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Abstract

Given a torsion theory (Y, X) in an abelian category C, the reflector I: C — X to
the torsion-free subcategory X induces a reflective factorisation system (€, M)
on C. It was shown by A. Carboni, G.M. Kelly, G. Janelidze and R. Paré that
(€, M) induces a monotone-light factorisation system (€', M*) by simultane-
ously stabilising £ and localising M, whenever the torsion theory is hereditary
and any object in C is a quotient of an object in X. We extend this result to
arbitrary normal categories, and improve it also in the abelian case, where the
heredity assumption on the torsion theory turns out to be redundant. Several
new examples of torsion theories where this result applies are then considered in
the categories of abelian groups, groups, topological groups, commutative rings,
and crossed modules.
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Introduction

Let C be a category. Recall that a prefactorisation system on C is given by
two classes £ and M of morphisms such that £ = MT and M = &', where

E¥={mlelmforallec &}, M"={elelm forall me M}

and the relation | is defined as follows: for morphisms e and m in C, one writes
e | m if there exists, for every commutative square

A—>B
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a unique morphism d such that doe = a and mod = b. A prefactorisation
system (£, M) is a factorisation system if for every morphism f in C there exist
morphisms e € £ and m € M such that f =moe.

From [9] we know that one can associate with any full reflection

I
C 1 X (1)

B
H

a prefactorisation system (£, M) (on C) where £ consists of all morphisms
inverted by the reflector I and M is the closure under pullback (along arbitrary
morphisms in C) of the class of all morphisms which lie in the image of the
inclusion functor H. In fact, (£, M) often is a factorisation system, and this is
the case in particular when I is semi-left-exzact: I preserves those pullbacks of
the form

13
-

H(X)—— HI(B)

where np is the reflection unit. In this case, if f: A — B is a morphism in C
and if

HI(A) —— HI(B)
HI(f)
is the commutative diagram obtained by pulling back HI(f) along np, then
the factorisation A — P to the pullback P = HI(A) X gy B is sent by I
to an isomorphism, whence its (£, M)-factorisation is given by A — P — B.
Unless specified otherwise, throughout the article (£, M) will always denote a
factorisation system associated with some semi-left-exact reflection ().

Recall from [8] that a reflection is semi-left-exact if and only if it is admissible
in the sense of categorical Galois theory [19], where the morphisms in M are
called trivial coverings. A fundamental observation in Galois theory is that, for a
morphism, being a trivial covering is in general not a “local” property, by which
we mean the following: if f: A — B is a morphism, then f is said to possess a
certain property locally if there exists an effective descent morphism p: E — B
(i.e. amorphism p: E — B such that the pullback functor p*: (C | B) — (C | E)
is monadic |23]) such that the pullback p*(f): F xp A — E has this property.
Using the fact that the functor p* reflects isomorphisms, one can verify that
any morphism which is locally a member of the class £ is already itself in &,
even for an arbitrary factorisation system (£, M). In this sense we can say
that, for a morphism, being a member of £ is a “local” property. However,
as noted above, the property of being in M is not a “local” one in this sense:
for an arbitrary semi-left-exact reflection there may exist morphisms which are
locally trivial coverings (these are exactly the coverings of categorical Galois



theory) but which are not trivial coverings themselves. Let us denote the class
of morphisms that are locally in M by M*.

“Dually”, we have that the class M is always stable under pullback (even
for an arbitrary (pre)factorisation system (€, M)) while for £ this is generally
false: it was proved in [9] that £ is pullback-stable if, and only if, I preserves
arbitrary pullbacks (i.e. if it is a localisation). We shall write £ for the class of
morphisms “stably” in £, i.e. those morphisms of which every pullback is in £.

Here, we shall be interested in the following question: if we replace £ by &’
and M by M* do we obtain again a factorisation system (&', M*), which is
then both “stable” and “local”? As explained in [§] the answer in general is
no, even though we always have that & C (M*)". However, there is a number
of important examples for which the answer is yes. For instance, this is the
case for the factorisation system (£, M) on the category of compact Hausdorff
spaces associated with the reflective subcategory of totally disconnected spaces:
in this case, (&', M*) is the Eilenberg/Whyburn monotone-light factorisation
system for maps of compact Hausdorff spaces [12, 29]. For this reason we shall
call a factorisation system monotone-light if it is of the form (&', M*) for some
(E,M).

Another example from [§], or in fact a class of examples, is given by any
hereditary torsion theory in an abelian category C with the property that every
object of C is the quotient of an object in the “torsion-free” subcategory (see
below). Also in this case the factorisation system (€, M) associated with the
“torsion-free” reflection induces a monotone-light factorisation system (£’, M*).

In view of the recent interest in torsion theories in contexts more general
than the one of abelian categories (see for instance [6, 110, 14, [17, 24]), a natural
question to ask is whether torsion theories induce monotone-light factorisation
systems also in a non-abelian context. The aim of the present article is to show
that this is indeed the case for torsion theories in a normal category [25] (as, for
instance, any semi-abelian category [22]). This allows us to study several new
monotone-light factorisation systems in the categories of groups, topological
groups, commutative rings and crossed modules, for example. Moreover, the
torsion theory is not even required to be hereditary, but only to satisfy a suitable
property (see condition (N) below) which always holds in the abelian case.
Hence, our result will improve the one concerning torsion theories in [§], even
within the abelian context.

1. Main Results

By a pointed category we mean, as usual, a category C which admits a
zero-object, i.e. an object 0 € C which is both initial and terminal. For any
pair of objects A, B € C, the unique morphism A — B factorising through the
zero-object will also be denoted by 0. A short exact sequence in C is given by a
composable pair of morphisms (k, f), as in the diagram

0 K—t.-a-t.p 0, 2)

such that k& = ker (f) is the kernel of f (the pullback along f of the unique
morphism 0 — B) and f = coker (k) is the cokernel of & (the pushout by k of
K — 0). Given such a short exact sequence, we shall sometimes denote the
object B by A/K.



Definition 1.1. Let C be a pointed category. A pair (Y, X) of full and replete
subcategories of C is called a torsion theory in C if the following two conditions
are satisfied:

e Homc (Y, X) = {0} forany X ¢ Xand Y €Y
e for any object A € C there exists a short exact sequence
0-Y—-A4A-X-0 (3)

such that X e X and Y € Y.

Y is called the torsion part and X the torsion-free part of the torsion theory
(Y, X). A full and replete subcategory X of a pointed category C is torsion-free
if it is the torsion-free part of some torsion theory in C. Torsion subcategories
are defined dually. An important property we shall need later on is that both
the torsion and torsion-free parts are closed in C under extensions [24]: for every
short exact sequence (), if K and B are in X (respectively, in Y) then also A is
in X (respectively, in Y). The terminology comes from the classical example of
the torsion theory (Ab; , Ab; ) in the variety Ab of abelian groups, where Ab; .
consists of all torsion-free abelian groups in the usual sense (=abelian groups
satisfying, for every n > 1, the implication nz = 0 = x = 0) and Ab;, consists
of all torsion abelian groups.

A torsion-free subcategory is necessarily a reflective subcategory, while a
torsion subcategory is always coreflective: the reflection and coreflection of an
object A are given by the short exact sequence ([B]), which is uniquely determined,
up to isomorphism. Let X be a reflective subcategory of a pointed category C
with pullback-stable normal epimorphisms such that each unit na: A — HI(A)
is a normal epimorphism (=the cokernel of some morphism). Then X is torsion-
free if, and only if, it is semi-left-exact (see Theorem 1.6 in [14]). Hence, in this
context, any torsion-free subcategory induces a reflective factorisation system
(€, M), with & the class of morphisms that are inverted by the reflector I: C — X
and M the closure under pullback of the class of all morphisms in the image of
the inclusion functor H. Now, replacing £ by the class £ of morphisms stably in
&, and M by the class M* of morphisms locally in M, we would like (£/, M*) to
be a factorisation system too. From [8] we know that this is the case whenever
the category C is abelian, and if, moreover, the following two conditions are
satisfied: the torsion theory (Y, X) is hereditary (which means that the torsion
part Y is closed in C under subobjects) and X “covers” C in the following sense:
for any object B € C, there exists an epimorphism E — B such that F € X.

Here, instead of asking C to be abelian, we shall require it to be merely
normal. By a regular category C we mean a finitely complete category with the
property that any arrow in C factorises as a regular epimorphism followed by a
monomorphism, and these factorisations are pullback-stable.

Definition 1.2. [25] A regular pointed category C is called normal if every
regular epimorphism in C is normal.

Any semi-abelian [22] (hence in particular any abelian) category is normal
and, more generally, any homological category in the sense of [3]. Examples of
normal categories will be considered in the next section. A property of normal



categories we shall be needing is that pullbacks reflect monomorphisms: in a
pullback square

- A

P
p*(f)l lf
E

—— 1B
P
the arrow f is a monomorphism whenever p*(f) is a monomorphism [7].
Another interesting property of normal categories is the following:

Lemma 1.3. Let C be a normal category. Then, given two normal subobjects
kK — A andl: L — A such that K C L, i.e. k factors through l, then there is
an isomorphism

A/K

AL

Proof. Consider the following commutative diagram of short exact sequences:

0

l

0—K——L—L/K—0

R T

0—K = A5 AJK —=0

I

AJL=—AJL

|

0

The fact that the arrow mx ol: L — A/K in C factors as a normal epimorphism
followed by a monomorphism implies that the dotted arrow A, induced by the
universal property of the quotient L. — L/K, is a monomorphism. Further-
more, the induced arrow m: A/K — A/L is a normal epimorphism, as is the
induced factorisation ¢: L — Ker(n) such that ker(m) o ¢ = mx ol (since normal
epimorphisms are pullback-stable). It then follows that the right-hand vertical
sequence is short exact, since 7 is the cokernel of its kernel . [l

As mentioned in the introduction, we shall not have to require (Y,X) to be
hereditary. However, as in [8], we will be needing the condition that X “covers”
C, but we now have to make a choice: in an abelian category, an epimorphism
is the same as a normal epimorphism and also the same as an effective descent
morphism, but in a general normal category these notions are all distinct. Here,
we shall require X to have the following condition: for every object B € C, we
shall assume the existence of an effective descent morphism E — B such that
EeX

The following condition, “invisible” in the abelian context, will also be
needed:

(N) for any normal monomorphism k: K — A, the monomorphism
kotyg:T(K)— A is normal.



(Here we have written tx: T (K) — K for the counit of the coreflection C — Y.)
Before stating and proving our main result, we recall some results from |14]
needed in the proof, as well as the following notation: we write € for the class
of all normal epimorphisms f: A — B whose kernel Ker (f) is in Y, and M for
the class of all morphisms f: A — B whose kernel Ker (f) is in X.
The first result is Proposition 3.5 in [14]:

Proposition 1.4. If (Y, X) is a torsion theory in a normal category C satisfying
condition (N), then (€, M) is a stable factorisation system on C.

Proof. Let us recall how to construct the (£, M)-factorisation of an arrow
fiA — Bin C. If k: K — A is the kernel of f we know, by assumption,
that the monomorphism ko tx:T(K) — A is normal. By factorising f through
the quotient A/T(K) one gets the (£, M)-factorization m o q of f:

A—> A/T(K) "> B.

It is obvious that ¢ belongs to &£; the fact that m is in M follows from Lemma
[[3] from which we can deduce that the kernel of m is given by K/T(K) =
HI(K). Observe that the class € is pullback-stable, since normal epimorphisms
are pullback-stable by assumption, and the kernels of two parallel arrows in a
pullback square are isomorphic. The rest of the proof is easy, and it can be
found in [14]. O

The following Lemma was also proved in [14]: we recall its proof for the
reader’s convenience.

Lemma 1.5. Given any torsion theory (Y,X) in a pointed category with pullback-
stable normal epimorphisms, one always has that £ C E'.

Proof. Since £ is pullback-stable, to prove that £ C &’ it suffices to show that
€ C &. Consider a normal epimorphism f in C with Ker(f) € Y. Then f is
the cokernel of its kernel ker (f) and, consequently, I(f) the cokernel (in X)
of I(ker (f)). Since I(Ker(f)) = 0 by assumption, this implies that I(f) is an
isomorphism. O

We can now prove the main result of this article:

Theorem 1.6. Let C be a normal category, X a torsion-free subcategory of
C satisfying condition (N), and (£, M) the associated reflective factorisation
system. Consider the following list of properties:

1. X “covers” C: for any object B € C, there exists an effective descent
morphism E — B such that E € X;
2. M* = M;
3. & =E;
4. (&', M*) is a factorisation system.
The implications (1) = (2) = (3) and (2) = (4) hold. (2) = (1) holds as soon
as C has enough projectives (with respect to effective descent morphisms).



Proof. (1) = (2). It is well known and easily verified that M* C M. For the
other inclusion, consider a morphism f: A — B, an effective descent morphism
p: E — B and the diagram

HI(P) <~

P——A
|
) f
EF—— B,
P

(4)

(S

Hf(p*(f))l ™ (
HI(E) <—

and assume that both Ker (f) and E are in X. Since in this case both Ker (p*(f)) =
Ker (f) and the regular image Im [p*(f)] of p*(f) lie in X — the latter because
it is a subobject of E — it follows that also P € X. Indeed, the torsion-free
subcategory X is closed in C under extensions:

0 ——Ker (p*(f)) —= P ——=Im (p*(f)) —=0.

Consequently, p*(f) lies in X. In particular, p*(f) € M, hence f € M*.

(2) = (1). If C has enough projectives then (1) is equivalent to the condition
that every projective lies in X. We verify the latter. For this, first of all note
that if p: E — B is an effective descent morphism such that E is projective with
respect to effective descent morphisms, then any f: A — B in M™ is necessarily
split by p, which means that p*(f) is a trivial covering, i.e. a member of the
class M: this follows from the pullback-stability of M.

Now let P be a projective object. Then 0 — P is in M* = M, and the
identity 1p: P — P an effective descent morphism with projective domain.
It follows that 0 — P is split by 1p. Consequently, 0 — P is in M, and
this implies that P € X, since pullbacks reflect monomorphisms in the normal
category C, and the arrow np: P — HI(P) is then both a normal epimorphism
and a monomorphism. This proves that every projective lies in X, as desired.

(2) = (3). £ C & by Lemma L5 If (2) holds, then since & C (M*)T (by
Proposition 6.7 in |§]) and by Lemma [[4 we have that & C (M*)T = M =Z.

(2) = (4) follows immediately from Proposition 4 and (2) = (3). O

Remark 1.7. Observe that (4) is strictly weaker than conditions (1), (2) and
(3): if (Y,X) = (C,{0}) is the trivial torsion theory in a (non-trivial) normal
category C, then we have that £& = & is the class of all morphisms, £ the
class of the normal epimorphisms, and M* = M the class of all isomorphisms.
Therefore condition (4) is satisfied, while (3) is not.

2. Examples

2.1. Torsion theories in the category of abelian groups

For any torsion theory (Y,X) in an abelian category C the condition (N) is
trivially satisfied, so that in order to apply Theorem [L.6] it suffices to know that
X “covers” C. The case of the variety C = Ab of abelian groups is particularly
simple: here every torsion-free subcategory X satisfies the latter condition, with
the exception of the trivial X = {0}. Indeed, any free abelian group necessarily
belongs to every non-trivial torsion-free subcategory, by the following argument



(which we adapted from the proof of Proposition 5.5 in [26]): assuming that
there exists a free abelian group F' that is not in X, for a given torsion theory
(Y,X) in C, we consider the induced canonical short exact sequence

0 T(F) F HI(F) 0

and observe that the subgroup T(F') # 0 of F is free, as is any subgroup of a
free abelian group. Hence we have a non-trivial free abelian group in the torsion
subcategory Y. This implies, first of all, that the free abelian group on the one-
element set is also in Y (since Y is closed in Ab under quotients) and then that
the same is true for an arbitrary free abelian group (since Y is closed in Ab
under coproducts) so that, finally, any abelian group must be in Y (once again
since Y is closed in Ab under quotients). Hence, (Y,X) = (Ab, {0}) is the only
torsion theory in Ab which does not have all free abelian groups in X. For every
other torsion theory in Ab we therefore obtain (via Theorem [[L6]) a monotone-
light factorisation system (£’, M*) where &’ consists of the surjective group
homomorphisms with kernel in Y, and M* consists of the homomorphisms with
kernel in X.

For instance, we might take for X (respectively, Y) the full subcategory
of Ab of torsion-free (respectively, torsion) abelian groups in the usual sense.
Or, X = Red could be the full subcategory of Ab of all reduced groups and
Y = Div the one of all divisible groups. Note that the latter torsion theory is
not hereditary (see, for instance, [2]). Moreover, since any abelian group admits
a monomorphism into a divisible one, the “dual” torsion theory (Red°P, DivoP)
in Ab°P (which again is not hereditary) also satisfies condition (1) in Theorem
and therefore gives us a monotone-light factorisation system in the category
Ab°P | which is known to be equivalent to the category of compact abelian
groups.

2.2. Torsion theories in the category of groups

For any torsion theory (Y, X) in the (semi-abelian, hence normal) variety Grp
of groups the functoriality of the radical T implies that the subgroup T(G) of
any group G is necessarily characteristic. Accordingly, condition (N) is always
satisfied: indeed, given a normal monomorphism K — A in Grp, T(K) is a
characteristic subgroup of K, thus also a normal subgroup of A. On the other
hand, just as in the case of Ab, if (Y, X) is a non-trivial torsion theory in Grp,
then there exists for every group G a surjective homomorphism p: X — G with
X in X [27]. This can be shown using the same argument as in the previous
example: since every subgroup of a free group is free, every non-trivial torsion-
free subcategory X must contain all free groups. Accordingly, we may apply
Theorem to any non-trivial torsion theory (Y,X) in Grp. For instance, we
could take for X the subcategory of torsion-free groups in the usual sense, and
for Y the subcategory of groups generated by their elements of finite order.

2.83.  Hausdorff groups versus totally disconnected groups.

Let Grp(Haus) be the (homological |4] hence, in particular, normal) category
of Hausdorff groups, and Grp(TotDis) its full subcategory of totally disconnected
groups. The forgetful functor H: Grp(TotDis) — Grp(Haus) admits a left adjoint
I: Grp(Haus) — Grp(TotDis), which sends a Hausdorff group G to the quotient



I(G) = G/¢o(G) of G by the connected component ¢o(G) of the neutral element
0 of G. The category Grp(TotDis) is known to be a torsion-free subcategory
of Grp(Haus) (see [6, [17], for instance). Furthermore, condition (V) is easily
seen to be satisfied: indeed, by the same argument as in the previous example,
we have for any normal subgroup K — A in Grp(Haus), that T(K) = ¢o(K)
is a normal subgroup of A. Since, moreover, the topology of ¢o(K) is the one
induced by that of A, the inclusion ¢o(K) — A is a normal monomorphism
in Grp(Haus). Finally, as was proved by Arkhangel’skii in [1], any Hausdorff
group is a regular quotient of a totally disconnected group, so that condition
(1) in Theorem is indeed satisfied. Hence, we obtain on Grp(Haus) the
following monotone-light factorisation system (£, M*): the morphisms in &’
are the open surjective homomorphisms in Grp(Haus) with a connected kernel,
whereas the class M* consists of the continuous homomorphisms with a totally
disconnected kernel. Since for a continuous homomorphism f: A — B any of the
fibres f=1(b) (b € B) is connected (respectively, totally disconnected) as soon as
the kernel Ker (f) = f~1(0) is connected (respectively, totally disconnected), the
morphisms in £ (respectively, in M*) are thus precisely the continuous maps
which are monotone (respectively, light) in the usual sense. Hence, Theorem [[.0]
shows, in particular, that every continous homomorphism admits a monotone-
light factorisation in the classical sense, even if the spaces A and B are not
required to be compact.

It would be interesting to know whether this result can be extended to
arbitrary categories of Hausdorff semi-abelian algebras in the sense of [4]. The
obstruction comes from the possibility of extending to the semi-abelian context
the result which states that every Hausdorff group is a regular quotient of a
totally disconnected group, as already observed in [16].

2.4. Commutative rings versus reduced rings

Recall that a commutative ring A (not necessarily with unit) is reduced
if it has no (non-zero) nilpotent element: for all @ € A and n > 1, a" =
0 implies that a = 0. We write CRng for the (semi-abelian, hence normal)
variety of commutative rings, RedCRng for the quasivariety of reduced rings, and
H:RedCRng — CRng for the forgetful functor. As observed in [10], RedCRng is
a torsion-free subcategory of CRng, which is hereditary since the corresponding
torsion subcategory NilCRng of nilpotent commutative rings is closed in CRng
under subrings. This implies that the reflector I: CRng — RedCRng preserves
monomorphisms, so that condition (V) is satisfied: indeed, given a normal
monomorphism (= ideal) k: K — A in CRng, we obtain a commutative diagram
of short exact sequences

NK

0 T(K) X~ K HI(K) —=0
T(k)l lk lHI(k)
0 T(A) = A—— HI(A) —0

in CRng, where HI(k) is a monomorphism. Accordingly, the left hand square is
a pullback, and ko tx: T(K) — A a normal monomorphism, as an intersection
of normal monomorphism. It is also clear that any free commutative ring is
reduced, so that Theorem [[.0] applies to the torsion theory (NilCRng, RedCRng)



in CRng. The induced factorisation system (€', M*) is the following: a ring
homomorphism in CRng is in &’ if it is surjective with a nilpotent kernel, and
it belongs to M* when its kernel is reduced.

2.5. Internal groupoids versus equivalence relations

Let C be a normal Mal'tsev category, and let Grpd(C) be the category of
(internal) groupoids in C. Recall that a groupoid A = (A1, Ag, m,d, ¢, i) in C is
a diagram of the form

d
A xgg Ay ——= A1 T A,
_—
(&

where Ag represents the “object of objects”, A; the “object of arrows”, Ay X 4,
A, the “object of composable arrows”, d the “domain”, ¢ the “codomain”, 4
the “identity”, and m the “composition”. Of course, these morphisms are re-
quired to satisfy the commutativity conditions expressing, internally, the fact
that A is a groupoid. The category Grpd(C) is regular and Mal’tsev |15], and
it is also a normal category. This latter observation easily follows from the fact
that a morphism (fo, f1): A = (41, Ao, m,d,c,i) = B = (B1, Bo,m,d,c,i) is a
normal epimorphism in Grpd(C) if and only if both the arrows fo: Ay — By
and fi: Ay — Bj are normal epimorphisms in C. The category Eq(C) of in-
ternal equivalence relations in C is a torsion-free subcategory of Grpd(C), as
explained in Example 5.5 in [6] (in the more restrictive context of homologi-
cal categories [3], but the arguments used there still apply in the present con-
text). The corresponding torsion part consists of the subcategory Ab(C) of
abelian objects in C (seen as particular internal groupoids). The fact that
Eq(C) “covers” Grpd(C) follows from the well known fact that any groupoid
A = (A1,4p,m,d,c,i) in C is a regular quotient of the equivalence relation
Eq(d) = (A1 x4, 41, A1,7,01,p2,(14,,14,)) which occurs as the kernel pair of
d. The fact that condition (V) holds true follows from the fact that the reflec-
tor I: Grpd(C) — Eq(C) to the torsion-free subcategory Eq(C) clearly preserves
monomorphisms, so that the argument recalled in the Example [24] also applies
to the present example.

Remark that the category Grpd(Grp) of internal groupoids in the category
Grp of groups is known to be equivalent to the category XMod of crossed modules
introduced by J.H.C. Whitehead [28]. An object in XMod is a group homomor-
phism a: A — B together with an action of B on A, written °a for any a € A
and b € B, such that a(%a) = bab~' and *@a; = aa;a~" for any a,a; € A,
b € B. An arrow (fo, f1):a — < in the category XMod is a pair of group
homomorphisms making the diagram

AT a

I

B—— DB
0

commute, and preserving the action: fi(%a) = f0®) f,(a).

The equivalence Grpd(Grp) = XMod restricts to an equivalence between
the category Eq(Grp) of internal equivalence relations in Grp and the cate-
gory NormMono of normal monomorphisms of groups, where the action is given

10



by conjugation. The reflector I: XMod — NormMono sends a crossed mod-
ule a: A — B to the normal monomorphism «(A) — B which is the inclu-
sion of the image «(A) in B. The monotone-light factorisation of an arrow
(fo, f1): @ = o' in XMod is then obtained as follows. One considers the kernel
(ker (fo),ker (f1)):& — a of (fo, f1) in XMod, and one then factors A by its
normal subgroup Ker(&), so that (fo, f1):a — o in (@) decomposes into the
commutative diagram

TKer(&) ¢

A—"% A/Ker(@) > Al

|k

B:B%B/,
1B fo

where ¢1 0 Tker(a) = f1, (1B, Tker(a)) 1s in &', and (fo, ¢1) is in M*.
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