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Abstract

Improving Importance Sampling estimators for rare event probabilities requires sharp approx-
imations of the optimal density leading to a nearly zero-variance estimator. This paper presents a
new way to handle the estimation of the probability of a rare event defined as a finite intersection
of subset. We provide a sharp approximation of the density of long runs of a random walk condi-
tioned by multiples constraints, each of them defined by an average of a function of its summands
as their number tends to infinity.

1 Introduction and context

In this paper, we consider efficient estimation of the probability of large deviations of a multivariate sum
of independent, identically distributed, light-tailed and non-lattice random vectors. The probability
to be estimated is defined as an intersection of s event where each of them is characterized by a sum
of n i.i.d. random variable belonging to some countable union of intervals.

Consider Xn
1 := (X1, ...,Xn) n i.i.d. random vectors with known common density pX on Rd, d ≥ 1,

copies of X :=
(
X(1), ...,X(d)

)
. The superscript (j) pertains to the coordinate of a vector and the

subscript i pertains to replications. Consider also u a measurable function defined from Rd to Rs with
s < n. The last condition on s forbid to have a zero-one probability event. Define U := u(X) with
density pU and

U1,n :=

n∑
i=1

Ui.

We intend to estimate for large but fixed n

Pn := P (U1,n ∈ nA) (1)

where A is a non-empty measurable set of Rs such as E[u (X)] /∈ A.
For sake of clarity, the probability to be estimate can be written as follows

Pn = P

 s⋂
j=1

{
n∑
i=1

u(j)
(
X

(1)
i , ...,X

(d)
i

)
∈ nA(j)

} (2)

where, for j ∈ {1, ...s}, u(j) is a measurable function from Rd to R and A(j) is a countable union of
intervals of R. According to the context, we will use either (1) or (2).

In [3], the authors consider in details the case where d = s = 1 and A := An = (an,∞) with an a
convergent sequence.

The basic estimate of Pn is defined as follows: generate L i.i.d. samples Xn
1 (l) with underlying

density pX and define

P̃n :=
1

L

L∑
l=1

1En (Xn
1 (l))
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where
En :=

{
(x1, ..., xn) ∈

(
Rd
)n

: (u (x1) + ...+ u (xn)) ∈ nA
}
. (3)

The Importance Sampling estimator of Pn with sampling density g on
(
Rd
)n

is

P̂n :=
1

L

L∑
l=1

P̂n(l)1En (Y n1 (l)) (4)

where P̂n(l) is called ”importance factor” and can be written

P̂n(l) :=

n∏
i=1

pX (Yi(l))

g (Y n1 (l))
(5)

and where the L samples Y n1 (l) := (Y1(l), ..., Yn(l)) are i.i.d. with common density g; the coordinates
of Y n1 (l) however need not be i.i.d.. It is known that the optimal choice for g is the density of
Xn

1 := (X1, ...,Xn) conditioned upon (Xn
1 ∈ En), leading to a zero variance estimator. We refer to [5]

for the background of this section.
The state-independent IS scheme for rare event estimation (see [6] or [12]), rests on two basic

ingredients: the sampling distribution is fitted to the so-called dominating point (which is the point
where the quantity to be estimated is mostly captured; see [11]) of the set to be measured; independent
and identically distributed replications under this sampling distribution are performed. More recently,
a state-dependent algorithm leading to a strongly efficient estimator is provided by [2] when d = 1,
u(x) = x and A = (a;∞) (or, more generally in Rd, with a smooth boundary and a unique dominating
point). Indeed, adaptive tilting defines a sampling density for the i−th r.v. in the run which depends
both on the target event (U1,n ∈ nA) and on the current state of the path up to step i − 1. Jointly
with an ad hoc stopping rule controlling the excursion of the current state of the path, this algorithm
provides an estimate of Pn with a coefficient of variation independent upon n. This result shows that
nearly optimal estimators can be obtained without approximating the conditional density.

The main issue of the method described above is to find dominating point. However, when the
dimension of the set A increases, finding a dominating point can be very tricky or even impossible.
A solution will be to divide the set under consideration into smaller subset and, for each one of this
subset, find a dominating point. Doing so makes the implementation of an IS scheme harder and
harder as the dimension increases.

Our proposal is somehow different since it is based on a sharp approximation result of the con-
ditional density of long runs. The approximation holds for any point conditioning of the form
(U1,n = nv) . Then sampling v in A according to the distribution of U1,n conditioned upon (U1,n ∈ nA)
produces the estimator. By its very definition this procedure does not make use of any dominating
point, since it randomly explores the set A. Indeed, our proposal hints on two choices: first do not
make use of the notion of dominating point and explore all the target set instead (no part of the set A
is neglected); secondly, do not use i.i.d. replications, but merely sample long runs of variables under a
proxy of the optimal sampling scheme.

We will propose an IS sampling density which approximates this conditional density very sharply
on its first components y1, ..., yk where k = kn is very large, namely k/n → 1. However, but in the
Gaussian case, k should satisfy (n− k) → ∞ by the very construction of the approximation. The IS
density on

(
Rd
)n

is obtained multiplying this proxy by a product of a much simpler state-independent
IS scheme following [13].

The paper is organized as follows. Section 2 is devoted to notations and hypothesis. In Section 3,
we expose the approximation scheme for the conditional density of Xk

1 under (U1,n = nv) . In Section
4, we introduce our IS scheme. Simulated results are presented in Section 5 which enlighten the gain
of the present approach over state-dependent Importance Sampling schemes.

We rely on [7] where the basic approximation (and proofs) used in the present paper can be found.
The real case is studied in [4] and applications for IS estimators can be found in [3].
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2 Notations and hypotheses

We consider approximations of the density of the vector Xk
1 on

(
Rd
)k

, when the conditioning event
writes (2) and k := kn is such that

lim
n→∞

k

n
= 1 (K1)

lim
n→∞

(n− k) = +∞. (K2)

Therefore we may consider the asymptotic behavior of the density of the random walk on long runs.
Throughout the paper the value of a density pZ of some continuous random vector Z at point z

may be written pZ(z) or p (Z = z) , which may prove more convenient according to the context.
Let pnv denote the density of Xk

1 under the local condition (U1,n = nv)

pnv
(
Xk

1 = Y k1
)

:= p(Xk
1 = Y k1

∣∣U1,n = nv) (6)

where Y k1 belongs to
(
Rd
)k

and v fixed in Rs.
We will also consider the density pnA of Xk

1 conditioned upon (U1,n ∈ nA)

pnA
(
Xk

1 = Y k1
)

:= p(Xk
1 = Y k1

∣∣U1,n ∈ nA). (7)

The approximating density of pnv is denoted gnv; the corresponding approximation of pnA is denoted
gnA. Explicit formulas for those densities are presented in the next section.

3 Multivariate random walk under a local conditionning event.

Let εn be a postive sequence such as

lim
n→∞

ε2n(n− k) =∞ (E1)

lim
n→∞

εn(log n)2 = 0 (E2)

It will be shown that εn (log n)
2

is the rate of accuracy of the approximating scheme.
We assume that U := u (X) has a density pU (with p.m. PU) absolutely continuous with respect

to Lebesgue measure on Rs. Futhermore, we assume that u is such that the characteristic function of
U belongs to Lr for some r ≥ 1.

Denote 0 is the vector of Rs with all coordinates equal to 0 and V (0) a neighborhood of 0.
We assume that U satisfy the Cramer condition, meaning

ΦU(t) := E[exp < t,U >] <∞, t ∈ V (0) ⊂ Rs.

and denote

m(t) := t∇ log(ΦU(t)), t ∈ V (0) ⊂ Rs

and

κ(t) := t∇∇ log(ΦU(t)), t ∈ V (0) ⊂ Rs.

as the mean and the covariance matrix of the tilted density defined by

παu (x) :=
exp < t, u(x) >

ΦU(t)
pX(x). (8)

where t is the only solution of m(t) = α for α in the conxev hull of PU. Conditions on ΦU(t) which
ensure existence and uniqueness of t are referred to stepness properties (see [1], p153 ff, for all properties
of moment generating funtion used in this paper).

Let v ∈ Rs. We now state the general form of the approximating density. Denote

g0(y1|y0) := πvu(y1) (9)
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with an arbitrary y0 and πvu defined in (8).
For 1 ≤ i ≤ k − 1, we recursively define g(yi+1|yi1). Set ti ∈ Rs to be the unique solution to the

equation

m(ti) = mi,n :=
n

n− i

(
v − u1,i

n

)
(10)

where u1,i = u(y1) + ...+ u(yi).
Denote

κj,l(i,n) :=
d2

dt(j)dt(l)

(
logE

π
mi,n
U

exp < t,U >
)

(0)

and

κj,l,m(i,n) :=
d3

dt(j)dt(l)dt(m)

(
logE

π
mi,n
U

exp < t,U >
)

(0) .

for j, l and m in {1, ..., s}
Denote

g(yi+1|yi1) := Cins (u(yi+1);βα+ v, β) pX(yi+1) (11)

where Ci is a normalizing factor, ns (u(yi+1);βα+ v, β) is the normal density at u(yi+1) with mean
βα+ v and covariance matrix β with α and β defined by

α :=

(
ti +

κ−2(i,n)γ

2(n− i− 1)

)
β := κ(i,n)(n− i− 1)

where γ is defined by

γ :=

 s∑
j=1

κj,j,p(i,n)


1≤p≤s

.

Then

gnv(y
k
1 ) := g0(y1|y0)

k−1∏
i=1

g(yi+1|yi1) (12)

Theorem 1 Assume (E1), (E2), (K1) and (K2).

• Let Y k1 a sample of Pnv. Then

p
(
Xk

1 = Y k1 |U1,n = nv
)

= gnv(Y
k
1 )(1 + oPnv

(1 + εn(log n)2)) (13)

• Let Y k1 a sample of Gnv. Then

p
(
Xk

1 = Y k1 |U1,n = nv
)

= gnv(Y
k
1 )(1 + oGnv

(1 + εn(log n)2)) (14)

Remark 2 The approximation of the density of Xk
1 is not performed on the sequence of entire spaces

(Rs)k but merely on a sequence of subsets of (Rs)k which contains the trajectories of the conditioned
random walk with probability going to 1 as n tends to infinity. The approximation is performed on
typical paths. For sake of applications in Importance Sampling, Theorem 14 is exactly what we need.
Nevertheless, as proved in [7], the extension of our results from typical paths to the whole space Rk
holds: convergence of the relative error on large sets imply that the total variation distance between the
conditioned measure and its approximation goes to 0 on the entire space.

Remark 3 The rule which defines the value of k for a given accuracy of the approximation is stated
in Section 5 of [7].
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Remark 4 When the Xi’s are i.i.d. Gaussian standard and u(x) = x, the result of the approximation
theorem are true for k = n− 1 without the error term. Indeed, it holds p(Xn−1

1 = xn−11

∣∣U1,n = nv) =

gnv
(
xn−11

)
for all xn−11 in

(
Rd
)n−1

.

As stated above the optimal choice for the sampling density is pnA. It holds

pnA(xk1) =

∫
A

pnv
(
Xk

1 = xk1
)
p(U1,n/n = v|U1,n ∈ nA)dv (15)

so that, in contrast with [2] or [6], we do not consider the dominating point approach but merely realize
a sharp approximation of the integrand at any point of A and consider the dominating contribution of
all those distributions in the evaluation of the conditional density pnA.

4 Adaptive IS Estimator for rare event probability

The IS scheme produces samples Y := (Y1, ..., Yk) distributed under gnA, which is a continuous mixture
of densities gnv as in (12) with p (U1,n/n = v|U1,n ∈ nA) .

Simulation of samples U1,n/n under this density can be performed through Metropolis-Hastings
algorithm, since

r(v, v′) :=
p(U1,n/n = v|U1,n ∈ nA)

p(U1,n/n = v′|U1,n ∈ nA)

turns out to be independent upon P (U1,n ∈ nA) . The proposal distribution of the algorithm should
be supported by A.

The density gnA is extended from (Rs)k onto (Rs)n completing the n − k remaining coordinates
with i.i.d. copies of r.v’s Yk+1, ..., Yn with common tilted density

gnA
(
ynk+1

∣∣ yk1) :=

n∏
i=k+1

πmk
u (yi) (16)

with mk := m(tk) = n
n−k

(
v − u1,k

n

)
and

u1,k =

k∑
i=1

u(yi).

The last n − k r.v’s Yi’s are therefore drawn according to the state independent i.i.d. scheme in
phase with Sadowsky and Bucklew [13].

We now define our IS estimator of Pn. Let Y n1 (l) := Y1(l), ..., Yn(l) be generated under gnA. Let

P̂n(l) :=

∏n
i=0 pX(Yi(l))

gnA(Y n1 (l))
1En (Y n1 (l)) (17)

and define

P̂n :=
1

L

L∑
l=1

P̂n(l). (18)

in accordance with (4).

Remark 5 In the real case and for A = (a,∞), the authors of [3] shows that under regularity con-
ditions the resulting relative error of the estimator is proportional to

√
n− kn and drops by a factor√

n− kn/
√
n with respect to the state independent IS scheme. Slight modification in the extension of

gnA allows to prove the strong efficiency of the estimator (18) using arguments from both [2] and [3];
see [8].
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5 When the dimension becomes very high

This section compares the performance of the present approach with respect to the standard tilted
one using i.i.d. replications under (8). Consider a random sample X1, ..., X100 where X1 has a normal
distribution N(0.05, 1) and let

E100 :=

{
x1001 :

|x1 + ...+ x100|
100

> 0.28

}
.

This example is in the same vein as the one developed in [9] or in [10]. Under the present pro-
posal the distribution of the Importance Factor concentrates around P100; hence so-called ”rogue path
phenomenon” (see [9]) does not occur.

We explore the gain in relative accuracy when the dimension of the measured set increases. Let
therefore B := (E100)

d
which is the d-cartesian product of E100. The 100 r.v.’s Xi ’s are i.i.d. random

vectors in Rd with common i.i.d. N(0.05, 1) distribution. The dominating point has all coordinates
equal 0.28. Rogue path curse produces an overwhelming loss in accuracy, imposing a very large increase
in runtime to get reasonable results. Our interest is to show that in this simple dissymetric case our
proposal provides a good estimate, while the standard IS scheme ignores a part of the event B. The
standard i.i.d. IS scheme introduces the dominating point a = 0.28 and the family of i.i.d. tilted r.v’s
with common N(a, 1) distribution for each coordinates. It can be seen that a large part of B is never
visited through the procedure, inducing a bias in the estimation.

This example is not as artificial as it may seem; indeed it leads to a 2d dominating points situation
which is quite often met in real life. Exploring at random the set of interest avoids any search
for dominating points. Drawing L i.i.d. points v1, ..., vL according to the distribution of U1,100/100
conditionally upon B we evaluate P100 with k = 99; note that in the Gaussian case Theorem 1 provides
an exact description of the conditional density of Xk

1 for all k between 1 and n. The following figure
shows the gain in relative accuracy w.r.t. the state independent IS scheme according to the growth of
d. The value of P100 is 10−2d.

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Relative Accuracy of the adaptive estimate (dotted line) w.r.t. i.i.d. twisted one (solid line)
as a function of the dimension d for L = 1000.

6 Conclusion

In this paper, we explore a new way to estimate multi-constraints large deviation probability. In
future work, the author will investigate the theoretical behaviour of the relative error of our proposed
estimator.
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