3.3 for a more general version). The truncation to(RMap,(X,Y)) is the
usual scheme of maps from X to Y as originally constructed by Grothendieck. Ex-
cept in some very specific cases the derived scheme RMap,,(X,Y") is not a scheme.
This can be seen at the level of tangent complexes already, as we have the following
formula for the tangent complex of the derived moduli space of maps

TrMap, (x,v) = T (ev™(Ty)) € Lycon(RMap,(X,Y)),

where ev : RMap, (X,Y)xX — Y is the evaluation morphism, and 7 : RMap, (X,Y")x
X — RMap,(X,Y) is the projection morphism. This formula shows that when Y
is for instance smooth, then Tryap, (x,v) is perfect of amplitude contained in [0, d]
where d is the relative dimension of X over Speck. When this amplitude is actu-
ally strictly bigger than [0, 1], the main result of [Avra] implies that RMap, (X,Y)
cannot be an (underived) scheme.

One consequence of the representability of RMap,, (X, X) is the representability
of the derived group of automorphisms of X, RAutg(X), which is the open de-
rived subscheme of RMap,, (X, X) consisting of automorphisms of X. The derived
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scheme RAut(X) is an example of a derived group scheme locally of finite pre-
sentation over Speck. Its tangent complex at the unit section is the complex of
globally defined vector fields on X over Speck, H(X,Tx). We will see in §5.4 that
the complex H(X, Tx) always comes equipped with a structure of a dg-lie algebra,
at least up to an equivalence, and this dg-lie algebra is here the tangent Lie algebra
of the derived group scheme RAuty(X). For the same reasons as above, invoking
[Avra], the derived group scheme RAuty(X) is in general not a group scheme.

Derived Hilbert schemes. We let again X be a projective and flat scheme over Spec k
for some commutative ring k. For sake of simplicity we will only be interested in a
nice part of the derived Hilbert scheme of X, corresponding to closed subschemes
which are of local complete intersection (we refer to [Cioc-Kaprl] for a more general
construction). For any S € dSchy we consider the oo-category dSchxg) of
derived schemes over X x S. We let RHilb'/(X)(S) be the (nonfull) sub-co-
category of dSchx ) defined as follows.

e The objects of RHilb(X)(S) are the derived schemes Z — X x S which
are flat over S, finitely presented over X x S, and moreover induce a closed
immersion on the truncation to(Z) < X X to(95).

e The morphisms are the equivalences in the oo-category dSchx g).

For a morphism of derived schemes S’ — S, the pull-back induces a morphism

of co-groupoids

RHilb'(X)(S) — RHilb" (X)(5").

This defines an oo-functor from dSch}” to the oo-category of oo-groupoids which
we can compose with the nerve construction to get an co-functor from dSch;” to S,
and thus a derived moduli problem. This derived moduli problem is representable
by a derived scheme RHileCi(X ) which is locally of finite presentation over Spec k.
Its truncation is the open subscheme of the usual Hilbert scheme of X (over k)
corresponding to closed subschemes which are embedded in X as local complete
intersections.

The tangent complex of RHileCi(X ) can be described as follows. There is a
universal closed derived subscheme j : £ — X x RHilb'“(X), with a relative
tangent complex T; which consists of a vector bundle concentrated in degree 1 (the
vector bundle is the normal bundle of the inclusion j). If we denote by p: Z —
]RHilblCi(X ) the flat projection, we have

TRHilblci(x) ~ p.(T;[1]).
In the same way, there exists a derived Quot scheme representing a derived
version of the Quot functor. We refer to [Cioc-Kaprl] for more on the subject.

3.3. Derived moduli problems and derived Artin stacks. It is a fact of life
that many interesting moduli problems are not representable by schemes, and alge-
braic stacks have been introduced in order to extend the notion of representability
(see [Grot4, Deli-Mumf, Arti, Laum-More]). This remains so in the derived setting:
many derived moduli problems are not representable by derived schemes and it is
necessary to introduce more general objects called derived Artin stacks in order to
overcome this issue.

In the last paragraph we have embedded the oco-category of derived schemes
dSch into the bigger oo-category of derived stacks dSt. We will now introduce an
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intermediate co-category dSt4”

dSch c dSt4" c dSt,

which is somehow the closure of dSch by means of taking quotient by smooth
groupoid objects (see [Laum-More, 4.3.1] for the notion of groupoid objects in
schemes in the nonderived setting).

A groupoid object dSt (also called a Segal groupoid), consists of an oo-functor

X, AP — dSt

satisfying the two conditions below.

(1) For all » the Segal morphism

Xn—)Xl XXDXI XX XX Xl

0

is an equivalence of derived stacks.
(2) The composition morphism

XQ—)Xl XXOXI

is an equivalence of derived stacks.

In the definition above the object Xy € dSt is the derived stack of objects of the
groupoid X,, and X; the derived stack of morphisms. The morphism in the first
condition above is induced by maps [1] — [n] in A sending 0 to ¢ and 1 to i+ 1. Tt
provides the composition in the grupoid by means of the following diagram

X1 XX[)XlﬁXQ—)Xl

induced by the morphism [1] — [2] sending 0 to 0 and 1 to 2. The morphism of the
second condition insures that this composition is invertible up to an equivalence.
We refer the reader to [Toén-Vezz2, Def. 4.9.1] [Toén-Vezz3, §1.3.4] for more about
Segal cateories and Segal groupoids objects.

We say that a groupoid object X, is a smooth groupoid of derived schemes if
Xo and X, are derived schemes and if the projections X; — Xy are smooth
morphisms of derived schemes. The colimit of the simplicial object X, is denoted
by | X.| € dSt and is called the quotient derived stack of the groupoid X,.

Definition 3.1. (1) A derived stack is a derived 1-Artin stack if it is of the
form |X,| for some smooth groupoid of derived schemes X,.

(2) A morphism f: X — Y between derived 1-Artin stacks is smooth if there
exist smooth groupoids of derived schemes X, and Y, and a morphism of
groupoid objects fi : X, — Y with fo : Xog — Y smooth, such that |f|
is equivalent to f.

The derived 1-Artin stack form a full sub-oo-category dst?™! < dSt which
contains derived schemes (the quotient of the constant groupoid associated to a
derived scheme X gives back X). Moreover the definition above provides a notion
of smooth morphisms between derived 1-Artin stacks and the definition can thus
be extended by an obvious induction.

Definition 3.2. (1) A derived stack is a derived n-Artin stack if it is of the
form |X,| for some smooth groupoid of derived (n — 1)-Artin stacks X,.
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(2) A morphism between derived n-Artin stacks f : X — Y is smooth if
there exists smooth groupoid of derived (n — 1)-Artin stacks X, and Y, a
morphism of groupoid objects f, : X, — Y, with fy: Xg — Y{ smooth,
and such that |f.| is equivalent to f.

A derived stack is a derived Artin stack if it is a derived n-Artin stack for some
n. The full sub-oco-category of derived Artin stacks is denoted by dst?".

Here are some standard examples of derived Artin stacks. More involved exam-
ples will be given later after having stated the representability theorem 3.2.

Quotients stacks. Let G be a smooth group scheme over some base derived scheme
S. We assume that G acts on a derived scheme X — S. We can form the quotient
groupoid B(X, @), which is the simplicial object that is equal to X x ¢ G™ in degree
n, and with the faces and degeneracies defined in the usual manner by means of
the action of G on X and the multiplication in G. The groupoid B(X,G) is a
smooth groupoid of derived schemes over S, and its quotient stack |B(X,G)| is
thus an example of a derived Artin stack which is denoted by [X/G]. It is possible
to prove that for a derived scheme S’ — S, the simpicial set Mapgss,s(S’, [X/G])
is (equivalent to) the nerve of the co-groupoid of diagrams of derived stacks over S
endowed with G-actions
P——sX

-

S —385,

where the induced morphism [P/G] — S’ is moreover an equivalence (i.e., P —
S’ is a principal G-bundle).

In the example of the derived character scheme given in §3.2, the group G acts
on RMap(T", G), and the quotient stack [RMap(I", G)/G] is now the derived Artin
stack of representations of I" with coefficients in G up to equivalence. In the same
way, RLoc(X, Q) := [RLoc* (X, G)/G] becomes the derived Artin stack of G-local
systems on the topological space X without trivialization at the base point. For
higher dimensional spheres and k a field of characteristic zero, we get an explicit
presentation

RLoc(S",G) ~ [Spec A/G],
where A = Symy(g*[n — 1]) and G acts on A by its co-adjoint representation.

FEilenberg-MacLane and linear derived stacks. If G is a smooth derived group scheme
over some base derived scheme S, we have a classifying stack BG := [S/G] over
S. When G is abelian the derived Artin stack BG is again a smooth abelian
group object in derived stacks. We can therefore iterate the construction and set
K(G,n) := B(K(G,n — 1)), K(G,0) = BG. The derived stack K(G,n) is an
example of a derived n-Artin stack smooth over S. For each scheme S’ — S we
have
mi(Mapases(S', K (G,n))) ~ HI (S, Gs:),

where g/ is the sheaf of abelian groups represented by G on the small étale site
of the derived scheme S’.

It is also possible to define K(G,n) with n < 0 by the formula K(G,n) :=
S X g (Gnt1) 5. With these notations, we do have S X g(g,n) S ~ K(G,n —1) for all
n € Z, and these are all derived group schemes over S, smooth for n > 0. However,
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K(G,n) are in general not smooth for n < 0. In the special case where G is affine
and smooth over over S a scheme of characteristic zero, K (G, n) can be described
as a relative spectrum K (G,n) ~ Spec Symo,(g*[—n]) for n < 0 and g is the Lie
algebra of G over S.

A variation of the notion of Eilenberg-MacLane derived stack is the notion of
linear stack associated to perfect complexes. We let S be a derived scheme and
E € Lyon(S) be a quasi-coherent complex on S. We define a derived stack
V(E) over S as follows. For u : S’ — S a derived scheme we let V(E)(S’) :=
Mapy,,,,(s"(u*(E),Os/). This defines an oo-functor V(E) on the oo-category of
derived schemes over S and thus an object in dSt/S, the oco-category of derived
stacks over S. The derived stack V(E) is a derived Artin stack over S as soon as F is
a perfect Og-module (i.e., is locally for the Zariski topology on S a compact object
in the quasi-coherent derived category, see [Toén-Vaqul, §2.4] and [Toén-Vaqul,
SubLem. 3.9] for more on perfect objects and derived Artin stacks). More is
true, we can pull-back the relative tangent complex of V(E) along the zero section
e: S — V(E), and get (see §4.1 for (co)tangent complexes of derived Artin stack)
e*(Ty(g)y/s) ~ EY, where EY is the dual of E. We thus see that V(E) — S is
smooth if and only if EV is of amplitude contained in [—oo, 0], that is if and only if
E is of nonnegative Tor amplitude (see [Toén-Vaqul, §2.4], or below for the notion
of amplitude). On the other hand, V(F) is a derived scheme if and only if E is of
nonpositive Tor amplitude, in which case it can be written as a relative spectrum
V(E) ~ Spec (Symo,(E)). We note that when E is Og[n|, then V(E) simply
is K(Ggq,5,—n), where G, s is the additive group scheme over S. In general, the
derived stack V(E) is obtained by taking twisted forms and certain finite limits of
derived stacks of the form K (G, g, —n).

Perfect compleres. We present here a more advanced and less trivial example of
a derived Artin stack. For this we fix two integers a < b and we define a derived
stack RPerfl®? e dSt, classifying perfect complexes of amplitude contained in
[a,b]. As an oo-functor it sends a derived scheme S to the oo-groupoid (consider as
a simplicial set by the nerve construction, see §2.1.2) of perfect objects in L gcon(S)
with amplitude contained in [a, b]. We remind here that the amplitude of a perfect
complex F on S is contained in [a,b] if its cohomology sheaves are universally
concentrated in degree [a, b]: for every derived scheme S’ and every morphism w :
S" — S, we have H*(u*(E)) = 0 for i ¢ [a, b] (this can be tested for all S" = Spec L
with L a field). The following theorem has been announced in [Hirs-Simp], at least
in the nonderived setting, and has been proved in [Toén-Vaqul].

Theorem 3.1. The derived stack RPerf®® is a derived Artin stack locally of finite
presentation over SpecZ.

There is also a derived stack RPerf, classifying all perfect complexes, without
any restriction on the amplitude. The derived stack RPerf is covered by open
derived substacks RPerf [“’b], and is itself an increasing union of open derived Artin
substacks. Such derived stacks are called locally geometric in [Toén-Vaqul] but we
will allow ourselves to keep using the expression derived Artin stack.

The derived stack RPerf is one of the most foundamental example of derived
Artin stacks. First of all it is a far-reaching generalization of the varieties of com-
plexes (the so-called Buchsbaum-FEisenbud varieties, see e.g., [DeCo-Stri]). Indeed,
the variety of complexes, suitably derived, can be shown to produce a smooth atlas
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for the derived stack RPerf. In other words, RPerf is the quotient of the (derived)
varieties of complexes by the subtle equivalence relation identifying two complexes
which are quasi-isomorphic. The fact that this equivalence relation involves divid-
ing out by quasi-isomorphisms instead of isomorphisms is responsible for the fact
that RPerf is only a derived Artin stack in a higher sense. To be more precise,
RPerfl®" is a derived n-Artin stack where n = b — a 4+ 1. This reflects the fact
that morphisms between complexes of amplitude in [a, b] has homotopies and higher
homotopies up to degree n — 1, or equivalently that the co-category of complexes
of amplitude in [a, b] has (n — 1)-truncated mapping spaces.

The derived Artin stack RPerf also possesses some extension, for instance by
considering perfect complexes with an action of some nice dg-algebra, or perfect
complexes over a given smooth and proper scheme. We refer to [Toén-Vaqul] in
which the reader will find more details.

Derived stacks of stable maps. Let X be a smooth and projective scheme over the

complex numbers. We fix § € Hy(X(C),Z) a curve class. We consider M ZTS the

Artin stack of pre-stable curves of genus g an n marked points. It can be considered
—pre

as a derived Artin stack and thus as an object in dSt. We let Cy,, — M, the
universal pre-stable curve. We let

——pre

RMQJL ()(7 B) = RMapdSt/ﬁzT; (C.(L’f“ X),

be the relative derived mapping stack of Cy, to X (with fixed class 3). The
derived stack ]RMZTS (X, ) is a derived Artin stack, as this can be deduced from
the representability of the derived mapping scheme (see §3.2). It contains an open
derived Deligne-Mumford substack RM ,,(X, 3) which consists of stable maps. The
derived stack Rﬂgm(){ , B) is proper and locally of finite presentation over SpecC,
and can be used in order to recover Gromov-Witten invariants of X. We refer
to [Schu-Toén-Vezz] for some works in that direction, as well as [Toén5] for some
possible application to the categorification of Gromov-Witten theory.

We now state the representability theorem of Lurie, an extremely powerful tool
for proving that a given derived stack is a derived Artin stack, thus extending to
the derived setting the famous Artin’s representability theorem. The first proof
appeared in the thesis [Luri3] and can now be found in the series [Lurid]. There
also are some variations in [Prid] and [Toén-Vezz3, App. C].

Theorem 3.2. Let k be a noetherian commutative ring. A derived stack F € dSty
is a derived Artin stack locally of finite presentation over Speck if and only if the
following conditions are satisfied.

(1) There is an integer n > 0 such that for any underived affine scheme S over
k the simplicial set F(S) is n-truncated.

(2) For any filtered system of derived k-algebras A = colimA, the natural
morphism

colimyF(Ay) — F(A)

is an equivalence (where F(A) means F(Spec A)).
(3) For any derived k-algebra A with Postnikov tower

A Agk Agk_lﬁ...ﬁﬂ'o(/l)

)
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the natural morphism
F(A) — limkF(ASk)
18 an equivalence.
(4) The derived stack F has an obstruction theory (see [Toén-Vezz3, §1.4.2] for
details).
(5) For any local noetherian k-algebra A with mazimal ideal m C A, the natural
morphism
F(A) — lim, F(A/mF)
is an equivalence (where A = limA/m* is the completion of A).
We extract one important corollary of the above theorem.

Corollary 3.3. Let X be a flat and proper scheme over some base scheme S and
F be a derived Artin stack which is locally of finite presentation over S. Then the
derived mapping stack RMapgg, (X, F) is again a derived Artin stack locally of
finite presentation over S.

3.4. Derived geometry in other contexts. The formalism of derived schemes
and derived Artin stacks we have described in this section admits several modifica-
tions and generalizations that are worth mentioning.

Characteristic zero. When restricted to zero characteristic, derived algebraic geom-
etry admits a slight conceptual simplification due to the fact that the homotopy
theory of simplicial commutative Q-algebras become equivalent to the homotopy
theory of nonpositively graded commutative dg-algebras over Q. This fact can be
promoted to an equivalence of co-categories

<0
N :sCommyg =~ cdgag ,

induced by the normalization functor N. The normalization functor N from sim-
plicial abelian groups to cochain complexes sitting in nonpositive degrees has a
lax symmetric monoidal structure given by the so-called Alexander-Whithney mor-
phisms (see [Ship-Schw]), and thus always induces a well defined co-functor

N :sComm — cdga%o.

This oco-functor is not an equivalence in general but induces an equivalence on the
full sub-co-categories of Q-algebras.

The main consequence is that the notion of a derived scheme, and more generally
of a derived Artin stack can, when restricted over Spec@Q, also be modelled using
commutative dg-algebras instead of simplicial commutative rings: we can formally
replace sComm by cdgaa0 in all the definitions and all the constructions, and
obtain a theory of derived Q-schemes and derived Artin stacks over Q equivalent
to the one we have already seen. This simplifies a bit the algebraic manipulation at
the level of derived rings. For instance, the free commutative dg-algebras are eas-
ier to understand than free simplicial commutative algebras, as the latter involves
divided powers (see e.g. [Fres]). One direct consequence is that explicit computa-
tions involving generators and relations tend to be easier done in the dg-algebra
setting. A related phenomenon concerns explicit models, using model category of
commutative dg-algebras for example. The cofibrant commutative dg-algebras are,
up to a retract, the quasi-free commutative dg-algebras (i.e., free as graded, non-dg,
algebras), and are easier to understand than their simplicial counterparts.
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The reader can see derived algebraic geometry using dg-algebras in action for
instance in [Brav-Buss-Joyc, Boua-Groj, Pant-Toén-Vaqu-Vezz].

E.-Algebraic geometry. The theory of derived rings sComm can be slightly mod-
ified by using other homotopical notions of the notion of rings. One possibility,
which have been explored in [Luri4, Toén-Vezz3], is to use the oo-category of Eoo-
algebras (or equivalently HZ-algebras) instead of co-category of simplicial commu-
tative rings. The co-category Eoo—dgago, of nonpositively graded E.-dg-algebras
(over Z), behaves formally very similarly to the co-category sComm. It contains
the category of commutative rings as a full sub-co-category of O-truncated objects,
and more generally a given E.-dg-algebra has a Postnikov tower as for the case
of commutative simplicial rings, whose stage are also controlled by a cotangent
complex. Finally, the normalization functor induces an oo-functor

N : sComm — Eoo—dgago.

The oco-functor is not an equivalence, expect when restricted to Q-algebras again.
Its main failure of being an equivalence is reflected in the fact that it does not
preserve cotangent complexes in general. To present things differently, simplicial
commutative rings and F..-dg-algebras are both generated by the same elementary
pieces, namely commutative rings, but the manner these pieces are glued together
differs (this is typically what is happening in the Postnikov towers).

As a consequence, there is a very well established algebraic geometry over Eo.-dg-
algebras, which is also a natural extension of algebraic geometry to the homotopical
setting, but it differs from the derived algebraic geometry we have presented. The
main difference between the two theories can be found in the notion of smoothness:
the affine line over SpecZ is smooth as a derived scheme but it is not smooth as an
E-scheme (simply because the polynomial ring Z[T'] differs from the free Eoo-ring
on one generator in degree 0, the latter involving homology of symmetric groups
has nontrivial cohomology). Another major difference is that derived algebraic
geometry is the universal derived geometry generated by algebraic geometry (this
sentence can be made into a mathematical theorem, expressing a universal property
of dSch), whereas F..-algebraic geometry is not. From a general point of view,
F-algebraic geometry is more suited to treat questions and problems of topological
origin and derived algebraic geometry is better suited to deal with questions coming
from algebraic geometry.

Spectral geometry. Spectral geometry is another modification of derived algebraic
geometry. It is very close to F-algebraic geometry briefly mentioned above, and
in fact the F, theory is a special case of the spectral theory. This time it consists of
replacing the co-category sComm with SpComm, the co-category of commutative
ring spectra. This is a generalization of F.-algebra geometry, which is recovered as
spectral schemes over Spec HZ, where HZ is the Eilenberg-McLane ring spectrum.
Spectral geometry is mainly developed in [Luri4] (see also [Toén-Vezz3, §2.4]), and
has found an impressive application to the study of topological modular forms (see
[Luri5)).

Homotopical algebraic geometry. Homotopical algebraic geometry is the general
form of derived algebraic geometry, E-algebraic geometry and spectral geometry.
It is a homotopical version of relative geometry of [Haki], for which affine schemes
are in one-to-one correspondence with commutative monoids in a base symmetric
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monoidal model category (or more generally a symmetric monoidal co-category).
Most of the basic notions, such schemes, the Zariski, etale or flat topology, Artin
stacks ...have versions in this general setting. This point of view is developed in
[Toén-Vezz3] as well as in [Toén-Vaqu2], and makes it possible to do geometry in
non-additive contexts. Recently, this has lead to a theory of derived logarithmic
geometry as exposed in [Schu-Vezz].

Derived analytic geometries. Finally, let us also mention the existence of analytic
counter-parts of derived algebraic geometry, but which are out of the scope of this
paper. We refer to [Luri4] in which derived complex analytic geometry is discussed.

4. THE FORMAL GEOMETRY OF DERIVED STACKS

As we have seen any derived scheme X, or more generally a derived Artin stack,
has a truncation to(X) and a natural morphism j : tg(X) — X. We have already
mentioned that X behaves like a formal thickening of ¢o(X), and in a way the differ-
ence between derived algebraic geometry and algebraic geometry is concentrated at
the formal level. We explore this furthermore in the present section, by explaining
the deep interactions between derived algebraic geometry and formal/infinitesimal
geometry.

4.1. Cotangent complexes and obstruction theory. In §3.1 we have seen that
any derived scheme X possesses a cotangent complex Lx. We will now explain how
this notion extends to the more general setting of derived Artin stacks, and how it
controls obstruction theory.

Let X be a derived Artin stack. We define its quasi-coherent derived co-category
L ycon(X) by integrating all quasi-coherent derived oco-categories of derived schemes
over X. In a formula

choh(X) = SedliSIglh/XLqCOh(S)’

where the limit is taken along the oco-category of all derived schemes over X. By
using descent, we could also restrict to affine derived scheme over X and get an
equivalent definition.

We define the cotangent complex of X in a similar fashion as for derived schemes.
For M € Lycon(X), with cohomology sheaves concentrated in nonpositive degrees,
we set X [M], the trivial square zero infinitesimal extension of X by M. It is given
by the relative spectrum X[M] := Spec (Ox @ M). The object X[M] sits naturally
under X, by means of the augmentation Ox @ M — Ox. The cotangent complex
of X is the object Lx € Lgcon(X) such that for all M € Lgon(X) as above, we

have functorial equivalences
Mapxase(X[M], X) ~ Mapy,,(x)(Lx, M).

The existence of such the object Lx is a theorem, whose proof can be found in
[Toén-Vezz3, Cor. 2.2.3.3].

Cotangent complexes of derived Artin stacks behave similarly to the case of de-
rived schemes: functoriality and stability by base-change. In particular, for a mor-
phism between derived Artin stacks f : X — Y, we define the relative cotangent
complex Ly € Lgeon(X) has being the cofiber of the morphism f*(Ly) — Lx. The
smooth and étale morphisms between derived Artin stacks have similar characteri-
zations using cotangent complexes (see [Toén-Vezz3, §2.2.5]). A finitely presented
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morphism f : X — Y between derived Artin stacks is étale if and only if the relative
cotangent complex L vanishes. The same morphism is smooth if and only if the
relative cotangent complex L has positive Tor amplitude.

We note here that cotangent complexes of derived Artin stacks might not be
themselves cohomologically concentrated in nonpositive degrees. It is a general
fact that if X is a derived n-Artin stack, in the sense of the inductive definition
3.2, then Ly is cohomologically concentrated in degree | — oo, n]. This can be
seen inductively by using groupoid presentations as follows. Suppose that X is the
quotient of a smooth groupoid in derived (n — 1)-Artin stacks X,. We consider the
unit section e : Xg — X7, as well as the natural morphism X; — Xy x Xy. We
get a morphism of quasi-coherent complexes on X

Lx, =~ e*(]LXoXXo/Xo) — 6*(LX1/X0)7

which is the infinitesimal action of X; on Xy. The fiber of this map is 7*(Lx),
where 7 : Xg — |X.| ~ X is the natural projection. This provides an efficient
manner to understand cotangent complexes of derived Artin stack by induction
using presentations by quotient by smooth groupoids.

Let Y = Spec A be an affine derived scheme and M € Lyon(Y) ~ L(A) a quasi-
coherent complexes cohomologically concentrated in strictly negative degrees. A
morphism d : Ly — M in Lgon(Y) corresponds to a morphism (id,d) : A —
A @® M of derived rings augmented to A. We let A &4 M|[—1] be the derived ring
defined by the following cartesian square in sComm

A@g M[-1] A
l l(id,d)
A= A M,

and Yy[M[—1]] = Spec (A &4 M[—1]) be the corresponding affine derived scheme.
It comes equipped with a natural morphism Y — Y3[M[—1]], which by definition
is the square zero extension of Y by M[—1] twisted by d.

Assume now that X is a derived Artin stack, and consider the following lifting
problem. We assume given a morphism f : Y — X, and we consider the space of
all possible lifts of f to Yy[M[—1]]

L(f,M,d) :== Mapyqst(Ya[M[-1]], X).

The next proposition subsumes the content of the derived algebraic geometry
approach to obstruction theory (see [Toén-Vezz3, §1.4.2]).

Proposition 4.1. With the above notations there is a canonical element o( f, M, d) €
Ext°(f*(Lx), M) such that o(f, M,d) = 0 if and only if L(f, M,d) is non-empty.

Moreover, if o(f, M,d) = 0 then the simplicial set L(f, M,d) is a torsor over the

simplicial abelian group Mapy,,(v)(f*(Lx), M[-1]).

A key feature of derived algebraic geometry is that the element o(f, M,d) is
functorial in X and in M. It can also be generalized to the case where Y is no more
affine and is itself a derived Artin stack.

The proposition 4.1 is an extremely efficient tool to understand the decompo-
sition of the mapping spaces between derived schemes and derived Artin stacks
obtained by Postnikov decomposition. For this, let X and Y be derived Artin
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stacks, and let t<,,(X) and <, (Y") be their Postnikov truncations. It can be shown
that for each n the natural morphism t<,(X) — t<p41(X) is of the form

ten(X) — t<n(X)a[mn 1 (X) [0 + 1],

for some map d : Ly (x) — Tp1(X)[n+2] (so here M = 7, 1(X)[n+2]). From
this we deduce the shape of the fibers of the morphism of spaces

Mapast(t<n+1(X),Y) — Mapast(t<n(X),Y).
For each f :t<,(X) — Y, there is an obstruction element
o(f,n) € Bat"2(f*(Ly), mni1(X)),

vanishing precisely when f lifts to a morphism from the next stage of the Post-
nikov tower t<,11(X). Moreover, when such a lift exists, the space of all lifts
is, noncanonically, equivalent to Map(f*(Ly),mpn+1(X)[n + 1]). In particular, if
non-empty, the equivalence classes of lifts are in one-to-one correspondence with
Bt (£ (Ly ), ms1(X)):

One immediate consequence is the following co-connectivity statement: any n-
truncated derived Artin stack X such that X = ¢t<,(X) has the property that for
any derived m-Artin stack Y (see definition 3.2), Mapgst¢(X,Y) is an (n + m)-
truncated simplicial set.

4.2. The idea of formal descent. Because the co-category dSt of derived stacks
is an oo-topos, all the epimorphisms between derived stacks are effective (see
[Toén-Vezz2, Thm. 4.9.2 (3)]). One instance of this fact is that for a smooth and
surjective morphism of derived schemes (more generally of derived Artin stacks)
f: X — Y, the object Y € dSt can be recovered by the following formula

Y ~[N(f)l,

where N(f) is the nerve of the morphism f, that is the simplicial object [n] —
X xy X xy --- xy X, and |[N(f)| is the colimit of the simplicial object N(f).

Derived algebraic geometry proposes another form of the descent property in a
rather unusual context, namely when f is now a closed immersion of schemes. This
descent for closed immersions goes back to some fundamental results of Carlsson
concerning completions in stable homotopy theory (see [Carl]) and is more subtle
than the smooth descent just mentioned. It is however an extremely nice and char-
acteristic property of derived algebraic geometry which do not have any underived
counterpart.

We let f: X — Y be a closed immersion of locally noetherian (underived)
schemes. We let Yx be the formal completion of Y along X. From the functorial
point of view it is defined as the oco-functor on the co-category of derived rings as
follows. For a derived ring R we let Ryeq := mo(R)red, the reduced ring obtained
from 7o(R). The co-functor Yy is then defined by the formula

Yx(R) =Y (R) Xy (Ryea) X (Rred).

As such, Yy is a subobject of Y because the morphism X (Rycq) — Y (Rred) is an
injective map of sets. As a stack, Yy is representable by a formal scheme, namely
the formal completion of Y along X.

To the map f, we can form its nerve N(f). This is the simplicial object in
derived schemes obtained by taking the multiple fiber products of X over Y. In
degree n, N(f) is the n + 1-fold fibered product X xy X Xy .-+ xy X. The
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simplicial diagram of derived schemes N(f) comes equipped with an augmentation
to Y which naturally factors through the subobject Yx. The following theorem is
a direct re-interpretation of [Carl, Thm. 4.4].

Theorem 4.1. The augmentation morphism N(f) — Yx exhibits Yx as the
colimit of the diagram N(f) inside the oco-category of derived schemes: for any
derived scheme Z we have an equivalence

Mapast(Yx, Z) =~ [i}lglAMapdsm(N(f)m Z).

The above statement possesses a certain number of subtleties. First of all the
noetherian hypothesis is necessary, already in the affine case. Another subtle point,
which differs from the smooth descent we have mentioned, is that the colimit of
N(f) must be taken inside the co-category of derived schemes. The statement is
wrong if the same colimit is considered in the oo-category of derived stacks for a
simple reason: it is not true that any morphism S —s Yy factors locally for the
étale topology through f : X — Y. Finally, the possible generalizations of this
statement to the setting of derived schemes and derived Artin stacks require some
care related to the size of the derived structures sheaves. We refer to [Gaitl, §2.3]
for more about formal completions in the general context of derived Artin stacks.

On simple but instructing example of theorem 4.1 in action is the case where f
is a closed point inside a smooth variety Y over a field k, = : Speck — Y. The
nerve of x can be computed using Koszul resolutions obtained from the choice of a
system of local parameters at  on Y. This gives

N(z),, ~ Spec A®",

where A = Symy,(V[1]), where V = Qy,  is the cotangent space of Y at . Functions
on the colimit of the simplicial derived scheme N(z) is the the limit of the cosimpli-

cial object n — Symy(V™[1]), which can be identified with SWV), the completed
symmetric algebra of V, or equivalently with the formal local ring Oy ;. It is in-
teresting to note here that the limit of the co-simplicial diagram n — Sym;(V"[1])
lies in the wrong quadrant and thus involves a nonconverging spectral sequence
a priori. This nonconvergence is responsible for the completion of the symmetric

—

algebra Symy (V) as a final result.

The case of a closed point x : Speck — Y, for Y a scheme of finite type over
k, possesses also an interpretation in terms of classifying spaces of derived group
schemes. This point of view, more topological, makes a clear link between derived
algebraic geometry and algebraic topology. The basic observation here is that the
nerve N (x) is the nerve of a derived group scheme Q,Y = k xy k, called the based
derived loop group of Y at x. A reformulation of theorem 4.1 is the existence of an
equivalence of formal schemes

B(Q,Y) = Spf Oy, = Vs,

or equivalently that Y, is a classifying object inside formal schemes for the derived
group scheme €2, Y. This last equivalence should be understood as an geometrico-
algebraic version of the well known fact in homotopy theory, recovering a connected
component of a topological space Y containing a point z € Y as the classifying space
of .Y, the based loop group of Y.
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As a final comment, the theorem 4.1 has also a another interpretation in terms
of derived de Rham theory of X relative to Y. It is a special case of a more
general theorem relating derived de Rham cohomology and algebraic de Rham
cohomology in characteristic zero (see [Bhatl]), which itself possesses p-adic and
finite characteristic versions (see [Bhat2]).

4.3. Tangent dg-lie algebras. We assume now that £ is a base commutative ring
of characteristic zero, and we work in dSty, the co-category of derived stacks over
k. For a derived Artin stack X locally of finite presentation over k, we have seen
the existence of a cotangent complex Ly, € Lgcon(X). Because X is locally of
finite presentation over k the complex Ly ;. is perfect and can be safely dualized to
another perfect complex Tx /;, := LY Ik called the tangent complex. The cotangent
complex ILx/;, controls obstruction theory for X, but we will see now that Tx/j
comes equipped with an extra structure of a (shifted) Lie algebra over X, which
controls, in some sense, the family of all formal completions of X taken at various
points. The existence of the Lie structure on Tx,;[—1] has been of a folklore
idea for a while, with various attempts of construction. As an object in the non-
oo derived category Dgeon(X), and for X a smooth variety, this Lie structure is
constructed in [Kapr, Thm. 2.6] (see also [Cala-Cald-Tu] for a generalization).
More general approaches using derived loop spaces (see our next paragraph §4.4)
appear in [BenZ-Nadl]: Ty,,[—1] is identified with the Lie algebra of the derived
loop stack £(X) — X, but assume that the relations between Lie algebras and
formal groups extend to the general setting of derived Artin stack (which is today
not yet fully established). The very first general complete construction appeared
recently in [Henn], following the general strategy of [Luril]. The main result of
[Henn] can be subsumed in the following theorem.

Theorem 4.2. With the above conditions and notations, there is a well defined
structure of an Ox -linear Lie algebra structure on Tx,,[—1]. Moreover, any quasi-
coherent complex M € Lgeon(X) comes equipped with a canonical action of T x jp[—1].

It is already noted in [Kapr] that the Lie algebra Ty ,,[—1] is closely related to
the geometry of the diagonal map X — X x X, but a precise statement would
require a further investigation of the formal completions in the setting of derived
Artin stacks (see [Gaitl, S 2.3]). However, it is possible to relate Tx ;[—1] with
the various formal moduli problems represented by X at each of its points. For
this, let = : Speck — X be a global point, and let I, := 2*(Tx/,[—1]), which is
a dg-lie algebra over k. By the main theorem of [Luril], I, determines a unique
oo-functor F, : dgart; — S, where dgart}, is the co-category of locak augmented
commutative dg-algebras over k with finite dimensional total homotopy (also called
artinian commutative dg-algebras over k). This co-functor possesses several possible
descriptions, one of them being very well known involving spaces of Mauer-Cartan
elements. For each A € dgart}, let m4 be the kernel of the augmentation A — k,
and let us consider the space MC(l, ®; ma), of Mauer-Cartan elements in the
dg-lie algebra l, ®x ma (see [Hini] for details). One possible definition for F; is
F.(A) = MC(l, ®, ma).

It can be checked that F, defined as above is equivalent to the formal completion
X, of X at z defined as follows. The oco-functor X, simply is the restriction of the
derived stack X as an oo-functor over dgart;, using x as a base point: for all
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A € dgart;, we have
Xo(A) == X(A) xxx) {«}.

The equivalence F, ~ X, can be interpreted as the statement that the dg-lie algebra
I, does control the formal completion of X at x. As [, is the fiber of the sheaf of Lie
algebras Tx /i[—1], it is reasonable to consider that T/, [—1] encodes the family of
formal completions Xx, which is a family of formal moduli problems parametrized
by X. The total space of this family, which is still undefined in general, should of
course be the formal completion of X x X along the the diagonal map.

In the same way, for an object M € Lgcon(X), the Tx /[—1]-dg-module structure
on M of theorem 4.2 can be restricted at a given global point = : Speck — X. It
provides an [,-dg-module structure on the fiber 2* (M), which morally encodes the
restriction of M over X, the formal completion of X at z.

At a global level, the Lie structure on T/, [—1] includes a bracket morphism in
choh (X)

[= =] Txyu[-1] ®ox Tx/e[-1] — Tx/u[-1],
and thus a cohomology class ax € H'(X, Ly, ®o, End(Tx/y)). In the same way,
a quasi-coherent module M, together with its Tx/,[—1]-action provides a class
ax (M) e HY(X, Ly, ®oy End(M)). It is strongly believed that the class cx (M)
is the Atiyah class of M, though the precise comparison is under investigation and
not established yet.

4.4. Derived loop spaces and algebraic de Rham theory. We continue to
work over a base commutative ring k of characteristic zero.

Let X be a derived Artin stack locally of finite presentation over k. We let
S := BZ, the simplicial circle considered as a constant derived stack S € dSty.
Definition 4.2. The derived loop stack of X (over k) is defined by

LX := RMap(S', X) € dSt,
the derived stack of morphisms from S! to X.

The derived loop stack £X is an algebraic counter-part of the free loop space
appearing in string topology. Intuitively it consists of infinitesimal loops in X and
encodes many of the de Rham theory of X, as we will going to explain now.

The constant derived stack S' can be written a push-out S' ~ x H *, which

ERAE
implies the following simple formula for the derived loop stack
LX ~ X XXxX X,

from which the following descriptions of derived loop stacks follows.

o If X = Spec A is an affine derived scheme (over k), then so is £LX and we

have
LX ~ Spec (A ®ag,a A).

e For any derived scheme X over k the natural base point * € S' = BZ
provides an affine morphism of derived schemes 7 : £LX — X. The affine
projection 7 identifies £LX with the relative spectrum of the symmetric
algebra Symo, (Lx/x[1]) (see [Toén-Vezz5])

LX ~ Spec (Symo, (Lx/x[1]))-
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e Let X be a (nonderived) Artin stack (e.g. in the sense of [Arti]), considered
as an object X € dSty. Then the truncation ¢o(£X) is the so-called inertia
stack of X (also called twisted sectors) which classifies objects endowed with
an automorphism. The derived stack £X endows this inertia stack with a
canonical derived structure.

e For X = BG, for G a smooth group scheme over k, we have LBG ~ [G/G],
where G acts by conjugation on itself. More generally, for a smooth group
scheme G acting on a scheme X, we have

LIX/G) ~[X"/G],

where X% is the derived scheme of fixed points defined as derived fiber
product X := (X x G) xxxx X.

The first two properties above show that the geometry of the derived loop scheme
LX is closely related to differential forms on the derived scheme X. When X is
no more a derived scheme but a derived Artin stack, similar relations still hold but
these are more subtle. However, using descent for forms (see proposition 5.1) it is
possible to see the existence of a natural morphism

H(LX, Ocx) — H(X, Symoy (Lix/k[1])) ~ H(X, &, (A Lx/k)[p))-

The interrelations between derived loop stacks and differential forms become
even more interesting when £X is considered equipped with the natural action of
the group S' = BZ coming from the S'-action on itself by translation. In order
to explain this we first need to remind some equivalences of oo-categories in the
context of mired and S'-equivariants complexes.

It has been known for a while that the homotopy theory of simplicial k-modules
endowed with an S'-action is equivalent to the homotopy theory of nonpositively
graded mixed complexes. This equivalence, suitably generalized, provide an equiv-
alence between the co-category of commutative simplicial rings with an S'-action,
and the oco-category of nonpositively graded mixed commutative dg-algebras (see
[Toén-Vezz5]). To be more precise, we let S'-sCommy, := Fun®(BS!, sCommy,),
the the oco-category of derived rings over k together with an action of S!, where
BS! is the oo-category with a unique object and S' as its simplicial monoid of
endomorphisms. On the other hand, we set k[e] be the dg-algebra over k generated
by a unique element € in degree —1 and satisfying €2 = 0. The dg-algebra ke]
can be identified with the homology algebra of the circle H,(S') (with the algebra
structure induced from the group structure on S*). The category of dg-modules
over kle] is, by definition and observation, the category of mixed complexes. The
category k[e]-Mod comes equipped with a symmetric monoidal structure induced
from the natural cocommutative bi-dg-algebra structure on k[e]. The commutative
monoids in k[e]-Mod are called mized commutative dg-algebras, and consists of a
commutative dg-algebra A over k together with a k-derivation € : A — A[—1] of
cohomological degree —1. By localization along the quasi-isomorphisms, the mixed
commutative dg-algebras form an oco-category e-cdga,,, and we restrict to its full
sub-oo-category e—cdga?0 C e-cdga,, consisting of nonpositively graded objects.

The normalization functor, from simplicial modules to nonpositively graded
complexes, is shown in [Toén-Vezz5] to naturally extend to an equivalence of oo-
categories

¢ : S1-sComm;, ~ e—cdga,%,o.
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This equivalence is not a formal result, and is achieved through a long sequence of
equivalences between auxiliaries co-categories. One possible interpretation of the
existence of the equivalence ¢ is the statement that the Hopf dg-algebra C,(S*, k),
of chains on S! is formal (i.e., quasi-isomorphic to its cohomology). The nonformal
nature of the equivalence ¢ can also be seen in the following result, which is a direct
consequence of its existence. Let A € sCommy, be a derived ring over k, and denote
by A again the commutative dg-algebra obtained out of A by normalization. Then
S! @}, A defines an object in S'-sCommy,, where S! acts on itself by translation.
The dg-algebra A also possesses a de Rham complex DR(A/k) = Syma(Lal[l]),
which is an object in e—cdga,?0 for which the mixed structure is induced by the
de Rham differential. Then we have ¢(S' ® A) ~ DR(A/k), and this follows
directly from the existence of ¢ and the universal properties of the two objects
S' ® A and DR(A/k). Globally, on a general derived scheme, this result reads as
below.

Proposition 4.3. (See [Toén-Vezz5]) Let X be a derived scheme over k and LX =
RMapys;, (S, X) its derived loop scheme over k, endowed with its natural action
of S'. Then there is an equivalence of stacks of mixed commutative dg-algebras
over X

¢(Orx) ~ DR(Ox /k),
where DR(Ox /k) := Symoy (Lx/i[1]), with the mixed structure induced by the
de Rham differential.

When X is no longer a derived scheme but rather a derived Artin stack, the
proposition above fails, simply because X — H(LX, O, x) does not satisfy descent
for smooth coverings. However, the equivalence above can be localized on the
smooth topology in order to obtain an analogous result for derived Artin stacks, for
which the left hand side is replaced by a suitable stackification of the construction
X — Orx. In some cases, for instance for smooth Artin stacks with affine diagonal,
this stackification can be interpreted using a modified derived loop stack, such as
the formal completion of the derived loop stack (see for instance [BenZ-Nadl]).
A general corollary of proposition 4.3 is the following, concerning S!-invariants
functions on derived loop stacks.

Corollary 4.4. Let X be a derived Artin stack over k and £X its derived loop
stack over k.

(1) There exists a morphism of complexes of k-modules
¢ H(LX,0rx)S — Hylp(to(X)/k),

where HZZ)/B% (to(X)/k) is the 2-periodic de Rham cohomology of the trun-
cation to(X) of X.

(2) If X is a quasi-compact and quasi-separated derived scheme, then the mor-
phism ¢ induces an equivalence

¢ H(LX, Orx)5 [B71 ~ HE 2 (to(X)/K).

In the corollary above, the de Rham cohomology H ZZ)/; (to(X)/k) is simply defined
by the cohomology of to(X) with coefficients in the 2-periodized algebraic de Rham
complex (in the sense of [Hart]). It can also be computed using the (negative)

periodic cyclic of the derived stack X. In the second point, we use that k° = k[5],
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whith 3 in degree 2, acts on (homotopy) fixed points of S* on any S*-equivariant
complex.

The above corollary can be used for instance to provide a new interpretation
of the Chern character with coefficients in de Rham cohomology. Indeed, for a
derived Artin stack X over k, and E a vector bundle on X, or more generally a
perfect complex on X, the pull-back 7*(E) on the derived loop stack £X possesses
a natural automorphism a g, obtained as the monodromy operator along the loops.
The formal existence of ag follows from the fact that the projection 7 : LX — X,
as morphism in the co-category of derived stacks, possesses a self-homotopy given by
the evaluation map S' x £X — X. This self-homotopy induces an automorphism
of the pull-back oco-functor =*.

The automorphism ag is another incarnation of the Atiyah class of E, and its
trace Tr(ag), as a function on LF, can be shown to be naturally fixed by the
Sl-action. This S!-invariance is an incarnation of the well known cyclic invariance
of traces, but its conceptual explanation is a rather deep phenomenon closely re-
lated to fully extended 1-dimensional topological field theories in the sense of Lurie
(see [Toén-Vezz6] for details). The trace Tr(ag) therefore provides an element in
H(LX,0.x)5" . Tt is shown in [Toén-Vezz6, App. B], as least when X is a smooth
and quasi-projective k-scheme, that ¢(Tr(ag)) € HIZ)/;(X /k) is the Chern charac-
ter of E in algebraic de Rham cohomology.

The above interpretation of de Rham cohomology classes in terms of S'-equivariant
functions on the derived loop stack possesses a categorification relating quasi-
coherent and S'-equivariant sheaves on derived loop stacks and D-modules. This
relation is again a direct consequence of the proposition 4.3 and can be stated as
follows.

Corollary 4.5. Let X be a smooth Artin stack locally of finite presentation over
k and LX be its derived loop stack over k.

(1) There exists a natural oo-functor

¢ L5oon (LX) — L22 (D i)

qcoh

where L%ﬁfh(l)x/k) is the 2-periodic derived oco-category of complexes of
Dx/x-modules with quasi-coherent cohomologies.

(2) If X is moreover a quasi-compact and quasi-separated smooth scheme over
k, then the morphism ¢ induces an equivalence

6 LS (LX)[B7Y] ~ LY2(Dx 1)

In the above corollary L?;Dh(EX ) denotes the S'-equivariant quasi-coherent de-
rived oo-category of £X, which can be defined for instance as the co-category of

S'-fixed points of the natural S-action on Leon(L£X). The symbol LS (LX) de-

1 coh
S

notes the full sub-oco-category of Ly,

(LX) consisting of bounded coherent objects

(E with m,(F) coherent on X), and Li{,f(DX/k) consists of 2-periodic complexes
of Dx/p-modules with coherent cohomology (as sheaves of ’DX/k—modules). Fi-
nally, Lfolh (LX) is an co-category which comes naturally enriched over Lfolh(k) o~
Lyers(k[8]), which allows us to localize along 5. We refer to [BenZ-Nadl, Prey] for
more details about the objects involved in the corollary 4.5, as well as for possible
generalizations and modifications (e.g. for the non-periodic version).
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To finish this paragraph, we mention that the interpretation of the Chern char-
acter as the trace of the universal automorphism on £X can be also categorified
in an interesting manner. We now start with a stack of dg-cateories T over X
(see [Toén3, Toén-Vezz6]), which is a categorification of a quasi-coherent sheaf.
The pull-back of T over £LX also possesses a universal automorphism a7, which
itself has a well-defined trace. This trace is no more a function but rather is a
quasi-coherent sheaf on £X, which also turns out to carry a natural S'-equivariant
structure. It is therefore an object in Lgcloh(EX ), and by the corollary 4.5 its im-
age by ¢ becomes a 2-periodic Dy ,-module over X. This Dx/,-module must be
interpreted as the family of periodic homology of the family 7, endowed with a
noncommutative version of the Gauss-Manin connection (see [Toén-Vezz6]). This
is the first step in the general construction of variations of noncommutative Hodge
structures in the sense of [Katz-Kont-Pant] and is a far-reaching generalization of
the noncommutative Gauss-Manin connection constructed on flat families of alge-
bras in [Tsyg]. In the same way that the Chern character of perfect complexes can
be understood using 1-dimensional fully extended TQFT in the sense of Lurie, this
noncommutative Gauss-Manin connection, which is a categorification of the Chern
character, can be treated using 2-dimensional fully extended TQFT’s.

5. SYMPLECTIC, Po1SSON AND LAGRANGIAN STRUCTURES IN THE DERIVED
SETTING

At the end of the section §4 we have seen the relations between derived loop
stacks and algebraic de Rham theory. We now present further materials about
differential forms on derived Artin stacks, and introduce the notion of shifted sym-
plectic structure. We will finish the section by some words concerning the dual
notion of shifted Poisson structures, and its possible importance for deformation
quantization in the derived setting.

All along this section & will be a noetherian commutative base ring, assumed to
be of characteristic zero.

5.1. Forms and closed forms on derived stacks. Let X be a derived Artin
stack locally of finite presentation over k. We have seen in §4.1 that X admits a
(relative over k) cotangent complex L/, which is the derived version of the sheaf
of 1-forms. For p > 0, the complex of p-forms on X (relative to k) can be naturally
defined as follows
By definition, for n € Z, a p-form of degree n on X is an element in H"(AP(X)),
or equivalently an element in H" (X, /\%X Lx/x). When X is smooth over &, all the
perfect complexes /\%X Lx/, have nonnegative Tor amplitude, and thus there are
no nonzero p-forms of negative degree on X. In a dual manner, if X is an affine
derived scheme, then X does not admit any nonzero p-form of positive degree. This
is not true anymore without these hypothesis, and in general a given derived Artin
stack might have nonzero p-forms of arbitrary degrees.

An important property of forms on derived Artin stacks is the smooth descent
property, which is a powerful computational tool as we will see later on with some
simple examples. It can be stated as the following proposition.

Proposition 5.1. Let X be a derived Artin stack over k (locally of finite presen-
tation by our assumption), and let X, be a smooth Segal groupoid in derived Artin
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stack whose quotient |X,| is equivalent to X (see §3.3). Then, for all p > 0, the
natural morphism

AP(X) — lim AP(X,)
[nleA

is an equivalence (in the co-category of complexes).

Here are two typical examples of complexes of forms on some fundamental de-
rived stacks.

Forms on classifying stacks, and on RPerf. We let G be a smooth group scheme
over Speck, and X = BG be its classifying stack. The cotangent complex of X
is g¥[—1], where g is the Lie algebra of G, considered as a quasi-coherent sheaf on
BG by the adjoint representation. We thus have /\%X}LX/k ~ Sym?¥(g")[—p], and
the complex of p-forms on X is then the cohomology complex H(G, Sym% (g"))[—p),
of the group scheme G with values in the representation Sym/(g¥). When G is
a reductive group scheme over k, its cohomology vanishes and the complex of p-
forms reduces to S’ymﬁ(gv)a[—p]7 the G-invariant symmetric p-forms on g sitting in
cohomological degree p. In other words, when G is reductive, there are no nonzero
p-forms of degree n # p on X, and p-forms of degree p are given by Sym? (g¥).

We let X = RPerf be the derived stack of perfect complexes (see theorem 3.1)
The cotangent complex Ly, has the following description. There is a universal
perfect complex & € Lgcon(X), and we have Ly, ~ End(E)[—1], where End(E) =
ERoy £V is the stack of endomorphisms of £. We obtain the following description
of the complex of p-forms on the derived stack RPerf

AP(RPerf) = H(RPerf, Symo,p,,. (End(€)))[p].

Forms on a derived quotient stack. Let G be a reductive smooth group scheme
over k acting on an affine derived scheme Y = Spec A, and let X := [Y/G] be the
quotient derived stack. The cotangent complex ILx,, pulled back to Y, is given by
the fiber IL of the natural morphism p : Ly, — Oy ® gV, dual to the infinitesimal
action of G on Y. The group G acts on Y and on the morphism above, and thus
on L. The complex of p-forms on X is then given by AP(X) ~ (APL)%. Concretely,
the fiber of the morphism p can be described as the complex Ly, @ (Oy @5 g¥[—1])
endowed with a suitable differential coming from the G-action on Y. The complex
of p-forms AP(X) can then be described as
G

AP(X) = | D (NaLa) @k Symi(e¥)-4] |
i+j=p
again with a suitable differential.

We now define closed p-forms on derived Artin stacks. For this we start to treat
the affine case and then define the complex of closed p-forms on a derived stack X
by taking a limit over all affine derived schemes mapping to X.

Let A be a derived ring over k, and N(A4) € cdga,?0 be its normalization, which
is a nonpositively graded commutative dg-algebra over k. We let A’ be a cofibrant
model for A and we consider Q}, the A’-dg-module of Kilher differential over A’
over k (see e.g. [Behr, Pant-Toén-Vaqu-Vezz]). Note that under the equivalence of
oco-categories L(N(A)) ~ L(A’), the object 2}, can be identified with L4/, the
cotangent complex of A over k. We set %, := A%, QL for all i > 0. As for the case
of non-dg algebras, there is a de Rham differential dR : Qf, — Qf:?l, which is a
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morphism of complexes of k-modules and satisfies dR? = 0. The differential dR is
also characterized by the property that it endows Syma/(QY,[1]) with a structure
of a graded mixed commutative dg-algebra, which coincides with the universal
derivation A’ — QL in degree 1.

We define a complex of k-modules AP+“!(A), of closed p-forms over A (relative to
k) as follows. The underlying graded k-module is given by

Ap,cl HQPJM

>0

The differential D on AP°!(A) is defined to be the total differential combining the
cohomological differential d on 'y, and the de Rham differential dR. In formula
we have, for an element of degree n, {w;}i>0 € H(Qﬁfi)”*i

i>0

D({wi}) := {dR(wi-1) + d(wi) }izo € [ [
i>0
The complex of closed p-forms AP/(A) is functorial in A and provides an oo-
functor AP from the oco-category of derived rings over k to the co-category dg
of complexes of k-modules. This co-functor satisfies étale descent and can then be
left Kan extended to all derived stacks (see §2.1.2) AP : dSt;? — dg,. For a

derived stack X we have by definition AP/ (X) ~ S lirfrll XAP’CI(A).
pec A—

The relation between closed p-forms and p-forms is based on the descent property

5.1. The projection to the first factor HQ” ] — 0%, provides a morphism of
>0
oo-functors AP — AP defined on derived rings over k. For a derived Artin stack
X over k, and because of proposition 5.1, we obtain a natural morphism
AP(X) >~ lim  APYA) —  lim  AP(A) ~ AP(X).
Spec A—»X Spec A—»X

Remark 5.1. It is important to note that the morphism above AP (X) — AP(X)
can have rather complicated fibers, contrary to the intuition that closed forms
form a subspace inside the space of all forms. In the derived setting, being closed
is no more a property but becomes an extra structure: a given form might be
closed in many nonequivalent manners. This degree of freedom will be essential
for the general theory, but will also create some technical complications, as the
construction a closed form will require in general much more work than constructing
its underlying nonclosed form.

Remark 5.2. Another comment concerns the relation between complexes of closed
forms and negative cyclic homology of commutative dg-algebra. For a commutative
dg-algebra A, we have its complex of negative cyclic homology HC~ (A), as well as
its part of degre p for the Hodge decomposition HC~(A)®) (see e.g. [Loda]). The
so-called HKR theorem implies that we have a natural equivalence of complexes

AP (A) = HO™ (A)P)[—p].

Closed forms on smooth schemes. Let X be a smooth scheme over k of relative
dimension d. The complex AP°!(X) is nothing else than the standard truncated
de Rham complex of X, and is given by

AP (X) = H(X, 95, = Q55 = - = Q% ).
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In particular, H°(AP°!(X)) is naturally isomorphic to the space of closed p-forms
on X in the usual sense. Note also that when X is moreover proper, the morphism
APl (X) — AP is injective in cohomology because of the degeneration of the
Hodge to de Rham spectral sequence. This is a very special behavior of smooth
and proper schemes, for which being closed is indeed a well defined property.

Closed forms on classifying stacks. Let G be reductive smooth group scheme over k
with Lie algebra g. The complex of closed p-forms on BG can be seen, using for in-
stance the proposition 5.1, to be naturally equivalent to @;>oSym?*(g"¥)%[—p —2i]
with the zero differential. In particular, any element in SymP(g")“ defines a canon-
ical closed p-form of degree p on BG. In this example the projection A”*(BG) —
AP(BG) induces an isomorphism on the p-th cohomology groups: any p-form of de-
gree p on BG is canonically closed. This is again a specific property of classifying
stacks of reductive groups.

The canonical closed 2-form of degree 2 on RPerf. Let RPerf be the derived stack
of perfect complexes over k (see theorem 3.1). We have seen that its tangent
complex Trpers is given by End(E)[1], the shifted endomorphism dg-algebra of the
universal perfect complex £ on RPerf. We can therefore define a 2-form of degree
2 on RPerf by considering

Tr: End(€)[1] ® End(€)[1] — Ox[2],

which is, up to a suitable shift, the morphism obtained by taking the trace of the
multiplication in End(£).

The above 2-form of degree 2 has a canonical lift to a closed 2-form of degree
2 on RPerf obtained as follows. We consider the Chern character Ch(€) of the
universal object, as an object of negative cyclic homology HC{ (RPerf). The part
of weight 2 for the Hodge decomposition on HC{y (RPerf) provides a closed 2-form
Chs(E) of degree 2 on RPerf. It can be checked that the underlying 2-form of
Cho(€) is .Tr (see [Pant-Toén-Vaqu-Vezz] for details).

By letting p = 0 in the definition of closed p-forms we obtain the derived de Rham
complex of derived Artin stack. More explicitely, for a derived ring A over k, with
normalization N (A) and cofibrant model A’, we set A}, p(A) := [[,5, Q4 [—4], with
the exact same differential D = dR + d, sum of the cohomological and de Rham
differential. For a derived Artin stack X over k we set

pr(X) = SpelgrfrllﬁXA*DR(A)’
and call it the derived de Rham complex of X over k. It is also the complex of
closed 0-forms on X, and we will simply denote by H}, (X)) the cohomology of the
complex A% »(X). There are obvious inclusions of subcomplexes AP/(A)[—p] C
APLel(A)[—p+1] C -+ C A5 r(A), inducing a tower of morphisms of complexes

"'HAP’CZ(X)[*])]%Apil’d(X)[fprl]%“'%Al’d(X)[fl]%A*DR(X),

which is an incarnation of the Hodge filtration on de Rham cohomology: the cofiber
of each morphism AP (X)[—p] — AP~L¢(X)[—p + 1] is the shifted complex of
(p — 1)-forms on X, AP~1(X)[-p +1].

By combining [Feig-Tysg] and [Good], it can be shown that A7, ;(X) does com-
pute the algebraic de Rham cohomology of the truncation ¢o(X).
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Proposition 5.2. Let X be a derived Artin stack locally of finite presentation over
k.

(1) The natural morphism j : t9(X) — X induces an equivalence of complexes
of k-modules

7" Apr(X) = Apg(te(X)).

(2) There exists a natural equivalence between A% (to(X)) and the algebraic
de Rham cohomology complex of X relative to k in the sense of [Hart]
(suitably extended to Artin stacks by descent).

The above proposition has the following important consequence. Let w € H™(AP“(X))
be closed p-form of degree n on X. It defines a class in the derived de Rham coho-
mology [w] € HY P (X).

Corollary 5.3. With the above notations and under the condition that & is a field,
we have [w] = 0 as soon as n < 0.

The above corollary follows from the proposition 5.2 together with the canonical
resolution of singularities and the proper descent for algebraic de Rham cohomol-
ogy. Indeed, proposition 5.2 implies that we can admit that ¢o(X) = X. By the
canonical resolution of singularities and proper descent we can check that the nat-
ural morphism Hj,p(X) — Hpp'"“(X) is injective, where H5z"""“(X) denotes
the hyper-cohomology of X with coefficients in the naive de Rham complex

Hpp"™"*(X) = H(X, Ox e o Qd )

But by definition the image of [w] is clearly zero in HytP™*¢(X) when n < 0.

A consequence of corollary 5.3 is that any closed p-form w of degree n < 0 is ezx-
act: it lies in the image of the natural morphism dR : A5 ' (X)[p—1] — AP(X),
where A%’I){l(X ) is the (p — 1)-truncated derived de Rham complex defined a the
cofiber of AP!(X)[—p] — A% x(X). This has many important implications, be-
cause in general a closed p-form involves an infinite number of data (because of the
infinite product appearing in the definition of AP¢/(X)), but cocycles in A%’;{l(X )
only involve a finite number of data. Closed p-forms of negative degrees are some-
how easier to understand that their positive degree counterpart. As an example,
we quote the Darboux lemma in for shifted symplectic structures of negative shifts
(see [Brav-Buss-Joyc, Boua-Groj)).

5.2. Symplectic and Lagrangian structures. We now arrive at the central no-
tion of shifted symplectic and Lagrangian structures. We start with the following
key definition.

Definition 5.4. Let X be a derived Artin stack locally of finite presentation over
k and n € Z.

o An n-shifted symplectic structure on X is the datum of a closed 2-form w
of degree n, such that the underlying 2-form on X is nondegenerate: the
adjoint morphism

@w : Tx/k — Lx/k[n}

is an equivalence in Lgcon(X).
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e Let w be an n-shifted symplectic structure on X, and let Y be another
derived Artin stack together with a morphism f:Y — X. A Lagrangian
structure on f consists of a homotopy h : f*(w) ~ 0 in the complex
APL(Y), such that the induced morphism

Gw,h : Ty/k — ]Ly/X [TL — 1]
is an equivalence in Lgeon(Y).

Some comments about the above definition. By definition w is an element in
H"(AP°(X)). The morphism O, is defined by considering the image of w in
H™(AP(X)) ~ H™"(X, N}, Lx/k) = [Ox, (A, Lx/x)[n]], which by duality provide
a morphism O, : Tx/, — Lx/x[n].

In the same way, the morphism ©,,, is defined as follows. The homotopy h
provides a homotopy in AP (Y), which is a homotopy to zero of the following com-
position in Lgeon(Y)

f(0w)
Ty — f*(Tx/x) — f*(Lx/x)[n] — Ly,x[n].
This homotopy to zero defines a unique morphism in Lgeon(Y) from Ty i to the
fiber of f*(Lx,i)[n] — Ly g[n], which is Ly, x[n — 1].

Remark 5.3. A trivial, but conceptually important remark, communicated to me
by D. Calaque, is that the notion of a Lagrangian structure is a generalization of
the notion of shifted symplectic structure. To see this we let * = Spec k be endowed
with the zero (n + 1)-shifted symplectic structure. Then an n-shifted symplectic
structure on X simply is a Lagrangian structure on the natural morphism X —
Speck.

Before stating the main existence results for shifted symplectic and Lagrangian
structures, we present some more elementary properties as well as some relations
with standard notions of symplectic geometry such Hamiltonian action and sym-
plectic reduction.

Shifted symplectic structures and amplitude. Let X be a derived Artin stack locally
of finite presentation over k. Unless in the situation where X is étale over Speck,
that is L/, =~ 0, there can be at most one integer n such that X admits an n-
shifted symplectic structure. Indeed, because X is locally of finite presentation over
k the tangent complex Tx/; is perfect of some bounded amplitude, and therefore
cannot be equivalent in Lgc,,(X) to a nontrivial shift of itself.

From a general point of view, if X is a derived scheme, or more generally a derived
Deligne-Mumford stack, then X can only admit nonpositively shifted symplectic
structure because T/, is in this case of nonnegative amplitude. Dually, if X is a
smooth Artin stack over k its tangent complex T x/;, has nonpositive amplitude and
thus X can only carry nonnegatively shifted symplectic structures. In particular, a
smooth Deligne-Mumford can only admit 0-shifted symplectic structures, and these
are nothing else than the usual symplectic structures.

Shifted symplectic structures on BG and on RPerf. Let G be a reductive smooth
group scheme over k. In our last paragraph §5.1 we have already computed the
complex of closed 2-forms on BG. We deduce from this that 2-shifted symplectic
structures on BG are one to one correspondence with nondegenerate G-invariant
scalar products on g.
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As for the derived stack of perfect complexes RPerf, we have seen the existence
of canonical closed 2-form of degree 2 whose underlying 2-form is the trace map

%.Tr : End(E)[1] @ End(E)[1] — Ox[2).

The trace morphism is clearly nondegenerate, as this can be checked at closed
points, and for which this reduces to the well-known fact that (A, B) — Tr(A.B)
is a nondegenerate pairing on the space of (graded) matrices.

Lagrangian intersections. Let X be a derived Artin stack locally of finite presen-
tation over k and w an n-shifted symplectic structure on X. Let ¥ — X and
Z — X be two morphisms of derived Artin stacks with Lagrangian structures.
Then the fibered product derived stack Y x x Z carries a canonical (n — 1)-shifted
symplectic structure. The closed 2-form of degree n—1 on Y X x Z is simply obtained
by pulling-back w to Y x x Z, which by construction comes with two homotopies to
zero coming from the two Lagrangian structures. These two homotopies combine to
a self-homotopy of 0 in A%<(Y x x Z)[n], which is nothing else than a well defined
element in H""1(A%(Y x x Z)). This closed 2-form of degree (n —1) on Y xx Z
can then be checked to be nondegenerate by a direct diagram chase using the non-
degeneracy property of Lagrangian structures. We refer to [Pant-Toén-Vaqu-Vezz]
for more details.

The above applies in particular when X is a smooth scheme and is symplectic
in the usual sense, and Y and Z are two smooth subschemes of X which are
Lagrangian in X in the standard sense. Then the derived scheme Y x x Z carries
a canonical (—1)-shifted symplectic structure. This has strong consequences for
the singularities and the local structure of Y xx Z. For instance, it is shown in
[Brav-Buss-Joyc, Boua-Groj] that locally for the Zariski topology Y xx Z is the
derived critical locus (see below) of a function on a smooth scheme.

Shifted cotangent stacks and derived critical loci. Let X be a derived Artin stack
locally of finite presentation over k. For n € Z we consider the shifted tangent
complex Tx/,;[—n] as well the corresponding linear derived stack (see §3.3)

T*X[n] = Spec (Symoy (Tx/x[-n])) = V(Tx/x[-n]) — X.

The derived stack T* X [n] is called the n-shifted cotangent stack of X. In the same
way that total cotangent space of smooth schemes carries a canonical symplectic
structure, the shifted cotangent stack 7 X [n] does carry a canonical n-shifted sym-
plectic structure (see [Pant-Toén-Vaqu-Vezz]). Moreover, a closed 1-form of degree
n on X defines a section X — 7™ X [n| which comes equiped with a natural La-
grangian structure. In particular, if f € H"(X,Ox) is a function of degree n on
X, its differential dR(f) defines a morphism X — T*X|[n] together with a La-
grangian structure. The derived critical locus of the function f is defined to be the
intersection of dR(f) with the zero section

RCmt(f) =X XO,T*X[TL],dR(f) X.
By what we have just seen it comes equiped with a canonical (n — 1)-shifted sym-
plectic structure. We note that when f = 0 then RCrit(f) ~ T*X[n — 1] with its
canonical (n — 1)-shifted symplectic structure. In general, RCrit(f) is a perturba-
tion of T* X [n — 1] obtained using the function f.
The case n = 0 and X = Spec A a smooth affine scheme has the following explicit
description. The derived critical locus RCrit(f) can then be written as Spec B,
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where B can be explicitly represented by the following commutative dg-algebra. As
a commutative graded algebra B is Syma(T 4/x[1]), where the differential is the
contraction with the 1-form dR(f). For instance mo(B) is the Jacobian ring of A
with respect to f.

Hamiltonian actions and symplectic reduction. Shifted symplectic and Lagrangian
structures in degree 0 and 1 can also be used to interpret and extend the notion of
Hamiltonian action and of symplectic reduction. Let X be a smooth scheme over k
(assume k is a field, but this is not strictly necessary), equipped with a symplectic
structure w. Let G be a reductive smooth group scheme over k acting on X and
preserving the form w. We assume that the action is Hamiltonian in the sense that
there is a moment map
¢p: X — g,

which is a G-equivariant morphism and which is such that w produces an isomor-
phism of complexes of vector bundles on X

[
Ox ®p g ——> Ty —> Ox @y g"

Ox ®r g LLX/]C —> Ox @1 g",

where a is the morphism induced by the infinitesimal action of G on X.
As explained in [Cala, §2.2] (see also [Safr]), the moment map ¢ induces a mor-
phism of quotient stacks

¢: [X/G] — [¢"/G] =~ T"BG[1],

which comes equipped with a canonical Lagrangian structure, with respect to the
standard 1-shifted symplectic structure n on T*BGJ[1]. In the same way, if A € gV
with stabilizer G, the natural inclusion BG, — [g¥/G] is again equipped with
a canonical Lagrangian structure (for instance because the inclusion of the orbit
G.\ C g¥ is a moment map for G.)\, see [Cala]). As a consequence, the derived
stack
[X ng {)\}/G)\] ~ [X/G] X[gV/G] BG)\

is a fibered product of morphisms with Lagrangian structures and thus comes
equipped with a canonical 0-shifted symplectic structure (see also [Pech] for a more
direct proof of this fact). The new feature here is that A does not need to be a
regular value of the moment map ¢ for this to hold. When A is a regular value
the derived stack [X xgv {A}/G.] is a smooth Deligne-Mumford stack and is the
standard symplectic reduction of X by G. For nonregular values A the derived
stack [X xgv {A}/G,] is a nonsmooth derived Artin stack.

The above interpretation of Hamiltonian actions in terms of Lagrangian struc-
tures also has a version in the so-called quasi-Hamiltonian setting (see [Alex-Malk-Mein]),
for which T*BG[1] is replaced by L(BG) ~ [G/G]. The derived stack [G/G] car-
ries a 1-shifted symplectic structure as soon as a nondegenerate G-invariant scalar
product has been chosen on g (this follows from theorem 5.4 for M = S*). The
quasi-Hamiltonian structures are G-equivariant morphisms X — G for which the
induced morphism [X/G] — [G/G] is equipped with a natural Lagrangian struc-
ture. The quasi-Hamiltonian reduction can then still be interpreted as a fibered
product of Lagrangian morphisms (see [Cala, Safr| for more details).
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5.3. Existence results. We arrive at the main existence result of shifted sym-
plectic and Lagrangian structures. We will start by stating the existence of shifted
symplectic structures on derived stacks of maps from an oriented source to a shifted
symplectic target. This result can be seen as a finite dimensional and purely alge-
braic version of the so-called AKZS formalism of [Alex-Kont-Schw-Zabo]. We will
then discuss the possible generalizations and variations in order to include boundary
conditions as well as noncommutative objects.

We let X € dSty, be a derived stack, possibly not represented by a derived Artin
stack. We say that X is oriented of dimension d if there exists a morphism of
complexes of k-modules

or : H(X,O0x) — k[—d],

which makes Poincaré duality to hold in the stable co-category Lpe.;(X) of perfect
complexes on X (see [Pant-Toén-Vaqu-Vezz] for details). More precisely, we ask
that for all perfect complex E on X the complex H(X, F) is a perfect complex of
k-modules. Moreover, the morphism or is asked to produce a nondegenerate pairing
of degree —d

H(X, E) ®, H(X, EY) —= H(X, E ®), V) ——= H(X, Ox) —2> k[—d).

The equivalence induced by the above pairing H(X, F) ~ H(X, EV)V[—d] is a ver-
sion of Poincaré duality for perfect complexes on X.

There are several examples of oriented objects X, coming from different origin.
Here are the three most important examples.

e A smooth and proper scheme X of relative dimension d over k, together with
a choice of a Calabi-Yau structure wx/, =~ Ox is canonically an oriented
object of dimension d as above. The canonical orientation is given by Serre
duality H(X, Ox) ~ H4(X,Ox)V, the image of 1 € H°(X, Ox) provides
an orientation or : H(X, Ox) — k[—d].

e Let X be a smooth and proper scheme of relative dimension d over k,
and let Xppr be its relative de Rham object over k (see e.g. [Simp2]).
The cohomology H(Xpgr, Ox,,) simply is alegbraic de Rham cohomol-
ogy of X relative to k. The trace morphism of Grothendieck provides
a morphism H4(X, Qg(/k) = H%L(X/k) — k, and thus an orientation
or : H(Xpr,Oxpr) — k[—2d], making Xpp into an oriented object of
dimension 2d. The fact that this morphism or provides the required duality
in Lyerf(Xpr) is the usual Poincaré duality for flat bundles on X.

e Let M be a compact topological manifold with an orientation H¢(M, k) —
k. Considered as a constant derived stack, M, becomes an oriented object
of dimension d. The required duality in Lype.s(M) is here Poincaré duality
for finite dimensional local systems on M.

Theorem 5.4. Let X be a derived stack which is an oriented object of dimen-
sion d. Let'Y be a derived Artin stack locally of finite presentation over k and
endowed with an n-shifted symplectic structure. Then, if the derived mapping stack
RMap(X,Y) is a derived Artin stack locally of finite presentation over k, then it
carries a canonical (n — d)-shifted symplectic structure.
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In a nutshell the proof of the above theorem follows the following lines. There
is a diagram of derived Artin stacks

RMap(X,Y) <~— X x RMap(X,Y) —=> Y,

where ev is the evaluation morphism and p the natural projection. If w denotes
the n-shifted symplectic form on Y, the (n — d)-shifted symplectic structure on
RMap(X,Y) is morally defined as

[

where the integration is made using the orientation or on X. The heart of the
argument is to make sense rigorously of the formula above, for which we refer to
[Pant-Toén-Vaqu-Vezz].

Ezamples of shifted symplectic structures from the theorem 4.2. The above theorem,
combined with the list of examples of oriented objects given before together with
some of the already mentioned examples of shifted symplectic structures (on BG,
on RPerf ...) provide an enormous number of new instances of shifted symplectic
derived Artin stacks. The most fundamental examples are the following, for which
G stands for a reductive smooth group scheme over k with a chosen G-invariant
scalar product on g.

(1) Let X be a smooth and proper scheme of relative dimension d over k to-
gether with an isomorphism wx/, ~ Ox. Then the derived moduli stack
of G-bundles, Bung(X) := RMap(X, BG) is equipped with a canonical
(2 — d)-shifted symplectic structure.

(2) Let X be a smooth and proper scheme over k of relative dimension d.
Then the derived moduli stack of G-bundles equipped with flat connexions,
Locpr(X,G) := RMap(Xpgr, BG), carries a canonical (2 — 2d)-shifted
symplectic structure.

(3) Let M be a compact oriented topological manifold of dimension d. The
derived moduli stack Bung(M) := RMap(M, BG), of G-local systems on
M, is equipped with a canonical (2 — d)-shifted symplectic structure.

When the orientation dimension is d = 2 the resulting shifted symplectic struc-
tures of the above three examples are 0-shifted. In these case, the smooth part of
the moduli stack recovers some of well known symplectic structures on the moduli
space of bundles on K3 surfaces, on the moduli space of linear representations of
the fundamental group of a compact Riemann surface ....

Remark 5.5. In the examples 1 — 3 above we could have replaced BG by RPerf
with its canonical 2-shifted symplectic structure. Chosing a faithful linear represen-
tation G — GL,,, produces a morphism p : BG — RPerf, where a vector bundle
is considered as a perfect complex concentrated in degree 0. The shifted symplec-
tic structures on RMap(X, BG) and RMap(X, RPerf) are then compatible with
respect to the morphism p, at least if the G-invariant scalar product on g is chosen
to be the one induced from the trace morphism on gl,,.

The theorem 5.4 possesses several generalizations and modifications, among
which the most important two are described below. The basic principle here is
that any general form of Poincaré duality should induce a nondegenerate pairing
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of tangent complexes and must be interpreted as some shifted symplectic or La-
grangian structure. In the two examples above we deal with Poincaré duality with
boundary and in the noncommutative setting.

Derived mapping stack with boundary conditions. The theorem 5.4 can be extended
to the case where the source X has a boundary as follows (see [Cala] for more
details). We let Y be a derived Artin stack with an (n + 1)-shifted symplectic
structure, and f : Z — Y a morphism of derived Artin stacks with a Lagrangian
structure. On the other hand we consider a morphism of derived stacks j : B — X
as our general source. We assume that j is equipped with a relative orientation of
dimension d which by definition consists of a morphism of complexes of k-modules

or : H(X, B,0) — k[—d],

where H(X, B,0) is the relative cohomology of the pair (X, B) defined as the
fiber of H(X,Ox) — H(B,Op). The orientation or is moreover assumed to be
nondegenerate in the following sense. For E a perfect complex on X, we denote by
H(X, B, E) the relative cohomology of the pair (X, B) with coefficients in E, defined
as the fiber of H(X, F) — H(B, E). The trace morphism H(X, F)QH(X, EY) —
H(X, Ox), together with the orientation or defines a canonical morphism

H(X,E) ® H(X, B, EY) — H(X,B,0) — k[—d — 1],

and we ask the induced morphism H(X, E) — H(X, B, EV)V[—d] to be an equiv-
alence. We also ask that the induced morphism

H(B,0p)[-1] — H(X, B,0) — k[—d]

defines an orientation of dimension (d — 1) on B. This is the form of relative
Poincaré duality for the pair (X, B) with coefficients in perfect complexes. When
B = () we recover the notion of orientation on X already discussed for the theorem
5.4.

We denote by RMap(j, f) the derived stacks of maps from the diagram f : Y —
Z to the diagram j : B — X, which can also be written as a fibered product

RMap(j, f) ~ RMap(B,Y) Xrmap(B,z) RMap(X, Z).

The generalization of theorem 5.4, under the suitable finiteness conditions on B
and X is the existence of canonical (n — d + 1)-shifted symplectic structure on
RMap(j, f) as well as a Lagrangian structure on the morphism

RMap(X,Y) — RMap(j, ).

The theorem 5.4 is recovered when B = () and Y = x (see remark 5.3). When Y =
but B is not empty, the statement is that the restriction morphism RMap(X,Y) —
RMap(B,Y) is equipped with a Lagrangian structure (with respect to the (n—d+
1)-shifted symplectic structure on RMap(B,Y’) given by theorem 5.4). Another
consequence is the existence of compositions of Lagrangian correspondences in the
derived setting (see [Cala]).

There are many examples of j : B — X with relative orientations. First of
all X can be the derived stack obtained from an actual d-dimensional oriented
and compact topological manifold with boundary B, for which the orientation
H(X,B) — Ek[—d] is given by the integration along the fundamental class in
relative homology [X] € H4(X, B). Another example comes from anti-canonical
sections. Let X be a smooth and projective scheme of relative dimension d over
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k and B < X be the derived scheme of zeros of a section s € H(X, w)_(}k) of the
anti-canonical sheaf. Then the inclusion j : B — X carries a canonical rela-

tive orientation of dimension d obtained as follows. There is an exact triangle of
quasi-coherent complexes on X, wx —2 > Ox — Op, giving rise to an exact

triangle on cohomologies
H(X, wx/r) — H(X, Ox) — H(X,0p) ~ H(B, Op),

which identifies H(X, B, O) with H(X,wx/;). Grothendieck trace map furnishes a
morphism or : H(X,wx/,) — k[—d] which is a relative orientation of dimension d
for the morphism B — X. An intersecting comment here is that B does not need
to be smooth over k, and could be a derived scheme (when s = 0) or a nonreduced
scheme.

Non-commutative spaces There are noncommutative versions of the theorem
5.4 concerning the existence of shifted symplectic structures on the derived stack
M of objects in a given dg-category T as introduced in [Toén-Vaqul]. Let T be
a smooth and proper dg-category of k (see [Kell, Toén-Vaqul] for the definition).
There exists a derived stack Mp € dSt; whose points over a derived k-algebra A
is the classifying space of perfect T°P ®; A-dg-modules. The derived stack M is
not quite a derived Artin stack, but is locally geometric in the sense that it is a
countable union of open substacks which are derived Artin stacks (the point here
is that these open substacks are derived m-Artin stacks but the integer m is not
bounded and varies with the open substack considered).

We assume that T comes equipped with an orientation of dimension d, by which
we mean a morphism

or: HH(T) — k[—d],

where HH (T') is the complex of Hochschild homology of T' (see [Kell]). The mor-
phism is assumed to be a morphism of mixed complexes, for the natural mixed
structure on HH(T) (see [Kell]), and the trivial mixed structure on k[—d]. We also
assume that or is nondegenerate in the sense that for all pair of objects (a,b) in
T, the composite T(a,b) @ T(b,a) — HH(T) — k[—d] induces an equivalence
T(a,b) ~T(b,a)"[—d]. It can be proved that there exists a canonical (2 — d)-shifted
symplectic structure on Mp. This statement is a noncoommutative analogue of
theorem 5.4 as My should be thought as the noncommutative derived mapping
stack from the noncommutative space T' to RPerf (according to the general phi-
losophy of Kontsevich and al. that noncommutative spaces are dg-categories). The
proof of this noncommutative version is very close to the proof of theorem 5.4 ex-
posed in [Pant-Toén-Vaqu-Vezz], with suitable modification. It essentially consists
of defining the shifted symplectic structure by means of the Chern character of the
universal object £ on Mp. The heart of the proof relies on the correct definition
of this Chern character as a mixture of the Chern character in noncommutative
geometry and the Chern character in derived algebraic geometry in the style of
[Toén-Vezz6].

Finally, theorem 5.4 also possesses a noncommutative version with boundary
conditions as follows. We let f : T — T be a dg-functor between nice enough
dg-categories over k. We assume given a relative orientation of dimension d on f,
that is a morphism of mixed complexes

or: HH(f) — k[—d]
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where HH(f) is defined as the homotopy fiber of HH(T) — HH (T,). The orien-
tation or is also assumed to satisfy nondegeneracy conditions similar to a relative
orientation between derived stacks mentioned before. It can then be proved that
the natural morphism My — My, comes equipped with a natural Lagrangian
structure.

An important example is the following. We assume that T is equipped with
an orientation of dimension d, so My carries a natural (2 — d)-shifted symplectic
structure. We let ./\/l(T1 ) be the derived stack of morphisms in T, which comes
equipped with two morphisms

s,c

Moy x M MY Lo My,

where ¢t sends a morphisms in T to its cone, s sends it to its source and c to
its target. The correspondence My can be seen to carry a canonical Lagrangian
structure with respect to the (2 — d)-shifted symplectic structure on M3.. This
Lagrangian structure is itself induced by a natural relative orientation on the dg-
functor
(s,t,¢): TV — T x T xT,

where T(!) is the dg-category of morphisms in 7. The relevance of this example
comes from the fact that the correspondence ./\/lgp1 ) induces the multiplication on the
so-called Hall algebra of T' (see [Kell] for a review). What we are claiming here is
that under the assumption that T' comes equipped with an orientation of dimension
d, M becomes a monoid in the oco-category of symplectic correspondences in
the sense of [Cala], which can probably also be stated by saying that Mr is a
symplectic 2-Segal space in the spirit of the higher Segal spaces of [Dyck-Kapr].
The compatibility of the Hall algebra multiplication and the shifted symplectic
structure on M surely is an important phenomenon and will be studied in a
different work.

5.4. Polyvectors and shifted Poisson structures. We finish this part by men-
tioning few words concerning the notion of shifted Poisson structures, dual to that
of shifted closed 2-forms, but which is at the moment still under investigation. We
present some of the ideas reflecting the present knowledge.

We let X be a derived Artin stack locally of finite presentation over k. For an
integer n € Z, the complex of n-shifted polyvector fields on X (relative to k) is
the graded complex (i.e. a Z-graded object inside the category of complexes of
k-modules)

Pol(X,n) = @Pol(X,n) (k) := EPH(X, Sym, (Tx/x[~1 - n])),
keZ kEZ
where Ty /), = L}/(/k is the tangent complex of X relative to k. By definition a bi-

vector p of degree n on X is an element p € H~""2(X, Pol(X,n)(2)), or equivalently
a morphism in L geon(X)

p:Ox — ¢ (Tx/k)[—nl,

where the symbol ¢§,2) either means /\%X if n is even or Sym%x is n is odd.
When X is a smooth scheme over k£ and n = 0, a bi-vector in the sense above

simply is a section p € I'( X, /\?Ox Tx/1), recovering the usual definition. In general,

if w € H™(A?) is a 2-form of degree n on X, and if w is nondegenerate, then we
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obtain a bi-vector p(w) of degree n by duality as follows. We represent the form w
as a morphism Tx,; A Tx/, — Ox|[n], and we transport this morphism via the
equivalence O, : Tx/, =~ Lx/x[n] in order to get another morphism

(Lx/uln]) A (Lx/xn]) =~ 682 (Lxp)[2n] — Ox|[nl,

which by duality provides p € H="(X, ¢\0) (Tx/x))-

The complexes of forms have been shown to carry an important extra structure,
namely the de Rham differential. In the same way, the complex Pol(X,n) does
carry an extra structure dual to the de Rham differential: the so-called Schouten
bracket. Its definition is much harder than the de Rham differential, at least for
derived Artin stacks which are not Deligne-Mumford, because polyvectors, contrary
to forms (see proposition 5.1), do not satisfy some form of smooth descent (there
is not even a well defined pull-back of polyvectors along a smooth morphism). The
theory of polyvector possesses a much more global nature than the theory of forms,
and at the moment there are no simple construction of the Lie bracket on Pol(X,n)
except when X is Deligne-Mumford.

If X = Spec A is an affine derived scheme then Pol(X,n) has the following
explicit description. We consider N(A) the normalized commutative dg-algebra as-
sociated to A, and let A’ be a cofibrant model for N(A) as a commutative dg-algebra
over k. The A’-module of derivations from A’ to itself is T 4/, = M(Qz,/k, A).
This A’-dg-module is endowed with the standard Lie bracket obtained by taking
the (graded) commutator of derivations. This Lie bracket satisfies the standard
Libniz rule with respect to the A’-dg-module structure on T 4 k> making T4/ into
a dg-lie algebroid over A’ (see [Vezz2]). The Lie bracket on T4 extends uniquely
to the symmetric algebra

Pol(X,n) =~ Symar(T 41 /i [-1 —n])

as a Lie bracket of cohomological degree —1 —n which is compatible with the multi-
plicative structure. This results into a graded p,12-algebra structure on Pol(X, n),
also called an (n + 2)-algebra structure, or (n + 2)-brace algebra structure (see e.g.
[Kont3, Tama]). We will be mainly interested in a part of this structure, namely
the structure of graded dg-lie algebra on the complex Pol(X,n)[n + 1] (the graded
nature is unconventional here, as the bracket has itself a degree —1: the bracket of
two elements of weights p and ¢ is an element of weight p + ¢ — 1. In other words,
the Lie operad is also considered as an operad in graded complexes in a nontrivial
manner).

This local picture can be easily globalized for the étale topology: when X is
a derived Deligne-Mumford stack, there is a natural graded dg-lie structure on
Pol(X,n)[n + 1]. This is a general fact, for any nice enough derived Artin stack,
due to the following result.

Proposition 5.5. Let X be a derived Artin stack X locally of finite presentation
over k, and n € Z. We assume that X is of the form [Y/G] for Y a quasi-projective
derived scheme and G a reductive smooth group scheme acting on Y. Then the
graded complex Pol(X,n)[n + 1] carries a structure of a graded dg-lie algebra.

At the moment the only proof of this result uses a rather involved construction
based on co-operads (see [Toén5]). Also, the precise comparison between the graded
dg-lie structure obtained in the proposition and the more explicit construction when
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X is Deligne-Mumford has not been fully established yet. Finally, it is believed that
the proposition above remains correct in general, without the strong condition on
X of being a quotient of a quasi-projective derived scheme by a reductive group.
The situation with dg-lie structure on polyvector fields is thus at the moment not
completely satisfactory.

The graded dg-lie structure on Pol(X,n) is a crucial piece of data for the defi-
nition of shifted Poisson structures.

Definition 5.6. Let X be a derived Artin stack as in proposition 5.5 and n € Z.
The space of n-shifted Poisson structure on X is the simplicial set Pois(X,n)
defined by

Pois(X,n) := Mapgg-iies (k[—1](2), Pol(X,n)[n + 1]),

where dg-lied” denotes the co-category of graded dg-lie algebras over k, and k[—1](2) €
dg-lie9” is the object k concentrated in cohomological degree 1, with trivial bracket
and pure of weight 2.

When X is a smooth scheme over k, then the space Pois(X,0) can be seen
to be discrete and equivalent to the set of Poisson structures on X (relative to
k) in the usual sense. Another easy case is for X = BG, for G reductive, as
Pol(X,n) ~ Symy(g[—n])® with g being of weight 1, and weight considerations
show that the the graded dg-lie algebra Pol(X, n)[n+1] must be abelian in this case.
In particular, Pol(X,n)[n + 1] is formal as a graded dg-lie algebra. In particular,
BG admits nonzero n-shifted Poisson structures only when n = 2. When n = 2 we
have moreover

mo(Pois(X,2)) ~ Symi(g)c.

We know little general constructions methods for n-shifted Poisson structures.
It is believed that the main existence statement for n-shifted symplectic structures
(see theorem 5.4) has a version for n-shifted Poisson structures too. Results in that
direction, but only at the formal completion of the constant map, are given in [John].
It is also believed that the dual of an n-shifted symplectic structure defines a canon-
ical n-Poisson structures. Though this is clear at the level of forms and bi-vectors,
taking into account the property of being closed runs into several technical difficul-
ties. Some nonfunctorial construction can be done locally, for instance using the
Darboux theorem for shifted symplectic structure of [Brav-Buss-Joyc, Boua-Grojl,
but this approach has probably no hope to extend to more general derived Artin
stacks. We thus leave the comparison between n-shifted symplectic and Poisson
structures as open questions (we strongly believe that the answers to both ques-
tions are positive).

Question 5.7. Let X be a derived Artin stack as in the proposition 5.5 so that the
space Pois(X,n) is defined. Let Symp(X,n) be the space of n-shifted symplectic
structures on X (defined as a full subspace of the Dold-Kan construction applied

to A2 (X)[n]).

e Can we define a morphism of spaces
Symp(X,n) — Pois(X,n)

that extends the duality between n-shifted nondegenerate 2-forms and n-
shifted bi-vectors 7
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e Is this morphism inducing an equivalence between Symp(X,n) and the
full subspace of Pois(X,n) consisting of nondegenerate n-shifted Poisson
structures ?

The general theory of n-shifted Poisson structures has not been developed much
and remains to be systematically studied. There is for instance no clear notion
at the moment of co-isotropic structures, as well as no clear relations between n-
Poisson structures and n-shifted symplectic groupoids. The theory is thus missing
some very fundamental notions, one major reason is the inherent complexity of the
very definition of the Lie bracket on polyvector fields of proposition 5.5 making all
local coordinate type argument useless.

To finish this section, we would like to mention the next step in the general
theory of shifted Poisson structures. It is known by [Kont2] that a smooth Poisson
algebraic k-variety X admits a canonical quantization by deformation, which is a
formal deformation of the category QCoh(X) of quasi-coherent sheaves on X. In
the same way, a derived Artin stack X (nice enough) endowed with an n-shifted
Poisson structure should be quantified by deformations as follows (the reader will
find more details about deformation quantization in the derived setting in [Toén6]).

An n-Poisson structure p on X is by definition a morphism of graded dg-lie
algebras, and thus of dg-lie algebras

p: k[—1] — Pol(X,n)[n + 1].

We put ourselves in the setting of derived deformation theory of [Luril] (see also
[Hini]). The dg-lie algebra k[—1] is the tangent Lie algebra of the formal line
Spf k[[t]], and the morphism p therefore represents an element p € Fpoi(x,n)n+1) (K[[t]]),
where Iy denotes the formal moduli problem associated to the dg-lie algebra g.

We invoke here the higher formality conjecture, which is a today a theorem in
many (but not all) cases.

Conjecture 5.8. Let X be a nice enough derived Artin stack over k and n > 0.
Then the dg-lie algebra Pol(X,n)[n + 1] is quasi-isomorphic to the dg-lie algebra
HH""+1(X)[n + 1], where HH""+" stands for the iterated Hochschild cohomology
of X.

Somme comments about conjecture 5.8.

e The higher Hochschild cohomology HH Fr+1 (X) is a global counter-part of
the higher Hochschild cohomology of [Pira]. As a complex it is defined to
be

HH"+(X) := Endy,, (co0x)(Ox),

where £ (X) := RMap(S™, X) is the higher dimension free loop space
of X (suitably completed when n is small). The sheaf Ox is considered
on £ (X) via the natural morphism X — £ (X) corresponding to
constant maps. It is proven in [Toén5] that HH"+!(X) endows a natural
structure of a E,, | o-algebra, and thus that HH”"+!(X)[n+ 1] has a natural
dg-lie algebra structure, at last when X is a quotient stack of a derived
quasi-projective scheme by a linear group (see [Fran] for the special case of
affine derived schemes).

e The conjecture 5.8 follows from the main result of [Toén5] when n > 0 (and
X satisfies enough finiteness conditions). When n = 0 and X is a smooth
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Deligne-Mumford stack the conjecture is a consequence of Kontsevich’s for-
mality theorem (see [Kont2]). When X is a derived Deligne-Mumford stack
Tamarkin’s proof of Kontsevich’s formality seems to extend to also provide
a positive answer to the conjecture (this is already observed implicitly in
[Kont3], but has also been explained to me by Calaque). Finally, for n =0
and X is a derived Artin stack which is not Deligne-Mumford, the conjec-
ture is wide open.

e The case n = 1 and X a smooth scheme of the conjecture appears in
[Kapu]. The case where X is a smooth affine variety appears implicitly in
[Kont3] and has been known from experts at least for the case of polynomial
algebras. We also refer to [Cala-Will] for related results in the context of
commutative dg-algebras.

The consequence of the conjecture 5.8 is the existence of deformations quanti-
zation of shifted Poisson structures. Indeed, let n > 0 and p an n-shifted Poisson
structure on X. By conjecture 5.8 we get out of p a morphism of dg-lie algebras
p: k[—1] — HHP»+'(X)[n + 1], and thus an element

P € Fyyrai x)pme (Kl

When n < 0 the same argument provides an element

P € Fypronii (x)j—ns1) (Kll2n]]),

where t9,, is now a formal variable of cohomological degree 2n.

The element p as above defines quantizations by deformations thanks to the
following theorem whose proof will appear elsewhere (we refer to [Fran] for an
incarnation of this result in the topological context).

Theorem 5.6. For n > 0, the formal moduli problem FHHEn+1(X)[ ] associated

n+1
dg-lie algebra HHE"“(X)[n + 1], controls formal deformations of the oco-category
Lycon(X) considered as an n-fold monoidal stable k-linear co-category.

The element p defined above, and the theorem 5.4, defines a formal deformation
L geon(X,p) of Lyeon(X) as an |n|-fold monoidal co-category, which by definition is
the deformation quantization of the n-shifted Poisson structure p.

Remark 5.7. e Theorem 5.6 refers to a rather evolved notion of deformation
of n-fold monoidal linear co-categories, based on a higher notion of Morita
equivalences. In the affine case, this is incarnated by the fact that Ej,41-
algebras must be considered as (n + 1)-categories with a unique object (see
e.g. [Fran]). The precise notions and definitions behind theorem 5.6 are out
of the scope of this survey.

e When X = BG, for G reductive, and the 2-Poisson structure on X is given
by the choice of an element p € Sym?(g)“, the deformation quantization
Lycon(X,p) is a formal deformation of the derived oco-category of repre-
sentations of G as a 2-fold monoidal co-category. This deformation is the
quantum group associated to G and the choice of p € Sym?(g)¢.

e The derived mapping stacks X = RMap(M, BG) are often endowed with
n-shifted symplectic structures (see theorem 5.4). By 5.7 these are expected
to correspond to n-shifted Poisson structures on X, which can be quantified
by deformations as explained above. These quantization are very closely
related to quantum invariants of M when M is of dimension 3 (e.g. Casson,
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or Donaldons-Thomas invariants). In higher dimension the quantization
remains more mysterious and will be studied in forthcoming works.
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