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Abstract. In this paper we study a model for traffic flow on networks based
on a hyperbolic system of conservation laws with discontinuous flux. Each
equation describes the density evolution of vehicles having a common path
along the network. In this formulation the junctions disappear since each path
is considered as a single uninterrupted road.

We consider a Godunov-based approximation scheme for the system which
is very easy to implement. Besides basic properties like the conservation of
cars and positive bounded solutions, the scheme exhibits other nice properties,
being able to select automatically a solution at junctions without requiring
external procedures (e.g., maximization of the flux via a linear programming
method). Moreover, the scheme can be interpreted as a discretization of the
traffic models with buffer, although no buffer is introduced here.

Finally, we show how the scheme can be recast in the framework of the
classical theory of traffic flow on networks, where a conservation law has to be
solved on each arc of the network. This is achieved by solving the Riemann
problem for a modified equation, and showing that its solution corresponds to
the one computed by the numerical scheme.

1. Introduction. Starting from the introduction of the LWRmodel [24, 26], a huge
literature about macroscopic fluid-dynamic models for traffic flow was developed.
More recently, models, theory and numerical approximations for traffic flow on
networks became a hot topic [7, 10, 13, 21]. The interest in forecasting traffic
flow on large networks became even stronger in the very last years, due to the
increasing number of GPS devices (smartphones, satellite navigators, black boxes)
which provide real-time traffic data. Private companies like GOOGLE, WAZE
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MOBILE, NOKIA [16], INRIX, OCTOTELEMATICS [8], ZEROPIU, YANDEX,
started collecting data and, in some cases, broadcasting traffic forecast.

The LWR model describes the evolution of the average density of vehicles on a
road by means of a conservation law of the form

∂

∂t
ρ+

∂

∂x
f(ρ) = 0, x ∈ (a, b), t > 0 (1)

where ρ(x, t) is the vehicle density at point x and time t and f = f(ρ(x, t)) is a
given flux function. Extension of such model to road networks (i.e., graphs) is not
straightforward since the dynamics at junctions is not uniquely determined. Indeed,
imposing the conservation of vehicles at junctions and complying with drivers’ pref-
erences with regards the desired directions still leaves infinite admissible solutions
for the density.

Goal. Preliminarily, we show the relationship between a first-order version of the
model proposed by Hilliges and Weidlich [20] and the source-destination model
proposed by Garavello and Piccoli [12]. The main feature of these models is that
they are able to track different populations of drivers, characterized by their path
along the network, thus keeping a global view of the vehicular flow. The Hilliges
and Weidlich’s model, hereafter called multi-path, is particularly interesting since
the junctions apparently disappear. This is made possible by the fact that each
path is considered as a single uninterrupted road, and the junctions are hidden in
the coupling of the equations which describe the densities of the single populations.

The main goal of this paper is investigating the properties of a new Godunov-
based numerical scheme for the multi-path model, recently proposed in the “twin”
paper [5], showing unexpected similarities to traffic models with buffer [4, 11, 14, 18].
Considering that the proposed numerical scheme prescribes a unique solution for
the density at junction, the question arises which solution is automatically selected
among the admissible ones. We also give possible answers to this question.

Relevant literature. First of all, let us stress that the multi-path model differs from
the so-called multi-population or multi-class models, see, e.g., [2, 29]. In those
cases, the models consist of one equation for a single road (extension to networks
is also possible) with different velocity functions vi, one for each class of vehicles.
Typically, the populations have different maximal velocities, in order to take into
account different types of vehicles or drivers’ behaviors.

The multi-path model shares instead the same purpose of the source-destination
model [12] (see also [17], [22, Sect. 7] and the recent paper [4]). In that case, vehicles
are divided in different populations on the basis on their source-destination pair.
The model consists of a system of nonlinear and semilinear PDEs, one for the total
density ρ and the others for the percentages π’s of vehicles belonging to the different
populations.

Let us also mention the papers [4, 11, 14, 18] which deal with buffer models.
In that case the junction is seen as a 0-dimensional space and its load is described
by the number of cars lying in it at any time. The load varies accordingly to the
difference between the inflow and the outflow at the buffer and evolves according
to a dedicated ODE.

The multi-path model is based on a system of nonlinear conservation law with
discontinuous flux. Several papers investigate from the theoretical point of view
(systems of) scalar conservation laws. The interested reader can find in the book
[23] an introduction to the field, in [1, 6] some references for the case of discontinuous
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flux, and in the book [3] the analysis of the systems of conservation laws. Systems
of scalar conservation laws with discontinuous flux are instead less studied. An
attempt related to traffic flow can be found in [25], where a model very similar to
the one considered here is investigated. From the numerical point of view, a good
basic reference is again the book [23]. We also point out the paper [19], where a
numerical method for (systems of) scalar conservation laws with discontinuous flux
is proposed, and the paper [28], where the convergence of a Godunov-based scheme
for scalar conservation laws with discontinuous flux is investigated.

Paper organization. In Section 2 we describe the multi-path model, pointing out the
analogies with the model introduced in [12]. We also introduce a junction-oriented
version of the model particularly suited for large networks and real applications.

In Section 3 we introduce the Godunov-based numerical scheme and we show
that it is conservative, and its solution is positive and bounded by the maximal
admissible density on the roads.

In Section 4 we show how the numerical scheme basically acts as a discretization
of the models with buffer, although no buffer is explicitly introduced here.

In Section 5 we focus on the case of a merge (a single junction with 2 incoming
roads and 1 outgoing road). Since it is well known that in this case the LWR model
on networks admits infinite solutions at junction (see, e.g., [13]), we try to under-
stand which solution is automatically selected by the scheme among the admissible
ones. To this end, we first compute the asymptotic solution of the numerical scheme
for some constant initial/boundary conditions and then we propose a new set of
equations, compatible with the classical theory of traffic flow on networks (where
a single equation is solved on any arc of the graph), such that the solution of the
Riemann problem associated to those equations coincides with the solution of the
numerical scheme. Finally we present some numerical results in order to confirm
the theoretical findings.

In Section 6 we sketch some conclusions and in the Appendices we report the
proofs of the main theorems and some basic notions about the (half) Riemann
problem.

2. The multi-path model. In this section we introduce a first-order version of
the model proposed in [20, Sect.4], which will be studied in the next sections.

Let us consider a network, i.e. a directed graph with NR arcs (roads) and NJ

nodes (junctions). Vehicles moving on the network are divided on the basis of their
path. Let us assume that the number of possible paths on the graph is NP and
denote those paths by P 1, . . . , P p, . . . , PNP , see Fig. 1. We stress that paths can

PSfrag replacements

P 1

P 2
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P 1

P 2

Figure 1. A generic network. Two possible paths are highlighted.
Note that the two paths share an arc of the network.

share some arcs of the network. A point x(p) of the network is characterized by
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both the path p it belongs to and the distance x from the origin of that path. We
denote by µp(x(q), t) the density of the vehicles following the p-th path at point x(q)

at time t > 0, and we assume that µp(x(q), t) ∈ [0, ρmax] for some maximal density
ρmax. Note that we have, by definition, µp(x(q), t) = 0 if x(q) /∈ P p. We also define

ω(x(p), t) :=

NP
∑

q=1

µq(x(p), t), (2)

i.e. ω(x(p), t) is the sum of all densities living at x(p) at time t. The function
ω is expected to be discontinuous, especially at junctions, and contains all the
information about the topology of the network. Note that, for any point x(q), the
densities µp(x(q), t), p = 1, . . . , NP , are admissible if their sum ω(x(q), t) ≤ ρmax.
Let us denote by v(ω) the velocity of vehicles (given as a function of the density)
and by f(ω) = ωv(ω) the flux of vehicles. The LWR-based multi-path model is
constituted by the following system of NP conservation laws with space-dependent
and discontinuous flux

∂

∂t
µp(x(p), t) +

∂

∂x(p)

(

µp(x(p), t) v
(

ω(x(p), t)
)

)

= 0, x(p) ∈ P p, t > 0, (3)

or, equivalently,

∂

∂t
µp(x(p), t) +

∂

∂x(p)

(

µp(x(p), t)

ω(x(p), t)
f
(

ω(x(p), t)
)

)

= 0, x(p) ∈ P p, t > 0, (4)

for p = 1, . . . , NP . If ω = 0 we have, a fortiori, µp = 0, then it is convenient to

set µp

ω
= 0 in (4) to avoid singularities. In the following we assume that the flux

f ∈ C0([0, ρmax]) ∩ C1((0, ρmax)) and

f(0) = f(ρmax) = 0, f is strictly concave, σ := arg max
ω∈(0,ρmax)

f(ω). (5)

Equations of the system (3) (or (4)) are coupled by means of the velocity v, which
depends on the total density ω. On the other hand, not all the equations of the
system are coupled with each other because paths do not have necessarily arcs in
common. Note that in this formulation the junctions do not appear explicitly, since
every equation is solved in the uninterrupted one-dimensional domain P p. Junctions
are actually hidden in the function ω, since the indices of non-zero densities µq’s in
its definition (2) change abruptly at junctions.

As a preliminary remark, it is important to show the strict relationship between
the multi-path model and the source-destination model [12]. Let us focus on a single
road (a, b) and denote by ρ the total density ω. Let us also define, for any ξ ∈ (a, b)

and t > 0, πp(ξ, t) := µp(ξ,t)
ρ(ξ,t) as the fraction of vehicles following the path p. Then,

from (3), we formally have

∂

∂t
µp +

∂

∂x
(µpv(ρ)) = 0

⇔
∂

∂t
(πpρ) +

∂

∂x
(πpρv(ρ)) = 0

⇔
∂

∂t
(πp)ρ+ πp ∂

∂t
ρ+

∂

∂x
(πp)ρv(ρ) + πp ∂

∂x
(ρv(ρ)) = 0

⇔ πp

(

∂

∂t
ρ+

∂

∂x
(ρv(ρ))

)

+ ρ

(

∂

∂t
πp +

∂

∂x
(πp)v(ρ)

)

= 0
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which holds true if
{

∂
∂t
ρ+ ∂

∂x
(ρv(ρ)) = 0,

∂
∂t
πp + v(ρ) ∂

∂x
πp = 0,

(6)

i.e. the source-destination model.
A similar system of equations appears in the buffer model proposed in [4], where

the authors study the Cauchy problem defined by the system (6) supplemented by
ODEs describing the state of the buffer at junctions. We will see in Section 4 that
our numerical approach based on the approximation of (4) basically corresponds to
a discretization of the models with buffer.

3. The numerical scheme and its basic properties. In this section we present
the numerical approximation we use to discretize the system (2),(4). The same ap-
proximation is also considered in the “twin” paper [5], together with some numerical
results.

For any path p, we define a numerical grid in P p × [0,+∞) with space step
∆x > 0 and time step ∆t > 0.

3.1. The scheme and the algorithm. Let us denote by x
(q)
k := k(q)∆x, k(q) ∈ Z,

the center of the k(q)-th space cell along the path P q, and by tn := n∆t, n ∈ N, the
center of the n-th time cell. Let us also denote by µn,p

k(q) the approximate density

µp(x
(q)
k , tn). Then, analogously to (2), we define

ωn
k(p) :=

NP
∑

q=1

µn,q

k(p) . (7)

From now on, to avoid cumbersome notations, we write kp instead of k(p).
Equation (4) is discretized by means of the following Godunov-type scheme,

which reads, at any internal cell kp, as

µn+1,p
kp = µn,p

kp −
∆t

∆x

(

µn,p
kp

ωn
kp

Gf (ω
n
kp , ωn

kp+1)−
µn,p
kp−1

ωn
kp−1

Gf (ω
n
kp−1, ω

n
kp)

)

(8)

for n ≥ 0 and p = 1, . . . , NP , where Gf is the classical f -based Godunov numerical
flux defined, as usual [23], as

Gf (ρℓ, ρr) :=















min{f(ρℓ), f(ρr)} if ρℓ ≤ ρr
f(ρℓ) if ρℓ > ρr and ρℓ < σ
f(σ) if ρℓ > ρr and ρℓ ≥ σ ≥ ρr
f(ρr) if ρℓ > ρr and ρr > σ.

(9)

In the following we drop the subscript f from G whenever the underlying flux is
deducible without ambiguity. Note the intrinsic asymmetry of this scheme: Coeffi-
cients in front of the fluxes involve only the cells kp and kp − 1, and not kp + 1.

The algorithm can be summarized as follows:

1. Set the initial conditions µ0,p
kp for any p at any internal cell kp.

2. Set the boundary conditions at the beginning and the end of the NP paths at
any time step n.

3. Set n = 0.
4. Compute ωn

kp at any internal cell kp by means of (7).

5. Compute µn+1,p
kp for any p at any internal cell kp by means of (8).

6. If the final time is not reached go to step 4 with n← n+ 1.
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We stress again that no special management of the junctions is needed. The
simplicity of the scheme is the main strength of this approach, making it possible
to simulate traffic flow on networks in minutes.

Remark 1. If the network under consideration is small, the number of possible
paths is reasonably small. Then, the number of equations in the system (4) fits a
manageable size. Conversely, if the network is large and allows for a large number
of paths, the computation of ω in (7) becomes a hard task. In this case, one can
adopt a hybrid point of view, creating a model which merges the features of the
multi-path model with those of the classical models, where a PDE has to be solved
on each arc of the network [13]. In the internal cells of the arcs a single equation
for the total density is solved. Then, at the cell before each junction, vehicles’
density is split on the basis of the desired direction of drivers (by means of some
given distribution coefficients), and the scheme (8) is applied. At the cell after the
junction, sub-densities µp’s are summed again. The price to pay is that the global
behavior of drivers along the whole network is lost (cfr. also [9, 12, 27] on this point).

Remark 2. Although the scheme (8) is clearly derived by the system (4), we do not
state that the latter is consistent with the former as ∆x, ∆t → 0. The derivation
of the limit equation for the scheme (8) is out of the scope of the paper. Rather, we
prefer deriving a new set of equations which have the same solution of the numerical
scheme, see Section 5.

3.2. Conservation of mass and admissibility of the solution. It is immediate
to prove that the scheme (8) is conservative, i.e.

∑

kp

µn+1,p
kp =

∑

kp

µn,p
kp , for any n and p

and, a fortiori, the sum ω is conserved in time (on both each road and the whole
network).

Another crucial property which the scheme must satisfy is that the single densities
µp’s and their sum ω never exceed ρmax. The properties of the Godunov scheme
guarantee that on each path the densities µp’s are bounded by ρmax, but this is no
longer true for the sum of the densities µp, especially if two or more paths merge
together.

To simplify the discussion, we first prove that the solution is bounded by ρmax

in the case of a simple merge and a diverge. Generalizations will be discussed later
on.

3.2.1. Merge. Let us consider a network with three roads and one junction, with
two incoming roads and one outgoing road. On this network two paths P 1 and P 2

are defined, see Fig. 2. We denote by J the grid cell just after the junction, see Fig.
2. Note that the cells before the junction, namely J − 1, J − 2, etc., can refer to
one path or the other one, depending on the context. We have

ωn
k1 =

{

µn,1
k1 k1 < J,

µn,1
k1 + µn,2

k1 k1 ≥ J,
ωn
k2 =

{

µn,2
k2 k2 < J,

µn,1
k2 + µn,2

k2 k2 ≥ J,
(10)
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Figure 2. A network with 3 arcs and 1 junction, representing a
merge. Path P 1 (left) and path P 2 (right).

and the scheme (8) becomes






















µn+1,1
k1 = µn,1

k1 −
∆t
∆x

(

µ
n,1

k1

ωn

k1
G(ωn

k1 , ωn
k1+1)−

µ
n,1

k1
−1

ωn

k1
−1

G(ωn
k1−1, ω

n
k1)

)

,

µn+1,2
k2 = µn,2

k2 −
∆t
∆x

(

µ
n,2

k2

ωn

k2
G(ωn

k2 , ωn
k2+1)−

µ
n,2

k2
−1

ωn

k2
−1

G(ωn
k2−1, ω

n
k2)

)

.

(11)

Let us now focus on the cell J , which is the only one in which the total density
could exceed ρmax (standard properties of the Godunov scheme apply elsewhere).

Theorem 3.1. Let the initial densities around the junction be admissible, namely

µ0,1
J−1 ≤ ρmax, µ0,2

J−1 ≤ ρmax, (µ0,1
J + µ0,2

J ) ≤ ρmax, (µ0,1
J+1 + µ0,2

J+1) ≤ ρmax.

If the following CFL-like condition holds

2
∆t

∆x
sup

ρ∈(0,ρmax)

|f ′(ρ)| ≤ 1, (12)

then

(µn,1
J + µn,2

J ) ≤ ρmax ∀n.

Proof. Let us first prove that (12) implies

∆t

∆x
≤ inf

ρ∈[σ, ρmax)

ρmax − ρ

2f(ρ)
. (13)

Let us define M := supρ∈(0,ρmax) |f
′(ρ)|. By (12) we have

∆t

∆x
≤

1

2M
. (14)

Noting that f(ρmax) = 0, and using the Lagrange theorem and (14), we have

inf
ρ∈[σ, ρmax)

ρmax − ρ

2f(ρ)
= inf

ρ∈[σ, ρmax)

|ρmax − ρ|

2|f(ρ)− f(ρmax)|
≥ inf

ρ∈[σ, ρmax)

1

2M
=

1

2M
≥

∆t

∆x
.

To simplify the notations, let us introduce the auxiliary variable zn := ωn
J = µn,1

J +

µn,2
J . The worst case happens when µn,1

J−1 = µn,2
J−1 = σ (incoming roads try to

transfer the maximal flux to cell J) and ωn
J+1 = µn,1

J+1 + µn,2
J+1 = ρmax (no flux from

cell J to cell J + 1). The equation for z is

zn+1 = zn −
∆t

∆x

(

G(zn, ωn
J+1)−G(µ

n,1
J−1, z

n)−G(µn,2
J−1, z

n)
)

=

zn −
∆t

∆x

(

G(zn, ρmax)−G(σ, z
n)−G(σ, zn)

)

= zn + 2
∆t

∆x
G(σ, zn).

(15)
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We proceed by induction: Assume that zn ≤ ρmax and prove that zn+1 ≤ ρmax.
We have

G(σ, zn) =

{

f(σ) if zn ≤ σ,
f(zn) if zn > σ.

• CASE 1: zn ≤ σ
We have

zn+1 = zn + 2
∆t

∆x
f(σ) ≤ σ + 2

∆t

∆x
f(σ).

The conclusion follows easily by (13), in particular by the fact that

∆t

∆x
≤
ρmax − σ

2f(σ)
.

• CASE 2: zn > σ
– CASE 2.1: zn = ρmax

We have f(zn) = f(ρmax) = 0 and then zn+1 = zn = ρmax.
– CASE 2.2: zn < ρmax

We have

zn+1 = zn + 2
∆t

∆x
f(zn).

The conclusion follows easily by (13), in particular by the fact that

∆t

∆x
≤
ρmax − zn

2f(zn)
for any zn ∈ (σ, ρmax).

3.2.2. Diverge. Let us consider a network with three roads and one junction, with
one incoming road and two outgoing roads. On this network two paths P 1 and P 2

are defined, see Fig. 3. We denote by J the cell just before the junction. Note that

PSfrag replacements
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Figure 3. A network with 3 arcs and 1 junction, representing a
diverge. Path P 1 (left) and path P 2 (right).

the cells after the junction, namely J + 1, J + 2, etc., can refer to one path or the
other one, depending on the context. We have

ωn
k1 =

{

µn,1
k1 + µn,2

k1 k1 ≤ J,

µn,1
k1 k1 > J,

ωn
k2 =

{

µn,1
k2 + µn,2

k2 k2 ≤ J,

µn,2
k2 k2 > J,

and the scheme (8) becomes equal to (11).
Let us now focus on the cell J , which is the only one in which the total density

could exceed ρmax (standard properties of the Godunov scheme apply elsewhere).

Theorem 3.2. Let the initial densities around the junction be admissible, namely

µ0,1
J−1 ≤ ρmax, µ0,2

J−1 ≤ ρmax, (µ0,1
J + µ0,2

J ) ≤ ρmax, (µ0,1
J+1 + µ0,2

J+1) ≤ ρmax.
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If the standard CFL condition holds

∆t

∆x
sup

ρ∈(0,ρmax)

|f ′(ρ)| ≤ 1, (16)

then

(µn,1
J + µn,2

J ) ≤ ρmax ∀n.

Proof. Let us introduce again the auxiliary variable zn := ωn
J = µn,1

J + µn,2
J . The

worst case happens when ωn
J−1 = σ (incoming road tries to transfer the maximal

flux to cell J) and µn,1
J+1 = µn,2

J+1 = ρmax (no flux from cell J to cell J + 1). The
equation for z is

zn+1 = zn −
∆t

∆x

(

µn,1
J

zn
G(zn, µn,1

J+1) +
µn,2
J

zn
G(zn, µn,2

J+1)−G(ω
n
J−1, z

n)

)

=

zn −
∆t

∆x

(

µn,1
J

zn
G(zn, ρmax) +

µn,2
J

zn
G(zn, ρmax)−G(σ, z

n)

)

= zn +
∆t

∆x
G(σ, zn).

The conclusion follows as in Theorem 3.1.

3.2.3. General junctions. Generalizations to junctions with rinc > 2 incoming roads
and one outgoing road or one incoming road and rout > 2 outgoing roads are
straightforward. In the former case the solution is admissible if the following CFL-
like condition holds true

rinc
∆t

∆x
sup

ρ∈(0,ρmax)

|f ′(ρ)| ≤ 1, (17)

which takes the place of the condition (12). In the latter case the solution is admis-
sible if the standard CFL condition (16) holds true.

The general case with rinc > 1 incoming roads and rout > 1 outgoing roads can
be also easily solved by means of the ingredients discussed above. To fix the ideas,
let us consider the case with rinc = 2 and rout > 1, and focus on the node J just
after the junction along one of the outgoing roads. We can now safely extract the
subnetwork formed by the considered outgoing road and the two incoming roads.
On this subnetwork the situation is very similar to the one discussed in Section 3.2.1,
the only difference is that this time µn,p

J−1 6= ωn
J−1, p = 1, 2, since along the incoming

roads there are vehicles moving to the outgoing roads outside the subnetwork. Since
µ
n,p

J−1

ωn
J−1
≤ 1, we can write (cf. (15))

zn+1 = zn −
∆t

∆x

(

G(zn, ωn
J+1)−

µn,1
J−1

ωn
J−1

G(µn,1
J−1, z

n)−
µn,2
J−1

ωn
J−1

G(µn,2
J−1, z

n)

)

≤

zn −
∆t

∆x

(

G(zn, ωn
J+1)−G(µ

n,1
J−1, z

n)−G(µn,2
J−1, z

n)
)

and then we conclude as in Section 3.2.1.
Summarizing, condition (17) guarantees the admissibility of the solution for any

kind of junction.
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4. Similarities to models with buffer. In this section we point out some analo-
gies and differences between our model and traffic models with buffer. This also
should clarify why in our approach there are no special management of the dynamics
at junctions.

Let us first focus on the case of a simple merge, see Section 3.2.1 and (11).
Recalling that

G(ρℓ, ρr) = min{G(ρℓ, σ), G(σ, ρr)}, for any ρℓ, ρr ∈ [0, ρmax], (18)

we get that at the cell J just after the junction, the sum ωn
J of the two densities

µn,1
J and µn,2

J satisfies the discrete equation

ωn+1
J = ωn

J −
∆t

∆x
(Γout − Γin), (19)

with

Γout := min{G(ωn
J , σ), G(σ, ω

n
J+1)},

Γin := min{G(µn,1
J−1, σ), G(σ, ω

n
J )}+min{G(µn,2

J−1, σ), G(σ, ω
n
J )}.

The cell J may be seen as an area with an oversize capacity (up to 2f(σ)) which
gathers the flows coming from the incoming roads. We may therefore say that the
cell J acts as a “buffer”, i.e. a region of size ∆x used to temporarily store vehicles
while they are being moved from the incoming roads to the outgoing road. The
road then comes back to its original capacity in the cell J + 1. In [4, 11, 14, 18]
traffic models with buffer are proposed. In such models, the buffer is 0-dimensional,
and its load is described by the number of cars r(t) lying at time t in it. The load r
varies according to the difference between the inflow and the outflow at the buffer
and evolves according to a dedicated ODE. It is also assumed that the maximum
number of cars which can enter or exit the buffer per unit of time is a constant
parameter.

In the same spirit of [4, 11, 18], in our modeling approach the function ωn
J may

be assumed to describe the evolution of cars densities in the buffer, i.e. using the
finite volume approach, we get

ωJ(t) =
1

∆x

∫ ∆x

0

z(x, t)dx,

where z(x, t) is the densities of cars lying at time t and x ∈ J . Equation (19) can
then be seen as the first-order Euler approximation of the following ODE,

d

dt

∫ ∆x

0

z(x, t)dx = Γin − Γout,

which expresses nothing but the conservation of vehicles in the buffer, and can be
directly compared with [4, Eq. (2.9)]. So, we may say that the numerical scheme
(8) embeds an approximation of the buffer dynamics.

Let us now take a look at functions Γin and Γout. We observe that they are in
analogy with the incoming and outgoing fluxes at the buffer proposed in [4], while
they differ from those proposed in [11, 18]. In our approach the demand of the buffer
differs from the supply of the buffer and they change in time taking into account
the current densities lying in the buffer. Indeed, in Section 5.2, we shall define a
modified problem, where a finite-size buffer appears explicitly. In particular, we will
build up a function h that describes in a continuous way the buffer’s capacity.
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All those arguments can be extended to any kind of junction. Going back to the
general scheme (8), we observe that at any cell J just after the junction along some
outgoing road, the densities depend on the non-constant rates µn,p

J−1/ω
n
J−1 before

the junction, which gives exactly the fraction of drivers who wish to turn into the
considered outgoing road from one of the incoming roads. Then, we end up with a
multibuffer junction, see [4, 14]. Each outgoing road has a buffer and the incoming
fluxes at the buffer depend on the percentages of vehicles that from each incoming
road turn into the outgoing road.

5. The case of a merge: Numerical solution and modified problem. In
this section we focus on a simple merge, i.e. a network with three roads and one
junction, with two incoming roads and one outgoing road. On this network two
paths P 1 and P 2 are defined, see Fig. 2.

After the junction, it is convenient dealing with the sum ωn of the two densities
µn,1 and µn,2 rather than the two densities separately. Then, considering again the
system (10)–(11), across the junction we have the following equations:

µn+1,p
J−1 = µn,p

J−1 −
∆t

∆x

(

G(µn,p
J−1, ω

n
J )−G(µ

n,p
J−2, µ

n,p
J−1)

)

, p = 1, 2, (20)

ωn+1
J = ωn

J −
∆t

∆x

(

G(ωn
J , ω

n
J+1)−

(

G(µn,1
J−1, ω

n
J ) +G(µn,2

J−1, ω
n
J )
)

)

. (21)

Let us introduce four constants uℓ, vℓ, zc, wr which will be used in the following
as initial/boundary conditions before, at, and after the junction. We assume that

uℓ, vℓ ∈ (0, σ), wr ∈ (σ, ρmax). (22)

We also consider in the plane (f(uℓ), f(vℓ)) the four regions (A), (B), (B′), (C)
depicted in Fig. 4 and characterized by the relations

(A) f(uℓ) + f(vℓ) < f(wr),

(B) f(uℓ) + f(vℓ) > f(wr), f(vℓ) <
f(wr)

2 ,

(B′) f(uℓ) + f(vℓ) > f(wr), f(uℓ) <
f(wr)

2 ,

(C) f(uℓ) >
f(wr)

2 , f(vℓ) >
f(wr)

2 .

(23)

For symmetry reasons, we will restrict our attention only to regions (A), (B), and
(C). Note that the case (A) corresponds to no formation of queues, the case (B)
corresponds to the formation of a queue along P 1, and the case (C) corresponds to
the formation of two queues along P 1 and P 2. In addition, we assume that

zc = σ. (24)

Assumptions (22) and (24) are mainly technical and could be relaxed. They are
taken to ease the proofs of the next Theorems 5.1 and 5.4, where the continuous
and the discrete problem are analyzed and compared. Indeed, we still cover all
the interesting cases (free and congested state, queue formation) while limiting the
number of cases to be studied, otherwise astronomical.

Let us also introduce the following notation, which will be used through the
paper.

Notation. Let f be a flux function satisfying (5). For any density ρ ∈ [0, ρmax],
we denote by ρ♯ the unique density such that

ρ♯ 6= ρ and f(ρ♯) = f(ρ). (25)
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PSfrag replacements

f(σ)f(wr) f(uℓ)

f(vℓ)

f(wr)
2

(A) (B)

(B′)
(C)

Figure 4. Plane (f(uℓ), f(vℓ)). Regions (A), (B), (B′), and (C)
defined in (23).

For example, if f(ρ) = ρ(1− ρ) with ρmax = 1, then ρ♯ = 1− ρ.

5.1. Asymptotic numerical solution. Let us focus on the behaviour of the
scheme at the junction, considering only the two cells J − 1 and the cell J , see
(20)–(21). We set the following boundary conditions:

∀n ≥ 0, µn,1
J−2 = uℓ, µn,2

J−2 = vℓ, µn,1
J+1 = w1

r , µn,2
J+1 = w2

r , (26)

with wr := w1
r+w

2
r . The next result concerns the stationary solutions of the scheme.

Theorem 5.1. Consider the scheme at cells J − 1 and J , namely (20)–(21), with
boundary conditions (26) satisfying (22). Then, the unique stationary solution
(µ̄1

J−1, µ̄
2
J−1, ω̄J = µ̄1

J + µ̄2
J) is determined by the following conditions:

• CASE (A)










µ̄1
J−1 = uℓ

µ̄2
J−1 = vℓ

ω̄J < σ, s.t. f(ω̄J) = f(uℓ) + f(vℓ).

(27)

• CASE (B)










µ̄1
J−1 > σ, s.t. f(µ̄1

J−1) = f(wr)− f(vℓ)

µ̄2
J−1 = vℓ

ω̄J > σ, s.t. f(ω̄J) = f(wr)− f(vℓ).

(28)

• CASE (C)

µ̄1
J−1 = µ̄2

J−1 = ω̄J > σ, s.t. f(µ̄1
J−1) = f(µ̄2

J−1) = f(ω̄J) =
f(wr)

2
. (29)

Moreover, one can compute µ̄1
J and µ̄2

J by means of ω̄J as follows:

• CASE (A) µ̄1
J = f(uℓ)

f(uℓ)+f(vℓ)
ω̄J , µ̄2

J = ω̄J − µ̄1
J .

• CASE (B) µ̄1
J = f(wr)−f(vℓ)

f(wr)
ω̄J , µ̄2

J = ω̄J − µ̄
1
J .
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• CASE (C) µ̄1
J = µ̄2

J = ω̄J/2.

The proof is given in the Appendix A.1.

Remark 3. As already noted in [5], when queues are formed along both incoming
roads, the density split in two equal values, regardless the ratio between the bound-
ary conditions uℓ and vℓ. In the classical approaches based on the LWR model
[13], this effect is achieved by maximizing the flux through the junction and setting
the priorities coefficients to 1

2 (incoming fluxes are equidistributed). See [5] for a
detailed numerical comparison between the multi-path scheme and the Godunov
scheme for the classical model.

The next result concerns the stability of the stationary points exhibited in The-
orem 5.1.

Theorem 5.2. Let the CFL condition (16) hold true. Then, the three stationary
points (27),(28),(29) are locally asymptotically stable under the respective condi-
tions.

The proof is given in the Appendix A.2. Note that the CFL-like condition (12)
needed for the applicability of the scheme implies the standard CFL condition (16).

Remark 4. Borderline cases are relatively easy to study. The case wr = σ is
essentially analogous to the case wr > σ and all the results described above are still
valid. Instead, a more complicated situation arises by assuming that the boundary
conditions uℓ, vℓ, and wr = w1

r + w2
r are chosen in such a way that the point

(f(uℓ), f(vℓ)) lies at the boundaries of all four regions depicted in Fig. 4. In that
case, infinite stationary points are present. Indeed, if (22) holds true and

f(uℓ) = f(vℓ) =
f(wr)

2

we necessarily have uℓ = vℓ and all the points (µ̄1
J−1, µ̄

2
J−1, µ̄

1
J , µ̄

2
J) such that

µ̄1
J−1 = uℓ, µ̄2

J−1 = uℓ, µ̄1
J = µ̄2

J =
ω̄J

2
, with ω̄J ∈ [w♯

r , u
♯
ℓ]

are stationary, but not in general stable.

5.2. The modified equation. In this section we solve an inverse problem, in
analogy with the “modified equation” in the sense of LeVeque [23, Sect. 11.1]. More
precisely, we find a new set of equations, compatible with the classical theory of
traffic flow on networks (where a single equation is solved on any arc of the graph)
[13], such that the solution of the Riemann problem associated to those equations
coincide with the solution of the numerical scheme exhibited in Section 5.1.

In order to introduce the modified equation, it is convenient to slightly refor-
mulate the problem assuming roads to be half lines and changing notations. We
denote by u(x, t) : (−∞, 0]× [0,+∞)→ [0, ρmax] and v(x, t) : (−∞, 0]× [0,+∞)→
[0, ρmax] the densities along the first and second incoming roads, respectively, by
z(x, t) : [0,∆x] × [0,+∞) → [0, ρmax] the density inside the cell J just after the
junction, and by w(x, t) : [∆x,+∞) × [0,+∞) → [0, ρmax] the density along the
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outgoing road. Then we face the following problem


























∂
∂t
u+ ∂

∂x
f(u) = 0, x < 0, t > 0,

∂
∂t
v + ∂

∂x
f(v) = 0, x < 0, t > 0,

∂
∂t
z + ∂

∂x
h(z, x, t;u, v, w) = 0, 0 < x < ∆x, t > 0,

∂
∂t
w + ∂

∂x
f(w) = 0, x > ∆x, t > 0,

(30)

where
h(z, x, t;u, v, w) := f(z) + C(x, t;u−(t), v−(t), w+(t)), (31)

the function 0 ≤ C ≤ f(σ) will be chosen in the following, and we have defined
u−(t) := u(0−, t), v−(t) := v(0−, t), and w+(t) := w(∆x+, t).

Let us comment the choice of the flux in (31). It is just a translation of the original
flux f , since it has the form h = f + C, where C depends on space, time, and the
time-varying traces of the densities along the roads connected to the junction. Note
that we do not require h = 0 for z = 0, ρmax, then h is not in general a physical flux.
The choice of h translates the fact that the capacity of the junction is variable in
space and time, and it is automatically adjusted on the basis of the demand of the
incoming roads and the supply of the outgoing road. After the junction, the road
comes back to its original size by means of a bottleneck, see Fig. 5.

PSfrag replacements

u

vz

w

← ∆x→

PSfrag replacements

u

v

z

w

← ∆x→

Figure 5. Original problem (left) and modified problem (right).

To be coherent with the numerical investigation, we set the initial data as

u(x, 0) ≡ uℓ, v(x, 0) ≡ vℓ, z(x, 0) ≡ zc, w(x, 0) ≡ wr , (32)

with uℓ, vℓ, zc, wr ∈ [0, ρmax] and satisfying assumptions (22) and (24).
In the following we show that, for a particular choice of C, the solution to the

Riemann problem associated to equations (30)–(32) equals the solution of the nu-
merical scheme around the junction, namely the scheme described in Section 3.1 is
consistent with equations (30)–(31) for a special choice of h.

We define a solution to the Riemann problem as follows (cfr. [13, Def. 4.4.1]):

Definition 5.3. We say that a set of smooth states determine a solution to the
Riemann problem (30)–(32) if

(R1) The waves generated between two adjacent constant states at x = 0− and
x = ∆x− have negative speed.

(R2) The waves generated between two adjacent constant states on x = 0+ and
x = ∆x+ have positive speed.

(R3) (conservation of flux at x = 0) For all t ≥ 0,

f(u(0−, t)) + f(v(0−, t)) = h(z(0+, t), 0+, t). (33)
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(R4) (conservation of flux at x = ∆x) For all t ≥ 0,

h(z(∆x−, t),∆x−, t) = f(w(∆x+, t)) (34)

(see Appendix B for basic notions about Riemann and half-Riemann problems).
Generally, this definition does not select a unique solution to the problem (30)–
(32). To fix this, we select particular fluxes at x = 0,∆x somehow “suggested”
by the numerical scheme, and we study the corresponding evolution of the density.
Doing this, we verify that the Riemann problem is not degenerate (waves do not
rebound forever) and we compute the constant asymptotic solution for t→ +∞.

We also assume that at the initial time t = 0, for any x ∈ [0,∆x], we have

h(z, x, 0) = hc(z) := f(z) + f(σ), (35)

(or, equivalently, C(x, 0) ≡ f(σ)), meaning that the maximal capacity of the junc-
tion [0,∆x] doubles the maximal capacity of the other roads. Note that assumptions
(24) and (35) translate the fact that at the initial time the junction area itself is
not responsible for a possible congestion, while, if any, this will be due to the choice
of wr.

Theorem 5.4. Consider the problem (30)–(32), where at any time t > 0 the choice
of fluxes at junction is given by:

Flux at x = 0: min{Gf(u(0−, t), σ), Gf (σ, z(0+, t))}+

min{Gf (v(0−, t), σ), Gf (σ, z(0+, t))}
(36)

Flux at x = ∆x: min{Gh(z(∆x−, t), σ), Gf (σ,w(∆x+, t))} (37)

where G·(·, ·) is the Godunov flux defined in (9) and h has the form (31). Then
there exists a function C such that the following holds: (i) For every initial data
uℓ, vℓ, zc, wr satisfying (22) and (24) there exists one solution (in the sense of Def-
inition 5.3) of the problem. (ii) By assuming the initial data to be in the regions
(A), (B), (C) defined in (23), the following constant quadruplets (ū, v̄, z̄, w̄) are,
respectively, asymptotic stationary solutions of the problem.

• CASE (A)














ū = uℓ
v̄ = vℓ
z̄ < σ, s.t. f(z̄) = f(uℓ) + f(vℓ)
w̄ < σ, s.t. f(w̄) = f(uℓ) + f(vℓ).

• CASE (B)














ū > σ, s.t. f(ū) = f(wr)− f(vℓ)
v̄ = vℓ
z̄ > σ, s.t. f(z̄) = f(wr)− f(vℓ)
w̄ = wr.

• CASE (C)
{

ū = v̄ = z̄ > σ s.t. f(ū) = f(v̄) = f(z̄) = f(wr)
2

w̄ = wr .

The proof is given in the Appendix A.3, together with the exact expression of C
(Remark 6).
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Remark 5. The main result of the paper comes from the comparison between Theo-
rems 5.1 and 5.4. Clearly we cannot compare exactly the numerical and the theoreti-
cal solution because the first one is composed by a triplet (µ̄1

J−1, µ̄
2
J−1, ω̄J = µ̄1

J+µ̄
2
J)

while the second one by a quadruplet (ū, v̄, z̄, w̄). The reason for this is mainly
technical, i.e. we chose to have only three unknowns in the numerical setting to
make the proof doable. Anyway, in the case (A) we have the correspondence
(ū, v̄, z̄ = w̄) = (µ̄1

J−1, µ̄
2
J−1, ω̄J), and in the case (B),(C) we have the correspon-

dence (ū, v̄, z̄) = (µ̄1
J−1, µ̄

2
J−1, ω̄J).

5.3. Numerical tests. In this section we present three numerical tests in the case
of a merge, in order to confirm experimentally the results described in Sections 5.1
and 5.2. A more complete numerical study of the multi-path model presented here
can be found in [5]. We assume that each arc has the same length, equal to 1, then
each path has length equal to 2. We also assume that the flux has the classical form
f(ρ) := ρ(1 − ρ), so that ρmax = 1 and σ = 0.5. We divide each arc in 25 cells
(then the junction is found at J = 26 along each path) and we impose Dirichlet
boundary conditions at the beginning and the end of each path, i.e. at points 0(1),
0(2), 2(1), and 2(2), see Fig. 2. Note that the points 2(1) and 2(2) correspond to the
same physical point. Mutatis mutandis, these boundary conditions have the same
role of uℓ, vℓ, w

1
r , and w

2
r in (26). We assume roads are empty at the initial time

and we look for the stationary solution obtained for t→∞.

Test 1. We consider the case (A) in (23) (no formation of queue along the
incoming roads). For any t > 0 we set

µ1(0(1), t) = 0.1, µ2(0(2), t) = 0.15, µ1(2(1), t) = 0.3, µ2(2(2), t) = 0.3.

In Fig. 6 we report the stationary solution for µ1 along P 1, µ2 along P 2 and the
total density ω along P 1. As expected, the right boundary condition has no effect on

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4
mu1 on P1

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4
mu2 on P2

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

omega on P1

Figure 6. Test 1. Stationary solution for µ1 along P 1, µ2 along
P 2 and the total density ω along P 1.

the solution. After the junction, the total density ω is equal to λ̄ ≈ 0.3197 < σ and
it is such that f(λ̄) = f(0.1) + f(0.15). The value λ̄ corresponds to ω̄J in Theorem
5.1 and to z̄ = w̄ in Theorem 5.4. Correctly, the values of the single densities µ1

and µ2 after the junction are equal to

f(0.1)

f(0.1) + f(0.15)
λ̄ ≈ 0.1323 and

f(0.15)

f(0.1) + f(0.15)
λ̄ ≈ 0.1874.



AN EASY-TO-USE ALGORITHM FOR SIMULATING TRAFFIC FLOW 17

Test 2. We consider the case (B) in (23) (formation of a queue along the first
incoming road). For any t > 0 we set

µ1(0(1), t) = 0.3, µ2(0(2), t) = 0.1, µ1(2(1), t) = 0.35, µ2(2(2), t) = 0.25.

In Fig. 7 we report the stationary solution for µ1 along P 1, µ2 along P 2 and the
total density ω along P 1. Here, the right boundary conditions affect the solution,

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
mu1 on P1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
mu2 on P2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
omega on P1

Figure 7. Test 2. Stationary solution for µ1 along P 1, µ2 along
P 2 and the total density ω along P 1.

but only by means of their sum 0.6 = 0.35+0.25, while the left boundary conditions
have effect only along P 2. Correctly, the values of the single densities µ1 and µ2

before the junction are equal to λ̄ ≈ 0.8162 > σ with f(λ̄) = f(0.6) − f(0.1) and
0.1, respectively. The value λ̄ corresponds to µ̄1

J−1 = ω̄J in Theorem 5.1 and to
ū = z̄ in Theorem 5.4. Looking at the single densities, at the cell J we find two
isolated values equal to

f(0.6)− f(0.1)

f(0.6)
λ̄ ≈ 0.5101 and λ̄− 0.5101 ≈ 0.3061,

corresponding respectively to µ̄1
J and µ̄2

J in Theorem 5.1.
Surprisingly, if we look at the total density ω we see that the cell J plays the role

of the last cell of the incoming roads even if it defined as the first cell of the outgoing
road. In other words, the scheme shifts the junction to one cell to the right. This
happens also in the case (C) but does not happen in the case (A). Indeed, in order
to perceive the presence of the junction, the multi-path scheme needs an additional
cell w.r.t. the classical approaches [13], where instead the dynamics at junctions is
given instantaneously by an external procedure.

Test 3. We consider the case (C) in (23) (formation of two queues along the
incoming roads). For any t > 0 we set

µ1(0(1), t) = 0.2, µ2(0(2), t) = 0.3, µ1(2(1), t) = 0.3, µ2(2(2), t) = 0.5.

In Fig. 8 we report the stationary solution for µ1 along P 1, µ2 along P 2 and the total
density ω along P 1. Here, the right boundary conditions affect the solution, but
only by means of their sum 0.8 = 0.3+0.5, while the left boundary conditions have
no effect. The densities split equally along the two paths, regardless the fact that
the boundary conditions are not equal. We refer the reader to [5] for a comparison
with the classical models and the relationship with priority coefficients. Before the
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0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
mu1 on P1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
mu2 on P2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
omega on P1

Figure 8. Test 3. Stationary solution for µ1 along P 1, µ2 along
P 2 and the total density ω along P 1.

junction, the densities are equal to λ̄ ≈ 0.9123 > σ with f(λ̄) = f(0.8)
2 . The value λ̄

corresponds to µ̄1
J−1 = µ̄2

J−1 in Theorem 5.1 and to ū = v̄ in Theorem 5.4. At the

cell J we find an isolated value equal to λ̄
2 , corresponding to µ̄1

J = µ̄2
J in Theorem

5.1. We refer again to [5] for a numerical study of the density evolution at this cell.

6. Conclusions. In this paper we investigated the properties of a Godunov-based
numerical scheme for a first-order macroscopic model describing traffic flow on net-
works. The scheme can be implemented in minutes since it does not requires ad-
ditional procedures to manage the solution at junctions. Numerical and computa-
tional details have been left to the “twin” paper [5].

Despite the simplicity of the numerical discretization, the method shows many
interesting properties. In the following we summarize the main features of our
approach.

• Let us recall that the quantities G(ρℓ, σ) and G(σ, ρr) appearing in (18) match
exactly the definitions of the maximum incoming flux and of the maximum
outgoing flux, respectively, that can be obtained on each road. Namely, for
all incoming roads,

G(ρ, σ) =

{

f(ρ), if ρ ∈ [0, σ],
f(σ), if ρ ∈ (σ, ρmax],

and, for all outgoing roads,

G(σ, ρ) =

{

f(σ), if ρ ∈ [0, σ],
f(ρ), if ρ ∈ (σ, ρmax].

They also correspond to the demand and supply functions used in [18, 22].
As a consequence, the multi-path scheme selects automatically a solution at
junctions that maximizes the flow along each path (user optimum). The
scheme does not compute in general the maximal flow that could possibly be
transferred over the node (global optimum), as it happens in more standard
approaches. See [5] for a numerical evidence of this fact and [27, Sect. 3.1] for
a discussion on this point.
• In the challenging case of a merge, we proved that the proposed numerical
scheme is consistent with the Riemann problem (30)–(32). As a consequence,
the numerical approximation automatically assigns to the junction a finite
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spatial dimension and its density evolution is managed by a special flux func-
tion h, as defined in (31). Specifically, the function h balances the incoming
flows and the outgoing flow according to the fact that each population wants
to maximize its own flow. It is able to widen temporarily the spaced-junction
capacity, allowing the passage of vehicles and making the junction act as a
“buffer”, see Section 4. The exact expression of the space-time-dependent flux
h can be found in the proof of Theorem 5.4 (see Remark 6 in Appendix A.3).
• The multi-path model, together with the proposed discretization, fulfills all the
7 requirements for junction models outlined in [27, Sect. 3.1]. In particular, it
is generally applicable irrespectively of the number of incoming and outgoing
roads, the traffic never flows backwards and all flows are non-negative, vehicles
are conserved, and turning fractions are preserved.
• Finally we have shown that the standard CFL condition (16) is not in general
sufficient to ensure that the solution of the numerical scheme (8) is admissible
at junctions. Instead, it is required a stronger condition which depends on
the number of incoming roads at the junction. This condition is given, in the
case of a junction with rinc incoming roads, by (17).

Appendix A. Technical proofs.

A.1. Proof of Theorem 5.1.

Proof. To simplify the notations, let us introduce the auxiliary variables

xn := µn,1
J−1, yn := µn,2

J−1, zn := ωn
J = µn,1

J + µn,2
J . (38)

At the node J it is convenient handling the sum of the two densities rather than
the two densities separately. The densities µn,1

J and µn,2
J can be univocally found

a posteriori. In the proof we employ the notation ♯ defined by (25). The discrete
dynamical system (20)–(21) with boundary conditions (26) is written as















xn+1 = xn − ∆t
∆x

(

G(xn, zn)−G(uℓ, xn)
)

yn+1 = yn − ∆t
∆x

(

G(yn, zn)−G(vℓ, yn)
)

zn+1 = zn − ∆t
∆x

(

G(zn, wr)−G(xn, zn)−G(yn, zn)
)

.

(DS)

Therefore, a stationary point (x, y, z) for (DS) must satisfy

G(x, z) = G(uℓ, x) (39)

G(y, z) = G(vℓ, y) (40)

G(z, wr) = G(x, z) +G(y, z) = G(uℓ, x) +G(vℓ, y). (41)

Now we consider the three cases.

• CASE (A)

f(uℓ) + f(vℓ) < f(wr) (42)

– CASE A.1
{

G(uℓ, x) = f(uℓ)

G(vℓ, y) = f(vℓ)
(43)

The quantity G(z, wr) can be in principle equal to f(z), f(wr), or f(σ).
But (22) ⇒ (wr > σ) ⇒ G(z, wr) 6= f(σ). Moreover, if G(z, wr) =
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f(wr), by (41) and (43) we would have f(uℓ) + f(vℓ) = f(wr), which is
in contradiction with (42). Then we must have

G(z, wr) = f(z). (44)

Now, (22)+(44) ⇒ (z = wr) or (z < wr and f(z) ≤ f(wr)).

But (z = wr)
(41)+(43)+(44)

⇒ f(uℓ) + f(vℓ) = f(z) = f(wr), which is im-
possible because of (42). Then, we must have z < wr and f(z) ≤ f(wr),
which implies

z ≤ w♯
r < σ. (45)

By f(uℓ) + f(vℓ) = f(z) and (22) we also get

z > uℓ and z > vℓ. (46)

By (39)+(43) we get G(x, z) = f(uℓ). Since uℓ < σ, this can be true only

if x = uℓ or x = u♯ℓ or z = uℓ or z = u♯ℓ. But (46) ⇒ z 6= uℓ, and (45)

⇒ z 6= u♯ℓ. Moreover, (x = u♯ℓ)
(22)
⇒ (x > σ)

(45)
⇒ (G(x, z) = f(σ))

(39)
⇒

(G(uℓ, x) = f(σ)), which is impossible because uℓ < σ. Then, x = uℓ is
the only valid candidate.
Following same reasoning, we get y = vℓ. Indeed, a simple verification
shows that x = uℓ, y = vℓ and z < σ such that

f(z) = f(uℓ) + f(vℓ) (47)

is a stationary point.
Once z is found, it is easy to find z1 := µ1

J and z2 := µ2
J . From (11) we

have that, at the equilibrium, z1 satisfies
z1
z
G(z, wr) = G(x, z).

Moreover, G(z, wr)
(41)+(43)

= f(uℓ) + f(vℓ) and G(x, z)
(39)+(43)

= f(uℓ).
Then,

z1 =
f(uℓ)

f(uℓ) + f(vℓ)
z and z2 = z − z1.

– CASE A.2

{

G(uℓ, x) = f(uℓ)

G(vℓ, y) = f(y)
(48)

We can also assume that

y 6= vℓ and y 6= v♯ℓ (49)

because if this does not hold true, we come back to CASE A.1. We have

(22) + (48) + (49)⇒ vℓ < y and f(y) < f(vℓ)

and then

y > v♯ℓ > σ. (50)

Finally we have

(40) + (48)⇒ G(y, z) = f(y) (51)

which is impossible because of (50). We conclude that CASE A.2 is not
possible.
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– CASE A.3

{

G(uℓ, x) = f(x)

G(vℓ, y) = f(vℓ)
(52)

This case is not possible analogously to CASE A.2.
– CASE A.4

{

G(uℓ, x) = f(x)

G(vℓ, y) = f(y)
(53)

We can also assume that

x 6= uℓ, u
♯
ℓ and y 6= vℓ, v

♯
ℓ (54)

because if this does not hold true, we come back to the previous cases.
By (22)+(53)+(54) we get

(uℓ < x and f(x) < f(uℓ)) and (vℓ < y and f(y) < f(vℓ))

and then

x > u♯ℓ > σ and y > v♯ℓ > σ. (55)

In particular we have

(40) + (53)⇒ G(y, z) = f(y)

which is impossible because of (55). We conclude that CASE A.4 is not
possible.

• CASE (B) Omitted for brevity, same ideas apply.

• CASE (C)

f(uℓ) >
f(wr)

2
, f(vℓ) >

f(wr)

2
(56)

– CASE C.1
{

G(uℓ, x) = f(uℓ)

G(vℓ, y) = f(vℓ)
(57)

The quantity G(z, wr) can be in principle equal to f(z), f(wr), or f(σ).
But (22) ⇒ G(z, wr) 6= f(σ). Moreover, if G(z, wr) = f(wr), by (41) and
(57) we would have f(uℓ)+ f(vℓ) = f(wr), which is in contradiction with
(56). Then, we must have

G(z, wr) = f(z), (58)

which, with (22), implies

z ≤ wr and f(z) ≤ f(wr). (59)

Then,

f(z)
(41)+(57)+(58)

= f(uℓ) + f(vℓ)
(56)
> f(wr)

which contradicts (59). We conclude that CASE C.1 is not possible.
– CASE C.2. Omitted for brevity, same ideas apply.
– CASE C.3. Omitted for brevity, same ideas apply.
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– CASE C.4

{

G(uℓ, x) = f(x)

G(vℓ, y) = f(y)
(60)

As in CASE A.4, we can also assume that

x 6= uℓ, u
♯
ℓ and y 6= vℓ, v

♯
ℓ (61)

and we get analogously

x > u♯ℓ > σ and y > v♯ℓ > σ. (62)

The quantity G(z, wr) can be in principle equal to f(z), f(wr), or f(σ).
But (22) ⇒ G(z, wr) 6= f(σ). By contradiction, we can also prove that
G(z, wr) 6= f(z). Indeed, if G(z, wr) = f(z) we would have

z < w♯
r < σ (63)

and

f(σ)
(62)+(63)

= G(x, z)
(39)
= G(uℓ, x) (64)

which contradicts (60). As a consequence, we must have G(z, wr) =
f(wr), and then, by (41) and (60),

f(x) + f(y) = f(wr). (65)

Moreover, we have that

z > σ, (66)

since, if z ≤ σ, we get a contradiction as before in (64). Finally, we have

f(x)
(60)
= G(uℓ, x)

(39)
= G(x, z)

(62)+(66)
= f(z)

(62)+(66)
= G(y, z)

(40)
=

G(vℓ, y)
(60)
= f(y),

(67)

and, by (65) and (67),

f(x) = f(y) = f(z) =
f(wr)

2
.

This is indeed a stationary point for the system.

A.2. Proof of Theorem 5.2.

Proof. Consider again the discrete dynamical system (DS) and the auxiliary vari-
ables (38).

• CASE (A)
In a neighbourhood of the stationary point (27) the system has the form















xn+1 = F1(x
n, yn, zn) := xn − ∆t

∆x

(

f(xn)− f(uℓ)
)

yn+1 = F2(x
n, yn, zn) := yn − ∆t

∆x

(

f(yn)− f(vℓ)
)

zn+1 = F3(x
n, yn, zn) := zn − ∆t

∆x

(

f(zn)− f(xn)− f(yn)
)

.

(68)
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The Jacobian matrix of F = (F1, F2, F3) computed at the stationary point
(x, y, z) is

JF =





1− ∆t
∆x
f ′(x) 0 0

0 1− ∆t
∆x
f ′(y) 0

∆t
∆x
f ′(x) ∆t

∆x
f ′(y) 1− ∆t

∆x
f ′(z)



 .

The three eigenvalues are 1 − ∆t
∆x
f ′(x), 1− ∆t

∆x
f ′(y), and 1 − ∆t

∆x
f ′(z). Their

absolute value is strictly less than 1 since x, y, z < σ and (16).
• CASE (B)
In a neighbourhood of the stationary point (28) the system has the form















xn+1 = F1(x
n, yn, zn) := xn − ∆t

∆x

(

f(zn)− f(xn)
)

yn+1 = F2(x
n, yn, zn) := yn − ∆t

∆x

(

f(yn)− f(vℓ)
)

zn+1 = F3(x
n, yn, zn) := zn − ∆t

∆x

(

f(wr)− f(zn)− f(yn)
)

.

(69)

The Jacobian matrix of F = (F1, F2, F3) computed at the stationary point
(x, y, z) is

JF =





1 + ∆t
∆x
f ′(x) 0 − ∆t

∆x
f ′(z)

0 1− ∆t
∆x
f ′(y) 0

0 ∆t
∆x
f ′(y) 1 + ∆t

∆x
f ′(z)



 .

The three eigenvalues are 1 + ∆t
∆x
f ′(x), 1− ∆t

∆x
f ′(y), and 1 + ∆t

∆x
f ′(z). Their

absolute value is strictly less than 1 since y < σ, x, z > σ and (16).
• CASE (C)
In a neighbourhood of the stationary point (29) the system has the form















xn+1 = F1(x
n, yn, zn) := xn − ∆t

∆x

(

f(zn)− f(xn)
)

yn+1 = F2(x
n, yn, zn) := yn − ∆t

∆x

(

f(zn)− f(yn)
)

zn+1 = F3(x
n, yn, zn) := zn − ∆t

∆x

(

f(wr)− f(zn)− f(zn)
)

.

(70)

The Jacobian matrix of F = (F1, F2, F3) computed at the stationary point
(x, y, z) is

JF =





1 + ∆t
∆x
f ′(x) 0 − ∆t

∆x
f ′(z)

0 1 + ∆t
∆x
f ′(y) − ∆t

∆x
f ′(z)

0 0 1 + 2 ∆t
∆x
f ′(z)



 .

The three eigenvalues are 1+ ∆t
∆x
f ′(x), 1 + ∆t

∆x
f ′(y), and 1+ 2 ∆t

∆x
f ′(z). Their

absolute value is strictly less than 1 since x, y, z > σ and (16).

A.3. Proof of Theorem 5.4.

Proof. The proof is constructive. We refer to Appendix B for some basic notions
about (half) Riemann problem. We have to solve a left-half Riemann problem
for the two equations in u and v, a left- and a right-half Riemann problem (with
different fluxes) for the equation in z, and a right-half Riemann problem for the
equation in w, under the constraints (33) and (34), initial conditions satisfying (22)
and (24), and with the choice of fluxes (36) and (37). In the proof we employ the
notation ♯ defined by (25).



24 M. BRIANI AND E. CRISTIANI

We recall here the definition of the flux hc given in (35),

hc(·) := f(·) + f(σ) (71)

and we look for the fluxes ĥ(·), h̃(·) and the constants ũ, ṽ, ẑ, z̃, ŵ (see Fig. 9)
such that u(x=0−, t=0+) = ũ, v(0−, 0+) = ṽ, z(0+, 0+) = ẑ, z(∆x−, 0+) = z̃,
w(∆x+, 0+) = ŵ with

(ũ = uℓ or ũ ∈ N(uℓ)) and f(ũ) = min{Gf (ũ, σ), Gf (σ, ẑ)} (72)

(ṽ = vℓ or ṽ ∈ N(vℓ)) and f(ṽ) = min{Gf (ṽ, σ), Gf (σ, ẑ)} (73)
(

(ĥ, ẑ) = (hc, zc) or (ĥ, ẑ) ∈ P(hc, zc)
)

and ĥ(ẑ) = f(ũ) + f(ṽ) (74)
(

(h̃, z̃) = (hc, zc) or (h̃, z̃) ∈ N (hc, zc)
)

and h̃(z̃) =

min{Gh̃(z̃, σ), Gf (σ, ŵ)}
(75)

(ŵ = wr or ŵ ∈ P (wr)) and f(ŵ) = h̃(z̃) (76)

where the sets N , P , N , P are defined in Definitions B.1, B.2, B.3, B.4, respectively.
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f(ũ) + f(ṽ) = ĥ(ẑ) h̃(z̃) = f(ŵ)

(h̃, z̃)

wr

ŵ
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Figure 9. Solution of the Riemann problem in the plane (x, t)
just after the initial time.

• CASE (A)

f(uℓ) + f(vℓ) < f(wr) (77)

We claim that the solution is:

ũ = uℓ, ṽ = vℓ, ẑ < σ s.t. f(ẑ) = f(uℓ) + f(vℓ),

z̃ = wr, ŵ = wr, ĥ = f, h̃ = f.
(78)

It is important to note that such a ẑ actually exists since

f(uℓ) + f(vℓ)
(77)
< f(wr) ≤ f(σ).

Let us now verify that the fluxes/constants in (78) are actually solution of
(72)–(76).

72 We have ũ = uℓ and

f(ũ) = f(uℓ) = min{f(uℓ), f(σ)} = min{Gf (uℓ, σ), Gf (σ, ẑ)} =

min{Gf (ũ, σ), Gf (σ, ẑ)}.
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73 ṽ is analogous.

74 We prove that (ĥ, ẑ) ∈ P(hc, zc). To this end, we show that the wave

L2 :=
(

(ĥ, ẑ), (hc, zc)
)

is a strictly positive shock, see Fig. 10. We have

(ẑ < σ = zc)⇒ (f ′(ẑ) > f ′(zc))
(71)+(78)
⇒ (ĥ′(ẑ) > h′c(zc))

and then, referring to Appendix B.3, L2 is a shock. Moreover,

hc(zc)
(71)
= f(zc) + f(σ)

(24)
= 2f(σ) > f(uℓ) + f(vℓ)

(78)
= f(ẑ)

(78)
= ĥ(ẑ)

and then, by (100) and zc > ẑ, L2 is strictly positive. Finally, the equality

ĥ(ẑ) = f(ũ) + f(ṽ) is trivially verified.

75 We prove that (h̃, z̃) ∈ N (hc, zc). To this end, we show that L3 :=
(

(hc, zc), (h̃, z̃)
)

is a strictly negative shock, see Fig. 10. We have

(z̃
(78)
= wr > σ = zc)⇒ (f ′(zc) > f ′(z̃))

(71)+(78)
⇒ (h′c(zc) > h̃′(z̃))

and then, referring to Appendix B.3, L3 is a shock. Moreover,

h̃(z̃)
(78)
= f(z̃) < 2f(σ)

(24)
= f(zc) + f(σ)

(71)
= hc(zc)

and then, by (100) and z̃ > zc, L3 is strictly negative. Finally, we have

h̃(z̃)
(78)
= f(z̃)

(78)
= f(wr) = min{f(σ), f(wr)} =

min{Gf (z̃, σ), Gf (σ,wr)}
(78)
= min{Gh̃(z̃, σ), Gf (σ, ŵ)}.

76 We have ŵ = wr and f(ŵ)
(78)
= f(wr)

(78)
= h̃(z̃).

Summarizing, we have that the waves Lu
1 = (uℓ, ũ), L

v
1 = (vℓ, ṽ), and

L4 = (ŵ, wr) in Fig. 9 are not even created, while the wave L2 is a strictly
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Figure 10. CASE (A): Solution of the Riemann problem.

positive shock and the wave L3 is a strictly negative shock. When L2 meets
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L3, a new wave L5 :=
(

(ĥ, ẑ), (h̃, z̃)
)

arises, see Fig. 10. Let us prove that L5

is a strictly positive shock. We have

(ẑ < σ < z̃)⇒ (f ′(ẑ) > f ′(z̃))
(78)
⇒ (ĥ′(ẑ) > h̃′(z̃))

and then, referring to Appendix B.3, L5 is a shock. Moreover,

h̃(z̃)
(78)
= f(z̃)

(78)
= f(wr)

(77)
> f(uℓ) + f(vℓ)

(78)
= f(ẑ)

(78)
= ĥ(ẑ)

and then, by (100) and z̃ > ẑ, L5 is strictly positive.

When L5 reaches the line {x = ∆x} two new waves start. In the same

spirit of (75)–(76) we define the new flux h̃2 and the new constants z̃2 and ŵ2

such that
(

(h̃2, z̃2) = (ĥ, ẑ) or (h̃2, z̃2) ∈ N (ĥ, ẑ)
)

and h̃2(z̃2) =

min{Gh̃2
(z̃2, σ), Gf (σ, ŵ2)}

(79)

(ŵ2 = wr or ŵ2 ∈ P (wr)) and f(ŵ2) = h̃2(z̃2). (80)

We claim that the solution is

z̃2 = ẑ, ŵ2 = ẑ, h̃2 = ĥ = f. (81)

Let us verify that flux/constants in (81) are actually solution of (79)–(80).

79 We have (h̃2, z̃2) = (ĥ, ẑ) and

h̃2(z̃2) = f(ẑ) = min{f(ẑ), f(σ)} = min{Gf (ẑ, σ), Gf (σ, ẑ)} =

min{Gh̃2
(z̃2, σ), Gf (σ, ŵ2)}.

80 We prove that ŵ2 = ẑ ∈ P (wr). By Proposition 2, this is true if ẑ < σ
and f(ẑ) ≤ f(wr), which, in turn, comes from (77) and (78). Finally, by
(81) we have

f(ŵ2) = f(ẑ) = h̃2(z̃2).

Summarizing, we have that the wave L6 :=
(

(ĥ, ẑ), (h̃2, z̃2)
)

is not created,

see Fig. 10. Moreover, since ŵ2 = ẑ < σ < wr the wave L̂7 := (ŵ2, wr) is a
shock. It is strictly positive again by (77) and (78).

The proof is concluded by choosing

ū = ũ, v̄ = ṽ, z̄ = ẑ, w̄ = ŵ2.

• CASE (B)

f(uℓ) + f(vℓ) > f(wr), f(vℓ) <
f(wr)

2
(82)

Let us start again from the initial time t = 0 and find the fluxes ĥ(·), h̃(·)
and the constants ũ, ṽ, ẑ, z̃, ŵ such that (72)–(76) hold true. We claim that
the solution is

ũ = uℓ, ṽ = vℓ, ẑ = uℓ, z̃ > σ s.t. f(z̃) = f(wr)− f(vℓ),

ŵ = wr, ĥ(·) = h̃(·) = f(·) + f(vℓ).
(83)

Note that f(wr)− f(vℓ) > 0 by (82) and then such a z̃ exists.
Let us verify that the fluxes/constants in (83) are actually solution of (72)–

(76).
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72 As in CASE (A).

73 As in CASE (A).

74 We prove that (ĥ, ẑ) ∈ P(hc, zc). To this end, we show that the wave L2

is a strictly positive shock, see Fig. 11. We have

(ẑ < σ = zc)⇒ (f ′(ẑ) > f ′(zc))
(71)+(83)
⇒ (ĥ′(ẑ) > h′c(zc))

and then, referring to Appendix B.3, L2 is a shock. Moreover,

hc(zc)
(71)
= f(zc) + f(σ)

(24)
= 2f(σ) > f(uℓ) + f(vℓ)

(83)
= f(ẑ) + f(vℓ)

(83)
= ĥ(ẑ)

and then, by (100) and zc > ẑ, L2 is strictly positive. Finally, the equality

ĥ(ẑ) = f(ũ) + f(ṽ) is trivially verified.

75 We prove that (h̃, z̃) ∈ N (hc, zc). To this end, we show that L3 is a
strictly negative shock, see Fig. 11. We have

(z̃ > σ = zc)⇒ (f ′(zc) > f ′(z̃))
(71)+(83)
⇒ (h′c(zc) > h̃′(z̃))

and then, referring to Appendix B.3, L3 is a shock. Moreover,

h̃(z̃)
(83)
= f(z̃) + f(vℓ) < 2f(σ)

(24)
= f(zc) + f(σ)

(71)
= hc(zc)

and then, by (100) and z̃ > zc, L3 is strictly negative. Finally, we have

h̃(z̃)
(83)
= f(wr) = min{f(σ) + f(vℓ), f(wr)}

(83)
= min{Gh̃(z̃, σ), Gf (σ, ŵ)}.

76 We have ŵ = wr and f(ŵ)
(83)
= f(wr)

(83)
= h̃(z̃).

Summarizing, the situation is similar to the case (A), see Fig. 11: Lu
1 , L

v
1,

and L4 are not created. L2 is a strictly positive shock and L3 is a strictly

negative shock. When L2 meets L3, a new wave L5 =
(

(ĥ, ẑ), (h̃, z̃)
)

arises.
Let us prove that L5 is a strictly negative shock.
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Figure 11. CASE (B): Solution of the Riemann problem.

We have

(ẑ < σ < z̃)⇒ (f ′(ẑ) > f ′(z̃))
(71)+(83)
⇒ (ĥ′(ẑ) > h̃′(z̃))



28 M. BRIANI AND E. CRISTIANI

and then, referring to Appendix B.3, L5 is a shock. Moreover,

h̃(z̃)
(83)
= f(z̃) + f(vℓ)

(83)
= f(wr)

(82)
< f(uℓ) + f(vℓ)

(83)
= f(ẑ) + f(vℓ)

(83)
= ĥ(ẑ)

and then, by (100) and z̃ > ẑ, L5 is strictly negative.

When L5 reaches the line {x = 0}, three new waves L6 :=
(

(ĥ2, ẑ2), (h̃, z̃)
)

,
Lu
7 := (ũ, ũ2), and L

v
7 := (ṽ, ṽ2) start, see Fig. 11. Then we look for the flux

ĥ2 and the constants ũ2, ṽ2, ẑ2 such that

(ũ2 = ũ or ũ2 ∈ N(ũ)) and f(ũ2) = min{Gf(ũ2, σ), Gf (σ, ẑ2)} (84)

(ṽ2 = ṽ or ṽ2 ∈ N(ṽ)) and f(ṽ2) = min{Gf (ṽ2, σ), Gf (σ, ẑ2)} (85)

((ĥ2, ẑ2) = (h̃, z̃) or (ĥ2, ẑ2) ∈ P(h̃, z̃)) and ĥ2(ẑ2) = f(ũ2) + f(ṽ2).(86)

We claim that the solution is

ũ2 > σ s.t. f(ũ2) = f(wr)− f(vℓ), ṽ2 = vℓ, ẑ2 = ũ2, ĥ2 = h̃. (87)

Let us verify that flux/constants in (87) are actually solution of (84)–(86).

84 We prove that ũ2 ∈ N(ũ = uℓ). By Proposition 1, this is true if ũ2 ≥ σ
and f(ũ2) ≤ f(uℓ). We have indeed ũ2 > σ and

f(ũ2)
(87)
= f(wr)− f(vℓ)

(82)
< f(uℓ).

Moreover,

f(ũ2)
(87)
= f(wr)− f(vℓ) = min{f(σ), f(wr)− f(vℓ)}

(87)
= min{Gf (ũ2, σ), Gf (σ, ẑ2)}.

85 We have ṽ2 = vℓ = ṽ. Moreover,

f(ṽ2)
(87)
= f(vℓ)

(82)
= min{f(vℓ), f(wr)− f(vℓ)}

(87)
= min{Gf (ṽ2, σ), Gf (σ, ẑ2)}.

86 We have (ĥ2, ẑ2) = (h̃, z̃). Moreover,

ĥ2(ẑ2)
(87)
= h̃(z̃)

(83)
= f(wr)− f(vℓ) + f(vℓ) = f(wr)

(87)
= f(ũ2) + f(ṽ2).

Summarizing, we have that the wave L6 is not created. Let us study the waves

Lu
7 and Lv

7. L
u
7 is a strictly negative shock since ũ

(83)
= uℓ

(22)
< σ

(87)
< ũ2 and

f(ũ)
(83)
= f(uℓ)

(82)
> f(wr)− f(vℓ)

(87)
= f(ũ2).

Lv
7 instead is not created since (ṽ, ṽ2) = (vℓ, vℓ).
The proof is concluded by choosing

ū = ũ2, v̄ = ṽ2, z̄ = z̃, w̄ = ŵ.

• CASE (C)

f(uℓ) >
f(wr)

2
, f(vℓ) >

f(wr)

2
(88)

Let us start again from the initial time t = 0 and find the fluxes ĥ(·), h̃(·)
and the constants ũ, ṽ, ẑ, z̃, ŵ such that (72)–(76) hold true. We claim that
the solution is

ũ = uℓ, ṽ = vℓ, ẑ = max{uℓ, vℓ}, z̃ > σ s.t. f(z̃) = f(wr)
2 ,

ŵ = wr , ĥ(·) = f(·) + min{f(uℓ), f(vℓ)}, h̃(·) = f(·) + f(wr)
2 .

(89)
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We prove only that (74) and (75) hold true.

74 We prove that (ĥ, ẑ) ∈ P(hc, zc). To this end, we show that the wave L2

is a strictly positive shock, see Fig. 12. We have

(ẑ = max{uℓ, vℓ} < σ = zc)⇒ (f ′(ẑ) > f ′(zc))
(71)+(89)
⇒ (ĥ′(ẑ) > h′c(zc))

and then, referring to Appendix B.3, L2 is a shock. Moreover,

hc(zc)
(71)
= f(zc) + f(σ)

(24)
= 2f(σ) > f(uℓ) + f(vℓ)

(22)
=

f(max{uℓ, vℓ}) + min{f(uℓ), f(vℓ)}
(89)
= ĥ(ẑ)

and then, by (100) and zc > ẑ, L2 is strictly positive. Finally, the equality

ĥ(ẑ) = f(ũ) + f(ṽ) is trivially verified.

75 We prove that (h̃, z̃) ∈ N (hc, zc). To this end, we show that L3 is a
strictly negative shock, see Fig. 12. We have

(z̃ > σ = zc)⇒ (f ′(zc) > f ′(z̃))
(71)+(89)
⇒ (h′c(zc) > h̃′(z̃))

and then, referring to Appendix B.3, L3 is a shock. Moreover,

h̃(z̃)
(89)
= f(wr) < 2f(σ)

(24)
= f(zc) + f(σ)

(71)
= hc(zc)

and then, by (100) and z̃ > zc, L3 is strictly negative. Finally, we have

h̃(z̃)
(89)
= f(wr) = min

{

f(σ) +
f(wr)

2
, f(wr)

}

(89)
= min{Gh̃(z̃, σ), Gf (σ, ŵ)}.

Summarizing, the situation is similar to the case (A) and (B), see Fig. 12:
Lu
1 , L

v
2, and L4 are not created. L2 is a strictly positive shock and L3 is a

strictly negative shock. When L2 meets L3, a new wave L5 =
(

(ĥ, ẑ), (h̃, z̃)
)

arises. Let us prove that L5 is a strictly negative shock.
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L4

wr = ŵ
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Figure 12. CASE (C): Solution of the Riemann problem.

We have

(ẑ < σ < z̃)⇒ (f ′(ẑ) > f ′(z̃))
(89)
⇒ (ĥ′(ẑ) > h̃′(z̃))
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and then, referring to Appendix B.3, L5 is a shock. Moreover,

h̃(z̃)
(89)
= f(wr)

(88)
< f(uℓ) + f(vℓ)

(22)
= f(max{uℓ, vℓ}) + min{f(uℓ), f(vℓ)}

(83)
= ĥ(ẑ)

and then, by (100) and z̃ > ẑ, L5 is strictly negative.

When L5 reaches the line {x = 0}, three new waves L6 :=
(

(ĥ2, ẑ2), (h̃, z̃)
)

,
Lu
7 := (ũ, ũ2), and L

v
7 := (ṽ, ṽ2) start, see Fig. 11. Then we look for the flux

ĥ2 and the constants ũ2, ṽ2, ẑ2 such that (84)–(86) hold true. We claim that
the solution is

ũ2 = ṽ2 = ẑ2 = z̃, ĥ2 = h̃. (90)

We skip the proof that (84)–(86) are verified and we just prove that Lu
7 , L

v
7

are strictly negative shocks and that L6 is not created.
By (90) we get ũ2 > σ and then ũ = uℓ < σ < ũ2. This proves that Lu

7 is
a shock. Moreover, it is a strictly negative shock since

f(ũ)
(89)
= f(uℓ)

(88)
>

f(wr)

2

(90)
= f(ũ2).

The result for Lv
7 is proved analogously. L6 instead is not created since by

(90) we have (ĥ2, ẑ2) = (h̃, z̃).
The proof is concluded by choosing

ū = v̄ = ũ2 = ṽ2, z̄ = z̃, w̄ = ŵ.

Remark 6. (Modified flux ) The precise expression of h in (31) is found a posteriori,
joining together the solutions

• (78) and (81) for CASE (A), see Fig. 10,
• (83) and (87) for CASE (B), see Fig. 11,
• (89) and (90) for CASE (C), see Fig. 12.

Remark 7. (Uniqueness) Once the fluxes ĥ, hc, h̃ are given, the constants ũ, ṽ, ẑ,
z̃, ŵ, z̃2, ŵ2 are uniquely determined. For example, in CASE (A) let us assume by
contradiction that ũ 6= uℓ. Then, by (72) we have that ũ ∈ N(uℓ) and then

ũ > σ. (91)

On the other hand, since ĥ 6= hc, (74) requires (ĥ, ẑ) ∈ P(hc, zc = σ), which implies
ẑ ≤ σ. Finally, by (72) we get

f(ũ) = min{Gf(ũ, σ), Gf (σ, ẑ)}
(ẑ≤σ)
= min{f(σ), f(σ)} = f(σ)

which implies ũ = σ, in contradiction with (91).
Other cases can be managed analogously.

Appendix B. Riemann and half-Riemann problem. In this appendix we re-
call some basic notions about Riemann and half-Riemann problem. We also in-
troduce a trivial generalization of the (half) Riemann problem in case of different
fluxes on the left and right side.
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B.1. The Riemann problem. Let us consider the following Cauchy problem with
Heaviside initial data







∂
∂t
ρ+ ∂

∂x
f(ρ) = 0,

ρ(x, 0) =

{

ρℓ, if x < 0,
ρr, if x > 0,

(92)

for some constant initial data ρℓ and ρr in [0, ρmax]. The unique weak entropy
solution is given by:

• If ρℓ < ρr (shock wave):

ρ(x, t) =

{

ρℓ for x < λt
ρr for x > λt

with λ =
f(ρr)− f(ρℓ)

ρr − ρℓ
. (93)

We have a shock wave with positive speed if f(ρr) ≥ f(ρℓ), and with negative
speed if f(ρr) ≤ f(ρℓ).
• If ρℓ > ρr (rarefaction wave):

ρ(x, t) =







ρℓ for x/t ≤ f ′(ρℓ),
ψ(x/t) for f ′(ρℓ) ≤ x/t ≤ f ′(ρr),
ρr for x/t ≥ f ′(ρr),

(94)

where the function ψ(ξ) is defined by the solution of f ′(ψ(ξ)) = ξ. We have
a rarefaction wave with positive speed if f ′(ρℓ), f

′(ρr) ≥ 0, and with negative
speed if f ′(ρℓ), f

′(ρr) ≤ 0.

B.2. Half Riemann problem. Here we employ the notation ♯ defined by (25).
Following [25], we call half Riemann problem the simple case of an initial-boundary
value problem in the quarter of plane {x ≤ 0} or {x ≥ 0} when the initial condition
is a constant. The problem is then to find the acceptable boundary condition at
x = 0.

The study of the left-half problem is equivalent to searching an artificial right
state in the problem (92) which lead to waves with negative speed, in order to know
which are the states attainable along the line x = 0.

Definition B.1. For any ρℓ ∈ [0, ρmax], we define N(ρℓ) to be the set of points
ρ̃ ∈ [0, ρmax]\{ρℓ} such that the solution to the Riemann problem







∂
∂t
ρ+ ∂

∂x
f(ρ) = 0,

ρ(x, 0) =

{

ρℓ, if x < 0,
ρ̃, if x > 0,

(95)

contains only waves with negative speed.

It is trivial to verify the following result.

Proposition 1. We have

N(ρℓ) =

{

[ρ♯ℓ, ρmax] = {ρ̃ : ρ̃ ≥ σ and f(ρ̃) ≤ f(ρℓ)} if ρℓ ≤ σ,

[σ, ρmax] if ρℓ > σ.
(96)

The study of the right-half problem is equivalent to searching an artificial left
state in the problem (92) which lead to waves with positive speed, in order to know
which are the states attainable along the line x = 0.
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Definition B.2. For any ρr ∈ [0, ρmax], we define P (ρr) to be the set of points
ρ̂ ∈ [0, ρmax]\{ρr} such that the solution to the Riemann problem







∂
∂t
ρ+ ∂

∂x
f(ρ) = 0,

ρ(x, 0) =

{

ρ̂, if x < 0,
ρr, if x > 0,

(97)

contains only waves with positive speed.

Analogously to the previous case, we get the following result.

Proposition 2. We have

P (ρℓ) =

{

[0, σ] if ρr ≤ σ,
[

0, ρ♯r
]

= {ρ̂ : ρ̂ < σ and f(ρ̂) ≤ f(ρr)} if ρr > σ.
(98)

B.3. The (half) Riemann problem with different fluxes. To our purposes,
we need a trivial generalization of the Riemann problem with different fluxes. Let
us consider the following problem







∂
∂t
ρ+ ∂

∂x
h(ρ) = 0,

ρ(x, 0) =

{

ρℓ, if x < 0,
ρr, if x > 0,

with h(ρ) =

{

hℓ(ρ), if ρ = ρℓ,
hr(ρ), if ρ = ρr,

(99)

where hℓ, hr : [0, ρmax]→ R are two C1 fluxes. This problem is different from what
is commonly called “conservation law with discontinuous flux”, since in our case the
discontinuity does not depend explicitly on x. Instead, it depends on the solution
ρ itself and it is located at the boundary of two adjacent advection problems of a
constant state. Let us clarify this point by computing the entropy solution to (99).

• If h′ℓ(ρℓ) > h′r(ρr), characteristic lines starting from the line {x < 0} meet
those starting from the line {x > 0}, creating a shock x = ξ(t), see Fig. 13a.
In order to have the mass conserved across the shock, a Rankine-Hugoniot-
like condition must be verified. This condition is easy found by standard
arguments [15, Chapt.77] as

ξ̇(t) =
hr(ρr)− hℓ(ρl)

ρr − ρl
. (100)

Then we have a shock wave with positive speed if ξ̇ > 0, and with negative
speed if ξ̇ < 0.
• If instead h′ℓ(ρℓ) < h′r(ρr) a rarefaction is created, see Fig. 13b. As in the
classical Riemann problem, the “boundaries” of the rarefaction are given by
the lines x = h′ℓ(ρℓ)t and x = h′r(ρr)t. Then we have a rarefaction wave with
positive speed if h′ℓ(ρℓ), h

′
r(ρr) > 0, and with negative speed if h′ℓ(ρℓ), h

′
r(ρr) <

0. Note that the sign of the waves can be computed even if the solution inside
the rarefaction is not explicitly given.

Following Definitions B.1 and B.2 we introduce the following two definitions:

Definition B.3. For any flux hℓ : [0, ρmax] → R and density ρℓ ∈ [0, ρmax], we

define N (hℓ, ρℓ) to be the set of flux/density couples (h̃, ρ̃), with h̃ : [0, ρmax] → R

and ρ̃ ∈ [0, ρmax]\{ρℓ}, such that the solution to the Riemann problem with different
fluxes







∂
∂t
ρ+ ∂

∂x
h(ρ) = 0,

ρ(x, 0) =

{

ρℓ, if x < 0,
ρ̃, if x > 0,

with h(ρ) =

{

hℓ(ρ), if ρ = ρℓ,

h̃(ρ), if ρ = ρ̃,
(101)
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Figure 13. Riemann problem with different fluxes. (a) Shock, (b) Rarefaction.

contains only waves with negative speed.

Definition B.4. For any flux hr : [0, ρmax] → R and density ρr ∈ [0, ρmax], we

define P(hr, ρr) to be the set of flux/density couples (ĥ, ρ̂), with ĥ : [0, ρmax] → R

and ρ̂ ∈ [0, ρmax]\{ρr}, such that the solution to the Riemann problem with different
fluxes







∂
∂t
ρ+ ∂

∂x
h(ρ) = 0,

ρ(x, 0) =

{

ρ̂, if x < 0,
ρr, if x > 0,

with h(ρ) =

{

ĥ(ρ), if ρ = ρ̂,
hr(ρ), if ρ = ρr,

(102)

contains only waves with positive speed.
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