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Abstract

The aim of this work is the quantification and prediction of rare events characterized by
extreme intensity in nonlinear waves with broad spectra. We consider a one-dimensional non-
linear model with deep-water waves dispersion relation, the Majda-McLaughlin-Tabak (MMT)
model, in a dynamical regime that is characterized by broadband spectrum and strong non-
linear energy transfers during the development of intermittent events with finite-lifetime. To
understand the energy transfers that occur during the development of an extreme event we
perform a spatially localized analysis of the energy distribution along different wavenumbers
by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the
low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statis-
tical properties and nonlinear energy transfers between modes, as well as iii) the critical scales
(or critical Gabor coefficients) where a critical amount of energy can trigger the formation of
an extreme event. We analyze the unstable character of these special localized modes directly
through the system equation and show that these intermittent events are due to the interplay
of the system nonlinearity, the wave dispersion, and the wave dissipation which mimics wave
breaking. These localized instabilities are triggered by random localizations of energy in space,
created by the dispersive propagation of low-amplitude waves with random phase. Based on
these properties, we design low-dimensional functionals of these Gabor coefficients that allow
for the prediction of the extreme event well before the nonlinear interactions begin to occur.

1 Introduction

Extreme or rare events have attracted substantial attention in various scientific fields both because
of their catastrophic impact but also because of the serious lack of specialized mathematical tools
for the analysis of the underlying physics. Important examples can be found in i) the environmental
field: rogue waves in the ocean [1, 2, 3, 4], extreme weather and climate events [5, 6], and ii) the
engineering field: overloads and failures in power grids [7, 8], stability loss and capsizing of ships in
mild waves [9]. For all of the above applications it has now been well established that extreme events
occur much more frequently than it was initially believed and that their traditional characterization
as ‘rare events’ (especially in a Gaussian context where a rare event has practically zero probability)
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severely underestimates the frequency of their occurrence. Therefore, it is important to study them
more thoroughly and develop effective algorithms for their prediction.

Extreme events refer to system responses with magnitude that is much larger than the typical
deviation that characterizes the system response. Thus, from the very nature of these events it
can be concluded that traditional analysis tools restricted to second order statistics would not be
sufficient for their understanding. Apart from their intermittent properties, another manifestation
of the non-Gaussian character of extreme events is the strong localization of energy in (physical or
modal) space – a situation that is inherently connected with non-linear dynamics and transient or
persistent instabilities, which has been shown (see e.g. [10, 11]) to be an important factor that can
lead to non-Gaussian statistics.

These characteristics also define the modeling challenges for the study of these systems with
the most important being the interplay of a few intermittent modes with a large number of modes
that act as ‘reservoir’ of energy for the former. This large set of modes is usually characterized
by a broadband spectrum consisting of dispersive waves with weakly non-Gaussian statistics that
propagate and sporadically give rise to extreme, localized events. In contrast to this large set
of waves, extreme events are characterized by strong nonlinear energy transfers and non–Gaussian
statistics. Therefore, we have on the one hand a nearly Gaussian ‘heat bath’ of waves that propagate
in the presence of dispersion which leads to energy localization in random scales and places, and
on the other hand a nonlinear mechanism that uses the former as excitation to generate extreme
events [12].

It is clear from the above discussion that a mathematical framework able to handle problems
characterized by extreme events should include higher order statistics and also should be able to
deal with the inherent nonlinear character of the underlying dynamics. However, the computational
cost associated with these requirements would be enormous since i) the number of physical degrees
of freedom is usually very large and ii) because the description of non-Gaussian properties and
in particular the description of rare events that ‘live’ in the tails of the distribution requires a
substantial amount of realizations which is very hard to obtain and process in a direct Monte-Carlo
framework. In addition, a purely statistical understanding cannot provide a rigorous analysis of
the underlying physical mechanisms.

On the other hand, order-reduction approaches based, for example, on Polynomial Chaos expan-
sions or Proper Orthogonal decompositions have proven to be of limited applicability in nonlinear
systems with intermittency [13]. Due to their localized spatial and temporal character, extreme
events carry only small amounts of energy compared with other global modes that characterize
the full response field. Therefore, standard order-reduction techniques will most likely miss the
essential parts of the extreme event dynamics.

To simulate the dynamical mechanisms that lead to the generation of extreme events, we use
the MMT model, a one-dimensional nonlinear dispersive equation originally proposed by Majda,
McLaughlin, and Tabak to assess the validity of weak turbulence theory [14]. MMT admits four-
wave resonant interactions and, when coupled with large scale forcing and small scale damping,
admits a rich family of spectra exhibiting direct and inverse cascades [15, 16]. Zakharov et. al.
have also analyzed the MMT model in detail and have used large amplitude coherent structures
present in MMT as models of extreme ocean waves [17, 18, 19]. In this work, we analyze in detail the
‘solitonic’ coherent structures in the focusing MMT, which have also been investigated by Cai et.
al. [16]. In their early stages, these localized structures resemble self-similar spatial collapses and
rapidly transfer energy to small scales where it is dissipated [16]. We are particularly interested
in these localized structures as they generate states which are extreme compared to the benign
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background out of which they arise.
In the present work, we first aim to develop analytical and numerical tools in order to understand

how these localized extreme events are triggered by spatially localized perturbations in the MMT
model. We illustrate that there is a critical spatial lengthscale and a critical amount of energy
associated with it that leads to the occurrence of extreme solutions. This critical scale is the result
of the interplay between wave dispersion, wave nonlinearity and selective dissipation that occurs
in high wavenumbers. For perturbations of a zero background state we are able to analyze this
phenomena directly by deriving a family of scale invariant solutions. However, the critical amount
of energy depends also on the background energy level of the system, the effects of which we analyze
numerically. In contrast to the standard linearized analysis, which considers small Fourier mode
perturbations about about a given state, the framework presented here considers spatially localized
perturbations that are not necessarily small.

We illustrate that these extreme events are characterized by low-dimensionality and we use a
spatially localized basis, a Gabor basis, with localization characteristics tuned according to the
results of the previous conclusions. Using the projected information of the extreme events to this
localized basis we perform a statistical analysis of the Gabor coefficients to reveal the strongly
non-Gaussian character associated with the strongly nonlinear interactions of these modes during
an extreme event. Note that this statistical structure, which is directly connected to the nonlinear
energy transfers that take place, is otherwise ‘buried’ in the broad-band spectrum of the full wave
field and its only signature in the stochastic field response is the heavy tail statistics.

Finally, we formulate predictive functionals that efficiently characterize the domain of attraction
to the extreme event solutions. These predictive functionals are formulated in a probabilistic fashion
in terms of the Gabor coefficients that correspond to the critical lengthscales. Given the current
information of the wavefield, they provide the probability of occurrence of an extreme event in a
later time instant. Note that the propagation of waves (having random phases) in the presence of
dispersion creates conditions for localization of energy in arbitrary scales and positions in space.
The formulated probabilistic functionals assess these random localizations of energy and quantify
the probability that they will lead to an occurrence of an extreme event in the future.

2 A one-dimensional, dispersive nonlinear prototype model
with intermittent events

We consider the following one-dimensional partial differential equation originally proposed by Ma-
jda, McLaughlin, and Tabak [14] for the study of 1D wave turbulence:

iut = |∂x|α u+ λ |∂x|−β/4
(∣∣∣|∂x|−β/4 u∣∣∣2 |∂x|−β/4 u)+ iDu (1)

where u is a complex scalar. On the real line, the pseudodifferential operator |∂x|α is defined
through the Fourier transform as follows:

̂|∂x|α u (k) = |k|αû (k) .

This operator may also be defined analogously on a periodic domain. The MMT equation was intro-
duced on the basis of a simple enough model to test thoroughly the predictions of weak turbulence
theory. In the context of dispersive nonlinear waves it provides a prototype system with non-trivial
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energy transfers between modes or scales, non-Gaussian statistics with heavy tails, and intermittent
events with high intensity, while remaining accessible to high resolution simulations [14, 15, 16, 20].
Therefore, it is an ideal basis to assess the performance of probabilistic quantification algorithms
for the occurrence and prediction of extreme events. Even though the MMT model was originally
derived through a heuristic approach, it was later shown that it can be rigorously obtained as an
approximation of the fully nonlinear wave system equations [21].

In the present work the parameter α is set to 1/2 as this matches the dispersion relation for
deep water waves ω2 = |k|. Setting α = 2 and β = 0 in 1 yields the nonlinear Schrödinger equation
(ignoring the dissipation term). As in [14] we include dissipation at small scales (modeling e.g.
wave breaking in the context of water waves) through a selective Laplacian operator Du, defined
in Fourier space:

D̂u(k) =

{
−(|k| − k∗)2û(k) |k| > k∗

0 |k| ≤ k∗

Similar dissipation models have been used in more realistic settings involving ocean water waves
[22]. The critical wavenumber is taken as k∗ = 500 which is a value that is large enough so that it
allows for the development of nonlinear instabilities that lead to extreme waves and small enough
to create energy cascades in higher wavenumbers and thus, allow for these waves to exist only for
finite-time.

We choose λ = −4, which corresponds to the focusing case and gives rise to four-wave resonant
interactions [14] which are relevant for ocean gravity waves. The latter cannot resonate in order
lower than four if we exclude the short wave gravity-capillary region of the spectrum where three-
wave interactions can occur [22]. Note that even though a connection with the fully nonlinear wave
system would require λ > 0 (defocusing case), we have found through direct numerical simulations
that for the one-dimensional case considered here such choice results in Gaussian statistics without
intermittent events. This is not the case for the two-dimensional system where the de-focusing
case may lead to non-Gaussian statistics [23]. On the other hand, for the one-dimensional case the
focusing case results in the development of extreme events (through four-wave resonance) and to
this end such a choice of parameters is suitable for a prototype system that generates rare events
of extreme intensity.

We consider the evolution of a sum of complex exponentials with independent, uniformly dis-
tributed random phases, meaning that initially u has a nearly Gaussian distribution. For a linear
model, the distribution would remain nearly Gaussian as the modes evolve independently. Inter-
estingly, even in simulations of the focusing nonlinear Schrödinger equation we find that u remains
nearly Gaussian. However, for the MMT model we find that the distribution u develops heavy tails
with a power law decay rate (see Figure 1).

The heavy tails in solutions of MMT are induced by the intermittent formation and subsequent
collapse of localized extreme events arising out of a nearly Gaussian background. Figure 2 displays
the origination and disappearance of such an extreme event. In their early stages these extreme
events resemble the collapses that are present in focusing MMT with no dissipation. In these
collapses, which have been described by Cai et. al. [16], energy is dramatically transferred to
smaller scales and the solution experiences a singularity in finite time. In our simulations, the small
scale dissipation included in (1) (modeling wave breaking in the context of water waves) ensures
that u remains regular for all times. Collapse dynamics have been found to induce heavy tailed
statistics in other situations as well, such as the damped-driven quintic 1D nonlinear Schrödinger
equation [24].
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Figure 1: Probability density for the real part of u for simulations of NLS and MMT (α = 1/2, β = 0)

Figure 2: Example of an extreme event arising out of a weakly non-Gaussian ‘heat bath’ of dispersive
waves with random phase.
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2.1 Numerical simulation and computation of statistics

We solve (1) for x ∈ [0, 2π] with periodic boundary conditions using a Fourier method in space
combined with a 4th order Runge-Kutta exponential time differencing scheme [25, 20]. This scheme
requires evaluation of the function φ(z) = (ez − 1)/z. Naive computation of φ can suffer from
numerical cancellation error for small z [26]. We use a Padé approximation code from the EXPINT
software package, which does not suffer from such errors [27]. We use 213 Fourier modes with a
time step of 10−3; results in this work were insensitive to further refinement in grid size.

For the statistical studies performed in this work, we evolve a sum of 31 complex exponentials
with independent, uniformly distributed random phases. We compute statistics by averaging over
time and space over 300 ensembles, each spanning 100 time units (t = 100 to t = 200). There is
no external forcing in our simulations and all the energy of the system comes through the initial
conditions while dissipation occurs whenever an extreme event takes place. To this end, we do not
observe an exact statistical steady state in our simulations, but after an initial transient where a
moderate amount of energy is dissipated through selective damping, the solution settles to a nearly
(or very slowly varying) statistical steady state where the L2 norm decays slowly (see Figure 3). We
focus on this slowly varying regime where roughly 2-4 extreme events occur per simulation in the
time window t ∈ [100, 200], and, as shown by Figure 3, these extreme events are uniformly prevalent
(roughly) throughout this time window (although they are slightly more common for earlier times).

Figure 3: Left: Decay of L2 norm of the solution: after 100 time units the decay rate becomes
small. Right: Locations of extreme events in an ensemble of simulations.

3 Nonlinear instabilities induced by spatially localized en-
ergy

In this section we examine the role of spatially localized energy in the formation of an extreme
event. More specifically, we define the energy E of a solution as

E , r2 =

ˆ ∣∣u2 (x)
∣∣ dx,

where r is the L2 norm of the solution, which is conserved by undamped MMT [17]. In the
undamped MMT equation, localized initial data with energy above some critical level leads to a
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finite time blowup [16, 17]. Here we examine how this critical energy level varies with the degree
of initial energy localization, as well as the energy of the background state, in the presence of
selective dissipation. Both of these parameters are important to determine the critical scale that
is most sensitive for the formation of an extreme event. For the zero background case, we are able
to analytically determine this relationship by deriving a scale invariant family of solutions. We
investigate the non-zero background case numerically.

Zero background energy: scale invariant solutions. We begin our analysis by focusing on
localized perturbations when we have zero energy background in the system. More specifically, we
consider a family of initial data of the form u(x, 0) = u0(x; c, L) = ce−2(x/L)

2

and determine how
the critical energy level required for blow-up depends on the length scale L. To do so, we derive an
L-parametric family of solutions wL, L > 0, defined by the scaling of a given solution u(x, t)

wL(x, t) =
1

Lp
u

(
x

L
,
t

Lq

)
.

To determine p and q, we plug this anzatz into MMT with no dissipation, which gives:

i

Lp+q
ut =

1

Lp+α
|∂x|αu+

λ

L3p−β |∂x|
−β/4

(∣∣∣|∂x|−β/4u∣∣∣2 |∂x|−β/4u) .
So w is also a solution to MMT if q = α and p = (α + β)/2, giving us the following family of
solutions:

wL(x, t) =
1

L(α+β)/2
u

(
x

L
,
t

Lα

)
Therefore, if for a reference lengthscale L = 1, we have the critical energy norm rcrit (1) (associated
with an initial condition u0 (x; c∗, 1)) that leads to a blow-up solution, the corresponding critical
energy for initial data localized for an arbitrary length scale L will be

r2crit(L) =
1

Lα+β

ˆ
u20

( x
L

; c∗, 1
)
dx = L1−α−βr2crit(1).

Hence, the critical energy norm rcrit (L) required to initiate a blow-up is given by

rcrit(L) = L(1−α−β)/2rcrit(1). (2)

We consider the special case α = 1/2, β = 0, which gives

rcrit(L) =
4
√
Lrcrit(1). (3)

Since the above function decreases to 0 as L becomes small, in the deep water wave dispersion case
only a small amount of localized energy is sufficient to initiate a blow-up. This fact holds as long
as the exponent of L in (2) is positive, meaning β < 1 − α, or simply β < 1/2 using the standard
value of α = 1/2. Pushkarev and Zakharov [19] use β = −3 to study extreme waves, which is
small enough to ensure that this relationship between localization and energy criticality still holds.
In fact, with β = −3 we have rcrit(L) = L7/2rcrit(1), so this relationship (rcrit decreasing as L
decreases) would presumably be even stronger than the β = 0 case we consider.

Note that for the case that selective dissipation is present, very localized amounts of energy will
be rapidly dissipated. In particular, if energy is too localized, then the selective Laplacian damping
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is dominant compared with the instability of the nonlinear terms and the amplitude of u decreases
relative to its initial state. However, for values of L that are not excessively small, we have a rapid
growth of the amplitude of u that leads to an energy cascade (see next section) to smaller scales
and subsequent dissipation by the selective Laplacian. In this way the high wavenumber damping
prevents the formation of a singularity due to continuous energy transfer and accumulation to
infinitesimally small scales and results in a finite lifetime for the extreme event (Figure 2).

Therefore, in the damped MMT, for each localization scale L that is not excessively small we
expect there to be a critical amount of energy that will trigger a nonlinear instability resulting in
an extreme event. We expect that, except for excessively small values of L, the above analysis will
still hold and the dissipation will only become relevant in the late stages of an extreme event where
it prevents the formation of a singularity. We quantify the critical energy for the damped system
using two different measures. First, we compute the finite-time divergence of nearby (in terms of
energy) initial perturbations through the quantity

|∂rq(r, L)| ,
∣∣∣∣ ∂∂r maxx,t |u(x, t; r)|

maxx u(x, 0; r)

∣∣∣∣
This quantity is displayed by a color plot in Figure 4. We use the sharp ridge of |∂rq| to determine
the critical energy level at which the transition to extreme events occurs. Additionally, we determine
the critical energy level by determining the set of values (r, L) at which q(r, L) > 1.5. The black
curve in Figure 4 outlines the region where q exceeds this threshold value. This curve compares
favorably with the results from the first method. Also in Figure 4 we present with a red dashed
curve the critical energy norm for the undamped system, given by (3). We emphasize that even
though Figure 4 was generated by numerically solving (1) on a domain of size 16π with periodic
boundary conditions, these results do not change if the domain size is increased further due to the
localization of these examples. This behavior contrasts sharply with similar experiments of the
nonlinear Schrodinger equation, where the values of |q| never become large and the sharp gradient
seen in Figure 4 does not occur.

We note that for the case of the damped system the critical energy norm closely resembles the
analytical prediction (3), which is a result of the interplay between dispersion and nonlinearity.
This is the case until we reach the critical scale Lc, below which dissipation is important and no
extreme solutions can occur. To this end this spatial scale Lc is the most sensitive to localized
perturbations i.e. it can be triggered with the lowest amount of energy, and it is essentially the
smallest scale where dissipation is still negligible. The existence of this critical scale that triggers
extreme events is the result of the synergistic action of dispersion, nonlinearity, and small scale
dissipation.

Case of finite background energy. We now consider the formation of an extreme event out of
a background with non-zero energy, that is, we evolve initial data of the form u(x, 0) = b+ce−2(x/L)

2

.
We first consider the case of small ratio c

b � 1 where we can investigate the evolution of u by

performing a linearized stability analysis about the plane wave solution of MMT, u(x, t) = be−iλb
2t.

For the nonlinear Schrödinger equation with periodic boundary conditions, this plane wave
solution is unstable to Fourier mode perturbations of wavenumber n when the following condition
is satisfied:

n <
Lx
2π

√
−2λb2,

where Lx is the domain width. The above is known as the Benjamin-Feir instability and has been
studied extensively by many authors [28, 29, 30, 31].
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Figure 4: Critical energy norm of a localized perturbation that leads to the formation of an ex-
treme event for the undamped (red dashed curve) and the damped MMT model in the absence
of background energy. The latter is described in terms of the finite-time divergence q of nearby
trajectories (color map) and the maximum value of the response field |u| .

In the context of the undamped MMT equation, the Benjamin-Feir instability can be generalized.
In particular one can show that for the case β = 0, the plane wave solution is unstable if λ < 0 and

n <
Lx
2π

(
−2λb2

)1/α
. (4)

Clearly, for α = 2, the above result agrees exactly with the classical Benjamin-Feir instability
criterion of NLS.

We emphasize that although the Benjamin-Feir modulation instability is present in both the
focusing MMT and the NLS, its manifestation is not the same in each case. We illustrate this fact
by numerical experiments involving no selective damping. For both equations, we take λ = −4 and
Lx = 2π, meaning that the critical value of b in (4) is roughly 0.35. Values of b larger than this
admit at least one unstable mode, and positive b less than this value have no unstable modes. We
evolve initial data of the form u(x, 0) = b + ε cos(x) with b ≈ 0.34 and b ≈ 0.36. For each value
of b, we set ε = 0.01. When b ≈ 0.34, the small perturbation does not grow for the MMT or the
NLS, agreeing with the linearized analysis (see Figure 5). For the NLS, unstable perturbations of
this kind initiate a nearly-periodic orbit where large, but bounded, coherent structures repeatedly
appear and subsequently dissolve in a Fermi-Pasta-Ulam-like recurrent cycle [32, 31]. However, in
the MMT, these unstable perturbations grow continuously and collapse into a singularity in finite
time (see Figure 5). This mechanism of collapse initiation via modulation instability, which has also
been studied by Cai et. al. [16], has significant implications for our critical energy analysis for the
nonzero background case. Although including high frequency damping will prevent the formation of
a singularity, such damping will not prevent an extreme event from occurring since it only becomes
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Figure 5: Benjamin-Feir instability for the NLS equation (top) and the MMT model (bottom) with
(α = 0.5, β = 0, λ = −4) .

relevant after energy has been transferred to the small scales; that is, after an extreme event has
already occurred (as in Figure 2). Thus, if b and Lx satisfy the Benjamin-Feir instability criterion

(4) with n = 1, initial conditions of the form u(x, 0) = b+ ce−2(x/L)
2

will initiate an extreme event
for any c > 0.

Figure 6 displays the critical energy norm of the perturbation ce−2(x/L)
2

required to initiate
an extreme event for various values of b and L. For b = 0, this critical amplitude is precisely the
curve described above and displayed in Figure 4, and for large enough b this critical amplitude
is infinitesimal due to the Benjamin-Feir instability. For intermediate values of b, the critical
amplitude presents a smooth transition between the two theoretically understood regimes. For
b = 0, we noted previously that the more localized the energy is, the smaller amount of this energy
is required to initiate a blowup. This fact remains true for nonzero background energy b until
the point where b is large enough so that a Benjamin-Feir instability occurs, which in this case
(Lx = 8π, λ = −4, α = 1/2) occurs at b = 0.25. picture is another manifestation that we can
have extreme responses well below the Benjamin-Feir energy threshold as a result of the interplay
between nonlinearity, dispersion and dissipation.

4 Stochastic dynamics during an extreme event

So far we have examined the conditions that lead to extreme wave solutions. In this section we will
study the nonlinear interactions taking place during the occurrence of an extreme event using tools
from stochastic analysis. We choose to project the solution u onto an appropriate (localized) set
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Figure 6: Critical energy norm of localized perturbations that lead to extreme events in the presence
of background energy for the damped MMT model (α = 0.5, β = 0).

of modes. Given the localized character of extreme events, global basis elements such as Fourier
modes will not be able to describe effectively their dynamical properties since, despite their large
amplitude, extreme events carry very small portion of energy of the overall field spectrum.

To this end, it is more informative to choose a set of modes which incorporate the localized
character of the extreme events. We use the following family of Gabor basis elements consisting of
complex exponentials multiplied by Gaussian window functions:

vn(x;xc) , exp

[
−2

d(x, xc)
2

L2

]
ei2πnx/L, n = 0, 1, 2, ... (5)

where d(x, xc) = min(|x−xc|, 2π−|x−xc|) expresses the distance from the center point xc measured
in the periodic domain. We then compute the Gabor projection coefficients of the solution.

Yn(xc, t) , 〈u(x, t), vn(x;xc)〉/||vn(x;xc)||2,

where 〈·, ·〉 denotes the standard L2 inner product. We noted in Section 3 that there is a critical
scale Lc ≈ 0.01 that is most sensitive to the formation of an extreme event, in that the required
energy to trigger an extreme event is smallest at this particular scale. In practice, we have observed
that these extreme events typically originate by energy localization in a slightly larger scale than
Lc. This motivates our choice of L = π/100 ≈ 3Lc, which is still extremely sensitive to small
perturbations (Figure 4). After a sufficient amount of energy is localized in this scale, an extreme
peak is then produced as energy is transferred into the smaller scales until it reaches the scale at
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Figure 7: Energy cascade during an extreme event. Top row: extreme event shown in (x, t) space

together with the high wavenumber energy Eh =
∑
n≥1 ‖Yn‖

2
. Second row: Gabor basis elements

vn(x; 0). Third row: modulus of the Gabor coefficients ‖Yn(xc, t)‖ .

which selective dissipation is present. We have chosen L = 0.031 based on this argument with the
goal of using the coefficient Y0 as an indicator of an upcoming extreme event.

In Figure 7 we present the Gabor coefficients in space and time during the occurrence of a
pair of extreme events. More specifically, in the first row (left) we show the extreme waves in the
(x, t) space. The Gabor basis elements are shown in the second row and the Gabor coefficients are

shown in the third row. The Euclidian sum of the oscillatory Gabor coefficients, Eh =
∑
n≥1 ‖Yn‖

2

expresses the energy that ‘lives’ in high wavenumbers and this is shown in the top-right panel.
For the Gabor coefficients that correspond to the oscillatory basis elements (Y1, Y2), we note

that away from the region of the extreme events, wave components propagate almost independently,
according to the dispersion relation, in a close to linear fashion. The energy of the non-oscillatory
mode (expressed through the Gabor coefficient Y0) presents a more static (non-propagating) be-
havior with high intensity that builds up before the extreme event. During the strongly non-linear
phase (of the extreme response), the Gabor coefficients of the oscillatory basis elements are not
governed by the dispersion relation anymore, but they also present a more static (non-propagating)
behavior characterized by a large build up of their energy. This is the result of a strong, nonlinear
energy cascade initiated from the unstable lengthscale L, described by the non-oscillatory mode v0,
and ending to higher wavenumbers where it is dissipated (Figure 7).

Statistics and energy transfers during the dissipation phase. The strong nonlinear
energy transfer from the unstable scale L to smaller scales is manifested by the non-Gaussian
statistics of the Gabor coefficients during an extreme event. The connection between nonlinear
energy transfers and non-Gaussian statistics has been rigorously established in [10, 11, 33] in the
context of viscous turbulent flows. Consider an orthonormal set of modes vi, i = 0, 1, 2, ..., nc
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Figure 8: Energy cascade to higher wavenumbers during the occurrence of extreme events shown
in terms of the moduli of the Fourier coefficients for the MMT model.

(although the modes (5) are not orthonormal, they are nearly so) which are active during the
occurrence of an extreme event and and let the background stage (i.e. the full stochastic solution
during a non-extreme regime) described by u (x, t) . Then, the MMT equation with α = 0.5, β = 0

ut = −i |∂x|1/2 u− iλ |u|2 u+Du

will take the projected form for each vi

dYi
dt

=
〈[
D − i |∂x|1/2

]
u, vi

〉
+
∑
k

Yk

〈[
D + |∂x|1/2

]
vk, vi

〉
(6)

− iλ

〈∣∣∣∣∣u+
∑
k

Ykvk

∣∣∣∣∣
2(

u+
∑
k

Ykvk

)
, vi

〉
.

The growth rate of the energy of Yi will have the form

d |Yi|2

dt
=
dYi
dt

Y ∗i +
dY ∗i
dt

Yi = 2 Re

[
dYi
dt

Y ∗i

]
.

Note that in equation (6) the first line on the right hand side involves either energy conserving
terms such as wave dispersion or negative definite terms such as dissipation (which occurs for high

wavenumbers only). All the other contributions towards changes of |Yi|2 will only occur through
the nonlinear interactions of the modes:

d|Yi|2

dt

∣∣∣∣∣
NL

= −2 Re

iλ〈∣∣∣∣∣u+
∑
k

Ykvk

∣∣∣∣∣
2(

u+
∑
k

Ykvk

)
, vi

〉
Y ∗i


where the bar denotes ensemble average. We focus on the energy cascade regime from the mode v0
to higher wavenumber modes during an extreme event.
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Figure 9: Isosurfaces of the joint pdf of the imaginary part of Y0, Y1, and Y2 near to (left) and away
from (right) extreme events.

We compute the Gabor coefficients for 400 values of xc equally distributed between 0 and 2π,
with L ≈ 3Lc.. We then classify each point (xc, t) into two regimes: points nearby an extreme event
and points away from extreme events. For each of these groups, we compute the joint statistics of
the Gabor coefficients using data from an ensemble of MMT simulations with random initial data
(details of these simulations are given in Section 2.1). Figure 9 displays the joint statistics of the
imaginary parts of Y0, Y1, and Y2 near (left subplot) and far (right subplot) from extreme events.

Away from extreme events the isosurfaces of the probability density function are elliptical,
indicating that the Gabor coefficients are nearly Gaussian in this regime. Moreover, the time
oscillatory character of the wave components results in zero average value (in the ensemble sense)
for all the corresponding Gabor coefficients Yi = 0, i = 1, 2, ... (for both regimes). Due to this fact,
as well as the Gaussian distribution of the coefficients Yi in the non-extreme events regime, the
average change of their energy due to nonlinear interactions, becomes zero.

On the other hand, the statistics near extreme events are highly non-Gaussian, with Y0 exhibiting
a bimodal distribution. The real parts of the Gabor coefficients are distributed similarly. This non-
Gaussian distribution is directly related to the energy cascade from the non-oscillatory mode to the
strongly dissipative, high wavenumber modes.

Dynamics during the built-up phase of the extreme event. In Figure 10, we show how
an extreme event trajectory emerges out of the Gaussian background describing the heat bath of
waves propagating under the dominant effect of the dispersion relation. From the same figure it is
clearly illustrated how extreme events are associated with large values of |Y0|. The nature of this
association is particularly interesting: |Y0| becomes large just before (and after) extreme events. An
example of this behavior is displayed in Figure 11, where we observe the increase of |Y0| while the
overall response field |u| has regular values. This growth continues until we have an extreme event
and it is followed by a sudden drop that is associated with an energy transfer to high wavenumbers
illustrated by the energy Eh (as described previously). This agrees with observations by Cai et.
al. [16] that these extreme events form by focusing energy to high wavenumbers until saturation
at a critical scale, at which point they radiate energy back to larger scales. We are particularly
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Figure 10: The red curves show trajectories of the imaginary parts of Y0, Y1, and Y2 during extreme
events. The blue surface is an isosurface of the joint density function for the imaginary parts of Y0,
Y1, and Y2 containing 97% of the total probability–this shape is dominated by the Gaussian random
waves that propagate with random phase under the effect of dispersion and weak nonlinearity.

interested in the predictive utility of the localized energy |Y0| buildup that occurs before extreme
events, often 1-2 time units in advance for the considered set of parameters.

This phenomenon agrees with our analysis from Section 3, where we showed that a sufficient
amount of localized energy is sufficient to trigger an extreme event. These localizations of energy
occur randomly through the dispersive propagation of waves that have random phases. Due to the
localized nature of v0, the associated Gabor coefficient |Y0| measures such localized energy and is
thus an indicator of an extreme event in the near future. When the extreme event occurs, energy is
transferred into the more oscillatory modes (v1, v2, . . . ), but the Gabor coefficients associated with
these modes lack predictive utility since they grow simultaneously with, rather than prior to, the
extreme event (see Figure 11).

5 Short-term prediction of extreme events

The Gabor coefficient Y0 is a measure of energy localized at a particularly sensitive length scale, at
which only a small amount of energy is necessary to trigger an extreme event. Thus, large values
of |Y0| often indicate that an extreme event will occur in the near future. We now use this fact to
develop short-term predictive capacity for extreme events. To do so, we first compute, for various
values of Y0, the following family of probability distributions:

FY0(U) , P

 max
|x∗−xc|<L

t∗∈[t−1.5,t+1.5]

|u(x∗, t∗)| > U
∣∣∣ |Y0(xc, t)| = Y0

 . (7)

That is, given a particular value of |Y0(xc, t)|, we compute the probability that |u| exceeds U nearby.
The timescale of 1.5 time units has been chosen based on our observation of the time required for
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Figure 11: Time evolution of |u|, |Y0|, and Eh at a spatial location of an extreme event. The y-axis
scale on the left corresponds to |u|, the right y-axis scale corresponds to |Y0| and Eh.

the transition from large values of |Y0| to extreme values of |u| We compute these distributions
from an ensemble of 300 simulations, each spanning 100 time units (see Section 2.1 for simulation
details).

In Figure 12, we display the family of conditional density functions corresponding to (7). Clearly
there is a critical value of |Y0| which, when exceeded, implies that a nearby extreme event is highly
likely. We now compute the probability of a nearby extreme event, given a particular value of |Y0|.
Here we define an extreme event as an instance where |u| > 2.5. This value is greater than twice the
significant wave height–here taken to be four times the typical deviation of the wave field (and is
consistent with the informal definition of rogue waves in the ocean [1]). This probability, displayed
in the right half of Figure 12, is simply FY0

(2.5) from (7).
There is a clear bifurcation in the distributions displayed in Figure 12. When |Y0| > 1.1, the

likelihood of an upcoming extreme event increases dramatically. We may use the definition of ||v0||
to compute the energy level at which this bifurcation occurs at the critical length scale L = 0.031:

1.1||v0|| = 1.1

√ˆ
e−2(x/L)2 dx = 1.1

√
L 4
√
π/2 ≈ 0.22

This critical energy value of 0.22 agrees well with our results from Section 3, where we found that
Gaussian initial data localized at length scale L = 0.031 initiated extreme events if the energy level
exceeds approximately 0.2 (see Figure 4). These results from Section 3 were performed for localized
states with a zero background, but the agreement of this analysis with the bifurcation energy level in
Figure 12 is significant. Specifically, it suggests that the same localized energy instability discussed
in Section 3 for toy examples triggers the formation of extreme events out of more complex states.

We now analyze the performance of the computed extreme event probability data from Figure 12
as a predictive scheme. At a given time, we compute |Y0(xc, t)| for various values of xc and use our
compiled statistics (Figure 12) to estimate the probability of an extreme event. If this probability
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Figure 12: Left: Family of conditional densities of maximum nearby |u| given current value of |Y0|.
Right: Probability of an extreme event in near future given |Y0|.

exceeds 0.8, we predict that an extreme event will occur. Choosing a larger probability threshold
value would decrease our rate of false positives; choosing a smaller value would increase this rate but
would have the benefit of increasing the amount of time by which extreme events are predicted in
advance. We found that a probability threshold of 0.8 provides a reasonable balance between these
two effects (false positive rate versus advanced warning time). Essentially the predictive scheme
measures the probability that a given combination of phases between wave components (the current
form of the wave field) belongs to the domain of attraction of an extreme wave.

We tested this scheme on 50 simulations of (1). These simulations were not used to compute
the statistics in (7) and Figure 12. In these simulations, we predicted an extreme event 191 times,
and 155 correctly predicted an extreme event, meaning that the false positive rate was only 18.9%.
There was only 1 extreme event that was not predicted by our scheme, which means that the false
negative rate was less than 1%. As mentioned in Section 4, in addition to preceding extreme events,
large values of Y0 can occur after extreme events as energy is being transferred to larger scales.
However, large values of |Y0| in this particular situation do not actually imply that an extreme
event is forthcoming. To avoid false positive predictions that such behavior would generate, we
“turn off” our predictive scheme in the spatial region nearby the extreme event for the following 1
time unit.

In Figure 13 we present the spatial distribution of the probabilistic predictor (left) and the
actual wave field (right) for one random realization. As we observe the computed criterion captures
accurately not only the temporal but also the spatial position of the extreme wave. The same
conclusions can be drawn from Figure 14 where our prediction scheme is often able to predict
extreme events a full 1-2 time units in advance .

6 Discussion and Conclusions

We have examined the synergistic activity of nonlinearity, dispersion, and dissipation towards the
formation of extreme events in a one-dimensional prototype system that possesses four-wave res-
onant interactions, the focusing MMT equation. The latter provides a relatively simple model of
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Figure 13: Left: Spatial distribution of probability for a nearby extreme event. Right: |u| as a
function of space and time. The above figure shows the spatial skill of our predictive scheme
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Figure 14: Spatial maximum values of |u| and extreme event probability, showing that our predictive
scheme is able to give advance warning of extreme events.
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extreme events arising out of a nearly Gaussian background with broad-band spectrum, mimicking
in this way many features of rogue waves in the ocean. Through analytical and numerical tools
we have shown that the MMT is highly sensitive to localized perturbations of a particular critical
length scale (Figure 4), which we analyze thoroughly. We show the existence of a family of solutions
with a scale-invariance property and based on this fact we quantify the required localized amount
of energy that triggers an extreme event. Although the existence of a critical energy level for
extreme events is certainly related to the modulation instability, our analysis illustrates that even
zero-backroung-energy states can lead to an extreme event if a localized perturbation of appropriate
lengthscale and intensity is applied. These localized perturbations can occur randomly through the
dispersive propagation of waves that have with random relative phase.

We have illustrated that these extreme events are characterized by low-dimensionality and we
have use a spatially localized basis, a Gabor basis to describe their characteristics. By performing a
statistical analysis of the Gabor coefficients we have been able to develop an inexpensive predictive
scheme that is reliable with few false positives and false negatives. Furthermore, our scheme shows
a high degree of spatial skill and issues warnings in advance (often 1-2 time units before the extreme
event). Future research efforts include the extension of the prediction window by combining the
presented approach with nonlinear filtering techniques [34]. We are also interested on applying
the presented framework in more realistic two dimensional nonlinear wave models and a current
research effort is focused on the wave equation by Trulsen et. al. [21] which, like the MMT model,
includes the exact dispersion relation for gravity waves over deep water.

Acknowledgments. This research effort is funded by the Naval Engineering Education Center
through grant 3002883706; We are grateful to Dr. Craig Merrill (technical point of contact for this
project) for numerous motivating discussions and support. We would like to thank Prof. Andrew
Majda who suggested the MMT model as a prototype system for extreme events as well as for
numerous other stimulating comments. We are grateful to Dr. Ian Grooms for providing a version
of his numerical solver for the MMT system, as well as to Lake Bookman for helpful discussions.

References

[1] K. Dysthe, H. Krogstad, and P. Muller, “Oceanic rogue waves,” Annu. Rev. Fluid Mech.,
vol. 40, p. 287, 2008.

[2] N. Akhmediev and E. Pelinivsky, “Editorial – introductory remarks on ‘discussion and debate:
Rogue waves – towards a unifying concept?’,” Eur. Phys. J. Special Topics, vol. 185, pp. 1–4,
2010.

[3] P. Muller, C. Garrett, and A. Osborne, “Rogue waves,” Oceanography, vol. 18, no. 3, pp. 66–75,
2005.

[4] W. Xiao, Y. Liu, G. Wu, and D. Yue, “Rogue wave occurrence and dynamics by direct simu-
lations of nonlinear wave-field evolution,” Journal of Fluid Mechanics, vol. 720, pp. 357–392,
2013.

[5] J. Neelin, B. Lintner, B. Tian, Q. Li, L. Zhang, P. Patra, M. Chahine, and S. Stechmann,
“Long tails in deep columns of natural and anthropogenic tropospheric tracers,” Geophysical
Research Letters, vol. 37, p. L05804, 2010.

19



[6] A. J. Majda and B. Gershgorin, “Quantifying uncertainty in climate change science through
empirical information theory,” Proceedings of the National Academy of Sciences, vol. 107,
pp. 14958–14963, 2010.

[7] V. Kishore, M. Santhanam, and R. Amritkar, “Extreme events and event size fluctuations in
biased random walks on networks,” Physical Review E, vol. 85, p. 056120, 2012.

[8] P. Pourbeik, P. Kundur, and C. Taylor, “The anatomy of a power grid blackout - root causes
and dynamics of recent major blackouts,,” IEEE Power and Energy Magazine, vol. 4, no. 5,
pp. 22–29, 2006.

[9] E. Kreuzer and W. Sichermann, “The effect of sea irregularities on ship rolling,” Computing
in Science and Engineering, vol. May/June, pp. 26–34, 2006.

[10] T. P. Sapsis, “Attractor local dimensionality, nonlinear energy transfers, and finite-time insta-
bilities in unstable dynamical systems with applications to 2D fluid flows,” Proceedings of the
Royal Society A, vol. 469, no. 2153, p. 20120550, 2013.

[11] T. P. Sapsis and A. J. Majda, “A statistically accurate modified quasilinear gaussian closure
for uncertainty quantification in turbulent dynamical systems,” Physica D, vol. 252, pp. 34–45,
2013.

[12] A. Osborne, “The random and deterministic dynamics of ’rogue waves’ in unidirectional, deep-
water wave trains,” Marine Structures, vol. 14, pp. 275–293, 2001.

[13] A. J. Majda and M. Branicki, “Lessons in uncertainty quantification for turbulent dynamical
systems,” Discrete and Continuous Dynamical Systems, vol. 32, pp. 3133–3221, 2012.

[14] A. Majda, D. W. McLaughlin, and E. Tabak, “A one-dimensional model for dispersive wave
turbulence,” J. Nonlinear Sci., vol. 6, pp. 9–44, 1997.

[15] D. Cai, A. J. Majda, D. W. McLaughlin, and E. G. Tabak, “Spectral bifurcations in dispersive
wave turbulence,” Proceedings of the National Academy of Sciences, vol. 96, no. 25, pp. 14216–
14221, 1999.

[16] D. Cai, A. Majda, D. McLaughlin, and E.G.Tabak, “Dispersive wave turbulence in one dimen-
sion,” Physica D, vol. 152-153, pp. 551–572, 2001.

[17] V. Zakharov, P. Guyenne, A. Pushkarev, and F. Dias, “Wave turbulence in one-dimensional
models,” Physica D., vol. 152-153, pp. 573–619, 2001.

[18] V. Zakharov, F. Dias, and A. Pushkarev, “One-dimensional wave turbulence,” Physics Reports,
vol. 398, pp. 1–65, 2004.

[19] A. Pushkarev and V. Zakharov, “Quasibreathers in the mmt model,” Physica D, vol. 248,
pp. 55–61, 2013.

[20] I. Grooms and A. J. Majda, “Stochastic superparameterization in a one-dimensional model for
wave turbulence,” Commun. Math. Sci., vol. 12, no. 3, pp. 509–525, 2014.

[21] K. Trulsen, I. Kliakhandler, K. Dysthe, and M. Velarde, “On weakly nonlinear modulation of
waves on deep water,” Phys. Fluids, vol. 12, p. 2432, 2000.

20



[22] G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. Janssen, Dy-
namics and modeling of ocean waves. Cambridge University Press, 1994.

[23] M. Onorato, A. R. Osborne, and M. Serio, “Extreme wave events in directional, random oceanic
states,” Phys. Fluids, vol. 14, no. 4, p. L25, 2002.

[24] Y. Chung and P. Lushnikov, “Strong collapse turbulence in a quintic nonlinear schrodinger
equation,” Physical Review E, vol. 84, 2011.

[25] S. Cox and P. Matthews, “Exponential time differencing for stiff systems,” Journal of Compu-
tational Physics, vol. 176, no. 2, pp. 430–455, 2002.

[26] A.-K. Kassam and L. N. Trefethen, “Fourth-order time-stepping for stiff pdes,” SIAM Journal
on Scientific Computing, vol. 26, no. 4, pp. 1214–1233, 2005.

[27] H. Berland, B. Skaflestad, and W. M. Wright, “Expint—a matlab package for exponential
integrators,” ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 1, p. 4, 2007.

[28] T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water,” J. Fluid.
Mech., vol. 27, pp. 417–430, 1967.

[29] T. B. Benjamin, “Instability of periodic wavetrains in nonlinear dispersive systems,” Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 299,
no. 1456, pp. 59–76, 1967.

[30] V. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,”
Journal of Applied Mechanics and Technical Physics, vol. 9, no. 2, pp. 190–194, 1968.

[31] H. C. Yuen and W. E. Fergusen, “Relationship between Benjamin-Feir instability and recur-
rence in the nonlinear Schrodinger equation,” Phys. Fluids, vol. 21, no. 8, 1978.

[32] M. J. Ablowitz and B. Herbst, “On homoclinic structure and numerically induced chaos for
the nonlinear Schrodinger equation,” SIAM J. Appl. Math., vol. 50, no. 2, pp. 339–351, 1990.

[33] T. P. Sapsis and A. J. Majda, “Statistically accurate low order models for uncertainty quan-
tification in turbulent statistically accurate low order models for uncertainty quantification
in turbulent dynamical systems,” Proceedings of the National Academy of Sciences, vol. 110,
pp. 13705–13710, 2013.

[34] A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems. Cambridge University Press,
2012.

21


	1 Introduction
	2 A one-dimensional, dispersive nonlinear prototype model with intermittent events
	2.1 Numerical simulation and computation of statistics

	3 Nonlinear instabilities induced by spatially localized energy
	4 Stochastic dynamics during an extreme event
	5 Short-term prediction of extreme events
	6 Discussion and Conclusions

