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SLOWLY CONVERGING YAMABE FLOWS

ALESSANDRO CARLOTTO, OTIS CHODOSH, AND YANIR A. RUBINSTEIN

Abstract. We characterize the rate of convergence of a converging volume-normalized Yamabe
flow in terms of Morse theoretic properties of the limiting metric. If the limiting metric is an
integrable critical point for the Yamabe functional (for example, this holds when the critical point
is non-degenerate), then we show that the flow converges exponentially fast. In general, we make
use of a suitable  Lojasiewicz–Simon inequality to prove that the slowest the flow will converge is
polynomially. When the limit metric satisfies an Adams–Simon type condition we prove that there
exist flows converging to it exactly at a polynomial rate. We conclude by constructing explicit
examples to show that this does occur. These seem to be the first examples of a slowly converging
solution to a geometric flow.

1. Introduction

Let Mn be an arbitrary smooth closed manifold of dimension n ≥ 3 and set N = 2n
n−2 . In this

article we study the quantitative rate of convergence of the volume-normalized Yamabe flow

∂g

∂t
= −(Rg − rg)g,

for complete Riemannian metrics g(t) on M . Here Rg is the scalar curvature and rg is its average.
This is a flow on a volume normalized conformal class on M . It arises as the gradient flow of
the Einstein–Hilbert functional and thus is a fundamental tool in the study of scalar curvature
deformations, mostly in connection with the celebrated Yamabe problem. Motivated by the well-
known uniformization theorem, the problem asks whether for any given Riemannian manifold
(M0, g0) one can find a positive function w such that the conformal metric wN−2g0 has constant
scalar curvature. An affirmative answer to this question was obtained by the combined efforts of
Yamabe [30], Trudinger [29], Aubin [2], and Schoen [23]; we refer the reader to the survey article
[18].

In unpublished work, Hamilton introduced the Yamabe flow as a possible alternative method for
solving the Yamabe problem and showed that the flow existed for all time. However, the problem
of convergence turns out to be highly non-trivial. For conformally flat metrics with positive Ricci
curvature, Chow showed that the flow converged as t→ ∞ to a metric of constant scalar curvature
[15]. Ye removed the Ricci curvature condition [31] and, subsequently, Schwetlick and Struwe
showed that the flow converged in dimensions 3 ≤ n ≤ 5 under the assumption that the starting
Yamabe energy was “not too large” [25]. The energy assumption was then removed by Brendle to
establish unconditional convergence of the flow in dimensions 3 ≤ n ≤ 5 in [8], and convergence in
dimensions n ≥ 6 under a technical hypothesis on the conformal class [9]. We refer to [11] for a
survey concerning these and related results.
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2 A. CARLOTTO, O. CHODOSH, AND Y.A. RUBINSTEIN

Our work complements these contributions by showing that based on certain Morse-theoretic
properties of the limit metric, the rate of convergence has either exponential or polynomial upper
bounds, and in the latter case, the polynomial rate of convergence cannot in general be improved
since it does in fact occur: therefore, it gives an essentially complete description of the rate of
convergence for this flow. Perhaps the most novel outcome of this work is the result that there
exist slowly converging geometric flows.

1.1. Main Results. We now list our main results (we will define the precise terminology below),
starting with the following statement concerning general upper bounds on the rate of convergence
of the Yamabe flow. Integrability is defined in Definition 8.

Theorem 1. Assume that g(t) is a Yamabe flow that is converging in C2,α(M,g∞) to g∞ as t→ ∞
for some α ∈ (0, 1). Then, there is δ > 0 depending only on g∞ so that

(1) If g∞ is an integrable critical point, then the convergence occurs at an exponential rate

‖g(t) − g∞‖C2,α(M,g∞) ≤ Ce−δt,

for some constant C > 0 depending on g(0).
(2) In general, the convergence cannot be worse than a polynomial rate

‖g(t) − g∞‖C2,α(M,g∞) ≤ C(1 + t)−δ,

for some constant C > 0 depending on g(0).

The question of the rate of convergence of the flow was raised by Ye [31, p. 36]. In general, the
polynomial rate of convergence cannot be improved, as we discuss below.

Two previous results on this question are worth mentioning. First, Struwe’s method of showing
that the Yamabe flow on the 2-sphere (which agrees with the Ricci flow in this case) converges
exponentially fast [28] can in fact be extended to prove that a Yamabe flow converging to the
standard round metric on the sphere (in all dimensions) converges exponentially fast (this also
follows from the work of Brendle [10]). We remark that this is a special case of case (1) of Theorem
1 as the round metric is integrable by Obata’s Theorem. Second, the convergence statement in
case (2) of Theorem 1 can in some sense be regarded as an implicit corollary of the arguments of
[8] (because we are assuming the metric converges, there cannot be any bubbling phenomena; thus,
one may use the remaining arguments in [8], that may be verified to apply in any dimension, to
conclude). The proof we give for Theorem 1 is self-contained and applies, in a unified framework,
to both settings. Moreover, the method we use directly applies to other gradient flows (e.g., the
Calabi flow) although we do not go into the details of such applications in this article.

The integrability condition is a nearly sharp condition for exponential convergence as is shown
in the next theorem. The Adams–Simon positivity condition is defined in Definition 10.

Theorem 2. Assume that g∞ is a non-integrable critical point of the Yamabe energy with order
of integrability p ≥ 3. If g∞ satisfies the Adams–Simon positivity condition ASp, then, there exists
a metric g(0) conformal to g∞ so that the Yamabe flow g(t) starting from g(0) exists for all time
and converges in C∞(M,g∞) to g∞ as t→ ∞. The convergence occurs “slowly” in the sense that

C−1(1 + t)
− 1

p−2 ≤ ‖g(t) − g∞‖C2,α(M,g∞) ≤ C(1 + t)
− 1

p−2 ,

for some constant C > 0.

The bulk of this article is devoted to the proof of Theorem 2. Our proof is based on an adaptation
of the remarkable tools developed by Simon and Adams–Simon in the study of isolated singularities
of minimal surfaces and harmonic maps to the parabolic setting and, more specifically, to the
Yamabe flow. As stated, three conditions need to be checked for a critical point g∞ to be a limit
point of a slowly converging Yamabe flow. Integrability and degeneracy are defined in Definition 8
and Lemma 9. The degeneracy can be studied by looking at the spectrum of the Laplace operator
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∆g∞ . For a degenerate metric, determining integrability (or lack thereof) depends on understanding
the set of constant scalar curvature metrics near g∞. For instance, if g∞ is isolated and degenerate it
must be non-integrable. Lastly, the Adams–Simon condition ASp (Definition 10) concerns the first
non-trivial term in the analytic expansion of the Lyapunov–Schmidt reduction F of the Yamabe
functional at g∞, whose order we denote by p.

We give two criteria, of different nature, to check the condition ASp:

• The condition AS3 is satisfied whenever

F3(v) = −2(N − 1)(N − 2)Rg∞

∫

M
v3 dVg∞

does not identically vanish on the nullspace Λ0, which is the linear span of functions v such
that (n − 1)∆g∞v + Rg∞v = 0. Of course, this can in principle be computed once Λ0 is
explicitly known.

• When p > 3, the condition ASp holds if g∞ is both degenerate and a strict local minimum
of the Yamabe functional.

The relevance of the second criterion is related to the solution of the Yamabe problem: if (M, [g])
is not the round sphere with the associated conformal structure, then the Yamabe functional, Y,
is coercive and thus has a global minimum gmin. As such, the existence of polynomially converging
flows is guaranteed by Theorem 2 whenever gmin is isolated but degenerate (which is simply a
condition on the spectrum of the Laplacian of gmin).

We give examples of applicability of these criteria in the following two propositions.

Proposition 3. Fix integers n,m > 1 and a closed m-dimensional Riemannian manifold (Mm, gM )
with constant scalar curvature RgM ≡ 4(n + 1)(m + n − 1). We denote the complex projective
space equipped with the Fubini–Study metric by (CPn, gFS), where the normalization of gFS is
fixed so that S

2n+1(1) → (CPn, gFS) is a Riemannian submersion. Then, the product metric
(Mm × CPn, gM ⊕ gFS) is a degenerate critical point satisfying AS3.

We remark that any closed manifold (M,gM ) whose scalar curvature is a positive constant may
be rescaled so as to satisfy the conditions of the previous proposition.

Proposition 4. Let n > 2. The product metric on S
1
(

1√
n−2

)

×S
n−1(1) is a non-integrable critical

point satisfying ASp for some p ≥ 4.

There are not many examples of degenerate critical points of geometric functionals where non-
integrability can be checked, cf. [1, §5]. In fact, it seems that our second example is the first of
a critical point which satisfies ASp for p > 3 (cf. [1, Remark 1.19] where the authors explain a
method for checking AS3 that does not work for p > 3).

In conclusion, we may construct examples of slowly converging Yamabe flows in a range of
conformal classes and in any dimension greater than 2. For example, Proposition 3 yields examples
which are not conformally flat, while the metrics in Proposition 4 are locally conformally flat.

Corollary 5. There exists a Yamabe flow in the conformal class of the metrics described in Propo-
sitions 3 and 4 that converges to the given metrics exactly at a polynomial rate, as in Theorem 2.

This seems to be the first construction of a slowly converging flow in the setting of geometric
flows of parabolic type. We expect that our methods can be adapted (possibly with the added
difficulty of a large gauge group) to produce slowly converging flows for other (possibly degenerate)
parabolic flows.

1.2. Outline of proof of Theorem 2. The proof of Theorem 2 appears in Section 4. It is rather
long and, at times, quite technical, and so we take the opportunity here to outline its structure.
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Ultimately, we would like to construct a solution u(t) to a quasilinear parabolic equation that

converges at a rate O((1 + t)
− 1

p−2 ) to the constant function 1. Intuitively, one expects the slow
convergence to be “generated” infinitesimally by the non-integrable directions, namely from Λ0. At
the same time, in order to use a fixed-point argument to generate a polynomially converging flow
it is most convenient to have a guess as to what the leading order behavior of the flow ought to

be, and then show that the actual solution is a small perturbation (of order o((1 + t)−
1

p−2 ) of this
guess. Fortunately, the Adams–Simon condition precisely furnishes such an ansatz: the function
ϕ(t) of Lemma 15. The proof of Theorem 2 thus amounts to showing that we can find u(t) solving
the Yamabe flow with

(1) u(t) − ϕ(t) = o((1 + t)−
1

p−2 .

We now explain the different steps to derive this estimate.
Step 1. Firstly, we would like to understand separately the behavior of the flow in Λ0 (the kernel
of the linearized Yamabe operator) and Λ⊥

0 (the orthogonal complement) directions. Thus, in
Proposition 17 we prove that the Yamabe flow is equivalent to two flows: the kernel-projected flow
that takes place on Λ0, and the kernel orthogonal-projected flow that takes place on Λ⊥

0 . There
are two key points about this result that make it useful. First, the kernel orthogonal-projected
flow (see (12)) is a perturbation of a linear parabolic equation. In other words, (12) is, of course,
nonlinear, but it can be considered as a linear equation since we prove an a priori estimate on the
error term. Second, the kernel-projected flow (see (11)) is a perturbation of a system of ODEs.
Again, we have a precise a priori estimate on the error term. That these estimates are sufficiently
strong will play a crucial role in a contraction mapping argument discussed in Step 4 below.

The proof of Proposition 17 involves some rather tedious computations. First, in Lemma 16, we
reduce the Yamabe flow to the situation of a gradient flow. Indeed, the Yamabe flow is certainly
a gradient flow on the level of metrics but that is not quite the case of the level of conformal
factor. After this preparatory step, we project the flow onto Λ0 and its orthogonal complement,
and try to reduce the resulting equations to (12) and (11). This is essentially a consequence of
multiple applications of Taylor’s theorem, the Lyapunov–Schmidt reduction (Proposition 7), and
the estimates on D3Y (Appendix A). It also uses the fact that the ansatz ϕ(t) allows for an
important cancellation that considerably simplifies the kernel-projected piece and thus allows to
reduce it to a system of ODEs.
Step 2. We obtain a solution to the kernel-projected flow in a weighted Hölder norm in Lemma 18.
This norm precisely captures a polynomial rate of decay of this solution.
Step 3. We obtain a solution to the kernel orthogonal-projected flow, again in a weighted norm, in
Lemma 19. Here some care is needed since we must again work with parabolic Hölder norms.
Step 4. Finally, in Proposition 20, we set up a fixed point argument in a Banach space that uses
the two different weighted norms (on Λ0 and Λ⊥

0 ). Here one needs to be quite careful with the
order of decay of the error terms collected in the previous three steps, in order to show that the
map is a contraction. Once we have shown that the map is a contraction, we have existence of a
Yamabe flow. Moreover, the flow satisfies the estimate (1) because we define the weighted norms
so that any function which is a perturbation of ϕ(t) in the given norm will fall off at a rate faster
than ϕ(t).

1.3. Structure of the article. Section 2 is devoted to fixing the notation and recalling some
basic facts about the (volume constrained) Yamabe functional, its analyticity and the Lyapunov–
Schmidt reduction near a critical point. In Section 3, we use the  Lojasiewicz–Simon inequality
to prove Theorem 1. Then, in Section 4 we study polynomial convergence phenomena for non-
integrable critical points and in Section 5 we prove Propositions 3 and 4. The computation of
the third variation of the reduced Yamabe energy (namely of the formula for F3 given above) is
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contained in Appendix A. Appendix B contains a proof of a technical lemma needed for the proof
of Proposition 4

2. Definitions and Preliminaries

The Yamabe functional is defined by

Y(g) := Vol(M,g)−
2
N

∫

M
Rg dVg,

where dVg is the Riemannian volume form associated to g, Rg denotes the scalar curvature of g
and

N =
2n

n− 2
.

If g = wN−2g∞ for some positive w ∈ C2(M) and smooth metric g∞, then an alternative expression
for the Yamabe functional (restricted to the conformal class of g) is

Y(w) =

∫

M

(
(N + 2)|∇g∞w|2 +Rg∞w

2
)
dVg∞

(∫

M wNdVg∞
) 2

N

,

since RwN−2g∞ = w1−N (Rg∞w − (N + 2)∆g∞w).
Consider the unit volume conformal class associated to the metric g∞

[g∞]1 :=

{

wN−2g∞ : w ∈ C2,α(M), w > 0,

∫

M
wNdVg∞ = 1

}

.

In order to avoid ambiguities, we define the following notation: for k ∈ N, we denote the k-th
differential of the Yamabe functional on [g∞]1 at the point w in the directions v1, . . . , vk by

DkY(w)[v1, . . . , vk].

As we will see from (5), the functional v 7→ DkY(w)[v1, . . . , vk−1, v] is in the image of L2(M,g∞)
under the natural embedding into C2,α(M,g∞)′. Therefore, we will also write

DkY(w)[v1, . . . , vk−1]

for this element of L2(M,g∞). When k = 1, we will drop the (second) brackets, and thus consider
DY(w) ∈ L2(M,g∞).

We may write the differential of Y restricted to [g∞]1 as

1

2
DY(w)[v] =

∫

M

[
−(N + 2)∆g∞w +Rg∞w − rwN−2g∞w

N−1
]
v dVg∞

=

∫

M
(RwN−2g∞ − rwN−2g∞)wN−1v dVg∞ ,

for v ∈ C2,α(M,g∞). Here,

rg = Vol(M,g)−1

∫

M
RgdVg.

Regarded as an element of L2(M,g∞), we have that

(2)
1

2
DY(w) = −(N + 2)∆∞w +Rg∞w − rwN−2g∞w

N−1.

As above, we have associated the metric wN−2g∞ to the function w. This is clearly a bijection,
so we will continue to do so throughout. Thus, a unit volume metric g∞ is a critical point for the
Yamabe energy Y restricted to [g∞]1 exactly when g∞ has constant scalar curvature.
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We now fix g∞ to be a unit volume, constant scalar curvature metric. We denote by CSC1

the set of unit volume, constant scalar curvature metrics in [g∞]1 and further define the linearized
Yamabe operator at g∞, L∞, by means of the formula

−(N − 2)

∫

M
wL∞v dVg∞ :=

1

2
D2Y(g∞)[v,w] =

1

2

d

ds

∣
∣
∣
s=0

DY((1 + sv)N−2g∞)[w],

for v ∈ C2(M). A computation shows that

L∞v = (n − 1)∆g∞v +Rg∞v.

We define Λ0 := kerL∞ ⊂ L2(M,g∞).
Spectral theory shows that Λ0 is finite dimensional (it is the eigenspace of the Laplacian for

the eigenvalue
Rg∞

n−1 ). We will write Λ⊥
0 for the L2(M,g∞)-orthogonal complement. It is crucial

throughout this work that the Yamabe functional is an analytic map. Here, we will mean analytic
in the sense of [32, Definition 8.8].

Lemma 6. Fix a metric g∞. The Yamabe functional is an analytic functional on {u ∈ C2,α(M,g∞) :
u > 0} in the sense that for each w0 ∈ C2,α(M,g∞) with w0 > 0, there is ǫ > 0 and bounded multi-
linear operators for each k ≥ 0

Y(k) : C2,α(M,g∞)×k → R,

so that if ‖w − w0‖C2,α < ǫ, then
∑∞

k=0 ‖Y(k)‖ · ‖w − w0‖kC2,α <∞, and

Y(w) =

∞∑

k=0

Y(k) (w − w0, w − w0, . . . , w − w0)
︸ ︷︷ ︸

k times

in C2,α(M,g∞).

It is not hard to verify this, by simply expanding the denominator of Y in a power series around
(∫

M wN
0 dVg∞

)−N
2 and noting that the numerator is already a bilinear function in w. Now, by

a standard Lyapunov–Schmidt reduction [32, Theorem 4.H], [27, §3]), we may use the Implicit
Function Theorem to show the following.

Proposition 7. There is ǫ > 0 and an analytic map Φ : Λ0 ∩ {v : ‖v‖L2 < ǫ} → C2,α(M,g∞)∩Λ⊥
0

so that Φ(0) = 0, DΦ(0) = 0,

(3) sup
‖v‖

L2<ǫ
‖w‖

L2≤1

‖DΦ(v)[w]‖L2 < 1,

and so that defining Ψ(v) = 1 + v + Φ(v), we have that Ψ(v) > 0, Vol(M,Ψ(v)N−2g∞) = 1 and

projΛ⊥
0

[DY(Ψ(v))] = projΛ⊥
0

[(

RΨ(v)N−2g∞ − rΨ(v)N−2g∞

)

Ψ(v)N−1
]

= 0.

Furthermore,

projΛ0
[DY(Ψ(v))] = projΛ0

[(

RΨ(v)N−2g∞ − rΨ(v)N−2g∞

)

Ψ(v)N−1
]

= DF,

where F : Λ0 ∩ {v : ‖v‖L2 ≤ ǫ} → R is defined by F (v) = Y(Ψ(v)). Finally, the intersection of
CSC1 with a small C2,α(M,g∞)-neighborhood of 1 coincides with

S0 := {Ψ(v) : v ∈ Λ0, ‖v‖L2 < ǫ,DF (v) = 0} ,
which is a real analytic subvariety (possibly singular) of the following (dim Λ0)-dimensional real
analytic submanifold of C2,α(M,g∞):

S := {Ψ(v) : v ∈ Λ0, ‖v‖L2 < ǫ} .
This follows in the usual way from the analytic implicit function theorem, cf., [32, Corollary

4.23]. We will refer to S as the natural constraint for the problem.
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Definition 8. For g∞ ∈ CSC1, we say that g∞ is integrable if for all v ∈ Λ0, there is a path
w(t) ∈ C2((−ǫ, ǫ)×M,g∞) so that w(t)N−2g∞ ∈ CSC1 and w(0) = 1, w′(0) = v. Equivalently, g∞
is integrable if and only if CSC1 agrees with S in a small neighborhood of 1 in C2,α(M,g∞).

For our purposes, the following equivalent characterization of integrability is crucial:

Lemma 9 ([1, Lemma 1]). Integrability as defined above is equivalent to the functional F (as
defined in Proposition 7, the Lyapunov–Schmidt reduction) being constant on a neighborhood of 0
inside Λ0.

We remark that if Λ0 = 0, i.e., if L∞ is injective, it is standard to call g∞ a non-degenerate
critical point; if this holds, g∞ is automatically integrable in the above sense. On the other hand,
if Λ0 is non-empty, then we call g∞ degenerate; we emphasize that there are many examples of
degenerate metrics, see e.g., [6].

Now, suppose that g∞ is a non-integrable critical point. Because F (v) is analytic (it is the
composition of two analytic functions), we may expand it in a power series

F (v) = F (0) +
∑

j≥p

Fj(v),

where Fj is a degree j homogeneous polynomial on Λ0 and p is chosen so that Fp is nonzero. We
will call p the order of integrability of g∞. We will also need a further hypothesis for non-integrable
critical points, introduced in [1].

Definition 10. We say that g∞ satisfies the Adams–Simon positivity condition, ASp for short (here
p is the order of integrability of g∞), if it is non-integrable and Fp|Sk attains a positive maximum

for some v̂ ∈ S
k ⊂ Λ0. Recall that Fp is the lowest degree non-constant term in the power series

expansion of F (v) around 0 and S
k is the unit sphere1 in Λ0.

The Adams–Simon positivity condition is ultimately needed for the construction of the function
ϕ in Lemma 15, that serves as an approximate solution to Yamabe flow converging at a polynomial
rate. It is an interesting question whether or not ASp is a necessary condition for the existence of
slowly converging examples in the elliptic and parabolic settings.

An important observation is that when the order of integrability, p, is odd, the Adams–Simon
positivity condition is always satisfied. Moreover, the order of integrability (at a critical point of
Y) always satisfies p ≥ 3 as we recall in Appendix A. Furthermore, we show there that

(4) F3(v) = −2(N − 1)(N − 2)Rg∞

∫

M
v3 dVg∞ .

3. The  Lojasiewicz–Simon inequality and rate of convergence

One of the tools for controlling the rate of convergence of the Yamabe flow will be the  Lojasiewicz–
Simon inequality. This was first proven for a certain class of geometric functionals by Simon [26],
who showed that the classical  Lojasiewicz inequality for analytic functions in finite dimensions
could be extended to a Banach space setting.

Definition 11 ( Lojasiewicz–Simon inequality). Suppose that B is a Banach space and U ⊂ B is
an open subset. Fix a functional E ∈ C2(U,R) and denote by DE ∈ C1(U,B′) its first derivative
(here B′ is the dual Banach space to B). We will additionally fix a Banach space W with a
continuous embedding W →֒ B′. For x0 ∈ U a critical point of E, i.e., DE(x0) = 0, we say
that E satisfies the  Lojasiewicz–Simon inequality with exponent θ ∈ (0, 12 ] near x0 if there exists a
neighborhood x0 ∈ V ⊂ U as well as constants C > 0 so that

|E(x) −E(x0)|1−θ ≤ C‖DE(x)‖W , for all x ∈ V .
1Here we are using the inner product induced on Λ0 coming from the L2 inner product on T1[g∞]1.
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Notice that if B = W = R
n, this reduces to the classical  Lojasiewicz inequality [20]. The

 Lojasiewicz–Simon inequality has recently received much attention; we will apply the following
general result to show that it holds in our setting:

Proposition 12 ([13, Theorem 3.10]). Fix B, U ⊂ B, E ∈ C2(U,R), W →֒ B′ and x0 ∈ U
with DE(x0) = 0 as in the previous definition. We also define the second derivative L := D2E ∈
C(U,B(B,B′)), where B(B,B′) is the space of continuous maps between the Banach spaces B and
B′. We will suppose that the following hypotheses are satisfied:

(A) The kernel ker L (x0) ⊂ B is complemented in B, i.e., there exists a projection P ∈
B(B,B) so that rangeP = ker L (x0). It follows from this that B = ker L (x0) ⊕ kerP is
a topological direct sum. Denote by P ′ ∈ B(B′,B′) the adjoint map.

(B1) The map W →֒ B′ is a continuous embedding.
(B2) The adjoint projection P ′ leaves W invariant.
(B3) The map DE ∈ C1(U,W ).
(B4) We have range L (x0) = kerP ′ ∩ W .

Under these hypothesis, we may find a neighborhood U0 of 0 in ker L (x0) and a neighborhood U1

of 0 in kerP as well as a function H ∈ C1(U0, U1) parametrizing the natural constraint, i.e.,

{x ∈ U0 + U1 : DE(x0 + x) ∈ (ker L (x0))
′} = {x +H(x) : x ∈ U0}.

Recall that the natural constraint is then

S := {x0 + x+H(x) : x ∈ U0}.
Finally, suppose that

(C) The function E(x0 + ·) satisfies the  Lojasiewicz inequality on the natural constraint S with
exponent θ ∈ (0, 12 ]. More precisely, we assume that

|E(x0 + x+H(x)) − E(x0)|1−θ ≤ C‖DE(x0 + x +H(x))‖W , for all x ∈ U0.

Then the functional E satisfies the  Lojasiewicz–Simon inequality near x0 with the same exponent
θ ∈ (0, 12 ].

Proposition 13. Suppose that g∞ is a unit volume constant scalar curvature metric. There are
θ ∈ (0, 12 ], ǫ > 0 and C > 0 only depending on n and g∞ so that for u ∈ C2,α(M,g∞) with

‖u− 1‖C2,α(M,g∞) < ǫ and Vol(M,uN−2g∞) = 1, then

|ruN−2g∞ − rg∞ |1−θ ≤ C‖DY(uN−2g∞)‖L2(M,g∞).

If g∞ is an integrable critical point then θ = 1
2 . If g∞ is non-integrable, then θ = 1

p where p is the

order of integrability of g∞.

Proof. To verify this, we will show that the hypothesis of Proposition 12 are satisfied for the Yamabe
energy Y. We work with the Banach spaces B := C2,α(M,g∞) and W := L2(M,g∞), and fix U a
small enough ball around 1 in C2,α(M,g∞) so that Proposition 7 is applicable in U .

Hypothesis (A) is the statement that Λ0 = kerL∞ is complemented in C2,α(M,g∞), which is
immediate by the following argument. One first checks that the L2-projection map projΛ0

restricts

to a continuous map from C2,α(M,g∞) onto Λ0 (since of course C2,α(M,g∞) →֒ L2(M,g∞) as a
continuous embedding); from this, it follows (cf. [13, p. 580]) that Λ′

0 is complemented (by the map
proj′Λ0

) in the dual space C2,α(M,g∞)′, and its complement Λ′⊥
0 may be canonically identified with

(Λ⊥
0 )′.
Hypothesis (B) is satisfied as follows: consider the map

W := L2(M,g∞) →֒ C2,α(M,g∞)′

f 7→
(

ϕ 7→
∫

M
fϕdVg∞

)

.
(5)
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(B1) This map is continuous.
(B2) The map proj′Λ0

∈ B(C2,α(M,g∞)′) leaves L2(M,g∞) invariant (of course, here we are con-

sidering the composition projΛ0
: C2,α(M,g∞) → Λ0 →֒ C2,α(M,g∞)).

(B3) That DY ∈ C1(U,L2(M,g∞)) follows from the explicit form of DY given above.
(B4) Finally, we must verify that rangeL∞ = Λ′⊥

0 ∩ L2(M,g). That rangeL∞ ⊆ Λ′⊥
0 ∩ L2(M,g)

is obvious because L∞ is formally self-adjoint on L2. The other inclusion follows from the
L2-spectral decomposition of L∞.

Thus to prove the  Lojasiewicz–Simon inequality with exponent θ ∈ (0, 12 ], it is enough to check
(C), i.e., that the Yamabe energy restricted to the natural constraint satisfies the  Lojasiewicz–Simon
inequality with exponent θ ∈ (0, 12 ]. Recall that in Proposion 7 we have defined F (v) = Y(Ψ(v)).
In the integrable case, clearly F (v) ≡ F (0), so F satisfies the  Lojasiewicz–Simon inequality for
θ = 1

2 .
In general, F is an analytic function whose power series has its first nonzero degree p, by defini-

tion. Thus, we may conclude (cf. [13, Proposition 2.3(b)]) that F satisfies the  Lojasiewicz–Simon
inequality with exponent θ = 1

p .

The claim follows from this—we have replaced Y(u) with ruN−2g∞ in the left hand side of the

inequality by using the assumption that uN−2g∞ has unit volume. �

Now, we show how the  Lojasiewicz–Simon inequality yields quantitative estimates on the rate
of convergence of the Yamabe flow.

Proof of Theorem 1. We consider a Yamabe flow g(t) = u(t)N−2g∞ which converges to g∞ in
C2(M,g∞) as t → ∞. We may assume without loss of generality that g∞ and thus g(t) have unit
volume. In Proposition 13 we have shown that there is a  Lojasiewicz–Simon inequality near g∞ for
some θ ∈ (0, 12 ]. We emphasize that if we are regarding DY(g(t)) as an element of L2(M,g∞), i.e.,

DY(g(t)) = 2
(
Rg(t) − rg(t)

)
u(t)N−1.

Choose t0 so that for t ≥ t0, ‖u(t) − 1‖C0(M,g∞) ≤ 1
2 . We then have that

d

dt

(
rg(t) − rg∞

)
= − 2

N − 2

∫

M

(
Rg(t) − rg(t)

)2
u(t)NdVg∞

≤ −c
∫

M

(
Rg(t) − rg(t)

)2
u(t)2N−2dVg∞

= −c‖DY(g(t))‖2L2(M,g∞)

≤ −c(rg(t) − rg∞)2−2θ.

where c > 0 is a constant depending only on n and g∞ (that we let change from line to line). Let
us first assume that the  Lojasiewicz–Simon inequality is satisfied with θ = 1

2 , i.e., that we are in

the integrable case. The previous inequality yields rg(t) − rg∞ ≤ Ce−2δt, for δ > 0 depending only
on n and g∞ and C > 0 depending on g(0) (chosen so that this actually holds for all t ≥ 0). On
the other hand, if the  Lojasiewicz–Simon inequality holds with θ ∈ (0, 12 ) then the same argument

shows that rg(t) − rg∞ ≤ C(1 + t)
1

2θ−1 .
Recall that the evolution equation for the conformal factor u = u(t) is given by

∂u

∂t
= − u

N − 2

(
Rg(t) − rg(t)

)
.

Thus, exploiting the fact that the flow converges in C2 we may use the  Lojasiewicz–Simon inequality
to compute

d

dt

(
rg(t) − rg∞

)θ
= θ

(
rg(t) − rg∞

)θ−1 d

dt

(
rg(t) − rg∞

)
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≤ −cθ
(
rg(t) − rg∞

)θ−1 ‖DY(g(t))‖2L2(M,g∞)

≤ −cθ‖DY(g(t))‖L2(M,g∞)

≤ −cθ
∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥
L2(M,g∞)

.

Thus, if θ = 1
2 (recall limt→∞ u(t) = 1),

‖u(t) − 1‖L2(M,g∞) ≤
∫ ∞

t

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥
L2(M,g∞)

ds

≤ −c
∫ ∞

t

d

ds

[(
rg(s) − rg∞

) 1
2

]

ds

= c
(
rg(t) − rg∞

) 1
2 ≤ Ce−δt.

A similar computation if θ ∈ (0, 12 ) yields ‖u(t) − 1‖L2(M,g∞) ≤ C(1 + t)−
θ

1−2θ .

To obtain C2 estimates, we may interpolate between L2(M,g) and W k,2(M,g) for k large enough:
interpolation [5, Theorem 6.4.5] and Sobolev embedding yields some constant η ∈ (0, 1) so that

‖u(t) − 1‖C2,α(M,g∞) ≤ ‖u(t) − 1‖η
L2(M,g∞)

‖u(t) − 1‖1−η
W k,2(M,g∞)

.

Because u(t) is converging to 1 in C2,α (and thus in C∞ by parabolic Schauder estimates and
bootstrapping), the second term is uniformly bounded. Thus, exponential (polynomial) decay of
the L2 norm give exponential (polynomial) decay of the C2,α norm as well. �

Remark 14. The assumption in Theorem 1 that u(t) converges in C2,α to the constant function
1 can be weakened to assuming merely that the Yamabe flow converges in LN (M,g0). Indeed, it is
possible to show that the latter already implies the flow has a smooth limit to which it converges
in C2,α. The LN convergence is equivalent to saying that the flow converges in the Ebin L2 metric
on the space of Riemannian metrics, restricted to the conformal class [3, §4].

4. Slowly converging Yamabe flows

In this section, we show that given a non-integrable critical point g∞ which satisfies a particular
hypothesis, then there exists a Yamabe flow g(t) so that g(t) converges to g∞ at exactly a polynomial
rate. This shows that the conditions in Theorem 1 are nearly sharp. We will do so by modifying the
arguments of Adams–Simon [1] to the parabolic setting (in [1, §6], the authors remark that their
results should extend to the parabolic setting, but this requires some serious work. Moreover, the
Yamabe functional does not completely fit into their framework because of the volume normalization
term).

4.1. Projecting the Yamabe flow with estimates. The goal of this subsection is to obtain
an equivalent formulation on the Yamabe flow in terms of two flows: one taking place on the
finite-dimensional space Λ0 (the “kernel-projected flow”), and the other on the infinite-dimensional
complement Λ⊥

0 (the “kernel orthogonal-projected flow”). The a priori estimates of Proposition 17
make this possible.

The next lemma will provide a function which approximately solves the Yamabe flow. The
remaining parts of this section will be devoted to perturbing it to an exact solution of the flow.
Here and in the sequel we will always use f ′(t) to denote the time derivative of a function f(t). The
constant T should be thought of as a large, but fixed, parameter. Because none of the constants
in the bounds that we will derive in Proposition 17 depend implicitly on T , we will be allowed to
take T large in the final step of the proof of Theorem 2.
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Lemma 15. Assume that g∞ satisfies ASp as defined in Definition 10, i.e., Fp|Sk−1 achieves a

positive maximum for some point v̂ in the unit sphere S
k−1 ⊂ Λ0. Then, for any T ≥ 0 fixed, the

function

(6) ϕ(t) := ϕ(t, T ) = (T + t)−
1

p−2

(
2(N − 2)

p(p− 2)Fp(v̂)

) 1
p−2

v̂

solves 2(N − 2)ϕ′ +DFp(ϕ) = 0.

Proof. Assume that Fp|Sk−1 achieves a positive maximum at v̂. Then for any λ ∈ R,

(7) DFp(λv̂) = p|λ|p−1Fp(v̂)v̂.

The reason for this is that Fp is p-homogeneous, so it is some function on S
k−1 times rp. The S

k−1

part has zero gradient at v̂ by assumption, so the gradient must be radial. The exact form follows
from differentiating the rp part along with scaling. Thus,

DFp(ϕ) = p(T + t)−1− 1
p−2

(
2(N − 2)

p(p− 2)Fp(v̂)

)1+ 1
p−2

Fp(v̂)v̂

=
2(N − 2)

p− 2
(T + t)−1ϕ(t).

Since ϕ′(t) = − 1
p−2(T + t)−1ϕ(t), the claim follows. �

In the next result and subsequently in this section we will always denote by ‖f(t)‖Ck,α the
parabolic Ck,α norm on (t, t + 1) ×M . More precisely, for α ∈ (0, 1), we define the seminorm

|f(t)|C0,α = sup
(si,xi)∈(t,t+1)×M
(s1,x1)6=(s2,t2)

|f(s1, x1) − f(s2, x2)|
(dg∞(x1, x2)2 + |t1 − t2|)

α
2

,

and for k ≥ 0 and α ∈ (0, 1), we define the norm

(8) ‖f(t)‖Ck,α =
∑

|β|+2j≤k

sup
(t,t+1)×M

|Dβ
xD

j
t f | +

∑

|β|+2j=k

|Dβ
xD

j
t f |C0,α ,

where the norm and derivatives in the sum are taken with respect to g∞. When we mean an
alternative norm, we will always indicate the domain.

The reason that we have chosen these norms is that they will be needed to close the fixed-point
iteration argument in Proposition 20; showing that a certain map is a contraction map will use
parabolic Schauder estimates (shown in Lemma 19), which require the chosen norms. As such, we
will use these norms throughout this section.

First, we prove a preliminary lemma, which allows us to estimate the difference between DY(u)
and the term u2−NDY(u) that appears on the right hand side of the evolution equation (13) for
the conformal factor under Yamabe flow. This will allow us to reduce this evolution equation to a
gradient flow. Intuitively, this is clear since u is approximately 1, but the point is to show that the
difference (u2−N − 1)DY(u) is sufficiently small with respect to certain weighted norms that will
be used in the proof of the contraction mapping argument (§4.4).

Lemma 16. There exists T0 > 0, ǫ0 > 0 and c > 0 all depending on g∞ and v̂ so that the
following holds: Fix T > T0. Then, for ϕ(t) as in Lemma 15 and w ∈ C2,α(M × [0,∞)), defining

u := Ψ(ϕ+ w

⊥

) + w⊥, then the term

E

⊥

0 (w) := projΛ0
(DY(u)u2−N −DY(u))
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satisfies






‖E

⊥

0 (w)‖C0,α ≤ c((T + t)
−1− 1

p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α)((T + t)

− 1
p−2 + ‖w‖C2,α)

‖E

⊥

0 (w1) − E

⊥

0 (w2)‖C0,α ≤ c((T + t)
−1− 1

p−2 + ‖w

⊥

1 ‖p−1
C0,α + ‖w

⊥

2 ‖p−1
C0,α + ‖w⊥

1 ‖C2,α + ‖w⊥
2 ‖C2,α)

× ‖w1 − w2‖C2,α

+c((T + t)−
1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)(‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α)

× ‖w

⊥

1 − w

⊥

2 ‖C0,α

+ c((T + t)
− 1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

2 ‖C2,α

Identical estimates hold for E⊥
0 (w) := projΛ⊥

0
(DY(u)u2−N − DY(u)). Here, we are using the

parabolic Hölder norms on (t, t+1)×M as defined above; the bounds hold for each t ≥ 0 fixed, with
the constants independent of T and t.

Proof. First,

u2−N = 1 +

∫ 1

0

d

ds

[
(

1 + s (ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + w⊥))
︸ ︷︷ ︸

:=φ

)2−N
]

ds

= 1 + (2 −N)

∫ 1

0
(1 + sφ)1−N φds.

So, letting E0(w) := DY(u)u2−N −DY(u), we have that

‖E0(w)‖C0,α ≤ c‖DY(u)‖C0,α (‖ϕ‖C0,α + ‖w
⊥

‖C0,α + ‖Φ(ϕ+ w
⊥

)‖C0,α + ‖w⊥‖C0,α)

≤ c‖DY(u)‖C0,α ((T + t)−
1

p−2 + ‖w

⊥

‖C0,α + ‖w⊥‖C0,α)
(9)

We have used the fact that Φ(0) = 0 and Φ : Λ0 → C2,α(M,g∞) is a differentiable map. Taylor’s

theorem shows that for ψs,r := 1 + r(ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥),

DY(u) = DY(Ψ(ϕ+ w

⊥

)) +

∫ 1

0
D2Y(ψs,1)[w

⊥]ds

= DY(Ψ(ϕ+ w

⊥

)) − 2(N − 2)L∞w
⊥

+

∫ 1

0

∫ s

0
D3Y(ψs,s̃)[w

⊥, ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥]ds̃ds

= projΛ0
DY(Ψ(ϕ+ w

⊥

)) − 2(N − 2)L∞w
⊥

+

∫ 1

0

∫ s

0
D3Y(ψs,s̃)[w

⊥, ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥]ds̃ds

= DF (ϕ+ w

⊥

) − 2(N − 2)L∞w
⊥

+

∫ 1

0

∫ s

0
D3Y(ψs,s̃)[w

⊥, ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥]ds̃ds.

In the last line, we used the bound (27) on D3Y discussed in Appendix A. Now, observe that
DF (0) = D2F (0) = · · · = Dp−1F (0) = 0, by definition of p, the order of integrability. As such,
Taylor’s theorem shows that

‖DF (ϕ+ w

⊥

)‖C0,α ≤ c‖ϕ+ w⊥‖p−1
C0,α ≤ c((T + t)

−1− 1
p−2 + ‖w

⊥

‖p−1
C0,α).
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Bounding the other two terms in the above expression for DY(u) (using the bound (27) on D3Y
discussed in Appendix A), we have that

(10) ‖DY(u)‖C0,α ≤ c((T + t)−1− 1
p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α).

We define

E

⊥

0 (w) := projΛ0
E0(w), E⊥

0 (w) := projΛ⊥
0
E0(w).

The asserted bounds for E

⊥

0 (w) follow from the bound (9) on E0(w), the estimate (10), and the
continuity of the map projΛ0

: C0,α(M,g∞) → Λ0:

‖projΛ0
f‖C0,α(M,g∞) ≤ c‖projΛ0

f‖L2(M,g∞)

≤ c‖f‖L2(M,g∞)

≤ c‖f‖C0,α(M,g∞),

where the first inequality follows because of the finite dimensionality of Λ0. Note that this is a
spacial bound bound, so it does not include the t-Hölder norm, but the desired space-time norm
bound follows easily from the bound: if f is time dependent,

‖(projΛ0
f)(t1) − (projΛ0

f)(t2)‖C0,α(M,g∞) = ‖projΛ0
(f(t1) − f(t2))‖C0,α(M,g∞)

≤ c‖f(t1) − f(t2)‖C0,α(M,g∞)

Dividing by |t1 − t2|
α
2 and taking the supremum over all such t1, t2 ∈ (t, t+ 1), the asserted bound

follows. The bound for E

⊥

0 (w1) − E

⊥

0 (w2) follows similarly. This, combined with the estimate on
E0(w) (9) together with the estimate (10), implies by the triangle inequality that the identical
estimates hold also for E⊥

0 (w). �

The next result reduces the Yamabe flow to two flows, one on Λ0 and the other on Λ⊥
0 .

Proposition 17. There exists T0 > 0, ǫ0 > 0 and c > 0 all depending on g∞ and v̂ so that the
following holds: Fix T > T0. Then, for ϕ(t) as in Lemma 15 and w ∈ C2,α(M × [0,∞)), there are

functions E

⊥

(w) and E⊥(w) so that u := Ψ(ϕ+w

⊥

) +w⊥ is a solution to the Yamabe flow if and
only if

2(N − 2)(w

⊥

)′ +D2Fp(ϕ)w

⊥

= E

⊥

(w)(11)

(w⊥)′ − L∞w
⊥ = E⊥(w).(12)
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Here, as long as ‖w‖C2,α ≤ ǫ0, the error terms E

⊥

and E⊥ satisfy






‖E

⊥

(w)‖C0,α ≤ c((T + t)
−1− 1

p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α)((T + t)

− 1
p−2 + ‖w‖C2,α)

+ c(T + t)
− p

p−2 + c(T + t)
− p−1

p−2 ‖w

⊥

‖C0,α + c(T + t)
− p−3

p−2 ‖w

⊥

‖2C0,α

+ c‖w

⊥

‖p−1
C0,α + c((T + t)−

1
p−2 + ‖w‖C2,α)‖w⊥‖C2,α

‖E

⊥

(w1) − E

⊥

(w2)‖C0,α ≤ c((T + t)−1− 1
p−2 + ‖w

⊥

1 ‖p−1
C0,α + ‖w

⊥

2 ‖p−1
C0,α + ‖w⊥

1 ‖C2,α + ‖w⊥
2 ‖C2,α)

× ‖w1 − w2‖C2,α

+c((T + t)
− 1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)(‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α)

× ‖w

⊥

1 − w

⊥

1 ‖C0,α +c((T + t)−
1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)(‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α)

+ c((T + t)
− 1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

1 ‖C2,α +c(‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

2 ‖C2,α

+ c
(
(T + t)

− p−3
p−2 (‖w

⊥

1 ‖C0,α + ‖w

⊥

2 ‖C0,α) + ‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α

)

× ‖w

⊥

1 − w

⊥

2 ‖C0,α

+ c(T + t)−
p−1
p−2‖w

⊥

1 − w

⊥

2 ‖C0,α .

and






‖E⊥(w)‖C0,α ≤ c((T + t)−1− 1
p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α)((T + t)−

1
p−2 + ‖w‖C2,α)

+ c((T + t)
− 1

p−2 + ‖w‖C2,α)‖w⊥‖C2,α

+ c((T + t)−
1

p−2 + ‖w‖C2,α)((T + t)−1− 1
p−2 + ‖w′‖C0,α)

‖E⊥(w1) − E⊥(w2)‖C0,α ≤ c((T + t)
−1− 1

p−2 + ‖w

⊥

1 ‖p−1
C0,α + ‖w

⊥

2 ‖p−1
C0,α + ‖w⊥

1 ‖C2,α + ‖w⊥
2 ‖C2,α)

× ‖w1 − w2‖C2,α

+c((T + t)−
1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)(‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α)

× ‖w

⊥

1 − w

⊥

1 ‖C0,α +c((T + t)−
1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)(‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α)

+ c((T + t)
− 1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

1 ‖C2,α +c(‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

2 ‖C2,α

+ c((T + t)−
1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)‖w′
1 − w′

2‖C0,α

+ c((T + t)
−1− 1

p−2 + ‖w′
1‖C0,α + ‖w′

2‖C0,α)‖w1 − w2‖C2,α .

Here, we are using the parabolic Hölder norms on (t, t + 1) ×M as defined above; the bounds hold
for each t ≥ 0 fixed, with the constants independent of T and t.

Proof. Recall that u is a solution to the Yamabe flow if and only if

(13) (N − 2)
∂u

∂t
= −1

2
DY(u)u2−N = (N + 2)u2−N∆∞u−R∞u

3−N + ruN−2g∞u,

where, as always in this article, Y is defined on the unit volume conformal class and D(·) is the
corresponding constrained differential. We now project the Yamabe flow equation onto Λ0 and Λ⊥

0 ,
so u solves Yamabe flow if and only if the following two equations are satisfied

2(N − 2)(ϕ + w

⊥

)′ = − projΛ0

[

DY(1 + ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + w⊥)u(t)2−N
]

+ E

⊥

0 (w)

2(N − 2)(Φ(ϕ + w

⊥

) + w⊥)′ = − projΛ⊥
0

[

DY(1 + ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + w⊥)u(t)2−N
]

+ E⊥
0 (w).
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Here, we emphasize that (as in the previous section) we are considering DY(w) as a function on
M , via the L2(M,g∞) pairing. In other words, we are using (2). Now, we claim that we may use
Taylor’s theorem to show that

projΛ0
DY(1 + ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) +w⊥) = projΛ0
DY(1 + ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

)) + E

⊥

1 (w),

with the following bounds
{

‖E

⊥

1 (w)‖C0,α ≤ c((T + t)
− 1

p−2 + ‖w‖C2,α)‖w⊥‖C2,α

‖E

⊥

1 (w1) − E

⊥

1 (w2)‖C0,α ≤ c(‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 − w⊥

2 ‖C2,α

These follow from the integral form of the remainder in Taylor’s theorem. Defing ψs,r := 1 + r(ϕ+

w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥), we have

E

⊥

1 (w) =

∫ 1

0

d

ds
projΛ0

DY(1 + ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥)ds

=

∫ 1

0
projΛ0

d

ds
DY(ψs,1)ds

=

∫ 1

0
projΛ0

D2Y(ψN−2
s,1 g∞)[w⊥]ds

=

∫ 1

0
projΛ0

D2Y(g∞)[w⊥]ds +

∫ 1

0

∫ s

0
projΛ0

d

ds̃
D2Y(ψN−2

s̃ g∞)[w⊥]ds̃ds

= −2(N − 2)

∫ 1

0
projΛ0

L∞w
⊥ds+

∫ 1

0

∫ s

0
projΛ0

d

ds̃
D2Y(ψN−2

s,s̃ g∞)[w⊥]ds̃ds

=

∫ 1

0

∫ s

0
projΛ0

d

ds̃
D2Y|(ψN−2

s,s̃ g∞)[w⊥]ds̃ds

=

∫ 1

0

∫ s

0
projΛ0

D3Y(ψN−2
s,s̃ g∞)[w⊥, ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥]ds̃ds.

The C0,α norm of D3Y(ψN−2
s,s̃ g∞)[w⊥, ϕ+ w

⊥

+ Φ(ϕ+ w

⊥

) + sw⊥] is uniformly bounded by

c((T + t)
− 1

p−2 + ‖w‖C2,α )‖w⊥‖C2,α

(as long as we choose T ≥ T0 large enough, and ‖w‖C2,ǫ ≤ ǫ0 small enough to ensure that ψs,s̃

is sufficiently close to 1 in C2,α). This is discussed in the end of Appendix A, along with the
corresponding bound for E

⊥

1 (w1) − E

⊥

1 (w2).
Recall that F (v) := Y(Ψ(v)), and using the Lyapunov–Schmidt reduction (Proposition 7)

projΛ0
DY(1 + ϕ+w

⊥

+ Φ(ϕ+w

⊥

)) = DF (ϕ+w

⊥

).

Furthermore, by analyticity (Lemma 6 and Proposition 7) DF has a convergent power series repre-
sentation around 0 with lowest order term of order p− 1. Thus, as long as ϕ+w

⊥

is small enough,
we may write

DF (ϕ+ w

⊥

) = DF (ϕ) +D2F (ϕ)(w

⊥

) + E

⊥

2 (w

⊥

).

where






‖E

⊥

2 (w

⊥

)‖C0,α ≤ c((T + t)
− p−3

p−2 + ‖w

⊥

‖p−3
C0,α)‖w

⊥

‖2C0,α

‖E

⊥

2 (w

⊥

1 ) − E

⊥

2 (w

⊥

2 )‖C0,α ≤ c
(
(T + t)−

p−3
p−2 (‖w

⊥

1 ‖C0,α + ‖w

⊥

2 ‖C0,α) + ‖w

⊥

1 ‖p−2
C0,α + ‖w

⊥

2 ‖p−2
C0,α

)

× ‖w

⊥

1 − w

⊥

2 ‖C0,α .
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We prove this in the case that Λ0 has dimension equal to one, namely for k = 1; the higher
dimensional case follows from a similar argument using multi-index notation. We have that

DF (z) =

∞∑

j=p−1

cjz
j .

Thus

‖E

⊥

2 (w

⊥

)‖C0,α =

∥
∥
∥
∥
∥
∥

∞∑

j=p−1

cj

[

(ϕ+ w

⊥

)j − ϕj − jϕj−1w

⊥]
∥
∥
∥
∥
∥
∥
C0,α

=

∥
∥
∥
∥
∥
∥

∞∑

j=p−1

j
∑

l=2

cj

(
j

l

)

ϕj−l(w

⊥

)l

∥
∥
∥
∥
∥
∥
C0,α

≤
∞∑

j=p−1

j
∑

l=2

|cj |
(
j

l

)

‖ϕ‖j−l
C0,α‖w

⊥

‖lC0,α

≤ ‖w

⊥

‖2C0,α

∞∑

j=p−1

j
∑

l=2

|cj |
(
j

l

)(

‖ϕ‖j−2
C0,α + ‖w

⊥

‖j−2
C0,α

)

≤ ‖w

⊥

‖2C0,α

∞∑

j=p−1

|cj |2j
(

‖ϕ‖j−2
C0,α + ‖w

⊥

‖j−2
C0,α

)

≤ 2p−1‖ϕ‖p−3
C0,α‖w

⊥

‖p−1
C0,α

∞∑

j=p−1

|cj |2j+1−p‖ϕ‖j+1−p
C0,α

+ 2p−1‖w

⊥

‖p−1
C0,α

∞∑

j=p−1

|cj |2j+1−p‖w

⊥

‖j+1−p
C0,α .

Because Dp−1F (z) has an absolutely convergent power series for every z sufficiently close to 0,
choosing ǫ0 small enough, T0 large enough, and using Lemma 15, we may guarantee that both
sums are bounded above by 1. The asserted bound on E

⊥

2 (w

⊥

) follows. A similar argument yields
the other bound.

Thus, the above arguments show that the Λ0-component of the Yamabe flow may be written as

2(N − 2)(ϕ′ + (w

⊥

)′) = −DF (ϕ) −D2F (ϕ)(w

⊥

) + E

⊥

1 (w) − E

⊥

2 (w

⊥

).

Now, expanding F in a power series, F = F (0) +
∑∞

j=p Fj , we may write the above expression as

2(N − 2)(ϕ′ + (w

⊥

)′) = −DFp(ϕ) −D2Fp(ϕ)(w

⊥

) + E

⊥

1 (w) − E

⊥

2 (w

⊥

) + E

⊥

3 (w)
︸ ︷︷ ︸

:=E

⊥

(w)

,

where

E

⊥

3 (w) =
∑

j≥p+1

(DFj(ϕ) +D2Fj(ϕ)w

⊥

).

By analyticity, this converges in, e.g. C0,α, for ‖ϕ‖C2,α and ‖w‖C2,α small enough. Because each
term in the sum is a homogeneous polynomial, and using the formula for ϕ, the error is bounded
as follows: 





‖E

⊥

3 (w)‖C0,α ≤ c((T + t)−
p

p−2 + (T + t)−
p−1
p−2‖w

⊥

‖C0,α)

‖E

⊥

3 (w1) − E

⊥

3 (w2)‖C0,α ≤ c(T + t)
− p−1

p−2 ‖w

⊥

1 − w

⊥

2 ‖C0,α .
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Therefore, by Lemma 15, w

⊥

needs to satisfy the equation

2(N − 2)(w

⊥

)′ +D2Fp(ϕ)w

⊥

= E

⊥

(w),

where E

⊥

(w) satisfies the asserted bounds.
Now we turn to the Λ⊥

0 portion of the Yamabe flow. First, recall that by Proposition 7,

projΛ⊥
0
DY(Ψ(ϕ+ w

⊥

)) = 0.

Combined with the fact that D projΛ⊥
0
DY at 1 equals −2(N − 2) projΛ⊥

0
L∞ (this follows because

D and projΛ⊥
0

commute), we thus may use Taylor’s theorem to write (using the fact that L∞ is

linear)

projΛ⊥
0
DY(Ψ(ϕ+ w

⊥

) + w⊥) = −2(N − 2)L∞w
⊥ − E⊥

1 (w),

where 





‖E⊥
1 (w)‖C0,α ≤ c((T + t)−

1
p−2 + ‖w‖C2,α)‖w⊥‖C2,α

‖E⊥
1 (w1) − E⊥

1 (w2)‖C0,α ≤ c(‖w1‖C2,α + ‖w2‖C2,α)‖w⊥
1 −w⊥

2 ‖C2,α

+ c(‖w⊥
1 ‖C2,α + ‖w⊥

2 ‖C2,α)‖w1 − w2‖C2,α .

To check this, we write

projΛ⊥
0
DY(Ψ(ϕ+ w

⊥

) + w⊥)

= projΛ⊥
0
DY(Ψ(ϕ+ w

⊥

)) +

∫ 1

0

d

ds
projΛ⊥

0
DY(Ψ(ϕ+ w

⊥

) + sw⊥)ds

=

∫ 1

0
projΛ⊥

0
D2Y(Ψ(ϕ+ w

⊥

) + sw⊥)[w⊥]ds

= −2(N − 2)L∞w
⊥ +

∫ 1

0

[

projΛ⊥
0
D2Y(Ψ(ϕ+ w

⊥
) + sw⊥)[w⊥] − projΛ⊥

0
D2Y(1)[w⊥]

]

ds.

Given this, we may control the asserted C0,α bounds by the C2,α norm of ϕ and w, by an argument
similar to E

⊥

1 (the derivative of Ψ is uniformly bounded near 0 by Proposition 7).

We also consider Φ(ϕ+ w

⊥

)′ := E⊥
2 (w) as an error term, as it satisfies







‖E⊥
2 (w)‖C0,α ≤ c((T + t)−

1
p−2 + ‖w‖C2,α)((T + t)−1− 1

p−2 + ‖w′‖C0,α)

‖E⊥
2 (w1) − E⊥

2 (w2)‖C0,α ≤ c((T + t)
− 1

p−2 + ‖w1‖C2,α + ‖w2‖C2,α)‖w′
1 − w′

2‖C0,α

+ c((T + t)−1− 1
p−2 + ‖w′

1‖C0,α + ‖w′
2‖C0,α)‖w1 − w2‖C2,α .

Here we have used (3) and have controlled ‖w‖L2 by the C2,α norm. Thus, the kernel-orthogonal
component of Yamabe flow is

(w⊥)′ = L∞w
⊥ + E⊥(w),

where E⊥(w) satisfies the asserted bounds. Combining the Λ0 equation with the Λ⊥
0 equation

finishes the proof. �

4.2. Solving the kernel-projected flow with polynomial decay estimates. In this subsec-
tion we solve the kernel-projected flow (11). First, from the definition of ϕ in (6) and the fact that
D2Fp is homogeneous of degree p− 2,

D2Fp(ϕ) = (T + t)−1

(
2(N − 2)

p(p− 2)Fp(v̂)

)

D2Fp(v̂).

Diagonalize the Hessian term, and denote by µ1, . . . , µk the eigenvalues of

2(N − 2)

p(p− 2)Fp(v̂)
D2Fp(v̂).
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Let ei be an orthonormal basis in which this Hessian is diagonalized. Thus, the kernel-projected
flow is equivalent to the following system of ODEs for2 vi := w

⊥

· ei,

(14) (N − 2)v′i +
µi

T + t
vi = E

⊥

i := E

⊥

· ei, i = 1, . . . , k.

Fix for the rest of this subsection a number γ satisfying γ 6∈ { µ1

2(N−2) , . . . ,
µk

2(N−2)}. Define the

following weighted norms:

‖u‖
C0,α

γ
:= sup

t>0
[(T + t)γ‖u(t)‖C0,α ], ‖u‖

C0,α
1,γ

:= ‖u‖
C0,α

γ
+ ‖u′‖

C0,α
1+γ

.

We recall that these Hölder norms are space-time norms on the interval (t, t + 1) ×M , as defined
in (8).

Given γ as above, let Π0 = Π0(γ) denote the linear subspace of Λ0 generated by the eigenvectors of
2(N−2)

p(p−2)Fp(v̂)
D2Fp(v̂) whose eigenvalue, say µ, satisfies µ > 2(N−2)γ. Moreover, let projΠ0

: Λ0 → Π0

be the corresponding linear projector.
The next lemma concerns the system (14).

Lemma 18. For any T > 0 such that ‖E

⊥

‖C0,α
1+γ

< ∞, there is a unique u with u(t) ∈ Λ0, t ∈
[0,∞), satisfying ‖u‖C0

γ
< ∞, projΠ0

(u(0)) = 0, and such that vi := u · ei solves the system (14).

Furthermore, we have the bound

‖u‖
C0,α

1,γ
≤ C‖E

⊥

‖
C0,α

1+γ
.

Proof. Letting

wj := (T + t)
µj

2(N−2) vj,

the system (14) is equivalent to

w′
j =

1

2(N − 2)
(T + t)

µj
2(N−2)E

⊥

j , j = 1, . . . , k.

Suppose that j is such that γ >
µj

2(N−2) . Then, we claim that we may solve the j-th ODE as

wj(t) = αj − (2(N − 2))−1

∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ.

which would give

uj(t) = (T + t)
− µj

2(N−2)αj − (2(N − 2))−1(T + t)
− µj

2(N−2)

∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ.

This amounts to checking that the integral converges under our assumptions on E

⊥

:
∣
∣
∣
∣
(T + t)

− µj
2(N−2)

∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

i (τ)dτ

∣
∣
∣
∣

≤ (T + t)
− µj

2(N−2) ‖E

⊥

j ‖C0
1+γ

∫ ∞

t
(T + τ)

µi
2(N−2)

−γ−1
dτ

=

(

γ − µj
2(N − 2)

)−1

(T + t)
− µj

2(N−2) ‖E

⊥

i ‖C0
1+γ

(T + t)
µj

2(N−2)
−γ

= Ci(T + t)−γ‖E

⊥

j ‖C0
1+γ

The previous estimate also shows that, since by assumption γ >
µj

2(N−2) , to have ‖u‖C0,α
γ

< ∞ it

must hold that αj = 0.

2Using, as above, the natural L2 inner product on Λ0 regarded as a subset of T1[g∞]1.
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On the other hand, if γ <
µj

2(N−2) , we may solve the ODE as

wj(t) = αj + (2(N − 2))−1

∫ t

0
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ.

By requiring projΠ0
u(0) = 0, we see that αj = 0. As such, the bounds for ‖uj‖C0

γ
follow from a

similar calculation as before.
Combining these two cases proves existence, uniqueness and the ‖u‖C0

γ
bound. It thus remains to

show the inequality ‖u‖
C0,α

1,γ
≤ C‖E

⊥

‖
C0,α

1+γ
. By finite dimensionality, the (spatial) C0,α(M)-Hölder

norms of each basis element in Λ0 are uniformly bounded. Thus, it remains to show that the desired
inequality holds for the Hölder norm in the time direction, along with the same thing for u′(t) (the
general space-time norm will then be bounded by the triangle inequality). Suppose that j is such
that γ >

µj

2(N−2) . Then, we have seen above that

uj(t) = −(2(N − 2))−1(T + t)
− µj

2(N−2)

∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ.

Notice that

u′j(t) = µj(T + t)
− µj

2(N−2)
−1
∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ − (2(N − 2))−1E

⊥

j (t).

Thus,

‖u′j‖C0,α ≤ C

∥
∥
∥
∥

(T + t)
− µj

2(N−2)
−1
∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ

∥
∥
∥
∥
C1

+ C‖E

⊥

j (t)‖C0,α

≤ C

∥
∥
∥
∥

(T + t)
− µj

2(N−2)
−2
∫ ∞

t
(T + τ)

µj
2(N−2)E

⊥

j (τ)dτ

∥
∥
∥
∥
C0

+ C‖E

⊥

j (t)‖C0,α

≤ C(T + t)−1−γ‖E

⊥

j ‖C0,α
1+γ

.

We may use the C0-bound on u′j to obtain a Hölder estimate for uj . From this, the claimed
inequality follows. �

4.3. Solving the kernel-orthogonal projected flow. Define the weighted norms

‖u‖L2
q

= sup
t∈[0,∞)

[(T + t)q‖u(t)‖L2(M)],

where the L2 norm is the spatial norm of u(t) on M and is taken with respect to g∞, and

‖u‖C2,α
q

= sup
t≥0

[(T + t)q‖u(t)‖C2,α ],

where the Hölder norms are the space-time norms defined in (8). Also, let

Λ↑ := span{ϕ ∈ C∞(M) : L∞ϕ+ δϕ = 0, δ < 0},

Λ↓ := span{ϕ ∈ C∞(M) : L∞ϕ+ δϕ = 0, δ > 0}L
2

.

From the spectral theory of the Laplacian, L2(M,g∞) = Λ↑ ⊕ Λ0 ⊕ Λ↓ and Λ↑ and Λ0 are finite
dimensional. Write the non-negative integers as an ordered union N = K↑ ∪K0 ∪K↓, where the
ordering of the indices comes from an ordering of the eigenfunctions of the Laplacian, ∆g∞ and the
partitioning of N corresponds to which of Λ↓,Λ0, or Λ↑, the k-th eigenfunction of ∆g∞ lies in.

Lemma 19. For any T > 0 and q < ∞ such that ‖E⊥‖L2
q
< ∞, there is a unique u(t) with

u(t) ∈ Λ⊥
0 , t ∈ [0,∞), satisfying ‖u‖L2

q
<∞, projΛ↓

(u(0)) = 0, and

(15) u′ = L∞u+ E⊥.
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Furthermore, ‖u‖L2
q
≤ C‖E⊥‖L2

q
, and ‖u‖C2,α

q
≤ C‖E⊥‖C0,α

q
.

Proof. Recall that

(16) (N − 2)L∞ = (N + 2)∆∞ + (N − 2)R∞.

Let ϕi be an eigenfunction (with eigenvalue δi) of 1
2L∞ which is orthogonal to the kernel Λ0. The

flow equation (15) reduces to the system

(17) u′i + δiui = E⊥
i

where E⊥
i = 〈E⊥, ϕi〉, and ui = 〈u, ϕi〉. This is equivalent to

(18)
(

eδitui

)′
= eδitE⊥

i

Thus, we may represent the components of the solution as

u⊥i (t) = βie
−δit + e−δit

∫ t

0
eδiτE⊥

i (τ)dτ

for i ∈ K↓ or

u⊥i (t) = βie
−δit − e−δit

∫ ∞

t
eδiτE⊥

i (τ)dτ

for i ∈ K↑. In particular, we have that

u(t) =
∑

j∈K↓

(

βje
−δjt + e−δjt

∫ t

0
eδjτE⊥

j (τ)dτ

)

ϕj +
∑

j∈K↑

(

βje
−δjt − e−δjt

∫ ∞

t
eδjτE⊥

j (τ)dτ

)

ϕj

This sum is in an L2 sense (but then elliptic regularity guarantees that the sum converges uniformly
on compact time intervals). We note that for i ∈ K↑, if ‖u‖L2

q
< ∞ then necessarily βi = 0.

Furthermore, by requiring that projΛ↓
u(0) = 0, then we also have βi = 0 for i ∈ K↓.

We can write the following integral bounds for u:
∥
∥
∥
∥
∥
∥

∑

j∈K↓

uj(t)ϕj

∥
∥
∥
∥
∥
∥

2

L2

≤
∑

j∈K↓

(∫ t

0
eδj(τ−t)E⊥

j (τ) dτ

)2

≤
∑

j∈K↓

(∫ t

0
eδmin(τ−t)E⊥

j (τ) dτ

)2

≤
∥
∥
∥
∥

∫ t

0
eδmin(τ−t)E⊥(τ) dτ

∥
∥
∥
∥

2

L2

where δmin = minj∈K↓
δj and in the second to last inequality made use of the Parseval identity.

Taking square roots,
∥
∥
∥
∥
∥
∥

∑

j∈K↓

uj(t)ϕj

∥
∥
∥
∥
∥
∥
L2

≤
∥
∥
∥
∥

∫ t

0
eδmin(τ−t)E⊥(τ) dτ

∥
∥
∥
∥
L2

≤
∫ t

0
eδmin(τ−t)

∥
∥
∥E⊥

∥
∥
∥
L2
dτ

and hence we can finally make use of our decay assumption on E⊥ to get
∥
∥
∥
∥
∥
∥

∑

j∈K↓

uj(t)ϕj

∥
∥
∥
∥
∥
∥
L2

≤ ‖E⊥‖q
∫ t

0
eδmin(τ−t)(T + τ)−qdτ.

We bound the integral as follows
∫ t

0
eδmin(τ−t)(T + τ)−qdτ =

∫ t/2

0
eδmin(τ−t)(T + τ)−qdτ +

∫ t

t/2
eδmin(τ−t)(T + τ)−qdτ
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≤ T−q

∫ t/2

0
eδmin(τ−t)dτ + (T + t/2)−q

∫ t

t/2
eδmin(τ−t)dτ

≤ δ−1
minT

−q
(

e−δmint/2 − e−δmint
)

+ δ−1
min(T + t/2)−q

(

1 − e−δmint/2
)

.

From this we see that
∥
∥
∥
∥
∥
∥

∑

j∈K↓

uj(t)ϕj

∥
∥
∥
∥
∥
∥
L2

≤ C‖E⊥‖L2
q
(T + t)−q

A similar argument holds for the K↑ terms. From this, the asserted bounds for ‖u‖L2
q

follow readily.

The rest of the proof is devoted to showing that the C2,α
q bounds follow from the L2

q bounds. By
interior parabolic Schauder estimates [19, Theorem 4.9], we have that for t ≥ 1,

‖u(t)‖C2,α ≤ C

(

sup
s∈(t−1,t+1)×M

|u(s, x)| + ‖E⊥‖C0,α((t−1,t+1)×M)

)

.

We emphasize that the C2,α norm on the left hand side is the space-time norm on (t, t + 1) ×M ,
as defined in (8).

We claim that for ǫ > 0, there exists c(ǫ) > 0 so that for any function ϕ ∈ C0,α(M),

sup
x∈M

|ϕ(x)| ≤ c(ǫ)‖ϕ‖L2(M) + ǫ‖ϕ‖C0,α(M).

This follows immediately from an argument by contradiction in conjunction with Arzelà–Ascoli.
Using this in the Schauder estimate yields (bounding the supremum of the spatial C0,α(M) norm
over t ∈ (t− 1, t + 1) by the space-time Hölder norm on (t− 1, t+ 1) ×M)

‖u(t)‖C2,α ≤ C

(

sup
s∈(t−1,t+1)

‖u(s, x)‖L2(M) + ‖E⊥‖C0,α((t−1,t+1)×M)

)

+ Cǫ‖u(t)‖C0,α((t−1,t+1)×M).

Multiplying by (T + t)q and taking the supremum over t ≥ 1 yields

sup
t≥1

[(T + t)q‖u(t)‖C2,α ]

≤ C

(

sup
t≥0

[
(T + t)q‖u(s, x)‖L2(M)

]
+ sup

t≥0

[

(T + t)q‖E⊥‖C0,α((t,t+1)×M)

])

+ Cǫ sup
t≥0

[
(T + t)q‖u(t)‖C0,α((t−1,t+1)×M)

]

= C
(

‖u‖L2
q

+ ‖E⊥‖C0,α
q

)

+ Cǫ‖u‖C0,α
q

≤ C
(

‖E⊥‖L2
q

+ ‖E⊥‖C0,α
q

)

+ Cǫ‖u‖C0,α
q

≤ C‖E⊥‖C0,α
q

+ Cǫ‖u‖C0,α
q
.

To finish the proof, it remains to extend the supremum up to t = 0, because then we may absorb
the second term back into the left hand side of the inequality by choosing ǫ sufficiently small. This
may be achieved via global Schauder estimates [19, Theorem 4.28]

‖u(t)‖C2,α((0,1)×M)

≤ C

(

sup
s∈(0,1)

‖u(s, x)‖L2(M) + ǫ‖u‖C0,α((0,1)×M) + ‖E⊥‖C0,α((0,2)×M) + ‖u(0)‖C2,α(M)

)

.
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Note that

u(0) = −
∑

j∈K↑

(∫ ∞

0
eδjτE⊥

j (τ)dτ

)

ϕj .

The space Λ↑ is finite dimensional, so there must be a uniform constant C > 0 so that ‖ϕj‖C2,α(M) ≤
C‖ϕj‖L2(M) for all j ∈ K↑. Using this we have that

‖u(0)‖2C2,α(M) ≤ C
∑

j∈K↑

(∫ ∞

0
eδjτE⊥

j (τ)dτ

)2

‖ϕj‖2C2,α(M)

≤ C
∑

j∈K↑

(∫ ∞

0
eδjτE⊥

j (τ)dτ

)2

‖ϕj‖2L2(M)

= C‖u(0)‖2L2(M).

Using the L2
q bound obtained above, we may extend the supremum to t ≥ 0, and conclude the

desired Hölder bounds (absorbing the C0,α norms of u into the left hand side, by choosing ǫ
small). �

4.4. Construction of a slowly converging flow. To proceed further, we define the norm

‖f‖∗γ := ‖projΛ0
f‖C0,α

1,γ
+ ‖projΛ⊥

0
f‖C2,α

1+γ
.

Recall that

‖u‖
C0,α

1,γ
= sup

t≥0
[(T + t)γ‖u(t)‖C0,α ] + sup

t≥0

[
(T + t)1+γ‖u′(t)‖C0,α

]
,

and

‖u‖C2,α
1+γ

= sup
t≥0

[
(T + t)1+γ‖u(t)‖C2,α

]
.

We emphasize that these Hölder norms are the space-time Hölder norms, defined in (8). For γ to
be specified below, we define X to be the Banach space of functions f with ‖f‖∗γ <∞.

Proposition 20. Assume that g∞ satisfies ASp. We may thus fix a point where Fp|Sk−1 achieves
a positive maximum and denote it by v̂. Define

ϕ(t) = (T + t)−
1

p−2

(
2(N − 2)

p(p− 2)Fp(v̂)

) 1
p−2

v̂,

as in Lemma 15. Then, there exists C > 0, T > 0, 1
p−2 < γ < 2

p−2 and u(t) ∈ C∞(M × (0,∞)) so

that u(t) > 0 for all t > 0, g(t) := u(t)N−2g∞ is a solution to the Yamabe Flow, and

‖w

⊥

(t) + Φ(ϕ(t) + w

⊥

(t)) + w⊥(t)‖∗γ = ‖u(t) − ϕ(t) − 1‖∗γ ≤ C.

Proof. We fix 1
p−2 < γ < 2

p−2 so that γ 6∈ { µ1

2(N−2) , . . . ,
µk

2(N−2)}. By Proposition 17, it is enough to

solve

2(N − 2)(w

⊥

)′ +D2Fp(ϕ)w

⊥

= E

⊥

(w)

(w⊥)′ − L∞w
⊥ = E⊥(w),

for w(t) with ‖w‖∗γ < C. To do so, we will use the contraction mapping method. We define a map

S : {w ∈ X : ‖w‖∗γ ≤ 1} → X = {w : ‖w‖∗γ <∞},
by defining u := projΛ0

S(w) to be the solution of

2(N − 2)u′ +D2Fp(ϕ)u = E

⊥

(w),
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and v := projΛ⊥
0
S(w) to be the solution of

v′ −L∞v = E⊥(w).

From this, we have defined the map S(w) by its orthogonal projection onto Λ0 and Λ⊥
0 . These solu-

tions exist, in the right function spaces, by combining the bounds for the error terms in Proposition
17 with Lemmas 18 and 19. Furthermore, we have the explicit bound

‖projΛ0
S(w)‖

C0,α
1,γ

≤ c‖E

⊥

(w)‖
C0,α

1+γ

≤ c sup
t≥0

(T + t)1+γ((T + t)
−1− 1

p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α)((T + t)

− 1
p−2 + ‖w‖C2,α)

+ c sup
t≥0

((T + t)γ−
2

p−2 + (T + t)γ−
1

p−2‖w

⊥

‖C2,α)

+ c sup
t≥0

((T + t)
γ+ 1

p−2 ‖w

⊥

‖2C2,α + (T + t)1+γ‖w

⊥

‖p−1
C2,α)

+ c sup
t≥0

(T + t)1+γ‖w⊥‖2C2,α

≤ c

(

T
γ− 2

p−2 +

(

T
− 1

p−2 + T
(p−2)

(

1
p−2

−γ
))

‖w‖∗γ
)

.

Here, we have absorbed powers of (T + t) into the various w norms, and bounded this by ‖w‖∗γ .

Note that the w⊥ terms in ‖w‖∗γ are multiplied by (T + t)1+γ , but the w

⊥

term in ‖w‖∗γ is only
multiplied by (T + t)γ , so we cannot absorb as high of a power of (T + t) into it (fortunately, the
w

⊥

terms are all raised to a large power, or already multiplied by an appropriately decaying power
of (T + t), as is easily checked). In the last step, we have used the bound

‖w

⊥

‖C2,α((t,t+1)×M) ≤ c
(

‖w

⊥

‖C0,α((t,t+1)×M) + ‖(w

⊥

)′‖C0,α((t,t+1)×M)

)

.

This is a consequence of the fact that Λ0 is finite dimensional (so any two norms on it are uniformly
equivalent) and that the parabolic3 C2,α Hölder norms only contain at most one time derivative
(which does not come paired with any spatial derivatives). Similarly,

‖projΛ⊥
0
S(w)‖C2,α

1+γ
≤ ‖E⊥(w)‖C0,α

1+γ

≤ c sup
t≥0

(T + t)1+γ((T + t)−1− 1
p−2 + ‖w

⊥

‖p−1
C0,α + ‖w⊥‖C2,α)((T + t)−

1
p−2 + ‖w‖C2,α)

+ c sup
t≥0

[

((T + t)
1+γ− 1

p−2 + (T + t)1+γ‖w‖C2,α )‖w⊥‖C2,α

]

+ c sup
t≥0

[

((T + t)1+γ− 1
p−2 + (T + t)1+γ‖w‖C2,α )((T + t)−1− 1

p−2 + ‖w′‖C0,α)
]

≤ c

(

T
γ− 2

p−2 +

(

T
− 1

p−2 + T
(p−2)

(

1
p−2

−γ
))

‖w‖∗γ
)

.

Thus, because γ ∈
(

1
p−2 ,

2
p−2

)

, by choosing T large enough, we can ensure that S maps {w : ‖w‖∗γ ≤
1} ⊂ X into itself. Finally, we check that we can guarantee that S is a contraction mapping by

3We emphasize that the space-time Ck,α-norms on Λ0 are not all uniformly equivalent. This is due to the fact
that (as usual) the time dependence of the functions turns the space into an infinite dimensional vector space. In the
asserted inequality, we have used the fact that the spatial Ck,α-norms of any element in Λ0 are all equivalent to any

other Ck′,α′

. The asserted inequality follows from this, along with the fact that in the space-time C2,α-norm, there
is at most one single time derivative (which does not come with any spatial derivatives).
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taking T even larger if necessary. The following inequalities are proven by the same argument we
have just used

‖projΛ0
S(w1) − projΛ0

S(w2)‖C0
1,γ

≤ c

(

T− 1
p−2 + T

(p−2)
(

1
p−2

−γ
))

‖w1 − w2‖∗γ

‖projΛ⊥
0
S(w1) − projΛ⊥

0
S(w2)‖C2,α

1+γ
≤ c

(

T
− 1

p−2 + T
(p−2)

(

1
p−2

−γ
))

‖w1 − w2‖∗γ .

Thus, by enlarging T if necessary, we have that S is a contraction map. This finishes the proof. �

We now show how the previous proposition yields solutions converging at exactly a polynomial
rate.

Proof of Theorem 2. From Propostion 17, we have constructed ϕ(t) and u(t) so that

ϕ(t) = (T + t)
− 1

p−2

(
2(N − 2)

p(p− 2)Fp(v̂)

) 1
p−2

v̂,

u(t)N−2g∞ is a solution to the Yamabe flow, and

u(t) = 1 + ϕ(t) + w̃(t) := 1 + ϕ(t) + w

⊥

(t) + Φ(ϕ(t) + w

⊥

(t)) + w⊥(t),

where w̃(t) satisfies (in particular) ‖w̃‖C0 ≤ C(1 + t)−γ for some C > 0 and all t ≥ 0. We have
arranged that γ > 1

p−2 , which implies that ϕ(t) is decaying slower than w̃(t). Thus

‖u(t) − 1‖C0 ≥ C(1 + t)
− 1

p−2

as t→ ∞. From this, the assertion follows. �

5. Examples satisfying ASp

In this section we provide explicit examples of metrics which satisfy ASp for both p = 3 and
p ≥ 4. This allows us, via Theorem 2, to conclude the existence of slowly converging Yamabe flows.

5.1. Examples which satisfy AS3. In this subsection we prove Proposition 3. Suppose that
we are given integers n,m > 1 and a closed m-dimensional Riemannian manifold (Mm, gM ) with
constant scalar curvature RgM ≡ 4(n + 1)(m + n − 1). We denote the complex projective space
equipped with the Fubini–Study metric (our normalization of the Fubini–Study metric is as follows:
we define CPn to be the metric induced by the Riemannian submersion from the unit radius sphere
S
2n+1 → CPn) by (CPn, gFS). We will show that the product metric (Mm × CPn, gM ⊕ gFS) is a

degenerate critical point satisfying AS3. Recall that this implies that the metric is non-integrable,
by Lemma 9.

Write g := gM ⊕ gFS . Because RgFS
= 4n(n + 1) [22, p. 86] it follows that the scalar curvature

of g satisfies Rg = 4(n + 1)(m + n − 1) + 4n(n + 1) = 4(n + 1)(m + 2n − 1). The dimension of

Mm × CPn is m + 2n, so Λ0 consists of eigenfunctions of ∆g with eigenvalue
Rg

m+2n−1 = 4(n + 1).

Because λ1(gFS) = 4(n+ 1) [4, Proposition C.III.1], we see that (Mm ×CPn, g) is degenerate; for
any first eigenfunction v on CPn, the function 1 ⊗ v on Mm ×CPn will be an eigenfunction of ∆g

with eigenvalue 4(n + 1).
The eigenfunctions of ∆gFS

may be explicitly constructed by considering polynomials on C
n

which are homogeneous of degree k in both z and z and which are harmonic. These polynomials
restrict to S

2n+1 and are invariant under the natural S1 action, so they thus descend to the quotient.
This is described in detail in [4, Proposition C.III.1]. By a recent observation of Kröncke, [17, p.
25], the harmonic polynomial h(z, z) := z1z2 + z2z1 + z2z3 + z3z2 + z3z1 + z1z3, defined on C

n+1

for n ≥ 2, descends to a first eigenfunction v of ∆gFS
for which

∫

CPn v
3dVgFS

6= 0. The function
1 ⊗ v is an eigenfunction of ∆g with eigenvalue 4(n + 1), so it is an element of Λ0. Moreover,
by Fubini’s theorem,

∫

Mm×CPn(1 ⊗ v)3dVg = vol(Mm, gM )
∫

CPn v
3dVgFS

6= 0. Thus, we see that



SLOWLY CONVERGING YAMABE FLOWS 25

(Mm×CPn, g) is degenerate and by (4), the function F3 is not everywhere zero on Λ0. This shows
that (Mm × CPn, g) satisfies AS3, as claimed.

5.2. Examples satisfying ASp for p ≥ 4. This subsection is devoted to the detailed study of
the Yamabe problem on S

1(R) × S
n−1. Our goal is to obtain examples in any dimension n ≥ 3 of

a non-integrable critical point of Y which satisfies the condition ASp for some p ≥ 4, as defined
in Definition 10. The study involves properties of a certain period function τ(α) defined below.
Here, we start by giving an overview of Schoen’s discussion [24], supplying detailed proofs. The
main new observation is that these facts imply the existence of a constant scalar curvature metric
satisfying the assumptions of Theorem 2. We observe that the same ODE which we analyze has
been considered, from a different perspective, in [21] where the authors analyze moduli spaces of
singular Yamabe metrics.

5.2.1. An ODE parametrizing all solutions of the Yamabe problem. We consider a one-parameter
family of conformal classes [gT ] on S

1×S
n−1 represented by the natural product metric S

1(T/2π)×
S
n−1(1) (here S

k(r) is the k-sphere of radius r in R
k+1). We will write t for the coordinate on

S
1(T/2π).

Proposition 21 ([24]). Let u0 =
(
n−2
n

)n−2
4 =

(
2
N

) 1
N−2 . Then, exists a map τ : (u0, 1) → R>0

which parametrizes solutions to the Yamabe problem on S
1 × S

n−1 in the following sense: For a
given T > 0, up to scaling the conformal factor, the complete list of constant scalar curvature
metrics in [gT ] is (1) the product metric and (2) a metric of the form u(t)N−2gT where u(t) solves
the ODE

4u′′ − (n− 2)2u+ n(n− 2)u
n+2
n−2 = 0,

with initial conditions (u(t0), u′(t0)) = (α, 0) for some t0 ∈ S
1(T/2π). Here, α ∈ (u0, 1) is any

solution of τ(α) = T
k with k an arbitrary positive integer.

Proof. We will follow Schoen and look for solutions to the Yamabe problem with constant scalar
curvature n(n−1) (equal to that of the unit sphere), and in doing so we drop the volume constraint.
A crucial observation is that by a result of Caffarelli–Gidas–Spruck (following the classical work
of Gidas–Ni–Nirenberg), a constant scalar curvature metric in [gT ] must have conformal class only
depending on the S

1-variable t (see [16, 12]). As such, this reduces the problem to studying an
ODE rather than a PDE.

It will be convenient to lift the analysis to the universal cover R× S
n−1 and use (t, ξ) ∈ R×R

n

with |ξ| = 1 as coordinates. In particular, we will forget about gT for now, and consider instead
the metric g = dt2 + gSn−1(1) on R × S

n−1. Then, a solution to the Yamabe Problem in [gT ] will

correspond to a function u(t) on R × S
n−1 (depending only on the first factor) with period T in t

for which u(t)
4

n−2 g has constant scalar curvature n(n− 1).

Now, u(t)
4

n−2 g having constant scalar curvature n(n− 1) is equivalent to the ODE

(19) 4u′′ − (n− 2)2u+ n(n− 2)u
n+2
n−2 = 0,

as Rg = Rg
Sn−1(1)

= (n − 1)(n − 2) and n(n − 1) = RuN−2g = −(N + 2)u−
n+2
n−2

(

u′′ − 1
N+2Rgu

)

.

There is one obvious solution to (19) given by the constant u(t) ≡ u0 =
(
n−2
n

)n−2
4 . This simply

corresponds to the rescaling of gT so that it has scalar curvature n(n− 1), as desired.
There is a second explicit solution to (19) obtained by considering R × S

n−1 as the coordinate
patch of Sn given by S

n − {N,S}, the sphere minus two antipodal points. The restriction of the
standard metric on S

n to S
n−{N,S} (which has scalar curvature n(n−1)) then produces a solution

to (19) as long as we can check that this metric is conformally related to g. To see this, notice that
the map Ψ : (R× S

n−1, g) → (Rn − {0}, gEuc), (t, ξ) 7→ etξ is conformal, because

Ψ∗gEuc = Ψ∗ (dr2 + r2gSn−1

)
= e2tdt2 + e2tgSn−1 = e2tg,
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where gEuc denotes the Euclidean metric on R
n \ {0}). On the other hand, by stereographic

projection the spherical coordinate patch on R
n − {0} has the metric

gSn =
4gEuc

(1 + r2)2
, where r = |x| , with x ∈ R

n \ {0}.

Thus Ψ∗(gSn) = 4e2t

(1+e2t)2
g = (cosh t)−2g. Therefore, we have another solution to (19) given by

u1(t) = (cosh t)−(n−2)/2. Of course, the metric u1(t)
4/(n−2)g does not descend to the quotient

S
1(T/2π) × S

n−1 (and it is not even a complete metric on R× S
n−1) but it will prove useful in the

sequel.
By setting v = du

dt , (19) can be converted to a first order system

(20)
d

dt
(u, v) = X(u, v),

where the vector field X on the uv-plane is defined by X(u, v) =

(

v, (n−2)2u−n(n−2)u
n+2
n−2

4

)

. We

note that the second component of X is negative when u > u0 and positive when u < u0. From
the above analysis, we know that

(21) (u(t), v(t)) = (u1(t), u′1(t)) =

(

(cosh t)−
n−2
2 ,

(
1

4
− n

8

)
sinh t

(cosh t)
n
2

)

is a solution to (20). Letting t = 0, we see that (1, 0) is on this integral curve. Additionally, letting
t → ±∞ (note here that n ≥ 3), we see that the curve tends to (0, 0). Thus, the orbit associated
to u1, along with (0, 0) encloses a region Ω with compact closure Ω and such Ω is invariant under
the flow since its boundary is a homoclinic cycle (i.e., a trajectory that limits to the same critical
point at t = ±∞).

Claim 22. Any periodic solution with u > 0 for all time must lie inside Ω.

Proof. By the previous comments, it suffices to consider a trajectory γ(t) = (u(t), v(t)) in R
2 \ Ω.

Observe that

(22) 4v′(t) = n(n− 2)u(uN−2
0 − uN−2);

thus, whenever u(t) > u0 then v′(t) < 0. We divide the proof into two cases.
Case 1: u(0) > u0. In this case, since γ(t) is defined globally for t ∈ R and is periodic we claim

that there exists O0 such that u(O0) = u0, and v′(t) < 0 for t ∈ (0, O0). Indeed, if it were not the
case monotonicity of the second component of γ should immediately imply that the corresponding
trajectory of γ(·) be unbounded, contradicting the periodicity assumption.

As a result, clearly v(O0) < 0 hence the system implies u′(O0) < 0 and thus it follows that
v(t) > v(O0) for t > O0. Since γ is global, must remain in the right half space (as u > 0) and by
monotonicity of the second component it follows that γ must approach (0, 0) as t ր ∞. But then
it is not periodic. (Note that in fact, by time-reversal symmetry, γ should be a homoclinic cycle.)

Case 2: u(0) < u0. We can assume v(0) > 0 since otherwise we reduce to the last part of the
proof of Case 1. Thus v(0) > 0, therefore u′(0) > 0 and v′(0) > 0. It follows once again that γ
crosses the vertical line u = u0, and then we are in Case 1. �

Claim 23. Suppose that γα(t) = (u(t), v(t)) solves (20), and that γα(0) = (α, 0) ∈ Ω. Then either
γα ≡ (u0, 0) or γα is a smooth periodic orbit contained in Ω − ∂Ω. Furthermore, if u0 ≤ α1 < α2,
then γα1 is enclosed by γα2 .

Proof. For the first statement, let us start by observing that (by compactness of Ω) any such
solution γα(t) must be defined for all times and γα(t) = γα(−t) for all t ∈ R by means of a standard
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ODE uniqueness argument (as X(u, v) = X(u,−v)). To proceed further, let us recall that the flow
(20) is generated by the Hamiltonian (see [21, (2.3)])

(23) H(u, v) = 2v2 +
(n − 2)2(uN − u2)

2
.

The corresponding conservation law (together with the fact that H(u, 0) = 0 implies u ∈ {0, 1})
rules out the existence of solutions γα such that limt→+∞ γα(t) = (0, 0) (and thus limt→−∞ γα(t) =
(0, 0) as well) or limt→+∞ γα(t) = (1, 0) (and thus limt→−∞ γα(t) = (1, 0)) whenever α ∈ (0, 1).
Then the first claim follows from the fact that γα for α ∈ (0, 1) must intersect the u-axis (exactly)
twice, and away from the zeros of the vector field X. Then by the time-reversal symmetry we
conclude that γα must be periodic, hence also smooth. These arguments show in particular that
Im γα for such α is diffeomorphic to S

1. Uniqueness of solutions to ODEs then implies the last
claim. �

Finally, this allows us to conclude the general classification of constant scalar curvature metrics
in [gT ]. Any constant curvature metric must depend only on the t variable and thus lift to a solution
u(t) to the ODE (19) on R. The solution must periodic of period T

k for some positive integer k, as

the metric descends to S
1(T/2π) × S

n−1. Thus, by the above claim, there exists α ∈ (u0, 1) so that
u(t) solves the ODE with initial conditions (α, 0) (after possibly shifting u(t) by a rotation of S1).
Of course, if k > 1, then what we mean here is that the conformal factor on S

1(T/2π) × S
n−1 is

u(t) concatenated k times. By definition τ(α) = T
k . This completes the proof of the claim. �

5.2.2. The period function.

Lemma 24 ([24]). The period function τ(α) is continuous on the interval (u0, 1). Furthermore, it

satisfies (i) limαր1 τ(α) = +∞ and (ii) limαցu0 τ(α) = (n− 2)−1/22π := T0.

Proof. (i) Suppose that there is a sequence αk ր 1 so that τ(αk) ≤ C for some constant C. By
possibly extracting a subsequence, we may assume that limk→∞ τ(αk) = T∞ < ∞. Now, consider
the points γαk

(T∞/2). By making use of the equation H(αk, 0) = H(uαk
(τ(αk)/2), 0), we now

claim that uαk
(τ(αk)/2) → 0 as k → ∞. Indeed, uαk

(τ(αk)/2) ∈ [0, u0], so we may assume that it
converges to some value u∞ by further extracting a subsequence. Thus, taking the limit as k → ∞
of H(uαk

(τ(αk)/2), 0) = H(αk, 0), we get that

(24) u2∞(uN−2
∞ − 1) = 0.

However, because u∞ ≤ u0, the second term must be negative, so u∞ = 0. Thus, we see that
γαk

(T∞/2) must converge to (0, 0). On the other hand, by continuous dependence of solutions to
ODEs on their initial data, γαk

(T∞/2) must converge to γ1(T∞/2) which cannot be (0, 0). This is
a contradiction.

(ii) We will show this by proving that as αց u0, if we rescale the solutions, then they converge
to a solution of the linearized ODE around (u0, 0). We shift u0 to the origin and blow up by defining

(ũ, ṽ) =
(
u−u0
α−u0

, v
α−u0

)

. Thus the ODE becomes

(25)
d

dt
(ũ, ṽ) = X̃α :=

(

ṽ,
n(n− 2)

4

(α− u0)ũ+ u0
α− u0

(

uN−2
0 − ((α− u0)ũ+ u0)N−2

))

.

Notice that under the rescaling, the trajectory γ̃α encircles the origin and contains the point (1, 0).

Moreover, as αց u0 the vector field X̃α converges to

(26) X̃u0 =

(

ṽ,−n(n− 2)(N − 2)

4
uN−2
0 ũ

)

= (ṽ, (2 − n)ũ) .

Thus, the solution to the linearized equation is γ̃u0 := (cos((n−2)1/2t),−(n−2)1/2 sin((n−2)1/2t),

which is periodic with period given by T0 := (n− 2)−1/22π.
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Now, we claim first that the τ(α) are bounded as α → u0, say τ(α) ≤ 5T0/2. Suppose not, so
there are k → ∞ and αk ց u0 so that τ(αk) > 5T0/2. Now, on one hand, by continuous dependence
on initial data and due to the explicit formula of γ̃u0 we have that for any fixed t ∈ (T0/2, T0) for k
large enough the trajectory γ̃αk

(t) has ṽαk
(t) ≥ ǫ > 0. On the other hand (by Claim 19), because

we have assumed that T0 < 2τ (αk) /5 < τ (αk) /2, γ̃αk
(t) must always have ṽαk

(t) < 0, because
τ(αk)/2 is the first (positive) time when γ̃αk

crosses the ũ-axis. This is a contradiction.
That being said, because τ(α) is bounded for α close to u0, for any αk ց α, we may assume

that τ(αk) → T for some T . By continuous dependence of ODEs on their parameters, thus
limk→∞ γ̃αk

(τ(αk)/2) = γ̃u0(T/2). Because γ̃αk
(τ(αk)/2) all have ũ ≤ 0 and lie on the ṽ = 0 axis,

we thus see that limk→∞ γ̃αk
(τ(αk)/2) = (−1, 0) and, at the same time, necessarily T = (2q+ 1)T0

for some integer q ∈ N. But if q > 0 then it were T ≥ 3T0, contradicting our previous argument
which showed that instead T ≤ 5T0/2. Hence q = 0 so that T = T0 and this completes the proof
of (ii).

Continuity of τ(α) follows by a similar argument as the one used in (i). �

5.2.3. Checking ASp for p ≥ 4. Proposition 4 follows from the following result.

Proposition 25. The product metric g∞ on S
1
(
T0
2π

)
× S

n−1(1) is a degenerate critical point of the
Yamabe functional. When n > 2 it is non-integrable, a global minimum of the Yamabe energy, and
satisfies ASp for some even p ≥ 4.

Proof. We start by proving degeneracy. Note that Rg∞ = Rg
Sn−1(1)

= (n − 2)(n − 1) so it suffices

to show that λ1(g∞) = n − 2. The eigenvalues of g∞ are the sums of those of each of its factors.
Therefore, λ1(g∞) = min{λ1(Sn−1(1)), λ1(S1(T0/2π)} = min{n − 1, (T0/2π)−2} = n− 2.

Monotonicity of the period function follows from the general result [7, Lemma 1.2] or [14]. We
review the proof in our special setting in Appendix B as it seems not to be well-known to experts.
Non-integrability is now immediate since ϕ1(t) := sin(

√
n− 2t) is an eigenfunction of L∞ while

Proposition 21 and the fact that τ(α) is strictly increasing imply that g∞ is the only critical point
of the Yamabe energy: because τ(α) is strictly increasing and limαցu0 τ(α) = T0, there cannot be

α ∈ (u0, 1) and integers k ≥ 1 so that τ(α) = T0
k . Thus, Λ0 is one dimensional, but 1 is the unique

critical point of Y in [g∞]1, so g∞ must be non-integrable. Notice that because 1 is the unique
critical point of Y in [g∞]1, the solution of the Yamabe problem guarantees that it is the global
minimum of the Yamabe energy on [g∞]1.

Now, because g is a non-integrable critical point, the function F (v) defined on Λ0 in Proposition
7 is necessarily non-constant. Furthermore, because g is a unique global minimum for the Yamabe
problem in its conformal class, we see that Y(1) < Y(w) for any wN−2g∞ ∈ [g∞]1 with w 6≡ 1. In
particular, this yields that if v 6= 0 then necessarily F (0) < F (v). Thus, denoting by p the order of
integrability of g, it is clear that Fp must be everywhere non-negative (if it were not, we could take
v small enough so that Taylor’s theorem would imply that F (v) < F (0), contradicting the previous
argument). From this, it is clear that p ≥ 3 and in fact has to be even. (We remark that one can
directly check p 6= 3 because D3F (0)[ϕ1, ϕ1, ϕ1] = 0 by using the explicit form of F3(v) given in
(4).) �

Appendix A. Computing F3

In this appendix we compute the term F3 (see Proposition 7 and the subsequent discussion) at a
metric g∞ with constant scalar curvature. We believe this computation is of certain interest since,
as the reader may check from the sequel, the higher order polynomials Fp for p ≥ 4 cannot be
determined explicitly since this would require stronger information on the reduction map Φ (or,
equivalently, on Ψ) at the linearization point than we actually have according to Proposition 7.

Denote by 〈 · , · 〉 the L2(M,g∞)-pairing and, without further discussion we refer to Section 2 for
the notation concerning differentials and gradients. First, we will show that F1(v) = F2(v) = 0.
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To check this, notice that DF (w)[v] = DY(Ψ(w)) [DΨ(w)[v]] . Thus, DF (0) = 0 as DY(1) = 0
as 1 is a critical point of the Yamabe functional (by assumption, g∞ ∈ CSC1) and of course
Ψ(0) = 1. Therefore, F1 = 0. Similarly, D2F (w)[v, u] = D2Y(Ψ(w)) [DΨ(w)[u],DΨ(w)[v]] +
〈
DY(Ψ(w)),D2Ψ(w)[v, u]

〉
. When setting w = 0, Ψ(0) = 1,DΨ(0) = Id, and

D2F (0)[v, u] = D2Y(1)[u, v] +
〈
DY(1),D2Ψ(0)[v, u]

〉

= −2(N − 2)〈L∞u, v〉 +
〈
DY(1),D2Ψ(0)[v, u]

〉
.

As before, the second term vanishes. The first term vanishes because v is in the kernel of the
linearization of L∞, by assumption.

As observed in [1, Remark 1.19], one may explicitly compute F3, without explicit knowledge of Ψ
(and this is what typically makes AS3 simpler to check than ASp with p > 3 in explicit examples).

We will use this observation and check that to compute D3F (0), one may in fact compute D3F̃ (0)

where F̃ : Λ0 → R is defined by F̃ (v) = Y(1 + v). We first compute D3F :

D3F (w)[v, u, z] = D3Y(Ψ(w))[DΨ(w)[v],DΨ(w)[u],DΨ(w)[z]]

+D2Y(Ψ(w))[D2Ψ(w)[u, z],DΨ(w)[v]]

+D2Y(Ψ(w))[DΨ(w)[u],D2Ψ(w)[v, z]]

+D2Y(Ψ(w))[DΨ(w)[z],D2Ψ(w)[v, u]]

+
〈
DY(Ψ(w)),D3Ψ(w)[v, u, z]

〉
.

Setting w = 0, and using similar considerations as before (in particular noting that D2Y(1)[·] is self-

adjoint), we obtain D3F (0)[v, u, z] = D3Y(1)[v, u, z]. Performing the same computation for D3F̃ (0)

yields the same result. Next, we compute D3F̃ (0). Recall from Section 2 that the differential of the
Yamabe energy is 1

2DY(w)[v] =
∫

M

[
−(N + 2)∆g∞w +Rg∞w − rwN−2g∞w

N−1
]
vdVg∞ . The first

two terms are linear in w, so when computing the third derivative of Y at 1, they will vanish.
Let us then concentrate on the third term. Because rwN−2g∞ = Y(w) we have already shown that
the first and second directional derivatives of this expression in directions in Λ0 vanish at w = 1.
Hence, we see that the following expression holds:

D3Y(1)[u, z, v] = −2(N − 1)(N − 2)rg∞

∫

M
uzvdVg∞ ,

for u, z, v ∈ Λ0, proving (4).
In this final paragraph (contrary to the rest of this section) we will use the space-time Ck,α norms

on an interval (t, t + 1) ×M , as in Section 4. One may observe that by repeating the argument
used above for w such that ‖w−1‖C2,α < 1 it is clear that the C0,α norm of D3Y(w)[v, u], regarded
(via the L2(M,g∞) pairing) as a function on M , can be bounded by a uniform constant times the
C2,α norm of u times that of v. More precisely,

(27) ‖D3Y(w)[u, v]‖C0,α ≤ C‖u‖C2,α‖v‖C2,α

for some uniform C > 0. Furthermore, for w1, w2 such that ‖wi − 1‖C2,α < 1 (for i = 1, 2), we have

‖D3Y(w1)[v, v] −D3Y(w2)[u, u]‖C0,α ≤ C(‖w1‖C2,α + ‖w2‖C2,α)(‖u‖C2,α + ‖v‖C2,α)‖u− v‖C2,α

for some uniform C > 0. These facts are used in the proof of Lemma 16 and Proposition 17.

Appendix B. Monotonicity of the period function

Here we review the proof of [7, Lemma 1.2] in our special setting. Recalling (23), define the

“potential energy” U(u) = H/2 − v2 =
(

2
N−2

)2
(uN − u2). Its absolute minimum in the range

(0, 1) is attained at u = u0. Denote by λβ(t) = (u(t), v(t)) the solution of (20) with

λβ(0) = (u0, β) ∈ Ω, with β ∈ [0,
√

−U(u0)) (with λ0 = (u0, 0)). This solution intersects the
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u-axis at exactly two points that we denote by (z−(β), 0) and (z+(β), 0) with z−(β) < z+(β).

Since v = du/dt, dt = du/v = du/
√

H/2 − U , so the half-period τ(β)/2 of λβ(t) is given by
∫ z+(β)
u0

du/
√

H(β)/2 − U(u) −
∫ z−(β)
u0

du/
√

H(β)/2 − U(u), where H(β) = 2β2 + 2U(u0). Note

that U(z±(β)) = H(β)/2 = β2 + U(u0), so differentiation in β gives ∂U
∂u (z±(β))z′±(β) = 2β.

Thus, setting a =
√

U(u) − U(u0)/β, gives τ(β)/2 =
∫ 1
0 (z+ − z−)′(βt) dt√

1−t2
. The advantage of

this formula is its simple dependence on β: it suffices to show now that z+ − z− is convex in

β ∈ (0,
√

−U(u0)) (note −U(u0) = 1
N−2

(
2
N

) N
N−2 ). Geometrically, this means that the “width” of

the domains enclosed by the image of λβ is convex as a function of their “height” 2β. Differentiation

in β yields z′′±(β)/2 = U ′2−2U ′′(U−U(u0))
U ′3 (z±(β)). L’Hôpital’s rule applied twice immediately gives

(using that limβ→0 z±(β) = u0 and U ′(u0) = 0) limβ→0 z
′′
±(β)/2 = −U ′′′(u0)/3U ′′2(u0) =: A < 0.

The convexity claim follows if z′′+(β)/2 ≥ A ≥ z′′−(β)/2, for β ∈ (0,
√

−U(u0)). Since the sign
of U ′(z±) (which is the sign of the denominator of z′′±) is ±, both inequalities follow if F (u) :=

U ′2−2U ′′(U−U(u0))−AU ′3 ≥ 0 on u ∈ (0, 1). Now, U ′′(u) =
(

2
N−2

)2
(N(N−1)uN−2−2) is negative

on
(
0,
(

2
N(N−1)

) 1
N−2

)
⊂ (0, 1); so, as U ′′′ > 0, F ′ = −2U ′′′(U − U(u0)) − 3AU ′2U ′′ ≤ 0, i.e., F does

not increase in that range. Thus, is suffices to show that F ≥ 0 in
((

2
N(N−1)

) 1
N−2 , 1

)
. In that regime

(where U ′′ > 0), consider the function H := F/U ′′, and compute H ′ = U ′2U ′′′

U ′′2 [A(U ′−3U ′′2/U ′′′)−1].
Denote the expression in the brackets by K and note the sign of H equals the sign of K. Now

K ′ = A
(

U ′′ − 6U ′′U ′′′2−3U ′′′′U ′′2

U ′′′2

)

, or K ′ = AU ′′

U ′′′2

(

− 5U ′′′2 + 3U ′′′′U ′′
)

, whose sign is opposite the

sign of the expression in the paranthesis, that we denote by L. But L = −9
2(U ′′)

8
3

(
(U ′′)−

2
3

)′′
, and

(U ′′)−
2
3 is seen to be convex on

((
2

N(N−1)

) 1
N−2 , 1

)
; thus K ′ ≥ 0 there (as U ′′ > 0 there). Now, K

vanishes at u0, so K ≥ 0 and H ′ ≥ 0 on (u0, 1). But F (u0) = H(u0) = 0, so H ≥ 0 and F ≥ 0 on

(u0, 1). Further, K must be negative on
((

2
N(N−1)

) 1
N−2 , u0

)
(as K ′ ≥ 0 on ( 2

N(N−1)

) 1
N−2 , 1) while

K(u0) = 0). Thus H ′ ≤ 0 on
((

2
N(N−1)

) 1
N−2 , u0

)
, so H is nonincreasing there; but H(u0) = 0, so

we must have H ≥ 0 also on
((

2
N(N−1)

) 1
N−2 , u0

)
. In conclusion, F ≥ 0 on (0, 1), as desired.
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