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Abstract—Predictive coding is attractive for compression on- in terms of computational power and memory available on the
board of spacecrafts thanks to its low computational compleity,  spacecrafts. Two main compression techniques are aaitabl
modest memory requirements and the ability to accurately s scenario: transform coding and predictive coding.
control quality on a pixel-by-pixel basis. Traditionally, predictive . . . .
compression focused on the lossless and near-lossless nsode Transform COd'r_]g relies on computlng a linear tranSform_
of operation where the maximum error can be bounded but Of the data to achieve energy compaction and hence transmit
the rate of the compressed image is variable. Rate control is few carefully chosen transform coefficients. One of the most
considered a challenging problem for predictive encoders we popular approaches is JPEG2000 [1] and its multidimen-
to the dependencies between quantization and prediction ithe sional extension[]2]. A wavelet-based 2D lossless and lossy

feedback loop, and the lack of a signal representation that . laorithm h Is0 b tandardized f
packs the signal’'s energy into few coefficients. In this pape compression aigorithm has also been standardized for space

we show that it is possible to design a rate control scheme applications [[3]. Spectral transforms to eliminate theeiint
intended for onboard implementation. In particular, we propose band redundancy have been subject of intense researcte Ther

a general framework to select quantizers in each spatial and exists an optimal transform for Gaussian sourdes, the
spectral region of an image so as to achieve the desired tatge Karhunen-Loéve transform (KLT) but its complexity does

rate while minimizing distortion. The rate control algorit hm t tch th tati I tvpicall i
allows to achieve lossy, near-lossless compression, andyain- not matc € computational resources typically availaoie

between type of compressione.g., lossy compression with a near- 0nboard compression. Hence, low-complexity approxinmatio
lossless constraint. While this framework is independent fothe  to the KLT have been derived, such as the Pairwise Orthogonal
specific predictor used, in order to show its performance, in Transform (POT)[[4], the fast approximate KLT (AKLT)I[5]
this paper we tailor it to the predictor adopted by the CCSDS- 5,4 the AKLT, [6]. Transform coding allows to perform
123 lossless compression standard, obtaining an extensidinat loss| dl . dt tel ol th
allows to perform lossless, near-lossless and lossy comgs®n 0SS ?Ss a_n 0SSy compression an 0_ accura e}’ coneo
in a single package. We show that the rate controller has rate in a simple manner thanks to the simple relation between
excellent performance in terms of accuracy in the output rag, rate and quantized transform coefficients [1] [7]. On theeoth
rate-distortion characteristics and is extremely competive with  hand, per-pixel quality control as in near-lossless cosgion
respect to state-of-the-art transform coding. is hard to obtain. A near-lossless layer can be added to a
transform coder,e.g, as in [8], but this requires to also
implement a decoder onboard. Transform coding also tylgical
suffers from the problem of dynamic range expansion, which
Image spectrometers collect vast amounts of data which dana direct consequence of energy compaction. While it is
be used for a variety of tasks. Possible applications ireludifficult to generalize due to the availability of many diféat
geological research, terrain analysis, material ideatifiti, transforms and predictors, a transform generally uses many
military surveillance and many others. Fine spectral nggmh  (past and future) pixels of the image to represent a giveal pix
can be a desired featured when it comes to detecting fing@hile a predictor generally employs few pixels in a causal
prints in the spectral response of a scene. Such applisatioeighborhood, thus making it less prone to performance loss
are enabled by the richness of data captured by multisp@ghen the prediction is reset over different image areas,
tral and hyperspectral sensors. A problem of handling sughorder to achieve error resilience.
wealth of information naturally arises and calls for the ofe  Predictive coding uses a mathematical model to predict
compression methods. pixel values and encode only the prediction error. Adaptive
Algorithms to compress hyperspectral and multispectrisiear prediction is often used][9]=[14k@, the predictor
images have been studied for a long time and are still aneactaonsidered in Sdc. Ml relies on the LMS filter [15], with the
subject of research. Onboard compression enables splisecsign algorithm [[16] for weight update), but other methods
to save transmission time, allowing more images to be sentitave been devised as wek.g, based on edge detection
the ground stations. The design of compression algoritlems f17] or vector quantizatior [18]. In lossless compressibe,
onboard applications must carefully meet the limited resesi prediction residuals are written in the compressed filerafte
entropy coding. Lossy compression instead quantizes them
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readily implemented by setting a maximum quantization stepThe classical method of Lagrangian optimization was intro-
size, so that the quantization error never exceeds half 6fit duced by Everett [23], and relies on defining a cost function
the other hand, rate control in a predictive coder is chglleln using a Lagrange multiplier to trade off rate and distortion
because: i) no simple mathematical relationship between tim particular, assume we have a budget-constrained albocat
rate and the quantized prediction residual exists, ii) tirglity problem, such as our rate control problem:

of the prediction, hence the magnitude of the residuals, and N N
ultimately the rate depend on how coarse the quantizati@sis minimize Z D; (i) subject to Z Ri 1) < Rearger (1)
an example, the analysis of quantizer error propagatiohen t O i=1

feedback loop is considered in [19] for the case of Laplacigfhere z(4) is the coding option for unit. The Lagrangian
pyramids. These aspects are further discussed in[Sec. Il. formulation consists in the unconstrained minimization of
In this paper we propose an innovative design of a rae — p, + AR;, which can be showri [23][24] to yield the
controller for a predictive encoder. We show that the pregossagme solution of{1) for a suitable= A*. Furthermore, if the
method can achieve accurate control, while having comflextoding units are independent, the minimization can be @arri
suitable for onboard implementation. In particular, thgoal out independently for each unit One of the main issues of
rithm is designed to work in line-based acquisition mode, @is method is to find the appropriate value)fieeded to find
this is the most typical setup of spectral imaging systemge optimal distortion, while satisfying the rate consttaBy
We first describe the proposed algorithm in general termgpticing thatA = A(R) is a monotonic function of the rate,
as it can be applied to any predictive coder. Next, we focys, iterative search strategy, such as dychotomic searotyea
our attention on using it with the LMS predictor used in th@sed to find the correct value of
CCSDS-123 standard for lossless compressioh [20], which isjt js often the case that the coding units exhibit some form
an improved version of the Fast Lossless algorithm [21]. Th# dependency among each other, so that the coding decisions
resulting system can be seen as an extension of the standak@n for one unit may have some impact on the other units.
featuring lossless, near-lossless and rate-controliesyloom- This is notably true for prediction-based systeins [25], ihe
pression. The rate controller provides lossy reconswusti quantization of residuals introduces noise in the preaticti
with increasingly better quality, up to lossless encoda®the |oop and may degrade the quality of future predictions. The i
target rate approaches that of lossless compressionlyri@ terdependency of the coding choices makes this problem more
controller can also work in a hybrid rate-controlled andreadifficult to tackle and classical solutions, based on dyrmami
lossless mode by specifying the maximum quantization stgpogramming, typically model the dependencies using a tree
size that the controller is allowed to use. or a trellis [26] [27] and find the optimal path by using the
The paper is organized as follows: in sectidn Il we reviewijkstra’s shortest path algorithrii [28] or the Viterbi atghm
the literature on rate control methods; in secfioh Ill weliaet [29]. The rate constraint can be handled by a suitable pgunin
the main idea and the basic steps involved in the algorithig, the tree.
in section IV we describe the specific steps of the algorithm; In this paper we are studying a problem of rate control in the
in section Y we introduce a second version of the algorithreontext of predictive coding on board of spacecrafts, ppsin
achieving a more accurate control by introducing a slice-byignificant constraints on the complexity of algorithmst then
slice feedback mechanism exploiting the measured rateeof the used. The previously cited methods all exhibit a complexi
previously encoded slice; sectibn|VI shows how the proposgtht is unsuitable for the scenario we are considering or are
rate controller can actually achieve control of both thee ratargely inefficient €.g, the standard Lagrangian approach with
and the maximum distortion, enabling a hybrid near-losslegi.d. assumptions only). Onboard rate control is perfatme
rate control mode; sectidn VI proposes an extension of thery easily in the case of systems adopting transform coding
CCSDS-123 standard to near-lossless and rate-controbisyl | [30], e.g, wavelet-based methods. This is due to the possibility
compression; finally, in sectidn VIl we show the performancto use an i.i.d. assumption among different coding units,
of the rate-control algorithm on some test images and coepailiowing to establish simple relationships between ratd an
the proposed extension of CCSDS-123 with state-of-the-giantized transform coefficienis [1] [7]. However, such eisd
transform coding techniques. do not hold in the case of predictive compression, making
our task harder. Our approach uses models and independence
assumptions to simplify the problem but we are forced to
introduce corrections to the output of the models due to
Rate control is a relatively well studied problem in the fielghe inevitable dependencies introduced by the propagafion
of image and video coding, where it fits the framework ofrrors in the feedback loop. While the proposed procedure
rate-distortion (RD) theory. The main task of rate-distort does not generally yield the optimal solution, it is a preati
optimization methods is to minimize the distortion of amjlgorithm that can be used in low-complexity scenarioshsuc
encoded sourcee(g, an image or a video sequence) subject tg§s onboard compression; moreover, it indeed achieves almos

a constraint on the rate. This problem of carefully allawgti optimal performance, as will be shown in $ec.VIII-C.
the available resources is typically tackled by means of two

techniques: Lagrangian optimization and dynamic program- IIl. RATE CONTROL ALGORITHM
ming. A more comprehensive review of such methods is This section outlines the framework and the basic operation
covered by[[22]. performed by the proposed rate control algorithm.

Il. BACKGROUND



The main idea behind the algorithm is to adopt a model tdowever, this does not pose a significant problem as we
predict the rate and the distortion of the quantized praatict expect that most of the correlation is removed, hence making
residuals. In order to achieve a flexible scheme allowing aur independence assumption very close to reality; the same
effective control of the rate for various kinds of imagesassumption is made in rate allocation for transform coding,
ranging from hyperspectral images (lots of bands, but glfjic where transform coefficients are often assumed to be inde-
small spatial resolution) to multispectral images (largat&l pendent. Second and more important, the quantization of the
resolution, but few bands), the algorithm partitions thadgm residuals introduces noise that propagates in the predicti
into blocks of sizeBS, x BS,, where BS, and BS, are loop. This leads to dependencies among the residuals and
tunable parameters. Partitioning into blocks allows toldeamong blocks. Optimizing the allocation of the quantizatio
with the non-stationary behaviour of the image. In fact, th&tep sizes taking into account these dependencies candead t
prediction mechanism is indeed able to eliminate slowiynprovements as the model becomes more accurate. However,
varying features but sudden variations in the image contesrte must resort to dynamic programming methoelg,(the
(e.g.discontinuities) are hardly predicted by the encoder, anditerbi algorithm) that would be far too complex for our
consequently imply non-stationary prediction residuals. scenario. Consequently, we have explored a simplified way

The task of the rate control algorithm is then to assigna including the effect of quantization noise in our model,
guantization step to each block of residuals in a given spkcti.e., augmenting the variance of the block by an estimate of
channel, according to the specified target rate. At the sathe noise variance, which corresponds to assuming that the
time, this assignment affects the overall distortion idtrced residuals and the quantization noise are independent:
by the encoder and, hence, it should be chosen to keep the 9
distortion as low as possible. In this scenario, computafio 0 =0%+ X, (3)
complexity plays a major role in many ways. First of all, 12
typical memory capabilities of systems for onboard imag&here @ is the quantization step used in the same block in
compression allow the storage of a limited number of lingdevious slice. We do this because the quantization step siz
of the image with all their spectral channels. To match thgf the current slice is not known when we need to use this
limitation, the rate control algorithm operates one slitena Mmodel, as it is indeed the output of the rate control prodess.
time, where we denote aslice a structure composed of onecan be noticed tha% is the mean square error produced by
row of blocks with all their spectral channels. Moreover, asniform scalar quantization of step sigeunder the high-rate
will be explained in section III=A, the algorithm does noeev approximation.
need to store all the lines in the slice but just a few of them, The rate (expressed in bits-per-pixel) is derived as the en-

thus requiring very little memory. tropy of an i.i.d. continuous source with Laplace distribot
The main steps involved in the algorithm are: after quantization by means of a uniform scalar quantizén wi
1) the estimation of the variance of the unquantized prétep sizeQ:
diction residuals by running the lossless predictor for a oo
small number of lines (SeE1IHA); R = —pglogy po — 2 Zpi log, pi (4)
2) thel; projection algorithm to get an initial allocation of i=1

the quantization steps (Séc. 111-B); ~ so we need the probability, that the residual is quantized to
3) the Selective Diet algorithm for rate and distortioghe sero value and the probability of being mapped to the

refinement (Se¢. TI-C). (positive) integeri. For the uniform scalar quantizer we can
write:
A. Rate and distortion models 2 o
. . - A ~AQ
We now introduce the model used to describe the prediction Po = / 03¢ e =1 — "2 (5)
residuals in each block. This model allows to obtain closed- T2

form expressions for the rate and the distortion of the quan- o
tized residuals in the block. It is commonly observed that ac /1 2 ée_Amda: _ % (e’A(iQ*Q) B e*A(iQ+%))
3

curate predictors tend to yield residuals with leptokuftiigh pi= 0-2 2
kurtosis) distribution, hence similar to the Laplace phuibigy : (6)
density function, which we use to model the distribution of ) ) o _ )
prediction residuals: Inserting [b) and[{6) intd {4), it is possible to deri{é (7).
A We use mean squared error (MSE) as distortion metric,
fr(z) = Ee—/\\w\’ (2) which can be computed as
Q
WhereA2 is related to the variance® of the distribution by D(A, Q) = /ZQ xQ%Q—Ade
A - . -2
We assume that the residuals in each block and the blocks < iQ+§ oA
themselves are independent of each other. This is a sirmgify +2 / 9 (z —iQ) ¢ dz,
i=171@—3

assumption in two ways. First, the prediction mechanism
may fail to remove all the correlation among the residualtius obtaining[(8).



e A% 1—e M A A
R(A, Q) = — (1 - e*A%) log, (1 - e*A%) - [1og <T) + TQ - (17621\6?) @)

2 Je A% (A2Q% +4AQ + 8) , “AQAQ+4) +M?[AQ(AQ —4) 8 8 o 2AQ

DA, Q) = AZ 4N2 1—eAQ

(8)

R(QZ)A bands). We define the quantif..ge: = 7'- Np as the product
of the target rate in bpp and the number of blocks in the slice
R INITIAL POINT (note that this quantity does not represent the actual nuofbe
) bits at our disposal since we are multiplying times the numbe
oROECTED o of blocks and not the number of pixels). Ideally we would like
" to satisfy the rate constraint exactly, hence have

x>

Np
(87» Z R(Au Qz) = Rtarget (9)
=1

2 where Q; is the quantization step size selected for thth
i X > block. Notice that since the rate of each block is a positive
R R R(Q1) quantity, [9) defines a simplex iNg dimensions. We can
consider an initial solution having); = 1 Vi (lossless
Fig._ 1. The rate p_oint corre_sponding to the Iossles_s allocadf Q’s is encoding), with Corresponding ratéﬁ(Al-, 1)_ Geometrically
projected onto the simplex defined by the rate constraint (see Fig Dl) we have a vector in aviz-dimensional space
whose entries are the rat&@§A;, 1) and we can project it onto

We can notice that both the rate and the distortion apge simplex defined by [9). In other words, we seek to solve

functions of the variance? of the unquantized residuals mthe following optimization problem, where we slightly abus
the block and of the quantization step sige whose value notation .usmg boldfac.e to indicat¥ - d|men5|0ngl vectors
is yet unknown. Each block in the slice has its own varian@@d making thef? function operate component-wise:
parameter and quantizations step size. The variance mustype. 5o mm IR — R(A,1)||s subject to ||R||1 = Riarget
estimated, while obtaining the quantization step size alye (10)
the ultimate goal of the rate control algorithm. The var@anc
can be estimated by running the predicidgthout quantizing Problem [[(ID) is a continuous problem, whereas quantization
the prediction residual$or a certain number of lines. A small step sizes are odd- -integer-valuedfter solving [10) we need
fraction of the total lines in the block are sufficient to geto search the value d@; such thatR(A;, Q;) is closest taR;.
good estimates of the variance of the residuals. In a softwany search method such as linear search or binary search can
implementation, this is one of the main factors impactinge used for this purpose.
on final complexity because it requires to run the predictor Projection onto a simplex is a special case of projection ont
essentially twice: the first time on a small subset of thesinethe [, ball, since the simplex is the positive part of theball.
without quantization, to estimate variances and then, ongeprojections algorithms have been subject of great interest
the quantization steps have been calculated, to perform therecent years due to surge in research on sparse methods.
actual encoding pass, quantizing the residuals. The prsvidhe field of compressed sensirig [32] has spawned from the
rate and distortion models are used by the algorithms ptesendiscovery thai, penalized regressors can reconstruct a sparse
in the following subsections to find the right value @ffor signal exactly from a small number of random measurements,
each block to match the target rate globally and have a lavénce many reconstruction algorithmis![33] include steps in
distortion. volving projections on thé; ball. We refer to the algorithm
proposed in[[34] to address the specific problem of projastio
onto the simplex. The algorithm has been shown to have
O(Nplog Np) complexity. Being a continuous approximation
The goal of the algorithm described in the following iso an integer-valued problem, the allocation returned kg th
to provide an initial solution to the allocation problem.i¥h projection algorithm can only provide a rough approximatio
solution, albeit inaccurate, is a good starting point ttiafize to the desired rate. Nevertheless, it is expected to be ¢tose
the following algorithm (Selective Diet, explained in seat a good solution, hence it is possible to improve it by making
[M-C). Suppose that the encoder is given a target rate fer tihcal modifications. This is the task performed by the Salect
encoded image equal t6 bits-per-pixel (bpp), and supposepiet algorithm.
that there aréV blocks in the current slices is the product lUsing odd-valued quantization step sizes is known to peviaver
of the number of blocks in one band times the number @aktortion for the same maximum errér [31].

B. Projection onto the positivg ball



Algorithm 1 Projection algorithm to solve (10) in order to optimize the distortion. The starting point is to
Sort R(A, Q) into p in descending order consider the -2 chain as the new candidate output chairg sinc
Find p = max {j Ly — % Zif\fl i — Rta'r‘get) > 0} it has the Iqwest dlstgrtlon. Obwousl_y, selecting the -2ioh

i . N causes an increase in the rate, which must be compensated
Defined = ) (Zi:l Hi = Riarget to meet the target. In order to reduce the rate moving back

Find w such thatw; = max {R(A;,Q;) — 6,0} towards the target, some nodes are assigned to the +2 level.
Find Q= R™'(A,w) Each node is associated a cost function that considers the
trade-off between the gain in rate reduction and the loss

C. Selective Diet in quality due to switching from the -2 to the +2 level.

The following cost function modelling the trade-off with a

Selective Diet tries to solve an integer optimization peobl Lagrange multiplier is used:

consisting in lowering the distortion of the encoded slidelev

satisfying the constraint on its final rate. The algorithm is

a local search method, similar in flavour to other discrete/; = [D(Ainl('_Q)) —D(Ai,Ql(-H))}

optimization methods such as hill climbing_[35] or meta- (—2) (+2) .

heuristics like tabu search [36]. At a high level it is possib tA {R(Ai’Qi ) = R(Ai, Q; )] ie[L,Ns] (11)

to say that the algorithm is primarily concerned with findang

solution that meets the specification on the rate as clogely®he nodes are sorted by decreasing value of this cost functio

possible, while promoting solutions having low distortidh and this is the order in which the nodes are selected to be

does so by making local adjustments to the solution providedsigned to the +2 level. Specifically, one node at a time is

by the l; projector, hence the need for a good initializatioadded to the +2 level until the rate reach®g,zc.. The new

point. A graphic visualization of a single iteration is shoim  chain is then formed by the nodes that remained at the -2

Fig. 2. level and the nodes that were demoted to the +2 level. This
In this section, for convenience of explanation, we shathain is taken as the new default chain for a new iteration

represent the blocks in the current slice as nodes in a chainof the algorithm in order to try to further improve distortio

is possible to modify the chain by making adjustments to thdotice that even if in a single iteration the algorithm sedec

nodes, namely changing the quantization step size assigne@lodes from the +2 and -2 levels only, it is possible to reach

that node. Only local adjustments are allowed: the quaidiza any value of() using successive iterations, thus considering

step of each node can only be increased by 2 or decreased bmi2possible odd values of the quantization step as possible

We shall cal+2 levelan assignment af; +2 whereQ); is the  choices for any block. The algorithm is run in a greedy manner

current value of the quantization step, caltéfault leveland  stopping when the distortion is not improving further. Weda

-2 levelan assignment equal ; — 2. A chain can be formed experimentally observed that the algorithm requires veuy f

by choosing one of those three levels for each and every noflerations (typically less than 10).

Consistently with the notation, we will cati2/default-2 chain It should be noted that th projector may occasionally

a chain made only of nodes in the +2/default/-2 level. Th&ovide an initial solution that is not close enough to the
ultimate goal of Selective Diet is creating a chain that meefgrget rate. We address this issue in the following way: if
the rate constraint an_d has low dlstortlon. Let us now inioed fvfl R(A;, Q) < 0.99Riarger, it means that the solution of

a lemma at the basis of the local adjustments made to 1, projector is underutilizing the available rate, so lemma
default chain. .7 does not hold and we run an iteration of Selective Diet

Lemma 1. Suppose that the default chain satisfiewith only the default and -2 chains. Instead, when the rate
Z{\isl R(A;,Q;) = Riarger, then if there exists a new chain€xceeds the target, running Selective Diet in the standard

satisfyingszl R(A;,Q;) = Ruarger, it must contain nodes fashion _glregdy_allows to _reduce it back to the target, so
from both thje_+2 and —2 levels. no modification is made. Finally, the value afcontrols the

tradeoff between the reduction in rate and increase inisto

Proof: By contradiction, suppose that a chain meetinghen adding a node to the +2 level. The optimal value\ of
the rate constraint exists and is composed of nodes fra@uld let us choose those nodes that allow a maximization of
the +2 and default levels only. HoweveRR(A;, Q(-+2)) < the gain in rate and a minimization of the increase in digiort
R(Ai,QZ(.def)), so it must be thathV:B1 R(Ai,QECh)) < However, finding the optimal value would be computationally
Riarger- Hence the rate is not met and such a chain does ety demanding, so we resort to initializingo an empirically
exist. Similarly, suppose that a chain meeting the ratetexisletermined valueX = 50) that we observed to be performing
and is composed of nodes from th€ and default levels only. nicely over the whole test image set. This value is adjusted
However, R(A;, QE’Q)) > R(Ai7Q§def)), so it must be that dynamically by the algorithm, halving it every time an ingse
Zij\;Bl R(Ai,QECh)) > Riager- Hence the rate is not met andin the overall distortion is observed in place of a decrease
such a chain does not exist. Therefore, a chain meeting fed rerunning the optimization with the new value. It is also
target can exist only if it uses nodes from both the and possible to devise a lower complexity solution that does not
—9 levels. m adjust) and does not repeat the optimization procedure, at a

Relying on this lemma, even when the rate is exact ttiice of lower performance.

algorithm must try to move some nodes to the -2 and +2 levelsThe complete algorithm is summarized in Algoritifun 2.



Before SD e . .
) f ) classified into three distinct classes to address thosedssu

COYC Y DYC Y Y () + In particular, each block can be of one out of three types,
T e e e e labelled asNORMAL, INFTY, SKIP. TheNORMAL type
““_‘_‘_‘ Default is for regular blocks not falling in any of the other categsti
whose behaviour in the algorithm is just as described so far.
YO O Y Y () o The INFTY type is for blocks that are estimated to have a

very low variance of the prediction residuatsd, o2 < 0.1).
This happens for blocks in which the original image is very

After SD . :
uniform so that most of the residuals are zero or close to.zero
) The rate spent for these blocks is mostly determined by guant
: zation noise in prediction loop, but this is not detectedruyr
Default variance estimation because it is run in a lossless fashion,

thus not producing any quantization noise. This means lieat t

simplifying assumption of {3) does not hold. Underestimgti

the variance will result in very inaccurate estimates ofrtte

Fig. 2. One iteration of Selective Diet tries to reduce thargization st of those blocks and improper allocation of the quantization
19. 2. ne iteration o elective Diet tries to reauce thargization step . . .

size by 2, but due to the increase in rate, the step size ialpcincreased by steps, p(_)ten_tla”y affecting other bI_OCkS due tc_' the pragiag

2 for some blocks chosen as the best tradeoff between imcisatistortion Of quantization errors. Therefore, in the algorithm we agel

and gain in rate. Note that blocks of the default chain havierént steps INFTY blocks from the projection and Selective Diet steps

sizes, although the chain is depicted as a straight line dovenience. in order to avoid feeding those algorithms with misleading

information.INFTY blocks are then treated separately. After

Algorl_thm 2 Selective Diet the projector returns its initial solution, whenever &YFTY
Require: Qg, A = 50, Nizer block is encountered in the slice, the safjeas the closest
for iter =1 — Niter do NORMAL block in the same band is assigned to it. If no
Setdefault = Qg , Q" = Q+2, Q"% = Q-2 NORMAL block has been encountered yet and it is not
Set output chaiQ; = Q"% _ the first slice then the sam@ of the block in the same
ComputeRaiss = > R(Qg) — Riarget, i€, the rate position in the previous slice is used. Otherwise, if it ig th
you need to lose to reach the target first slice, @ = 1 is used. If the last encountered block is
Sort the nodes irQ**) by decreasing value of; = ot a NORMAL block but aSKIP block, then the current
(D§72) — D§+2)) +A (RZ(*Q) — R§+2)) INFTY block becomes 8KIP block. Except when the block
i=1 becomes$KIP, the target rate is updated for the Selective Diet
while > R(Qg) — Riarget < Raipy do algorithm. It is assumed that tH&FTY block is driven by

Replace the corresponding node(} with the i-th quantization noise so the target rate is updated as
node in the sorte@(+2

=1+ 1 2%
end while Riarget < Rrarget — R <\/ oz Q) (12)
if iter # 1 then

exceededhen _ _ perform a further rate-distortion optimization by deciglito
Set) - A/2 and repeat current iteration “skip” a block, i.e., set to zero the prediction residual for all
else _ . samples in the block and signal it using a 1-bit flag, if the
Proceed to next iteration predicted increase in distortion is low compared to the rate
e_nd if saving obtained by not encoding the block at all. However,
end if skipping may introduce significant noise in the predictiood,
end for so the amount of skipped blocks must be controlled. Block
skipping is useful only at low rates, therefos&IP blocks
IV. BLOCK CLASSIFICATION can be generated only when the target rate is below 1 bpp,

and a fixed percentage of blocks is skipped, as function of

The previous section outlined the basic operations of t%(‘ag target rate. This percentage increases as the targst rat

rate control algorithm. We have discussed how models can € reases according to the following rule:
used to predict the rate and distortion of quantized blodks 0 g g '
prediction residuals. We have also introduced lthprojector _
{(1—T)3 if 7<1

Ps =

0 otherwise

and the Selective Diet algorithm that exploit the models to
solve the problem of allocating quantization step sizeshio t
blocks to achieve the desired rate with low distortion. How-
ever, some improvements can be made in order to introddoeorder to choose which blocks must be skipped, the blocks
additional features and solve problems not accounted for imythe current slice are sorted by decreasing value\ atnd

the models; in this section we describe how blocks can ke first blocks in the sorted order will be skipped.

(13)



V. FEEDBACK-BASED MODE Thew)- ¢[n], which we call “residual budget”, stores how much

The rate control algorithm outlined so far is completel{/€viation in rate froni” has been accumulated up to slice
model-based, meaning that no information about the real rdf'€ 7 factor used in the formulas plays the role of a time
of the encoded slices is available. We shall refer to thishouet constant, ideally distributing the residual budget ovéuture
as MODE A of the algorithm. A more accurate control Caﬁhces_. It can be noticed that equatlﬁ](Zl) reduces to just a
be achieved by adding a feedback mechanism that modiffi&cking term, whenr = +oo. Also notice that, for; =2,
the target rate for future slices based on the actual rate ude residual budget term in_(21) is exacthin + 1])*. wln]
to encode the previous slices. In particular, MODE B of thig the ratio between output and input rate, averaged over the
algorithm measures how many bits have been used to encotePrevious slices identified by s, and |Z| denotes the
previous slices and adjusts the input target rate for the n&grdinality of the set. As we shall see, different choices of
slices so to achieve the global target rate. Note that we do Ho@'€ Possible and yield different results. As special cases,
want to increase the complexity of the system, hence we 4§ notice that, wherZ = {n}, the algorithm does not
not performing a multi-pass encoding of the same slice b3Yerage on previous slices, hence it is most suited for yighl
rather correcting the target for future slices. Although B Non-stationary scenarios, while, whén= {0,1,...,n}, the
B does not increase the complexity and can achieve mé&gorithm uses all the history for averaging, yielding thest
accurate control, it might lower the rate-distortion pemiance Performance for stationary scenarios. The following teets
of the encoded image. To see this, let us consider a toy cR§gve the rate control performance in such special cases. Th
in which the image is made of two slices, having the sanfdde sense stationarity (WSS) assumption that we make in
rate-distortion function. The global rate-distortion weirfor the Proofs has been verified to be a rather good model, since
the whole image is convex, but, by adjusting the rate oniyPasically means that the non-ideal behaviour of the rate
slice-by-slice basis, we operate on two distinct pointshe t Controller, that we are trying to correct, has certain ragty
curve and the final rate-distortion point lies on a straighe | properues._We remark that experimental results showetd tha
joining the two operating points, certainly above the convéVhenw(n] is WSS, the output rate of the memory-1 method
curve. Hence, per-slice oscillations in the target ratethice COnverges tal’ but the residual budget converges to a non-
some suboptimality, which is more severe the farther apart t2€r0 value proportional to the variance @fn|. This is why
operating points of each slice lie in the rate-distortioang. Ve advocate that the long-memory method is better when we

MODE B adopts a Least-Mean-Square tracking approach%peCt a statlona_lry beha\_/lour. However,_ the memory-1 mie_tho
determine the target rate for the next slice, after meagutia (OF @ method with a limited memory) is better for tracking
rate produced by the encoding of the current slice. The targi@n-Stationarities thanks to TheorémIV.3. In the proofs we

. . . . Wi clntl] 1 _ i
update formula is derived to take into account two issuest,Fi Will denote ===z, = ¢ for brevity.
the inaccuracies in the rate controller make the aCtualmmﬁ\-’roposition V.1 (Convergence of long-memory method)
rate different fror_n the_ target, thus we want to est_imate %%t the rate controller obey the input-output relation-
input-output relationship of the controller and track itdase oy yln] = w[n]Thew[n], being w[n] a wide sense sta-
of nonstationary behaviour. Second, we would like to cou Bnary random process with meaft[wln]] — p and
how many bits were used up to the current slice, and modi (wln +1] —w) (w[n] —w)] = 0,¥1 # 0. Let T be
the target rate depending on the amount of bits that we savﬁédated as in(d) with 7 = {0, 1 ’ n) Then new
and we would like to spend on the next slices or, viceversa, T ’
the number of bits that we spent but we should have not. The

goal is to try to assign all, but not more than the budget bits

at our disposal, by spending them on or saving them from the |im E [y[n]] =T (Convergence to target)
remaining slices. The final rate update formula, to be mtat/a "‘f*oo )
hereafter, is: HEIEOO]E [c[n]] = 0 (Convergence to zero residual budget)
+1 1
Tpewln + 1] = nin+ 1+ L L gy _ _ _
T w[n] Proof: We will not give a formal proof of this result,
with rather just a sketch. We notice that the sequence of averages
n overn sampleso[n| has a limitlim,,—, . w[n] = E [w[n]] = u
cn+1] = Z (I' —y[k]) = c[n] + T —y[n]  (15) thanks to the ergodicity ofv[n]. We suppose that it reaches
k=0 this limit value fast and thus we approximaign] ~ u for
_ B @ all n > ng. Using this fact and performing some algebraic
nin+1] = nln] + @[n] [T ] + T ] (16) manipulations on[(16) and_(1L4), similar to those done in the
- 1 proof of Theoreni VR, we obtain the following recursion
wlnl = o > wlk] (17)
keT

where y[n] is the actual rate produced encoding slice Thew[n +1] = HT—F (2 — pwln] — %) Thew(n)
Thew[n + 1] is the target rate specified to tlie + 1)-th slice, i “Z
which is the next slice to be coded, afitis the original — <1 — pwln] — wln] + “_) Thewln — 1]

target rate for the whole image (and the initial condition fo wT T



Hence

Efyfn + 1)) = (2 o 1) E [Treu 1]

The general solution to that difference equation, consider
the initial conditionsy[0] = wT and y[1] = wT + w?T —
w3 T + T_T—U’T, is

-
1 2 2 "
—u<Lﬁf——+ﬁ>EﬂhdMHJLT CTl-w) (1
T T T y[n]—imuz_l 1 -
We take the limit on both sides to get 1—w
T T T T
*— lim Elyn)] =T It is easy to check the limit:
y n—-+oo ’
Similarly, the residual budget term can be shown to follow nli_)rr;o yln| =T,
1
cln] = a1 1 provided thatw? < 2. Moreover we can take the limit of (R0)
P [ ) to check budget convergence:
Thew| ( — pwln —1] — ) Thew[n — 1] -
1
1 lim c[n]-%(T—<l—w2——>T—w2T——)—O
—( ——) +T —wn — Thew[n — 1] nree w T T
wT
Hence, u
| B 1 Theorem V.3 (Cost minimization of memory-1 method).
T [eln]] = & L _ 1 Let the rate controller obey the input-output relationship
T nT WT

y[n] = wn|Thew[n], and letT,,.., be updated as if14) with
Z = {n}. Then, updat€lf) is a gradient descent step towards
the minimization of

L (e D

Theorem V.2 (Convergence of memory-1 method)Let the

1 T
+—JJ}+T—M——O
ur 1

rate controller obey the input-output relationshipn] = w -
Thew[n], with w? < 2 and letT),.,, be updated as ifI4) with
Z ={n}. Then,

lirf yln] =T (Convergence to target)
n—-+oo

11111 ¢[n] =0  (Convergence to zero residual budget)
n—-+0oo

Proof:

ol = w (i) + 22

TW

= <1—w2— 1) y[n — 1]+ w?T + 2 +w2M
T T T
(18)
However, from the definition of[n]:
cln)=cn—1]4+T —y[n —1] (19)

We can solve[(118) for[n — 1] and insert it in [(IB).

il = 2 (sl = (1= w2 = 2)yn -1 - wr - T)
+T —y[n—1] (20)

We can recall that

yin+1] = (1—w—%)y
= (2-0= 1)l
_<1+1 .

2]

T

T
+wT+ = +w
T

e

Thus, settingy =

J— <T—y[n]> + (T—y[n] + 2%“”) (21)

TRACKING

BUDGET

Proof:
= T2 + y2[n] — 2Ty[n] + 45 [ ]+T2+y [n]
a8y 4 4B 2Ty[n]

cln]

=272 + 2w?[n]¢? — 2Tw[n)¢ + 4@ - 4Tw[n]§

+497 oreufn] + 20l ] + 40 nninle

c[n]

— 2wl ulnl(n) - 2Tl
aJ ) .
Ty = 4w Inlnln] +4€0 ]

—2Tw[n] — 4@10[71] — 2Tw(n]

The gradient descent update equation is

47
d(n[n])

= nln] — daw]n] (y[n] T

nln+1] = nln] -

o

1 we obtain [(IB). [
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Fig. 3. AVIRIS scQraw. (a) rate= 3.0052 bpp, MAD=30, SNR=62.25 dB; (b) rate 3.0046 bpp, MAD=10, SNR=62.85 dB; (c) rate 2.9968 bpp,
MAD=5, SNR=63.39 dB

VI. HYBRID NEAR-LOSSLESS RATE CONTROL and hyperspectral images. CCSDS-123 is based on the Fast

The proposed rate control algorithm opens the way f&©SSIess compression algorithm [21] [9], which is a predect
an interesting hybrid operating mode in which one can gpethod. The algorithm computes a local samy, ., obtained
multaneously constrain target rate and maximum distortiofiom & causal neighborhood of the pixel. A weighted combi-
This significantly differs from traditional operating madia nation of the local sums in th& previous bands yields the
which one can either specify the rate but has no cont@fedicted pixel value. The algorithm adapts the weightagisi
over the per-pixel maximum error (as it typically happens i€ Sign algorithm[[16], which is a low-complexity solution
rate-controlled transform coding approaches) or in whigk ofor the implementation of a least-mean-square filter.
specifies the maximum error but has no control over the ratel€t s:.» denote the pixel value at positiqwr, , z), then
(as it is easily done in near-lossless predictive scheriiém. the encoder computes:
implementation of such hybrid mode is trivial by using the 48510 — Osya
proposed rate controller because it is sufficient to limi th 485y a-1— Osy
maximum gquantization step size allowed in theprojector 482 y—10-1— Osyz
and in Selective Diet. If such specification is compatibléhwi d . = WZWUz,y,m = WZTM 48, 1 yw—Oslya
finding an allocation of quantization step sizes that yidlds
prescribed target rate, then the algorithm successfuliyrots '
both the rate and the maximum distortion. | 4s:-Pya — 0Py |

Fig. [3 reports the results of some experiments (see S@Cscaled predicted sample ., is calculated fromi, ,, .. The
VIHVIIT ¥or more details on the test image) that graphigall rediction residual is computed & ., — s.., . — | 2=t

show the impact of constraining the maximum quantization d th q e b 2
step size (calledCLIP) on the distribution of quantization and then mapped to a positive integer, , to be entropy

steps and on the rate and quality of the encoded image.el coded. For further details, we refer the reader to the GGESD

this case the controller successfully provides the desiats 123 Blue Book[[2D] and to t.he paper by Augéal. [37] for

even with the very demanding constraliEIP — 11. Also, a more throughout explanation of the encoder parameters and

notice the improvement in terms of MAD and SNR obtainetcpe'r impact on performance.

by the hydrid mode. The higher SNR obtained by enforcing a .

constraint on the maximum error should not be surprisinf: Near-lossless extension

In fact, thel; projector and Selective Diet alone have no Extending the compression mechanism to near-lossless en-

guarantee of optimality and enforcing an additional canstr coding simply requires to introduce a quantizer in the pre-

allows to shrink the solution space, eliminating suboptimaiction loop. In particular, we use a uniform scalar quaentiz

allocations. Finally, if the user were to dema@dIP = 5, to quantize the prediction residua\, ,, into A, ,, =

she would actually get MAD=2 but the controller would begn (A, ,, ,)- M . The quantized value is then

unable to provide the target rate of 3 bpp and, in fact, pesidmapped to a positive integef and sent to the entropy coding

4.0586 bpp. stage. In order to have synchronization with the decoder,
we must consider the dequantized vamé;zyyym for weight

VII. EXTENSION OFCCSDS-123r0 NEAR-LOSSLESS AND ypdate. The near-lossless encoder uses a single quantizati

LOSSY COMPRESSION WITH RATE CONTROL step size for the whole image.
A. Review of CCSDS-123

The Consultative Committee for Space Data Systerfts Rate-controlled lossy extension
(CCSDS) has recently developed the CCSDS-123 recommenThe rate-controlled version of the algorithm uses the pro-
dation, intended for lossless compression of multispecti@osed rate control method to assign a different quantizatio
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TABLE |

step size to each block in the image. Assuming that the emcode TESTIMAGES
proceeds in a Band Interleaved by Line (BIL) order, the rate
control procedure is called whenever the current pixel tiggo Image Rows _ Columns _Bands P
to the first band and it is at the beginning of a new slice AVIRIS SCO_RAW 512 680 224 15
. L _ _ _ lained i AIRS GRAN9 135 90 1501 10
(i.e. positionz = 0, y = k- BS, © = 0). As explained in CASIT0A7EOBNUC 1595 206 E—
the previous sections, the rate controller first tries tooeec CRISM-SCI67-NUC 510 640 545 3
ESTLINES lines (with all their spectral bands) in a lossless gg:gms%?imc ‘51?8 2‘218 gjg 2
. . . g -sc214+Nuc
mople in order to estlmate the variance of the predlct|9n FRT0000932607 VNIR E15 a0 03
reS|duaIs_. ane the variance is estimated and the allocatio—Ggg SawpLe_FLATFIELDED 1024 256 245 10
of quantization steps is performed, the encoder backtraxks M3TARGETB-NUC 512 640 260 3
position (0, k - BS, 0), discarding all the weight updates done M3TARGETB 512 640 260 3
in the meanwhile and starts the actual encoding pass of the—aoo =" MODO1 250 8120 2416 2 !
n nes ap e NODIS-MODO01_500m 4060 2708 5 7]
slice. Similarly to the near-lossless mode, the encoder nOW  MODIS-MODO DAY 2030 1354 14 2
computes the quantized prediction residuals, ., but now MODIS-MODOINIGHT 2030 1354 17 4
; At h MONTPELLIER 224 2456 4 3
employing the quantization steps calculated by the cdetrol SUNTAN 094 Tooa 5 =
for each block. _ o TO477F06_RAW 1225 406 77 2
It is important to notice that the chosen quantization St€rouLousE sPOT5_xS_EXTRACTL 1024 1024 3 3
sizes must be written in the header of the compressed file for veT_18 10080 1728 4 3

usage at the decoder side. In order to keep the overhead low
we propose to use a differential encoding strategy adoptiatgorithms. A total of 47 images is used to generate the ensem
the Exp-Golomb codé [38]. Differential encoding amounts tle statistics, while for brevity we report numerical restior a
encoding only differences between two successive qudiaiiza Smaller subset. The whole corpus comprises images of v&ariou
steps and, since they are expected to be close to each oth@iyure, from ultraspectral images captured by IASI and AIRS
some compression is obtained. A simple universal code swggnsors, through hyperspectral images captured by CASI,
as the Exp-Golomb code of order zero is then used to compr&sSI, AVIRIS and Hyperion sensors, to multispectral images
the differences. captured by MODIS, Landsat, Vegetation, MSG, Pleiades and
Finally, formulas[[¥) and{8) can be implemented by mea®OT5 sensors. Tallk | reports details about the images used
of lookup tables. It can be noticed that the rate depends ofiilythe tests and the number of banftsused for prediction.
on AQ and that the distortion can be rewritten as the produthe images with the NUC suffix present Non-Uniformity
of a function ofAQ andQ?. We have verified that two lookup Correction,i.e,, a form of compensation of the different gains
tables of roughly45000 integer values each are sufficient t®f the lines of the image, performed by means of a median
ensure the correct behavior of the algorithm. The valueben ffilter, as described iri_[4].
rate table can be represented using 14 bits per value, Wigile t The tests have multiple goals. First, we want to analyze the
distortion values need 13 bits. The total memory occupati@ecuracy of the rate control algorithm, assessing how close

of the two tables is thus about 152 kB. the actual rate of the compressed image is with respect to
the specified target. Second, we study the rate-distortion p
D. Range encoder formance of the algorithm by drawing the full rate-distorti

The CCSDS-123 recommendation defines an adaptive cadfve in order to compare it against the rate-distortiorveur
ing approach using Golomb-Power-of-2 codes, mainly dwbtained by the near-lossless version of the encoder. Ehis i
to its low complexity and good performance, as well as tHemown to be the optimal quantization step selection for a
existence of an earlier standard (CCSDS 121.0-B [39]) usi®@pussian source, but does not provide rate control, althoug
the Rice coding algorithm, embedded in the block-adaptiveany rate-distortion points are indeed achievable. We hise t
mode. curve as an upper performance bound in order to estimate

We propose a different entropy coding stage based on th@w close the proposed rate control algorithm can get to the
range coder[[40]. The range coder is essentially a simplifietkal solution. Finally, we compare the performance of the
arithmetic encoder. Such a block coder is needed in orderpmposed extension of CCSDS-123 to lossy compression with
achieve rates lower than 1 bpp, as the minimum codewaate control against a state-of-the-art transform codenthed
length for the Golomb code is 1 bit. Moreover, a higheior onboard compression.
performance entropy coder improves the effectiveness ef th
rate controller, by limiting the suboptimality introducetthis
stage. For efficiency reasons, the proposed range codes ké%p
four separate models for each band for the prediction ratsdu  Before presenting the experimental performance of the

Complexity considerations

as described in_[41]. proposed algorithm, we analyze its computational compjexi
both theoretically and on a real implementation.
VIII. N UMERICAL RESULTS The lossless version of the compression algorithm is quite

We have performed extensive tests on images extracwdhilar to the CCSDS-123 recommendation, with the excep-
from the corpus defined by the MHDC working group of thé&ion of entropy coding stage, now replaced by the range coder
CCSDS for performance evaluation and testing of compressiltss complexity and the one of the near-lossless scheme are
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therefore just marginally higher than CCSDS-123. The r{II-C] it potentially has better rate-distortion charagstics.
control algorithm has three main sources of complexity: Mode B always has remarkably good accuracy, thanks to

. the estimation of the variance of unquantized predictidhe information on the actual number of bits used to encode

residuals previous slices. Moreover, it can be seen that the algorithm
. thel; projector performs equally well on both hyperspectral and multisgzéct
« the Selective Diet optimization algorithm images.

We remarked in SeE_TI[B that the projector has complexity Fu_rthermore, Figll4 reports histograms of the actu:_;ll rate
O(Np log N3z), essentially due to the sorting procedure. Thotained by mode B on a total of 47 |m§\ge§ belonging to
Selective Diet algorithm also has a sorting step as the maiif st set of the CCSDS. The bin width is 1% of the target

source of complexity. After the blocks in the current slic&ate- It should be noticed that, for the histogram at 3 bpp,
are sorted according to the value of the cost function, SMe Of the images were encoded without losses using a rate

linear scan is performed to optimize the quantization Sté%wer than the target, hence they have not been considered
sizes. This basic operation is repeated 165, iterations, " the histograms. Notice that many images in the test set

hence with good approximation we can say that Selective DIEAC accuracy as good as 1% or less. We remark that the
has O(Niter (N5 log N + Ni)) complexity. However, it is rate control results are consistent throughout this laegedet
typically observed that the number of required iteratioms fnd only few images failed to be encoded with good accuracy.

very low (around 5 to 10) and can be bounded to a predefink@iS i due to the severe noise affecting those images, r@usi
value. the predictor to have low performance, and consequenty, th

We also profiled our C-language implementation of thRrediction residuals exhibit large deviations from the wiod

compression algorithm and compared lossless encodiff§ @ssumed.
against rate-controlled encoding in terms of running times
We used theaviris scQ raw image for our test, as it is oneC. Rate-distortion performance

of the biggest in the dataset. Rate control was e ijpp | this section we study the rate-distortion performance of
with MODE A. The running time of the lossless encodefe encoder, and, in particular, we focus on the suboptiynali
was 72.62 seconds, while the rate-controlled encoder took the rate controller with respect to a near-lossless eingod
80.48 seconds. The time spent writing to file was removegk the images. The problem with near-lossless compression
from both measurements in order to avoid any bias dy€that, apart from the lack of rate control, only certairesat

to different file sizes. _It can be noticed that thg_overhe%n be achieved due to choice of a single quantization step
of the rate controller is around0%. Careful profiling of 5 the whole image. At high rates, this causes rate-distort
the code suggests that this overhead is due6fdn (5.11 points to be quite far apart from each otherg( as much
sec.) to variance estimation, while on#2% (1.73 sec.) 10 50 5 bpp), hence not allowing very flexible choices for the
optimization (, projector and Selective Diet). The remaining,te.distortion operating point. On the other hand, ratetrco

13% is due to other inefficiencies in the code, which is nojjiows to achieve very fine granularity and any rate-digart
very optimized. This result confirms our intuition, pres&ht point, from low rates up to lossless compression, can be. used
in Sec.[TII-A, that variance estimation is the main source fig,re[5 shows the rate-SNR curves obtained for near-mssle
complexity, and so the number of lines (ESTLINES) used f‘?fompression, rate control with mode A and rate control with

this task must be chosen carefully. All the results preseime 1,46 B for some test images. The following definition of SNR

this paper were obtained with ESTLINES2. is used throughout the paper:
ZNp'imels 2
B. Accuracy of rate control SNR= 10log; — i=1 i
pixzels LA 0N\2
In this section we show some results concerning the accu- 2 (@i — i)

racy of the rate controller in terms of output rate. The tasés beingz; andi; the i-th pixel in the original image and in the
conducted for various target rates, and for the two opegatidecoded image, respectively. As already explained in @ecti
modes of the algorithm: A and B. The predictor defined the great accuracy in the rate achieved by mode B is paid in
the CCSDS-123 standard is used in the full prediction moderms of slightly lower rate-distortion performance. Howe

and with neighbour-oriented local sums. Square blockszsf siit is remarked that when the encoder is run relying on the
16 x 16 are used but the variance of the unquantized predicticate control only, the greater accuracy of mode B often tesul
residuals is obtained by running the lossless encoder orinZbetter quality than that provided by mode A, which often
lines only. This allows to buffer only two spectral lines ayields a rate lower than the target. Nevertheless, it can be
any given time, avoiding the need of large onboard memonpticed that the rate-distortion curves for both mode A and
buffers. Table[dl reports a selection of the test images ambde B are quite close to the near-lossless performance. As
the output rates obtained for the specified target ratesleWhan example, foAIRS gran%he gap is only aboui.2 dB at 2

later we will report full rate-distortion results, this te@ms bpp. Forfrt0000932607_vnir the gap at 2 bpp is 0.2 dB for

at assessing the accuracy achieved at obtaining a giveet targode A and 0.4 bpp for mode B. We report imaggl 1b as

rate. It can be noted that the operating mode A is typicalyne of the worst cases of rate-SNR performance, where mode
less accurate than mode B. Nonetheless it can still get veékyloses about 1.5 dB with respect to near-lossless encoding
good accuracy in many cases, and, as explained in Sacd mode B about 1.8 dB, always at 2 bpp. We also remark
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Fig. 4. Histograms of output rates for mode B
TABLE Il
OUTPUT RATES
Image Size (lines<pixelsxbands) | Mode | 1 bpp 2 bpp 3 bpp 4 bpp
AVIRIS scO_RAW 512 x 680 x 224 g 28(5)}1 iggg éggg gggi
wcooam | & |98 1 s oo
CASI-T047706-NUC 1225 x 406 x 72 g 8333 iggi gggg gggé
CRISM-sc167a0C 0610545 | A | 0878 1706 2677 3690
CRISM-scl182-Nuc 450 x 320 x 545 g gggg igg? gggé gggg
FRT0000932607_VNIR 512 x 640 x 107 B 0000 Tael Lz 3
GEO_SAMPLE_FLATFIELDED 1024 x 256 x 242 g ggég ig;g 2;;‘3" gg??
)
M3TARGETB-NUC 512 x 640 X 260 L e o
MODIS-MOD01 250M 8120 x 5416 x 2 Ao 1997 29% 383
MODIS-MODO1DbAY 2030 x 1354 x 14 g igii gggg %ggg gggg
wooma | A |0 fEromoa
)
e | A |0 tm o am
R I R
TOULOUSE SPOT5_XS_EXTRACT1 1024 x 1024 x 3 g ggig ;gég %ggg ggg%
owomssa | B |00 iarm
(*) : lossless

that the curves were obtained without constraining maximuaf rate control (slice-by-slice feedback) with = 5, with
distortion, which can significantly improve performancs, afull prediction mode and neighbor-oriented local sums,levhi
shown in Sed_VI. the transform system performs the rate allocation by means
of the reverse waterfill algorithm [[1]. We remark that the
availability of the rate controller for the predictive syst

allows to perform a direct comparison, in which both systems

IThe CﬁSDS-lZZ standa}rd [3] de}‘ines at(;aanorm coder &5k in a pure rate-controlled fashion by specifying a targe
ploying the Discrete Wavelet Transform and a low-compiexit ase anq letting the encoder perform all the coding decision

Bit Plane Encoder, for the compression of 2D imagery. Agutomatically. The proposed rate controller is operatedgus

extension of such standard to multiband imagery by iN% » 16 blocks andESTLINES — 2 meaning that only

cluding a spectral transform has been implemented andt\}\% lines out of 16 are used for estimation of the variance

publicly available online[[42]. The implementation comin ¢ \,,qantized prediction residuals. On the other hand, the
ansform coding system buffers 8 lines, thus requiringanor

the CCSDS-122 encoder with the POT spectral transform [Zﬁ]
The proposed system is run using the memory-1 mode B

D. Comparison with transform coding
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Fig. 5. Rate-SNR curves. (#8IRS gran9, (b) CRISM-sc182-nyd(c) vgtl 1b

memory. Table[dll reports a comparison between the twe easy to perform in the case of transform coding, the
systems, highlighting in bold the best results. The progospredictive coding paradigm poses significant challenges. W
predictive system is competitive against transform codigg have proposed a scheme based on modelling the predicted
typically providing superior quality, both in terms of SNRRda rate and distortion for non-overlapping blocks of the image
in terms of maximum absolute distortion (MAD), for the samand optimizing the assignment of quantization step sizes ov
rate. Other quality metrics such as the maximum spectrdéanglices of the image. Extensive tests have shown that the
(MSA) and average spectral angle (ASA) have been studialdjorithm can effectively control the output rate with elieet

in the literature[[4B], but we omit them for reasons of brgvit accuracy. Moreover, rate control solves one of the issues of
However, such metrics follow the same trends observed foear-lossless compressia®,, the scarce number of operating
SNR and MAD, respectively. We observe that, at lower ratgspints at high rates. In fact, the availability of a rate coher

the proposed algorithm achieves significant gains in terralows the user to choose any rate, depending on their specifi
of MAD even when the SNR gain is small or for the fewneeds. We have also proposed an extension of the CCSDS-
cases when the transform coder is more effective. We al$®3 standard to deal with lossy, near-lossless and hybed ne
report (Tablé TV) the mean and median gains in terms of SNBssless rate-controlled compression in a single packEge.

and MAD obtained by the proposed algorithm on the wholesulting architecture is competitive with the transforoding
corpus of images. We choose to report the median gain, ggproach, significantly outperforming it at all rates frorodp

well as the mean, due to some outliers in the results thagh to lossless compression.

bias the mean gain statistics due to the large gain obtained
by the proposed system. It is sometimes the case that the
proposed system reaches lossless quality for the desited ra
while the transform coder does not. Such cases are excludetiVe would like to thank lan Blanes from the Universitat
from the computation of the SNR gain as it would be infiniteAutonoma de Barcelona for precious support on using the
We can notice that the higher gains are achieved for higheelta software developed by the Group on Interactive Coding
rates, confirming the typical behaviour of predictive erersd of Images.
with respect to transform encoders. Finally, we report aalis
comparison (Fig[16) on a cropped portion of the first band

of the vgtl 1b test image. The two algorithms are compared

at the same rate of 2 bpp. Although it is difficult to see thdl] D. S. Taubman, M. W. Marcellin, and M. Rabbani, “JPEG2000age

; ; . ; compression fundamentals, standards and practitmjinal of Elec-
differences with the naked eye on paper, the figures remprtin tronic Imaging vol. 11, no. 2, pp. 286-287, 2002.

the magnitude of the error clearly show that the proposeg) pocument ISO/IEC 15444-2, JPEG 2000 Part 2 - Extensig@sline].
predictive approach consistently achieves smaller deviat Available:| http:/iwww.jpeg.org/metadata/15444-2.PDF

i ; ; ; [3] Consulative Committee for Space Data Systems (CCSDBjade
from the Orlglnal image. Also, notice that desplte the block Data Compression,Blue Book November 2005. [Online]. Available:

based approach of the proposed algorithm, scalar quantizat  p:/7public.ccsds. org/publications/archive/122%6. pdi
of the prediction residuals does not produce blocketimatio[4] I. Blanes and J. Serra-Sagrista, “Pairwise orthogtraaisform for spec-
artifacts. tral image coding,’'Geoscience and Remote Sensing, IEEE Transactions
on, vol. 49, no. 3, pp. 961-972, 2011.
IX. CONCLUSIONS [5] L.-S. Lan and I. S. Reed, “Fast approximate Karhuneessofransform
with applications to digital image coding,” iKisual Communications’
In this paper we have presented a rate control algorithm 93. International Society for Optics and Photonics, 1993 4gl—455.

for onboard compression of hyperspectral and multispectr&l A. Pirooz and I. S. Reed, "A new approximate Karhunen:isérans-
form for data compression,” iBignals, Systems amp; Computers, 1998.

Images d.eS|gned to Work with pred'Ct'Ve enC_OderS and suit- Conference Record of the Thirty-Second Asilomar Conferencvol. 2,
able for implementation on spacecrafts. While rate control 1998, pp. 1471-1475 vol.2.
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Fig. 6. Visual comparison of a crop oftl 1b, band 1. From left to right: original image, predictive apgeh, transform approach, absolute error for
predictive, absolute error for transform
TABLE Il
PREDICTIVE (CCSDS-123 + RTeE CONTROL B) vs. TRANSFORM (CCSDS-122 + POT +HEVERSEWATERFILL)
PREDICTIVE TRANSFORM
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TABLE IV

MEAN AND MEDIAN GAIN
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4.00 6.6 431 54 7
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