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CONTRACTIONS OF LIE ALGEBRAS WITH 2-DIMENSIONAL

GENERIC COADJOINT ORBITS

DANIEL BELTIŢĂ AND BENJAMIN CAHEN

Abstract. We determine all the contractions within the class of finite-dim-
ensional real Lie algebras whose coadjoint orbits have dimensions ≤ 2.

1. Introduction

The notion of contraction of Lie algebras was introduced on physical grounds
by Segal [Se51], Inönü and Wigner [IW53]: If two physical theories are related
by a limiting process then the associated invariance groups should also be related
by some limiting process called contraction. For instance, classical mechanics is a
limiting case of relativistic mechanics and then the Galilei group is a contraction
of the Poincaré group.

Contractions of Lie algebras have been investigated by many authors [Sa61],
[He66], [LeN67], [We91] and continue to be a subject of active interest, particularly
in connection with the somewhat inverse problem of deforming Lie algebras [FM05],
[Bu07]. Note that contractions not only link two Lie algebras but also link some
objects related to these Lie algebras such as representations, invariants, special
functions and quantization mappings [MN72], [DR85], [CW99],[Cp07], [Ca09], and
also coadjoint orbits, which provide the motivation for the present paper, as we will
explain directly, below.

The coadjoint orbits of any Lie group G admit G-invariant symplectic structures,
and may be regarded as phase spaces acted on by the group G in a Hamiltonian
fashion, in the sense of classical mechanics. That well-known observation allows us
to regard the Lie groups with 2-dimensional coadjoint orbits as symmetry groups
of the simplest nontrivial phase spaces, in some sense. Therefore it is natural to
wonder which ones of these symmetry groups can be further contracted. That is
precisely the question which we answer in the present paper (see Theorem 2.4), by
considering contractions on Lie algebra level (Definitions 2.2 and 2.3).

Note that contractions of any of the aforementioned symmetry groups of the
simplest nontrivial phase spaces necessarily belong to the same class of simplest
symmetry groups. More precisely, for any finite-dimensional real Lie algebra g

associated with the simply connected Lie group G, the maximal dimension of the
coadjoint orbits of G is an isomorphism invariant that does not increase for any
contraction of g (see Lemma 3.3 below). Thus, our results can also be regarded
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as a contribution to understanding the contraction relationships within particular
classes of Lie algebras. Here are some samples of problems that were earlier raised
on such relationships within various classes of Lie algebras:

• Which are the real Lie algebras that do not admit other contractions than
the abelian Lie algebras and themselves? This was answered in [La03].

• Which are all the contractions for low-dimensional Lie algebras? This was
settled in [NP06] for the Lie algebras of dimensions ≤ 4.

• Is it true that within the class of nilpotent Lie algebras, every algebra
is a nontrivial contraction of another algebra? This is the Grunewald-
O’Halloran conjecture ([GO93]) which was recently addressed in [HT13].

It is noteworthy that the class of Lie algebras investigated by us (the ones with
2-dimensional generic coadjoint orbits) is restricted neither by dimension nor by
nilpotency conditions.

As indicated above, the present investigation was motivated by a question that
claims its origins in classical physics. Therefore the next stage of our research
will naturally focus on answering the similar question on the quantum level, that
is, by studying the contractions of the unitary representations obtained by the
quantization of the simplest phase spaces. In other words, from the mathematical
point of view of the method of coadjoint orbits, our results raise several interesting
problems related to the contractions of unitary irreducible representations of the
groups with coadjoint orbits of dimensions ≤ 2. That is a broad topic which was
already treated in [Ca03] and [Ca04] for some particularly important situations,
and we plan to address it systematically in future papers.

The present paper is organized as follows. In Section 2 we state the contraction
problem to be addressed and we also fix some terminology and state our main results
as Theorem 2.4, thereby providing a complete answer to that problem. Section 3
then collects some auxiliary facts on contractions. Section 3 has a rather technical
character and are devoted to the proof of Theorem 2.4((1)–(2)). Finally, the proof
of that theorem is completed in Section 4, which also includes some additional
observations that may be of independent interest.

2. Main results

Here is the main problem to be addressed below. In its statement we also
introduce some notation to be used throughout the present paper.

Problem 2.1. One determined in [ACL86] the list of all of the Lie algebras cor-
responding to the connected, simply connected Lie groups whose coadjoint orbits
have the dimensions ≤ 2, namely:

(i) the simple Lie algebras su(2) and sl(2,R);
(ii) the solvable Lie algebra with a 1-codimensional abelian ideal gT := R⋉T an,

where T : an → an is the linear operator defined by the adjoint action of
(1, 0) ∈ R ⋉ an;

(iii) the solvable Lie algebra RT ⋉ h3, where h3 = span{X,Y, Z} is the Heisen-
berg algebra with [X,Y ] = Z, and1

– either [T,X ] = X , [T, Y ] = −Y , [T, Z] = 0 (the Lie algebra A−1
4,8);

– or [T,X ] = Y , [T, Y ] = −X , [T, Z] = 0 (the Lie algebra A0
4,9);

1See the notation A−1

4,8
and A0

4,9
in the list of 4-dimensional algebras in [NP06, §VI.B].
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(iv) the 2-step nilpotent Lie algebra n3,3 = span{X1, X2, X3, Y1, Y2, Y3} with
[X1, X2] = Y1, [X2, X3] = Y2, [X3, X1] = Y3 (the free 2-step nilpotent Lie
algebra of rank 3);

(v) the 3-step nilpotent Lie algebra n2,1,2 = span{X1, X2, X3, Y1, Y2} with
[X1, X2] = X3, [X1, X3] = Y1, [X2, X3] = Y2;

and moreover any direct sums of the above Lie algebras with abelian Lie algebras.
Which ones of these Lie algebras are contractions of other Lie algebras from the

above list?

Let us recall the definition of a contraction of Lie algebras.

Definition 2.2. Let g and g0 be finite-dimensional real Lie algebras. We say that
g0 is a contraction of the Lie algebra g, and we write g ❀ g0, if there exists a
family of invertible linear maps {Cr : g0 → g}r∈I parameterized by the set I ⊆ R

for which 0 ∈ R is an accumulation point and such that for all x, y ∈ g0 we have
[x, y]g0

= lim
I∋r→0

C−1
r [Crx,Cry]g.

In order to describe our answer to the above problem, it is convenient to introduce
a notion of contraction between Lie algebras which may not have the same dimen-
sion. This notion is well defined and recovers the classical notion of contraction in
the case of Lie algebras having the same dimension, as proved in Proposition 3.7
below.

Definition 2.3. Let g and g0 be finite-dimensional real Lie algebras. We say that
g0 is a stabilized contraction of the Lie algebra g, and we write g ❀s g0, if there
exist some integers k, k0 ≥ 0 with k + dim g = k0 + dim g0 for which there exists a
family of invertible linear maps {Cr : g0×ak → g×ak0

}r∈I parameterized by the set
I ⊆ R for which 0 ∈ R is an accumulation point and such that for all x, y ∈ g0×ak0

we have [x, y]g0×ak0
= lim

I∋r→0
C−1

r [Crx,Cry]g×ak
.

We can now summarize our main results as the following theorem, whose state-
ment Lie algebras that occur in the above Problem 2.1, as well as a few other Lie
algebras introduced in Notation 2.5 below.

Theorem 2.4. Here are all the contraction relationships that exist among the Lie
algebras of the types (i)–(v) from Problem 2.1. In Statement (1) we refer to sta-
bilized contractions and in Statement (2) and Statement (3), we refer to usual
contractions.

(1) Among the Lie algebras of types (i) and (iii)–(v) we have:

su(2)

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

�� ))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

n3,3 n2,1,2 A0
4,9

A−1
4,8

aa❇❇❇❇❇❇❇❇

<<③③③③③③③③
sl(2,R)

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

cc●●●●●●●●●

;;①①①①①①①①①
oo

(2) Any of the Lie algebras of types (i) and (iii)–(v) contracts to Lie algebras
of type (ii) as follows:

• su(2) ❀ gT ⇐⇒ gT ∈ {a3, h3, A
0
3,5}
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• su(2)× R ❀ gT ⇐⇒ gT ∈ {a4, h3 × R, A0
3,5 × R, f4, A

0
4,9}

• sl(2,R) ❀ gT ⇐⇒ gT ∈ {a3, h3, A
−1
3,4, A

0
3,5}

• sl(2,R)× R ❀ gT ⇔ gT ∈ {a4, h3 × R, A−1
3,4 × R, A0

3,5 × R, f4, A
0
4,9}

• A−1
4,8 ❀ gT ⇐⇒ gT ∈ {a4, a1 ×A−1

3,4}

• A0
4,9 ❀ gT ⇐⇒ gT ∈ {a4, a1 ×A0

3,5}
• n3,3 ❀ gT ⇐⇒ gT ∈ {a6, a3 × h3, a1 × n1,2,2}
• n2,1,2 ❀ gT ⇔ gT ∈ {a5, a2 × h3, n1,2,2, a1 × f4}

(3) The Lie algebras of type (ii) contract to each other as follows:

gT ❀ gS ⇐⇒ S ∈ C(T ) \ (0)

where for any square matrix T we denote by C(T ) is the set of all nonzero
scalar multiples of the matrices in the similarity orbit of T , while the over-
line stands for the topological closure.

The proof of Assertions (1)–(2) of the above theorem will be given in Section 4,
and Assertion (3) will be proved in Section 5.

Here is the list of the Lie algebras that occur in the statement of Theorem 2.4
and which were not introduced in Problem 2.1:

Notation 2.5. We use the following notation for n ≥ 1:

• h2n+1 is the (2n + 1)-dimensional Heisenberg algebra, which can be de-
scribed as the Lie algebra with a basis X1, . . . , Xn, Y1, . . . , Yn, Z and the
Lie bracket defined by [Xj , Yj ] = Z for j = 1, . . . , n.

• fn+2 is the (n+2)-dimensional filiform Lie algebra, which is the Lie algebra
with a basis X0, . . . , Xn, Y and the Lie bracket defined by [Y,Xj ] = Xj−1

for j = 1, . . . , n.
• an is the n-dimensional abelian Lie algebra. We also define a0 = {0}.

Moreover we use the following Lie algebras:

• A0
3,5 is the 3-dimensional Lie algebra (cf. [NP06, §VI.A]) defined by the

commutation relations [e1, e3] = −e2, [e2, e3] = e1.
• n1,2,2 is the 5-dimensional 2-step nilpotent Lie algebra defined by the com-
mutation relations [e1, e2] = e4, [e1, e3] = e5.

3. Preliminaries on contractions of Lie algebras

Notation 3.1. For every finite-dimensional real Lie algebra g we will use the
following notation:

• the Lie bracket [·, ·]g : g× g → g;
• the dual space g∗ := {ξ : g → R | ξ is linear};
• the duality pairing 〈·, ·〉 : g∗ × g → R defined by 〈ξ, x〉 = ξ(x) for all ξ ∈ g∗

and x ∈ g;
• for every ξ ∈ g∗ we define

Bg
ξ : g× g → R, Bg

ξ (x, y) = 〈ξ, [x, y]g〉 = 〈(ad∗gy)ξ, x〉

where ad∗g : g× g∗ → g∗ is the infinitesimal coadjoint action;

• rank (ad∗g) := max{rankBg
ξ | ξ ∈ g∗}.

Remark 3.2. If G is any Lie group whose Lie algebra is g, then rank (ad∗g) is the
maximum of the dimensions of the coadjoint orbits of G.
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Lemma 3.3. If g ❀ g0, then rank (ad∗g0
) ≤ rank (ad∗g).

Proof. See [NP06, Th. 1(10)]. �

Remark 3.4. We record here a few properties of the above families of Lie algebras:

(1) We have h3 = f3.
(2) It was proved in [ACMP83, Prop. 5] that rank (ad∗fm) = 2 for every m ≥ 3.

(3) We have rank (ad∗h2n+1
) = 2n for every n ≥ 1.

(4) It follows by [La03, Th. 5.2] (see also [Go91, Th. 1(i)]) that if g is an m-
dimensional nilpotent Lie algebra such that g ❀ g0 if and only if g0 = am,
then g = h3 × am−3.

Proposition 3.5. Let m ≥ n ≥ 3 be any positive integers and assume that n is
odd. Then we have fm ❀ hn × am−n if and only if n = 3.

Proof. We have rank (ad∗hn×am−n
) = rank (ad∗hn

) = n − 1 and rank (ad∗fm) = 2

by Remark 3.4((2)–(3)). Therefore, if fm ❀ hn × am−n, then Lemma 3.3 entails
n− 1 ≤ 2, hence necessarily n = 3.

For the converse assertion, let X0, . . . , Xm−1, Y be a basis of fm as in Nota-
tion 2.5. For fixed a0, . . . , am−1 ∈ R and for every r > 0 define a linear map
Cr : fm → fm, by Cr(Y ) = Y , Cr(Xj) = rajXj if 0 ≤ j ≤ m − 1. Then we have
C−1

r [Cr(Y ), Cr(Xj)] = rajC−1
r (Xj−1) = raj−aj−1Xj−1 for j = 1, . . . ,m− 1. Hence

if am−1 > · · · > a1 = a0 then we obtain

lim
r→0

C−1
r [Cr(Y ), Cr(Xj)] =

{

0 if 2 ≤ j ≤ m− 1,

X0 if j = 0.

Since RY + RX1 + RX0 ≃ h3, we thus see that fm ❀ h3 × am−3. �

As a related result we note the following rigidity property of the nilpotent Lie
groups with square-integrable representations modulo the center.

Proposition 3.6. Let G and G0 be nilpotent Lie groups with 1-dimensional centers
and with the Lie algebras g and g0. If G0 has square-integrable representations
modulo the center and g ❀ g0, then also G has square integrable representations
modulo the center.

Proof. Let n = dim g. Since the center of G is 1-dimensional, it has square in-
tegrable representations modulo the center if and only if rank (ad∗g) = n − 1 (see

[MW73]). For the same reason we have rank (ad∗g0
) = n−1, and this also shows that

the integer n is odd, since the dimension of the coadjoint orbits is always an even in-
teger. On the other hand Lemma 3.3 ensures that rank (ad∗g) ≥ rank (ad∗g0

) = n−1,

hence the conclusion follows since rank (ad∗g) is an even integer less than n. �

Proposition 3.7. The property described in Definition 2.3 does not depend on the
choice of the integers k, k0 ≥ 0.

Proof. An easy reasoning by induction shows that it suffices to prove the following:
If g and g0 are finite-dimensional real Lie algebras with dim g = dim g0 and there
exists a family of invertible linear maps {Cr : g0 × a1 → g1 × a1}r∈I parameterized
by the set I ⊆ R for which 0 ∈ R is an accumulation point and

(∀x, y ∈ g0 × a1) [x, y]g0×a1
= lim

I∋r→0
C−1

r [Crx,Cry]g×a1
(3.1)
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then there also exists a family of invertible linear maps {Ar : g0 → g1}r∈I for which

(∀x, y ∈ g0) [x, y]g0
= lim

I∋r→0
A−1

r [Arx,Ary]g. (3.2)

To this end let us write Cr =

(

Ar br
cr dr

)

where Ar : g0 → g, br ∈ g, cr ∈ g∗0, and

dr ∈ R.
If cr = 0, then the invertibility property of Cr entails that Ar is invertible and

moreover Ar is the restriction of Cr to g0. Therefore, if cr = 0 for r ∈ I close
enough to 0, then (3.1) implies (3.2).

We now show how the general case can be reduced to the situation that we just
discussed. First note that if Ar is invertible then we may define an automorphism

of g × a1 by Fr :=

(

id 0
−crA

−1
r 1

)

, hence we may replace Cr by FrCr in order to

assume that also cr = 0.
Finally, by replacing a general contraction Cr by a suitable perturbation Cr+ǫrid

for some εr ∈ R, the general case can be reduced to the case of a contraction whose
component Ar is invertible, and then the above discussion applies. �

4. Proof of Theorem 2.4((1)–(2))

In order to prove the theorem, we take into account the 13 possible situations,
each of them having some subcases:

4.1. (i) vs. (i).

(a) Does R
k × su(2) ❀ R

k × sl(2,R) hold true? No, since R
k × su(2) 6≃ R

k ×
sl(2,R) while the algebras of derivations of these two Lie algebras have the
same dimension 3 + k2, hence we may use [NP06, Th. 1(1)].

(b) Does Rk×sl(2,R) ❀ Rk×su(2) hold true? No, for the same reason as above.
Alternatively, since the Killing form of Rk×su(2) has 3 negative eigenvalues
while the Killing form of Rk×sl(2,R) has only one negative eigenvalue, and
the number of negative eigenvalues of the Killing form cannot increase by
a contraction process; see [NP06, Th. 1(16)].

4.2. (i) vs. (ii).

(a) Does Rn−2×(i)❀(ii) hold true, if n ≥ 2? Since the dimension of the derived
algebra cannot increase by a contraction ([NP06, Th. 1(4)]) it follows by
(4.10) that necessarily dim(RanT ) ≤ 3, and then we may assume n ≤ 3.
All the possible contractions of su(2), sl(2,R) (our case n = 2), su(2)× R,
sl(2,R)×R (our case n = 3) were determined in [NP06, pag. 26–27]. There
are 2 possible situations:
(a1) The situation involving su(2):

• su(2) ❀ gT ⇐⇒ gT ∈ {a3, h3, A
0
3,5} where A0

3,5 is defined on R3 by

the commutation relations (4.14). If we define su(2) by the commuta-
tion relations [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 then a contraction
su(2) ❀ A0

3,5 is given for r → 0+ by

Cr =





r 0 0
0 r 0
0 0 1




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while the contraction su(2) ❀ h3 was thoroughly studied in [Ca03].

• su(2)× R ❀ gT ⇐⇒ gT ∈ {a4, h3 × R, A0
3,5 × R, f4, A

0
4,9}

Here, if we define the filiform algebra f4 by the commutation relations
[e2, e4] = e1, [e3, e4] = e2 (which is the algebra A4,1 on [NP06, pag. 20])
then a contraction su(2)× R ❀ f4 is given for r → 0+ by

Cr =









−1 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0

















r3 0 0 0
0 r2 0 0
0 0 r 0
0 0 0 r









=









−r3 0 r 0
0 0 0 r
0 r2 0 0
0 0 r 0









while a contraction su(2)×R ❀ A0
4,9 is constructed in the Situation 4.3(a2)

below.
(a2) The situation involving sl(2,R):

• sl(2,R) ❀ gT ⇐⇒ gT ∈ {a3, h3, A
−1
3,4, A

0
3,5} where the Lie algebras A−1

3,4

and A0
3,5 are defined on R3 by the commutation relations (4.11) and (4.14),

respectively. If we define sl(2,R) by the commutation relations [e1, e2] =
e1, [e2, e3] = e3, [e1, e3] = 2e2 then a contraction sl(2,R) ❀ A−1

3,4 is given
for r → 0+ by

Cr =





r 0 0
0 0 1
0 −1 0





a contraction sl(2,R) ❀ A0
3,5 is given for r → 0+ by

Cr =





0 0 1
2

0 r 0
r 0 1

2





while the contraction sl(2,R) = su(1, 1) ❀ h3 was thoroughly studied in
[Ca04].

• sl(2,R)× R ❀ gT ⇔ gT ∈ {a4, h3 × R, A−1
3,4 × R, A0

3,5 × R, f4, A
0
4,9}

Here, if we define the filiform algebra f4 by the commutation relations
[e2, e4] = e1, [e3, e4] = e2 (which is the algebra A4,1 on [NP06, pag. 20])
then a contraction sl(2,R)× R ❀ f4 is given for r → 0+ by

Cr =









0 0 0 1
0 1 0 0
0 0 − 1

2 0
1 0 0 1

















r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 1









=









0 0 0 1
0 r 0 r
0 0 − r

2 0
r 0 0 1









while contractions sl(2,R)× ❀ A0
4,9 and sl(2,R)× ❀ A−1

4,8 are constructed

in the Situation 4.3((a3)–(a4)) below.
(b) Does (ii)❀Rn−2×(i) hold true, if n ≥ 2? No, since the Lie algebra of (ii) is

solvable while the algebras of Rn−2×(i) are not; see [NP06, Th. 1(13)].

(Note that any Lie algebra of the type Rk×(ii) is actually a Lie algebra of type (ii),
so we need not consider separately the direct sums of (ii) with abelian Lie algebras.)
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4.3. (i) vs. (iii).

(a) Does Rk+1×(i)❀Rk×(iii) hold true? There are 4 possible situations:
(a1) Rk+1 × su(2) ❀ Rk × A−1

4,8 for which the answer is negative, by an

argument given in [NP06, Rem. 12] for so(3). In fact, the Killing form of
Rk+3 × su(2) has 3 negative eigenvalues and the other k eigenvalues are
zero, and on the other hand the Killing form of Rk ×A−1

4,8 has one positive
eigenvalue and the other k+2 eigenvalues are zero. On the other hand, the
number of positive eigenvalues cannot increase by a contraction process, as
proved in [NP06, Th. 1(16)].

(a2) R
k+1 × su(2) ❀ R

k ×A0
4,9 for which the answer is yes, by [NP06,

§VIII.B], and a contraction su(2)× R ❀ A0
4,9, is given for r → 0+ by

Cr =









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

















r2 0 0 0
0 r 0 0
0 0 r 0
0 0 0 1









=









r2 0 0 1
0 r 0 0
0 0 r 0
0 0 0 1









where su(2)× R is defined on R4 by the commutation relations

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, (4.1)

while A0
4,9 is defined also on R4 by the commutation relations

[e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2. (4.2)

(a3) Rk+1 × sl(2,R) ❀ Rk ×A−1
4,8 for which the answer is yes, by [NP06,

§VIII.B], and a contraction sl(2,R)× R ❀ A−1
4,8, is given for r → 0+ by

Cr =









0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 − 1

2

















r 0 0 0
0 1 0 0
0 0 r 0
0 0 0 1









=









0 1 0 0
0 0 0 1
0 0 r 0
r 0 0 − 1

2









where sl(2,R)× R is defined on R4 by the commutation relations

[e1, e2] = e1, [e2, e3] = e3, [e1, e3] = 2e2, (4.3)

while A−1
4,8 is defined also on R4 by the commutation relations

[e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3. (4.4)

(a4) Rk+1 × sl(2,R) ❀ Rk ×A0
4,9 for which the answer is yes, by [NP06,

§VIII.B], and a contraction sl(2,R)× R ❀ A0
4,9, is given for r → 0+ by

Cr =









− 1
2 0 1

2
1
2

0 1 0 0
− 1

2 0 − 1
2

1
2

0 0 0 1

















r2 0 0 0
0 r 0 0
0 0 r 0
0 0 0 1









=









− r2

2 0 r
2

1
2

0 r 0 0

− r2

2 0 − r
2

1
2

0 0 0 1









where sl(2,R)×R is defined on R
4 by the commutation relations (4.3) while

A0
4,9 is defined also on R4 by the commutation relations (4.2).

(b) Does Rk×(iii)❀Rk+1×(i) hold true? No, since the Lie algebra of Rk×(iii)
is solvable while the algebras of Rk+1×(i) are not; see [NP06, Th. 1(13)].
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4.4. (i) vs. (iv).

(a) Does Rk+3×(i)❀Rk×(iv) hold true? Yes, and there are 2 possible situa-
tions:

(a1) Rk+3 × su(2) ❀ Rk × n3,3 and a contraction su(2) × R3
❀ n3,3, is

given for r → 0+ by

Cr =

















r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 −r r2 0 0

−r 0 0 0 r2 0
0 −r 0 0 0 r2

















with C−1
r =

















1
r

0 0 0 0 0
0 1

r
0 0 0 0

0 0 1
r

0 0 0
0 0 1

r2
1
r2

0 0
1
r2

0 0 0 1
r2

0
0 1

r2
0 0 0 1

r2

















where su(2)×R
3 is defined on R

6 by the commutation relations (4.1) while
n3,3 is defined also on R6 by the commutation relations

[e1, e2] = e4, [e2, e3] = e5, [e3, e1] = e6. (4.5)

(a2) Rk+3 × sl(2,R) ❀ Rk × n3,3 and a contraction sl(2,R)×R3
❀ n3,3,

is given for r → 0+ by

Cr =

















r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0

−r 0 0 r2 0 0
0 0 −r 0 r2 0
0 r

2 0 0 0 r2

















with C−1
r =

















1
r

0 0 0 0 0
0 1

r
0 0 0 0

0 0 1
r

0 0 0
1
r2

0 0 1
r2

0 0
0 0 1

r2
0 1

r2
0

0 − 1
2r2 0 0 0 1

r2

















where sl(2,R) × R3 is defined on R6 by the commutation relations (4.3)
while n3,3 is defined also on R6 by (4.5).

(b) Does R
k×(iv)❀R

k+3×(i) hold true? No, since the Lie algebra R
k×(iv) is

nilpotent while the algebras of Rk+3×(i) are not; see [NP06, Th. 1(14)].

4.5. (i) vs. (v).

(a) Does Rk+2×(i)❀Rk×(v) hold true? Yes, and there are 2 possible situations:

(a1) Rk+2 × su(2) ❀ Rk × n2,1,2 and a contraction su(2) × R2
❀ n2,1,2,

is given for r → 0+ by

Cr =













r 0 0 0 0
0 r 0 0 0
0 0 r2 0 0
0 1 0 r2 0

−1 0 0 0 r2













with C−1
r =













1
r

0 0 0 0
0 1

r
0 0 0

0 0 1
r2

0 0
0 − 1

r3
0 1

r2
0

1
r3

0 0 0 1
r2













where su(2)×R2 is defined on R5 by the commutation relations (4.3) while
n2,1,2 is defined also on R5 by the commutation relations

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5. (4.6)

(a2) Rk+2 × sl(2,R) ❀ Rk × n2,1,2 and a contraction sl(2,R) × R2
❀
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n2,1,2, is given for r → 0+ by

Cr =













r 0 0 0 0
0 0 r2 0 0
0 r

2 0 0 0
−1 0 0 r2 0
0 1 0 0 r2













with C−1
r =













1
r

0 0 0 0
0 0 2

r
0 0

0 1
r2

0 0 0
1
r3

0 0 1
r2

0
0 0 − 2

r3
0 1

r2













where sl(2,R) × R2 is defined on R5 by the commutation relations (4.3)
while n2,1,2 is defined also on R5 by (4.6).

(b) Does Rk×(v)❀Rk+2×(i) hold true? No, since the Lie algebra Rk×(iv) is
nilpotent while the algebras of Rk+3×(i) are not; see [NP06, Th. 1(14)].

4.6. (ii) vs. (iii). (Recall the remark on Rk×(ii) made in the above situation 4.2.)

(a) Does (ii)❀Rn−3×(iii) hold true, for n ≥ 3? No, since the derived Lie
algebra of (ii) is abelian while this is not the case for Rn−3×(iii), hence we
can use [NP06, Th. 1(4)].

(b) Does Rn−3×(iii)❀(ii) hold true, for n ≥ 3? There are 2 possible situations,
corresponding to the two Lie algebras from (iii), and in order to analyze
them we will need the following remarks:

• the Killing form KT of gT satisfies KT ((1, 0), (1, 0)) = Tr (T 2) (4.7)

• gT is a unimodular Lie algebra ⇐⇒ Tr T = 0; (4.8)

• Z(gT ) = KerT ; (4.9)

• [gT , gT ] = RanT and, more generally, gjT = RanT j for j ≥ 1. (4.10)

We can now study the 2 situations that can occur.

(b1) Rn−3 ×A−1
4,8 ❀ gT ⇐⇒ gT ∈ {an+1,R

n−2 ×A−1
3,4}

where A−1
3,4 is the 3-dimensional Lie algebra (cf. [NP06, §VI.A]) defined

on R3 by the commutation relations

[e1, e3] = e1, [e2, e3] = −e2. (4.11)

In fact, the above implication “⇐” follows by [NP06, §VI.B], since for n = 3
a contraction A−1

4,8 ❀ A−1
3,4 × R is given by

Cr =









0 0 0 r
r 0 0 0
0 r 0 0
0 0 1 0









while a contraction A−1
4,8 ❀ a4 exists trivially.

For the converse implication “⇒”, assume there exists a contraction
R

n−3×A−1
4,8 ❀ gT . By using the above remarks (4.9) and (4.10), along with

[NP06, Th. 1((3)–(4))], we obtain dim(KerT ) ≥ n−2 and dim(RanT ) ≤ 3.
It then follows that the Jordan cells in the canonical form of the linear
operator T : Rn → Rn must satisfy one of the following conditions:

1◦ We have T = 0, and then gT = an+1 (the abelian (n+1)-dimensional
Lie algebra).
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2◦ There is precisely one nonzero cell of size 2 × 2, and it corresponds
to two complex conjugate eigenvalues z, z̄ ∈ C \R. Moreover, since the Lie
algebra A−1

4,8 is unimodular, it follows that so is Rn−3×A−1
4,8, and then so is

gT , by [NP06, Th. 1(12)]. Consequently, by using the above remark (4.8),
we obtain Tr T = 0, hence z̄ = −z. Then there exists b ∈ R \ {0} for which
z = ib, hence

T =





0 b 0
−b 0

0 0



 (4.12)

and this implies Tr (T 2) = −2b2 < 0. By using (4.7), we thus see that the
Killing form of gT has one negative eigenvalue, the other eigenvalues being
clearly equal to 0 since an is an abelian ideal of gT . On the other hand, the
Killing form of A−1

4,8 is nonnegative definite (see for instance [NP06, §VI.B]),

hence we cannot have R
n−3 × A−1

4,8 ❀ gT , since [NP06, Th. 1(16)] shows
that the number of positive eigenvalues of the Killing form cannot decrease
by a contraction.

3◦ There are precisely two nonzero cells of size 1 in the Jordan canonical
form of T , and they correspond to some real eigenvalues λ, µ ∈ R. We have
Tr T = 0 as in the above case 2◦, hence µ = −λ 6= 0. Then the Jordan
canonical form of T is

T =





λ 0 0
0 −λ

0 0



 (4.13)

and then gT is given by the commutation relations [e1, e2] = λe2 and
[e1, e3] = −λe3 on Rn+1. Since 0 6= λ ∈ R, these commutation relations
are equivalent to (4.11), and it thus follows that gT = A−1

3,4 × Rn−2. This

completes the proof of the above equivalence (b1).

(b2) R
n−3 ×A0

4,9 ❀ gT ⇐⇒ gT ∈ {an+1,R
n−2 ×A0

3,5}

where A0
3,5 is the 3-dimensional Lie algebra (cf. [NP06, §VI.A]) defined

on R3 by the commutation relations

[e1, e3] = −e2, [e2, e3] = e1. (4.14)

In fact, the above implication “⇐” follows by [NP06, §VI.B], since for n = 3
a contraction A0

4,9 ❀ A0
3,5 × R is given by

Cr =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

















r 0 0 0
0 r 0 0
0 0 1 0
0 0 0 1









=









0 0 0 1
r 0 0 0
0 r 0 0
0 0 1 0









while a contraction A0
4,9 ❀ a4 exists trivially.

For the converse implication “⇒”, assume there exists a contraction
Rn−3 × A0

4,9 ❀ gT . By using as above the remarks (4.9) and (4.10),
along with [NP06, Th. 1((3)–(4))], we obtain dim(KerT ) ≥ n − 2 and
dim(RanT ) ≤ 3. Hence the Jordan cells in the canonical form of the linear
operator T : Rn → R

n must satisfy one of the following conditions:
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1◦ We have T = 0, and then gT = an+1 (the abelian (n+1)-dimensional
Lie algebra).

2◦ There is precisely one nonzero cell of size 2 × 2, and it corresponds
to two complex conjugate eigenvalues z, z̄ ∈ C \ R. Since the Lie algebra
A0

4,9 is unimodular, it follows that so is Rn−3 × A0
4,9, and then so is gT ,

by [NP06, Th. 1(12)]. Consequently, by using the above remark (4.8), we
obtain Tr T = 0, hence z̄ = −z. Then there exists b ∈ R \ {0} for which
z = ib, hence we the Jordan canonical form of T is (4.12) and then gT
is given by the commutation relations [e1, e2] = −be3 and [e1, e3] = be2
on Rn+1. Since 0 6= b ∈ R, these commutation relations are equivalent to
(4.14), and it thus follows that gT = A0

3,5 × R
n−2.

3◦ There are precisely two nonzero cells of size 1 in the Jordan canonical
form of T , and they correspond to some real eigenvalues λ, µ ∈ R. We have
Tr T = 0 as in the above case 2◦, hence µ = −λ 6= 0. Then the Jordan
canonical form of T is (4.13) and this implies Tr (T 2) = 2λ2 > 0. By using
(4.7), we thus see that the Killing form of gT has one positive eigenvalue,
the other eigenvalues being equal to 0 since an is an abelian ideal of gT .
On the other hand, the Killing form of A0

4,9 is nonpositive definite (see for

instance [NP06, §VI.B]), hence we cannot have Rn−3 × A−1
4,8 ❀ gT , since

[NP06, Th. 1(16)] shows that the number of negative eigenvalues of the
Killing form cannot decrease by a contraction. This completes the proof of
the above equivalence (b2).

4.7. (ii) vs. (iv). (Recall the remark on R
k×(ii) made in the above situation 4.2.)

(a) Does (ii)❀R
n−5×(iv) hold true, for n ≥ 5? No, since the maximum of

the dimensions of the abelian ideals of a Lie algebra cannot decrease by a
contraction process; see [NP06, Th. 1(8)].

(b) Does Rn−5×(iv)❀(ii) hold true, for n ≥ 5? The answer is the following:

Rn−5 × n3,3 ❀ gT ⇐⇒ gT ∈ {an+1,R
n−2 × h3,R

n−4 × n1,2,2}

where h3 is the 3-dimensional Heisenberg algebra and n1,2,2 is the 5-dimen-
sional 2-step nilpotent Lie algebra defined on R5 by the commutation rela-
tions

[e1, e2] = e4, [e1, e3] = e5. (4.15)

In fact, if Rn−5 × n3,3 ❀ gT then, by using (4.9), (4.10) and [NP06,
Th.1((3)–(4),(14))], we obtain that the linear operator T : Rn → Rn must
satisfy dim(RanT ) ≤ 3, dim(KerT ) ≥ n − 2, and T 2 = 0. Therefore we
have 2 ≤ dim(RanT ) ≤ 3 and T 2 = 0. By considering the Jordan canonical
form of T , we see that there are only 3 situations that can occur:

1◦ The canonical form of T contains precisely 2 nonzero cells, each of
them having the size 2× 2. Then the Lie algebra gT is defined on Rn+1 by
the commutation relations

[e1, e2] = e4, [e1, e3] = e6,



CONTRACTIONS OF LIE ALGEBRAS WITH 2-DIMENSIONAL COADJOINT ORBITS 13

hence we have gT = Rn−4×n1,2,2. For n = 5, a contraction n3,3 ❀ R×n1,2,2
can be defined by

Cr =

















r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 0 r2 0 0
0 0 0 0 0 r
0 0 0 0 −r2 0

















with respect to the above commutation relations.

2◦ The canonical form of T contains precisely 1 nonzero cell, having the
size 2× 2. Then the Lie algebra gT is defined on Rn+1 by the commutation
relations

[e1, e2] = e4,

hence we have gT = Rn−2 × h3. For n = 5, a contraction n3,3 ❀ R3 × h3
can be defined by

Cr =

















r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 0 r2 0 0
0 0 0 0 r 0
0 0 0 0 0 r

















with respect to the above commutation relations.

3◦ We have T = 0, and then gT = an+1, and Rn−5×n3,3 ❀ an+1 trivially.

4.8. (ii) vs. (v). (Recall the remark on Rk×(ii) made in the above situation 4.2.)

(a) Does (ii)❀Rn−4×(v) hold true, for n ≥ 4? No, since the maximum of
the dimensions of the abelian ideals of a Lie algebra cannot decrease by a
contraction process; see [NP06, Th. 1(8)].

(b) Does Rn−4×(v)❀(ii) hold true, for n ≥ 4? The answer is the following:

Rn−4 × n2,1,2 ❀ gT ⇔ gT ∈ {an+1,R
n−2 × h3,R

n−4 × n1,2,2,R
n−3 × f4}

where h3 is the 3-dimensional Heisenberg algebra and f4 is the 4-dimensional
filiform nilpotent Lie algebra defined on R4 by the commutation relations

[e1, e2] = e3, [e1, e3] = e4. (4.16)

In fact, if Rn−5 × n2,1,2 ❀ gT then, by using (4.9), (4.10) and [NP06,
Th.1((3)–(4),(14))], we obtain that the linear operator T : Rn → Rn must
satisfy dim(RanT ) ≤ 3, dim(KerT ) ≥ n − 2, and T 3 = 0. Therefore we
have 2 ≤ dim(RanT ) ≤ 3 and T 3 = 0. By considering the Jordan canonical
form of T , we see that there are only 4 situations that can occur:

1◦ The canonical form of T contains precisely 1 nonzero cell, having the
size 3× 3. Then the Lie algebra gT is defined on Rn+1 by the commutation
relations (4.16) hence we have gT = R

n−3 × f4. For n = 4, a contraction
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n2,1,2 ❀ R× f4 can be defined by

Cr =













r 0 0 0 0
0 r 0 0 0
0 0 r2 0 0
0 0 0 r3 0
0 0 0 0 r













with respect to the above commutation relations.

2◦ The canonical form of T contains precisely 2 nonzero cells, each of
them having the size 2× 2. Then the Lie algebra gT is defined on Rn+1 by
the commutation relations

[e1, e3] = e4, [e2, e3] = e5,

which are equivalent to (4.15), hence we have gT = Rn−5 × n1,2,2. For
n = 5, a contraction n2,1,2 ❀ n1,2,2 can be defined by

Cr =













1 0 0 0 0
0 r 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 r













with respect to the above commutation relations.

3◦ The canonical form of T contains precisely 1 nonzero cell, having the
size 2× 2. Then the Lie algebra gT is defined on Rn+1 by the commutation
relations

[e1, e2] = e3,

hence we have gT = Rn−2 × h3. For n = 4, a contraction n2,1,2 ❀ R2 × h3
can be defined by

Cr =













1 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 1 0
0 0 0 0 1













with respect to the above commutation relations.

4◦ We have T = 0, and then gT = an+1, and Rn−4 × n2,1,2 ❀ an+1

trivially.

4.9. (iii) vs. (iii). Let R⋉1 h3 and R⋉2 h3 be the two Lie algebras from (iii).

(a) Does Rk×(R⋉1h3) ❀ Rk×(R⋉2h3) hold true? No, since Rk×(R⋉1h3) 6≃
Rk × (R ⋉2 h3) while the algebras of derivations of these two Lie algebras
have the same dimension 5 + k2 (see [NP06, §VI.B] for the case k = 0),
hence we may use [NP06, Th. 1(1)].

(b) Does Rk × (R⋉2 h3) ❀ Rk × (R⋉1 h3) hold true? No, for the same reason
as above.
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4.10. (iii) vs. (iv).

(a) Does R
k+2×(iii)❀R

k×(iv) hold true? Yes, and there are 2 possible situa-
tions:

(a1) Rk+2 ×A−1
4,8 ❀ Rk × n3,3 and a contractionA−1

4,8×R2
❀ n3,3, is given

for r → 0+ by

Cr =

















r 0 0 0 0 0
0 1

r
0 0 0 0

0 0 1
r

0 0 0
0 −1 0 r 0 0
0 0 0 −1 1

r2
0

0 0 −1 0 0 r

















with C−1
r =

















1
r

0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 1 0 1

r
0 0

0 r2 0 r r2 0
0 0 1 0 0 1

r

















where A−1
4,8 × R2 is defined on R6 by the commutation relations

[e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e5 (4.17)

which are obtained from (4.4) by relabeling the basis vectors, while n3,3 is
defined also on R6 by the commutation relations (4.5).

(a2) Rk+2 ×A0
4,9 ❀ Rk × n3,3 and a contractionA0

4,9×R2
❀ n3,3, is given

for r → 0+ by

Cr =

















r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 −1 r 0 0
0 0 0 0 r2 0
0 −1 0 0 0 r

















with C−1
r =

















1
r

0 0 0 0 0
0 1

r
0 0 0 0

0 0 1
r

0 0 0
0 0 1

r2
1
r

0 0
0 0 0 0 1

r2
0

0 1
r2

0 0 0 1
r

















where A0
4,9 × R2 is defined on R6 by the commutation relations

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e5 (4.18)

which are obtained from (4.2) by relabeling the basis vectors, while n3,3 is
defined also on R6 by (4.5).

(b) Does Rk×(iv)❀Rk+2×(iii) hold true? No, since Rk×(iv) is nilpotent while
Rk+2×(iii) is not, hence we can use [NP06, Th. 1(14)].

4.11. (iii) vs. (v). This is similar to situation 4.10.

(a) Does Rk+1×(iii)❀Rk×(v) hold true? Yes, and there are 2 possible situa-
tions:

(a1) Rk+1 ×A−1
4,8 ❀ Rk × n2,1,2 and a contraction A−1

4,8 × R ❀ n2,1,2, is

given for r → 0+ by

Cr =













r 0 0 0 0
0 r 0 0 0
0 0 r2 0 0
0 −1 0 r2 0
0 0 0 0 r3













with C−1
r =













1
r

0 0 0 0
0 1

r
0 0 0

0 0 1
r2

0 0
0 1

r3
0 1

r2
0

0 0 0 0 1
r3













where A−1
4,8 × R is defined on R5 by the commutation relations

[e1, e2] = e3, [e1, e3] = e2, [e2, e3] = e5
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which are obtained by writing (4.17) with respect to the basis

{e1, e2 + e3, e2 − e3,−2e5}

while n2,1,2 is defined also on R5 by the commutation relations (4.6).

(a2) Rk+1 ×A0
4,9 ❀ Rk × n2,1,2 and a contraction A0

4,9 × R ❀ n2,1,2, is

given for r → 0+ by

Cr =













r 0 0 0 0
0 r 0 0 0
0 0 r2 0 0
0 1 0 r2 0
0 0 0 0 r3













with C−1
r =













1
r

0 0 0 0
0 1

r
0 0 0

0 0 1
r2

0 0
0 − 1

r3
0 1

r2
0

0 0 0 0 1
r3













where A0
4,9×R is defined on R5 by the commutation relations (4.18), while

n2,1,2 is defined also on R5 by (4.6).
(b) Does Rk×(v)❀Rk+1×(iii) hold true? No, since Rk×(v) is nilpotent while

Rk+1×(iii) is not, hence we can use [NP06, Th. 1(14)].

4.12. (iv) vs. (v).

(a) Does Rk×(iv)❀R
k+1×(v) hold true? No, since Rk×(iv) is 2-step nilpotent

while Rk+1×(v) is 3-step nilpotent; see [NP06, Th. 1(14)].
(b) Does Rk+1×(v)❀Rk×(iv) hold true? No, since the dimension of the derived

algebra cannot increase by a contraction process; see [NP06, Th. 1(5)].

5. Contractions of Lie algebras with hyperplane abelian ideals

In this section we discuss the case (ii) vs. (ii), that is, contractions within the
Lie algebras of type (ii) from Problem 2.1. In particular we provide a proof for
Theorem 2.4(3); see Proposition 5.1 below.

There are many semidirect products R ⋉ an, determined by the various linear
operators on an = Rn, and we are asking here about the contractions between the
various Lie algebras obtained in this way. (Recall the remark on Rk×(ii) made in the
above situation 4.2.) The above Proposition 3.5 belongs to this circle of ideas, but
it does not provide the complete answer. We establish below a few more results of
this type and settle the question completely. So we wish to find necessary/sufficient
conditions on T, T0 : R

n → R
n ensuring that gT ❀ gT0

. It will be convenient to

use the notation S(T ) := {CTC−1 | C ∈ GL(n,R)} for the similarity orbit, S(T )
for the closure of S(T ), and A(T ) := {T0 ∈ Mn(R) | gT ❀ gT0

}, for any linear
operator identified to a matrix T ∈ Mn(R).

We denote by C(T ) the double cone generated by S(T ), that is,

C(T ) :=
⋃

λ∈R

λS(T ).

Proposition 5.1. Let T, S 6= 0.

(1) If gT ≃ gS then S ∈ C(T ) \ (0).

(2) If gT ❀ gS then S ∈ C(T ) \ (0).

Proof. (1) Let D : gT → gS be a Lie algebra isomorphism. We write D as the block
matrice

D =

(

a bt

c A

)



CONTRACTIONS OF LIE ALGEBRAS WITH 2-DIMENSIONAL COADJOINT ORBITS 17

where a ∈ R, b, c ∈ Mn1(R) and A ∈ Mn(R).
Note that for each u ∈ Mn1(R), the map

E(u) =

(

1 0
u In

)

is a Lie algebra isomorphism from gT to gS.
First, we assume that A is invertible. Then the map

D1 := DE(−A−1c) =

(

a− btA−1c bt

0 A

)

is also a Lie algebra isomorphism from gT to gS . In particular, one has a′ :=
a− btA−1c 6= 0. By writing the equality

[D1(1, 0), D1(0, v)]S = D1([(1, 0), (0, v)]T ),

we obtain that a′SA = AT hence S ∈ C(T ) \ (0).
Now assume that A is not invertible. Since D is invertible, we have necessarily

that b 6= 0. We choose u /∈ RanA and we consider the map

D2 := E(u)D =

(

a bt

au+ c ubt +A

)

.

ThenD2 is a Lie algebra isomorphism from gT to gS and we claim that A′ := ubt+A
is invertible. Indeed, if x ∈ KerA then one has Ax = −(btx)u. Since u /∈ RanA,
we have btx = 0 and we get D(0, x) = (btx,Ax) = (0, 0) hence x = 0. Thus we
have reduced this case to the preceding one.

(2) Let (Cr) be a contraction from gT to gS . As before, we can write

Cr =

(

ar btr
cr Ar

)

where ar ∈ R, br, cr ∈ Mn1(R) and Ar ∈ Mn(R).
First, we assume that Ar is invertible for each r. Then

C′

r := DE(−A−1
r cr) =

(

ar − btrA
−1
r cr btr

0 Ar

)

is also a contraction from gT to gS and one has a′r := ar − btrA
−1
r cr 6= 0. Note that

C′−1
r =

(

a′−1
r −a′−1

r btrA
−1
r

0 A−1
r

)

.

Then, by writing the equality

lim
r→0

C′−1
r [C′

r(1, 0), C
′

r(0, v)]T = [(1, 0), (0, v)]S

we immediately obtain lim
r→0

a′rA
−1
r TArv = Sv hence S ∈ C(T ) \ (0).

Finally, if the Ar are not necessarily invertible then we can find a function εr
such that Cr + εrIn+1 is also a contraction from gT to gS and that Ar + εrIn is
invertible. Then this case reduces to the preceding one. �

Remark 5.2. We note some facts that complement the above general result.

(I) It follows by Proposition 5.1 or directly that if T0 ∈ S(T ), then gT ❀ gT0
.

Equivalently, S(T ) ⊆ A(T ). One finds in [BH79, Th. 1.1] a description of

S(T ) in terms of the minimal polynomial of T if all the eigenvalues of T
are real.
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When do we have S(T ) = A(T )? This is the case at least when T is
nilpotent; see (III).

(II) If Tm = 0 for some m ≥ 1 and gT ❀ gT0
, then also Tm

0 = 0.
This follows by [NP06, Th. 1(14)], since Tm = 0 if and only if gT is an
(m+ 1)-step nilpotent Lie algebra, and similarly for T0.

(III) If the operator T is nilpotent, say Tm = 0, then

gT ❀ gT0
⇐⇒ (∀j ∈ {1, . . . ,m}) rankT j

0 ≤ rankT j.

If the right-hand side of the above equivalence holds true, then [BH79,

Prop. 3.1] (which holds true over R as well) ensures that T0 ∈ S(T ), hence
we may use (I) above.

Conversely, if gT ❀ gT0
, then [NP06, Th. 1(4)] implies that for every

j ≥ 1 we have dim g
(j)
T0

≤ dim g
(j)
T , and then the conclusion follows by since

g
(j)
T0

= RanT j
0 and g

(j)
T = RanT j (see (4.10)).

(IV) If T n = 0 6= T n−1 (that is, T is a Jordan cell of size n), then for every
nilpotent T0 we have gT ❀ gT0

.
This follows by (III), but it can be proved directly as follows. For every
d1, . . . , dn ∈ R \ {0} let diag(d1, . . . , dn) denote the diagonal matrix with
these diagonal entries. Then it is easily checked that

diag(d1, . . . , dn)Tdiag(d1, . . . , dn)
−1 =















0 d1

d2 0
. . .

. . .

. . . dn−1

dn

0 0















where we wrote T as an upper triangular Jordan cell. Now note that in the
Jordan canonical form of the nilpotent operator T0 the diagonal situated
just above the main diagonal is a sequence of n − 1 entries that take the
values 0 or 1, and T0 is uniquely determined by the positions j1 < · · · < jq
of the entries equal to 0 in that sequence. If we now pick any integers
k1 ≤ · · · ≤ kn such that kj < kj+1 if and only if j ∈ {j1, . . . , jq}, then it
follows by the above matrix computation that

lim
r→0

diag(rk1 , . . . , rkn)Tdiag(rk1 , . . . , rkn) = T0

hence T0 ∈ S(T ), and then gT ❀ gT0
by (I).
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