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THE COMMUTATOR SUBGROUP OF THE HECKE GROUP G5 IS NOT

CONGRUENCE

CHENG LIEN LANG AND MONG LUNG LANG

Abstract. Let q ≥ 3 be an integer and let Gq be the Hecke group associated with q. We
prove that the power subgroup G5

5
and the commutator subgroup G′

5
are not congruence.

1. Introduction

1.1. Let q ≥ 3 be a a fixed integer. The (homogeneous) Hecke group Hq is defined to be the
maximal discrete subgroup of SL2(R) generated by S and T , where λq = 2cos (π/q),

S =

(

0 1
−1 0

)

, T =

(

1 λq

0 1

)

. (1.1)

Let A be an ideal of Z[λq]. The pricnipal congruence subgroup of Hq of level A is defined to
be

H(q, A) = {(aij) ∈ Hq : a11 − 1, a22 − 1, a12, a21 ∈ A}. (1.2)

Let Z = 〈±I〉. The (inhomogeneous) Hecke group and its principal congruence subgroup
are defined as Gq = Hq/Z and G(q, A) = H(q, A)Z/Z. A subgroup K of Gq is congruence
if G(q, A) ⊆ K for some A. Whether subgroups of finite indices are congruence have been
studied extensively (see [F], [Lu], [S]). In the case q = 3, it is known that not every subgroup
of finite index of the modular group G3 is congruence and that the commutator subgroup G′

3

is congruence of level 6. We suspect that q = 3 is the only case that G′

q is congruence (see
Discussion 5.3). The main purpose of the present article is to show that
Proposition 5.2. The subgroups G5

5 and G′

5 of the Hecke group G5 are not congruence.

Note that Gn
q is the subgroup of Gq generated by all the elements of the form xn ∈ Gq. Note

also that in the case q ≥ 3 is a prime, these two groups Gq
q and G2

q are special in the sense
that they are the only normal torsion subgroups of Gq.

1.2. Our proof of the above proposition is elementary and requires some basic facts about
the fundamental domains of certain subgroups of G5. The following two facts about G5 are
essential in our proof as well.

(i) If G5
5 is congruence, then G(5, 5) ⊆ G5

5 (Lemma 5.1).
(ii) G5/G(5, 5) ∼= E53PSL(2, 5) does not possess subgroups of index 5 (Proposition 5.2),

where E53 is an elementary abelian 5-group of order 53. Note that the indices of Gq
q and G′

q

in Gq are q and 2q respectively (Lemmas 3.3).

1.3. The rest of the article is organised as follows. In Sections 2 and 3, we study the geometric
aspects of the Hecke group Gq, such study allows us to give the geometric invariants (index,
number of elliptic elements, number of cusps, genius) of G5

5 and G′

5. Section 4 lists all the
known results which is necessary for our study of G5

5 and G′

5. They are mainly results on
the indices of the principal congruence subgroups of G5. Section 5 gives us the main result
of the present article. The present article is part of our project on Gq. We have determined
the normalisers (see [L]) and the indices (see [LL1], [LLT2]) for some congruence subgroups
of G5. We are currently working on the index formula for G(q, π), where q ≥ 7.
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2. Geometric invariants

In [K], Kulkarni applied a combination of geometric and arithmetic methods to show that
one can produce a set of independent generators in the sense of Rademacher for the congruence
subgroups of the modular group, in fact for all subgroups of finite indices. His method
can be generalised to all subgroups of finite indices of the Hecke groups Gq, where q is a
prime. See [LLT1] for detail (Propositions 8-10 and section 3 of [LLT1]). In short, for
each subgroup V of finite index of Gq, one can associate to V a set of Hecke-Farey symbols
(HFS) {−∞, x0, x1, · · · , xn,∞}, a special polygon (fundamental domain) Φ, and an additional
structure on each consecutive pair of xi’s of the three types described below :

xi
⌣

◦

xi+1, xi
⌣

•

xi+1, xi
⌣

a

xi+1.

where a is a nature number. Each nature number a occurs exactly twice or not at all. Similar
to the modular group, the actual values of the a’s is unimportant: it is the pairing induced
on the consecutive pairs that matters.

(i) The side pairing ◦ is an elliptic element of order 2 that pairs the even line (xi, xi+1)
with itself. The trace of such an element is 0.

(ii) The side pairing • is an elliptic element of order q that pairs the odd line (xi, xi+1).
The absolute value of the trace of such an element is λq .

(iii) The two sides with the label a are paired together by an element of infinite order.
(iv) The special polygon associated to the HFS is a fundamental domain of V and the side

pairings I = {σ1, σ2 · · · , σm} associated to the HFS is a set of independent generators
of V (Theorem 7, Propositions 8-10 of [LLT1]).

(v) The number d of special triangles (a special triangle is a fundamental domain of Gq)
of the special polygon is the index of the subgroup.

(vi) The set of independent generators consists of r matrices of infinite order, where r is
the number of the nature number a’s in the Hecke-Farey smybols.

(vii) The subgroup has v2 (the number of the circles ◦ in HFS) inequivalent classes of
elliptic elements of order 2. Each class has exactly one representative in I.

(viii) The subgroup has vq (the number of the bullets • in HFS) inequivalent classes of
elliptic elements of order q. Each class has exactly one representative in I.

(ix) The Hecke-Farey symbols can be partitioned into v∞ classes under the action of the
set of independent generators, which gives the number of cusps of the subgroup.

(x) The genus g can be determined by the Riemann-Hurwitz formula.

(q − 2)d = qv2 + 2(q − 1)vq + 4qg + 2qv∞ − 4q. (2.1)

(xi) The width of a cusp x, denoted by w(x), is the number of even lines in Φ that comes
into x. Algebraically, it is the smallest positive integer m such that ±Tm

q is conjugate
in Gq to an element of K fixing x (keep in mind that a matrix is identified with its
negative in Gq). The least common multiple N of the cusp widths of V is called the
geometric width of V .

Discussion 2.1. The vertices of the Hecke-Farey symbols can be obtained by applying
Lemma 3 of [LLT1] and the side pairings in (i)-(iii) of the above can be obtained by Propo-
sitions 8-10 of [LLT1].

3. Subgroups of small indices, Power subgroups

Let q ≥ 3 be a prime and let K be a subgroup of Gq. It is clear that if K is of index 2,
then the only possible Hecke-Farey symbols for K is {−∞, 0,∞} with the set of independent
generators {ST−1, T−1S}. The invariants of K is given by

d = 2, v2 = 0, vq = 2, v∞ = 1, g = 0. (3.1)
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It is not clear that Gq cannot possess subgroups of indices between 3 and q − 1 from alge-
braic point of view. However, it is clear that there is no such Hecke-Farey symbols. As a
consequence, we have the following :

Proposition 3.1. Let K be a subgroup of Gq of index at most q − 1. Then K is generated

by the set of independent generators {ST−1, T−1S}, where o(ST−1) = o(T−1S) = q. The

invariants of K are d = 2, v2 = 0, vq = 2, v∞ = 1, g = 0. Further, [K : K ′] = q2.

Proof. Since {ST−1, T−1S} is a set of independent generators and o(ST−1) = o(T−1S) = q,
one must have [K : K ′] = q2. The rest of the proposition is clear. �

Remark. Note that unlike Gq (q ≥ 5), G3 = PSL2(Z) does possess subgroups of all possible
indices, which can be proved by investigation of the Hecke-Farey symbols.

3.1. Power subgroups of Gq. Denoted by Gn
q the subgroup of Gq generated by all the

elements of the form xn, where x ∈ Gq. It is clear that Gn
q is a characteristic subgroup of

Gq. Since Gq is a free product of two elliptic elements of orders 2 and q respectively, Gn
q is a

proper subgroup of Gq if and only if gcd (n, 2q) 6= 1. The following are well known.

Lemma 3.2. Let q be an odd prime. Then G2
q is the only subgroup of Gq of index 2. G2

q is

a free product of two elliptic elements of order q. In particular, [G2
q : [G2

q , G
2
q]] = q2.

Proof. Since {S, ST−1} is a set of independent generators of Gq, o(S) = 2, o(ST−1) = q, one
has ST−1, T−1S ∈ G2

q, S /∈ G2
q . We may now complete the proof of the lemma by applying

Proposition 3.1. �

Lemma 3.3. Let q be an odd prime. Then Gq
q is the only normal subgroup of Gq of index q.

Further, Gq
q is a free product of q elliptic elements of order 2 and [Gq

q : [Gq
q, G

q
q]] = 2q. The

invariants of Gq
q are given by d = q, v2 = q, vq = 0, v∞ = 1, g = 0.

Proof. It is clear that S ∈ Gq
q, ST

−1 /∈ Gq
q. Hence Gq

q is a proper subgroup that contains all
the elliptic elements of order 2 (Gq

q is normal). Let K be the subgroup of Gq with Hecke-Farey
symbols

{−∞ = x0
⌣

◦

x1
⌣

◦

x2, · · ·xq−1/2
⌣

◦

xq+1/2, · · ·xq−2
⌣

◦

xq−1
⌣

◦

xq = ∞},

where the xi’ are the vertices of an ideal q-gon of depth 1 (see Discussion 2.1 of Section
2). It follows that [Gq : K] = q and that a set of independent generators of K is given by
{g1, g2, · · · , gq}, where o(gi) = 2 for all i. Since Gq

q contains all the elliptic elements of order
2, we conclude that K is a subgroup of Gq

q. An easy study of the indices implies that Gq
q = K.

Since Gq
q = K is generated by q independent generators of order 2, [Gq

q : [Gq
q, G

q
q]] = 2q. Let

I be a normal subgroup of index q of Gq. Since q is an odd prime, S = Sq ∈ I. Since I is
normal, I contains all the elliptic elements of order 2. Hence Gq

q ⊆ I. Since they have the
same index, one must have I = Gq

q. This implies that Gq
q is the only normal subgroup of

index q of Gq. �

Example 3.4. The side pairings associated with the Hecke-Farey symbols of G5
5 is given by

(

0 1

−1 0

)

,

(

λ −1

λ+ 2 −λ

)

,

(

2λ+ 1 −2λ− 2

λ+ 2 −2λ− 1

)

,

(

2λ+ 1 −λ− 2

2λ+ 2 −2λ− 1

)

,

(

λ −λ− 2

1 −λ

)

.

4. Known results about G5

Applying the main results in [LL1] and [LL2] (Section 7 of [LL1] and Theorem 4.1 of [LL2]),
we have the following.

(i) G5/G(5, 5) ∼= G(5, λ + 2)/G(5, 5) · G5/G(5, λ + 2) ∼= E53PSL(2, 5), where G(5, λ +
2)/G(5, 5) ∼= E35

∼= Z5 × Z5 × Z5 is the elementary abelian group of order 53 and
G5/G(5, λ+ 2) ∼= PSL(2, 5) ∼= A5.

(ii) Let V be a congruence subgroup of G5. Suppose that the geometric level of V is r
where r is odd (see (xi) for the definition of the geometric level), then G(5, r) ⊆ V .
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5. G5
5 and G′

5 are not congruence

It is well known that the commutator subgroup of Γ = G3 is congruence The main purpose
of this section is to show that the commutator subgroup G′

5 of G5 is not congruence.

Lemma 5.1. If G5
5 is congruence, then G(5, 5) ⊆ G5

5.

Proof. By Lemma 3.3, the geometric level (see (xi) for the definition of the geometric level)
of G5

5 is 5. By (ii) of Section 4, G(5, 5) ⊆ G5
5. �

5.1. The group structure of G(5, λ + 2)/G(5, 5). Recall first that 5 = λ−2(λ + 2)2. By
Example 3 of [LLT1],

a =

(

−11λ− 6 10λ+ 5
4λ+ 3 −4λ− 2

)

= T−2

(

3λ+ 2 −2λ− 3
4λ+ 3 −4λ− 2

)

∈ G(5, λ+ 2)−G(5, 5) (5.1)

By (i) of Section 4, G(5, λ + 2)/G(5, 5) is elementary abelian of order 53. It follows that
G(5, λ + 2)/G(5, 5) can be generated by ∆ = {a, b = SaS−1, c = JaJ−1} (see (5.3) for the
definition of J). Note that ∆ modulo G(5, 5) is given by

a ≡ I + (λ + 2)

(

4 0
4 1

)

, b ≡ I + (λ+ 2)

(

1 1
0 4

)

, c ≡ I + (λ+ 2)

(

1 4
0 4

)

. (5.2)

Proposition 5.2. G5
5 and G′

5 are not congruence.

Proof. Since G5/G
′

5 is abelian of order 10 and G5
5 is the only normal subgroup of G5 of index 5

(Lemma 3.3), G′

5 ⊆ G5
5. To prove our assertion, it suffices to show that G5

5 is not congruence.
Suppose that G5

5 is congruence. By Lemma 5.1, G(5, 5) ⊆ G5
5. Since G5/G(5, λ+2) ∼= A5 has

no normal subgroup of index 5 and G′

5 has index 5 in G5, G(5, λ+2) is not a subgroup of G5
5.

This implies that G5
5G(5, λ+ 2) = G5. By Second Isomorphism Theorem, |G(5, λ+ 2)/[G5

5 ∩
G(5, λ + 2)]| = 5 and |[G5

5 ∩ G(5, λ + 2)]/G(5, 5)| = 52. Note that E53A5
∼= G5/G(5, 5) acts

on D = [G5
5 ∩G(5, λ+ 2)]/G(5, 5) ∼= Z5 ×Z5 by conjugation. Note also that D is a subgroup

of 〈∆〉. Recall that

J =

(

0 1
1 0

)

∈ AutG5. (5.3)

Since [G(5, 5) ∩ G(5, λ + 5)]/G(5, 5) = D is invariant under the conjugation of E53A5
∼=

G5/G(5, 5),D is invariant under the conjugation of J and every element of G5 (in particular, S
and T ). However, one sees by direct calculation that the only subgroup of 〈∆〉 invariant under
J , S, and T is 〈∆〉 itself (see Appendix A). A contradiction. Hence G5

5 is not congruence. �

Discussion 5.3. A key step in the proof of G′

3 is congruence is that G3/G(3, 3) ∼= A4
∼= E4Z3

has a normal subgroup of index 3 (see Lemma 3.7). This fact is no longer true if q = 5 as
G5/G(5, 5) possesses no normal subgroups of index 5. As this may be true for all q ≥ 5, we
therefore suggest that G′

q is not congruence if q ≥ 5.

6. Appendix A

Lemma A1. Let π = λ + 2 and let ∆ = {a, b, c}, where a, b, c are given as in (5.2). Then

the only nontrivial subgroup of 〈∆〉 invariant under the action of S, T and J is 〈∆〉 .

Proof. Since (I + πU)(I + πV ) ≡ I + π(U + V ) (mod 5), multiplication of (I + πU)(I + πV )
can be transformed into addition of U and V . This makes the multiplication of matrices a,
b, and c easy. Consequently, one has

r = (ac)(ab) ≡ I + π
(

0 0

3 0

)

, s = (ac)(ab)−1 ≡ I + π
(

0 3

0 0

)

, t = bc ≡ I + π
(

−3 0

0 3

)

.

It is clear that 〈∆〉 = 〈a, b, c〉 = 〈r, s, t〉. Let A,B ∈ G5. Set A
B = BAB−1. Direct calculation

shows that

rS = s−1, rT = rs−1t2, rJ = s, sS = r−1, sT = s, sJ = r, tS = t−1, tT = st, tJ = t−1. (A1)
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Denoted by M a nontrivial subgroup of 〈r, s, t〉 that is invariant under the conjugation of J ,
S and T . Let 1 6= σ = risjtk ∈ M . One sees easily that

(i) If k 6≡ 0 (mod 5), without loss of generality, we may assume that k = 1. Then
σJσS = t−2 ∈ M . It follows that t ∈ M . Hence tT = st ∈ M . Consequently, s ∈ M .
This implies sS = r−1 ∈ M . In summary, r, s, t ∈ M .

(ii) If k ≡ 0 (mod 5), then σ takes the form risj . Suppose that i ≡ 0 (mod 5). Then 1 6=
sj ∈ M . It follows that s ∈ M . Consequently, r = sT ∈ M . Hence rs−1t2 = rT ∈ M .
As a consequence, t ∈ M . In summary, r, s, t ∈ M . In the case i 6≡ 0 (mod 5), we
may assume that i = 1. Hence rsj ∈ M . It follows that (rsj)T (rsj)−1 = s−1t2 ∈ M .
Consequently, (s−1t2)T = st2 ∈ M . This implies that (s−1t2)(st2) = t4 ∈ M . Hence
t ∈ M . One now sees easily that r, s, t ∈ M .

Hence the only nontrivial subgroup of 〈∆〉 invariant under J , S and T is 〈∆〉. �
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