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PROOF OF THE 1-FACTORIZATION AND HAMILTON
DECOMPOSITION CONJECTURES II: THE BIPARTITE CASE

BELA CSABA, DANIELA KUHN, ALLAN LO, DERYK OSTHUS AND
ANDREW TREGLOWN

ABSTRACT. In a sequence of four papers, we prove the following results (via a
unified approach) for all sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D > 2[n/4] — 1.
Then every D-regular graph G on n vertices has a decomposition into perfect
matchings. Equivalently, x'(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D > |n/2|. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices
with minimum degree § > n/2. Then G contains at least reg,,.,(n,0)/2 >
(n—2)/8 edge-disjoint Hamilton cycles. Here reg,,., (n, ) denotes the degree
of the largest even-regular spanning subgraph one can guarantee in a graph
on n vertices with minimum degree §.

According to Dirac, (i) was first raised in the 1950s. (ii) and the special case
0 = [n/2] of (iii) answer questions of Nash-Williams from 1970. All of the above
bounds are best possible. In the current paper, we prove the above results for the
case when G is close to a complete balanced bipartite graph.
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1. INTRODUCTION

The topic of decomposing a graph into a given collection of edge-disjoint subgraphs
has a long history. Indeed, in 1892, Walecki [19] proved that every complete graph
of odd order has a decomposition into edge-disjoint Hamilton cycles. In a sequence
of four papers, we provide a unified approach towards proving three long-standing
graph decomposition conjectures for all sufficiently large graphs.

1.1. The 1-factorization conjecture. Vizing’s theorem states that for any graph G
of maximum degree A, its edge-chromatic number x/(G) is either A or A + 1. How-
ever, the problem of determining the precise value of x/(G) for an arbitrary graph
G is NP-complete [8]. Thus, it is of interest to determine classes of graphs G that
attain the (trivial) lower bound A — much of the recent book [28] is devoted to the
subject. If G is a regular graph then x/(G) = A(G) precisely when G has a 1-
factorization: a 1-factorization of a graph G consists of a set of edge-disjoint perfect
matchings covering all edges of G. The 1-factorization conjecture states that every
regular graph of sufficiently high degree has a 1-factorization. It was first stated
explicitly by Chetwynd and Hilton [I], 2] (who also proved partial results). However,
they state that according to Dirac, it was already discussed in the 1950s. We prove
the 1-factorization conjecture for sufficiently large graphs.

Theorem 1.1. There exists an ng € N such that the following holds. Let n,D € N
be such that n > ng is even and D > 2[n/4] — 1. Then every D-regular graph G on
n vertices has a 1-factorization. Equivalently, X' (G) = D.
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The bound on the minimum degree in Theorem [I.1] is best possible. In fact, a
smaller degree bound does not even ensure a single perfect matching. To see this,
suppose first that n = 2 (mod 4). Consider the graph which is the disjoint union
of two cliques of order n/2 (which is odd). If n = 0 (mod 4), consider the graph
obtained from the disjoint union of cliques of orders n/2 —1 and n/2+ 1 (both odd)
by deleting a Hamilton cycle in the larger clique.

Perkovic and Reed [26] proved an approximate version of Theorem [[T] (they as-
sumed that D > n/2 + en). Recently, this was generalized by Vaughan [29] to
multigraphs of bounded multiplicity, thereby proving an approximate version of a
‘multigraph 1-factorization conjecture’ which was raised by Plantholt and Tipnis [27].
Further related results and problems are discussed in the recent monograph [28].

1.2. The Hamilton decomposition conjecture. A Hamilton decomposition of a
graph G consists of a set of edge-disjoint Hamilton cycles covering all the edges of G.
A natural extension of this to regular graphs G of odd degree is to ask for a decom-
position into Hamilton cycles and one perfect matching (i.e. one perfect matching
M in G together with a Hamilton decomposition of G — M). Nash-Williams [23], [25]
raised the problem of finding a Hamilton decomposition in an even-regular graph
of sufficiently large degree. The following result completely solves this problem for
large graphs.

Theorem 1.2. There exists an nyg € N such that the following holds. Let n,D € N
be such that n > ng and D > |n/2]. Then every D-regular graph G on n vertices
has a decomposition into Hamilton cycles and at most one perfect matching.

The bound on the degree in Theorem[I.2]is best possible (see Proposition 3.1 in [14]
for a proof of this). Note that Theorem does not quite imply Theorem [I.I] as
the degree threshold in the former result is slightly higher.

Previous results include the following: Nash-Williams [22] showed that the degree
bound in Theorem ensures a single Hamilton cycle. Jackson [9] showed that
one can ensure close to D/2 — n/6 edge-disjoint Hamilton cycles. More recently,
Christofides, Kiithn and Osthus [3] obtained an approximate decomposition under
the assumption that D > n/2 + en. Finally, under the same assumption, Kithn and
Osthus [16] obtained an exact decomposition (as a consequence of the main result
in [15] on Hamilton decompositions of robustly expanding graphs).

1.3. Packing Hamilton cycles in graphs of large minimum degree. Dirac’s
theorem is best possible in the sense that one cannot lower the minimum degree
condition. Remarkably though, the conclusion can be strengthened considerably:
Nash-Williams [24] proved that every graph G on n vertices with minimum degree
d(G) > n/2 contains |5n/224| edge-disjoint Hamilton cycles. Nash-Williams [24], 23],
25)] raised the question of finding the best possible bound on the number of edge-
disjoint Hamilton cycles in a Dirac graph. This question is answered by Corollary [[.4]
below.

In fact, we answer a more general form of this question: what is the number of
edge-disjoint Hamilton cycles one can guarantee in a graph G of minimum degree §7
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Let reg.y,(G) be the largest degree of an even-regular spanning subgraph of G.
Then let

reeven (12, 0) i= min{rege e, (G) : |G| = n, 6(G) = 6}

Clearly, in general we cannot guarantee more than reg,., (7, 6)/2 edge-disjoint Hamil-
ton cycles in a graph of order n and minimum degree §. The next result shows that
this bound is best possible (if § < n/2, then reg. ., (n,d) = 0).

Theorem 1.3. There exists an ng € N such that the following holds. Suppose that
G is a graph on n > ng vertices with minimum degree 6 > n/2. Then G contains at
least regq en (n,0)/2 edge-disjoint Hamilton cycles.

Kiihn, Lapinskas and Osthus [11] proved Theorem [[.3] in the case when G is not
close to one of the extremal graphs for Dirac’s theorem. An approximate version
of Theorem [[.3 for 6 > n/2 + en was obtained earlier by Christofides, Kithn and
Osthus [3]. Hartke and Seacrest [7] gave a simpler argument with improved error
bounds.

The following consequence of Theorem [[.3] answers the original question of Nash-
Williams.

Corollary 1.4. There exists an ng € N such that the following holds. Suppose that
G is a graph on n > ng vertices with minimum degree 6 > n/2. Then G contains at
least (n — 2)/8 edge-disjoint Hamilton cycles.

See [14] for an explanation as to why Corollary [[.4] follows from Theorem [[.3] and
for a construction showing the bound on the number of edge-disjoint Hamilton cycles
in Corollary [[.4] is best possible (the construction is also described in Section [3.1]).

1.4. Overall structure of the argument. For all three of our main results, we
split the argument according to the structure of the graph GG under consideration:

(i) G is close to the complete balanced bipartite graph K, /2,025
(ii) G is close to the union of two disjoint copies of a clique K, o;
(iii) G is a ‘robust expander’.

Roughly speaking, GG is a robust expander if for every set S of vertices, its neigh-
bourhood is at least a little larger than |S|, even if we delete a small proportion
of the edges of G. The main result of [I5] states that every dense regular robust
expander has a Hamilton decomposition. This immediately implies Theorems [I.1]
and in Case (iii). For Theorem [[L3, Case (iii) is proved in [II] using a more
involved argument, but also based on the main result of [15].

Case (ii) is proved in [14}[12]. The current paper is devoted to the proof of Case (i).
In [14] we derive Theorems[[I] [[.2] and [[13] from the structural results covering Cases
(1)—(iii).

The arguments in the current paper for Case (i) as well as those in [14] for Case (ii)
make use of an ‘approximate’ decomposition result proved in [4]. In both Case (i)
and Case (ii) we use the main lemma from [15] (the ‘robust decomposition lemma’)
when transforming this approximate decomposition into an exact one.
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1.5. Statement of the main results of this paper. As mentioned above, the
focus of this paper is to prove Theorems [I.1] and [[L3] when our graph is close to
the complete balanced bipartite graph K,/ /2. More precisely, we say that a graph
G on n vertices is e-bipartite if there is a partition S, .Sy of V(G) which satisfies the
following:

e n/2—1<|5],|S] <n/2+1;

o ¢(51),e(Sy) < en?.
The following result implies Theorems [T and in the case when our given graph
is close to Ky, /252

Theorem 1.5. There are eex > 0 and ng € N such that the following holds. Suppose
that D > (1/2 — eex)n and D is even and suppose that G is a D-regular graph on
n > ng vertices which is eox-bipartite. Then G has a Hamilton decomposition.

The next result implies Theorem [[.3]in the case when our graph is close to K, /3 5, /2-

Theorem 1.6. For each a > 0 there are eox > 0 and ng € N such that the following
holds. Suppose that F is an eex-bipartite graph on n > ngy vertices with §(F) >
(1/2—eex)n. Suppose that F' has a D-regular spanning subgraph G such that n/100 <
D < (1/2—a)n and D is even. Then F contains D /2 edge-disjoint Hamilton cycles.

Note that Theorem implies that the degree bound in Theorems [I.1] and is
not tight in the almost bipartite case (indeed, the extremal graph is close to being the
union of two cliques). On the other hand, the extremal construction for Corollary [[.4]
is close to bipartite (see Section [B.1lfor a description). So it turns out that the bound
on the number of edge-disjoint Hamilton cycles in Corollary [L.4] is best possible in
the almost bipartite case but not when the graph is close to the union of two cliques.

In Section [3] we give an outline of the proofs of Theorems and The results
from Sections @ and [l are used in both the proofs of Theorems and In
Sections [@ and [ we build up machinery for the proof of Theorem We then
prove Theorem in Section [§] and Theorem in Section [

2. NOTATION AND TOOLS

2.1. Notation. Unless stated otherwise, all the graphs and digraphs considered in
this paper are simple and do not contain loops. So in a digraph G, we allow up to two
edges between any two vertices; at most one edge in each direction. Given a graph
or digraph G, we write V(G) for its vertex set, E(G) for its edge set, e(G) := |E(G)|
for the number of its edges and |G| := |V (G)| for the number of its vertices.
Suppose that G is an undirected graph. We write §(G) for the minimum degree
of G and A(G) for its maximum degree. Given a vertex v of G and a set A C V(G),
we write dg(v, A) for the number of neighbours of v in G which lie in A. Given
A,B C V(QG), we write Eg(A) for the set of all those edges of G which have both
endvertices in A and Eg(A, B) for the set of all those edges of G which have one
endvertex in A and its other endvertex in B. We also call the edges in Eqg(A, B)
AB-edges of G. We let eq(A) := |Eq(A)| and eq(A4, B) := |Eq(A, B)|. We denote
by G[A] the subgraph of G with vertex set A and edge set Eg(A). If An B = 0,
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we denote by G[A, B] the bipartite subgraph of G with vertex classes A and B and
edge set Eg(A, B). If A= B we define G[A, B] := G[A]. We often omit the index G
if the graph G is clear from the context. A spanning subgraph H of G is an r-factor
of G if every vertex has degree r in H.

Given a vertex set V and two multigraphs G and H with V(G),V(H) C V, we
write G + H for the multigraph whose vertex set is V(G) U V(H) and in which the
multiplicity of zy in G 4+ H is the sum of the multiplicities of zy in G and in H (for
all z,y € V(G)UV (H)). We say that a graph G has a decomposition into Hy, ..., H,
if G=Hy+ - -+ H, and the H; are pairwise edge-disjoint.

If G and H are simple graphs, we write GU H for the (simple) graph whose vertex
set is V(G) UV (H) and whose edge set is F(G) U E(H). Similarly, G N H denotes
the graph whose vertex set is V(G) N V(H) and whose edge set is E(G) N E(H).
We write G — H for the subgraph of G which is obtained from G by deleting all the
edges in E(G) N E(H). Given A C V(G), we write G — A for the graph obtained
from G by deleting all vertices in A.

A path system is a graph @ which is the union of vertex-disjoint paths (some of
them might be trivial). We say that P is a path in @ if P is a component of ) and,
abusing the notation, sometimes write P € @ for this.

If G is a digraph, we write zy for an edge directed from z to y. A digraph G is an
oriented graph if there are no x,y € V(G) such that xy,yz € E(G). Unless stated
otherwise, when we refer to paths and cycles in digraphs, we mean directed paths and
cycles, i.e. the edges on these paths/cycles are oriented consistently. If x is a vertex
of a digraph G, then N(J; (z) denotes the outneighbourhood of x, i.e. the set of all
those vertices y for which zy € E(G). Similarly, N (x) denotes the inneighbourhood
of z, i.e. the set of all those vertices y for which yx € E(G). The outdegree of z is
d5(z) == |NJ (z)| and the indegree of x is dg(z) == |[Ng (x)]. We write §(G) and
A(G) for the minimum and maximum degrees of the underlying simple undirected
graph of G respectively.

For a digraph G, whenever A, B C V(G) with ANB = (), we denote by G[A, B] the
bipartite subdigraph of G with vertex classes A and B whose edges are all the edges
of G directed from A to B, and let eg(A, B) denote the number of edges in G[A, BJ.
We define 6(G[A, B]) to be the minimum degree of the underlying undirected graph
of G[A, B] and define A(G[A, B]) to be the maximum degree of the underlying
undirected graph of G[A, B]. A spanning subdigraph H of G is an r-factor of G if
the outdegree and the indegree of every vertex of H is r.

If P is a path and z,y € V(P), we write Py for the subpath of P whose endver-
tices are = and y. We define x Py similarly if P is a directed path and x precedes y
on P.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n € ¢ < b < ¢ <1
(where n is the order of the graph or digraph), then this means that there are non-
decreasing functions f : (0,1] — (0,1], g : (0,1] — (0,1] and A : (0,1] — (0, 1] such
that the result holds for all 0 < a,b,c < 1 and all n € N with b < f(c), a < g(b)
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and 1/n < h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are defined in a similar way. We will write a = b & ¢ as shorthand
forb—c<a<b+e

2.2, e-regularity. If G = (A, B) is an undirected bipartite graph with vertex classes
A and B, then the density of G is defined as

ec(A, B)

WA B) = =BT

For any ¢ > 0, we say that G is e-reqular if for any A’ C A and B’ C B with
|A’| > e|A| and |B’| > ¢|B| we have |d(A’,B") — d(A, B)| < e. We say that G is
(e,> d)-regular if it is e-regular and has density d’' for some d’ > d — ¢.

We say that G is [e,d]-superreqular if it is e-regular and dg(a) = (d & €)|B| for
every a € A and dg(b) = (d £ ¢)|A| for every b € B. G is [g,> d]-superregular if it
is [e, d'|-superregular for some d' > d.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X,Y] denotes
the bipartite subdigraph of G whose vertex classes are X and Y and whose edges are
all the edges of G directed from X to Y. We often view G[X,Y] as an undirected
bipartite graph. In particular, we say G[X,Y] is e-regular, (&,> d)-regular, [e,d]-
superregular or [g,> d]|-superregular if this holds when G[X,Y] is viewed as an
undirected graph.

We often use the following simple proposition which follows easily from the def-
inition of (super-)regularity. We omit the proof, a similar argument can be found
e.g. in [15].

Proposition 2.1. Suppose that 0 < 1/m < ¢ < d < d < 1. Let G be a bipartite
graph with vertex classes A and B of size m. Suppose that G’ is obtained from G by
removing at most d'm vertices from each vertex class and at most d'm edges incident
to each vertex from G. If G is [e, d]-superregular then G’ is [2v/d', d]-superregular.

We will also use the following simple fact.

Fact 2.2. Let ¢ > 0. Suppose that G is a bipartite graph with vertex classes of size
n such that 6(G) > (1 —e)n. Then G is [/, 1]-superregular.

2.3. A Chernoff-Hoeffding bound. We will often use the following Chernoff-
Hoeffding bound for binomial and hypergeometric distributions (see e.g. [10, Corol-
lary 2.3 and Theorem 2.10]). Recall that the binomial random variable with pa-
rameters (n,p) is the sum of n independent Bernoulli variables, each taking value 1
with probability p or 0 with probability 1 — p. The hypergeometric random variable
X with parameters (n,m, k) is defined as follows. We let N be a set of size n, fix
S C N of size |S| = m, pick a uniformly random 7' C N of size |T'| = k, then define
X :=|T' N S|. Note that EX = km/n.

Proposition 2.3. Suppose X has binomial or hypergeometric distribution and 0 <
a2

a <3/2. Then P(|X —EX| > aEX) < 2™ s BX,
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3. OVERVIEW OF THE PROOFS OF THEOREMS AND

Note that, unlike in Theorem [[.5] in Theorem [[.6l we do not require a complete de-
composition of our graph F' into edge-disjoint Hamilton cycles. Therefore, the proof
of Theorem is considerably more involved than the proof of Theorem More-
over, the ideas in the proof of Theorem are all used in the proof of Theorem
too.

3.1. Proof overview for Theorem Let F' be a graph on n vertices with
§(F') > (1/2—0(1))n which is close to the balanced bipartite graph K, /5 , /2. Further,
suppose that G is a D-regular spanning subgraph of F' as in Theorem [[.6l Then there
is a partition A, B of V(F') such that A and B are of roughly equal size and most
edges in F' go between A and B. Our ultimate aim is to construct D /2 edge-disjoint
Hamilton cycles in F'.

Suppose first that, in the graph F, both A and B are independent sets of equal
size. So F' is an almost complete balanced bipartite graph. In this case, the densest
spanning even-regular subgraph G of F' is also almost complete bipartite. This means
that one can extend existing techniques (developed e.g. in [3, Bl [6] [7, 21]) to find
an approximate Hamilton decomposition. This is achieved in [4] and is more than
enough to prove Theorem in this case. (We state the main result from [4] as
Lemma BTl in the current paper.) The real difficulties arise when

(i) F is unbalanced;
(ii) F has vertices having high degree in both A and B (these are called excep-
tional vertices).

To illustrate (i), consider the following example due to Babai (which is the ex-
tremal construction for Corollary [[4]). Consider the graph F' on n = 8k + 2 vertices
consisting of one vertex class A of size 4k 4 2 containing a perfect matching and no
other edges, one empty vertex class B of size 4k, and all possible edges between A
and B. Thus the minimum degree of F' is 4k + 1 = n/2. Then one can use Tutte’s
factor theorem to show that the largest even-regular spanning subgraph G of F' has
degree D = 2k = (n — 2)/4. Note that to prove Theorem in this case, each of
the D/2 = k Hamilton cycles we find must contain exactly two of the 2k + 1 edges
in A. In this way, we can ‘balance out’ the difference in the vertex class sizes.

More generally we will construct our Hamilton cycles in two steps. In the first
step, we find a path system J which balances out the vertex class sizes (so in the
above example, J would contain two edges in A). Then we extend J into a Hamilton
cycle using only AB-edges in F'. It turns out that the first step is the difficult one.
It is easy to see that a path system J will balance out the sizes of A and B (in the
sense that the number of uncovered vertices in A and B is the same) if and only if

(3.1) es(A) —es(B) = |A] - |B|.

Note that any Hamilton cycle also satisfies this identity. So we need to find a set of
D/2 path systems J satisfying (B.1]) (where D is the degree of G)). This is achieved
(amongst other things) in Sections and .31

As indicated above, our aim is to use Lemma [81] in order to extend each such J
into a Hamilton cycle. To apply Lemma B1] we also need to extend the balancing
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path systems J into ‘balanced exceptional (path) systems’ which contain all the
exceptional vertices from (ii). This is achieved in Section (54l Lemma 8] also
assumes that the path systems are ‘localized’ with respect to a given subpartition
of A, B (i.e. they are induced by a small number of partition classes). Section 5.1
prepares the ground for this.

Finding the balanced exceptional systems is extremely difficult if G contains edges
between the set Ag of exceptional vertices in A and the set By of exceptional vertices
in B. So in a preliminary step, we find and remove a small number of edge-disjoint
Hamilton cycles covering all Ay By-edges in Section[d. We put all these steps together
in Section Bl (Sections @] [ and [@] are only relevant for the proof of Theorem [L5])

3.2. Proof overview for Theorem The main result of this paper is The-
orem Suppose that G is a D-regular graph satisfying the conditions of that
theorem. Using the approach of the previous subsection, one can obtain an approxi-
mate decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering almost
all edges of G. However, one does not have any control over the ‘leftover’ graph H,
which makes a complete decomposition seem infeasible. This problem was overcome
in [15] by introducing the concept of a ‘robustly decomposable graph’ G*". Roughly
speaking, this is a sparse regular graph with the following property: given any very
sparse regular graph H with V(H) = V(G™) which is edge-disjoint from G*P,
one can guarantee that G™" U H has a Hamilton decomposition. This leads to the
following strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph G*P in G and let G’ denote the
leftover;

(2) find an approximate Hamilton decomposition of G’ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of G™P U H.

It is of course far from obvious that such a graph G™P exists. By assumption our
graph G can be partitioned into two classes A and B of almost equal size such that
almost all the edges in G go between A and B. If both A and B are independent sets
of equal size then the ‘robust decomposition lemma’ of [I5] guarantees our desired
subgraph G™P of G. Of course, in general our graph G will contain edges in A and
B. Our aim is therefore to replace such edges with ‘fictive edges’ between A and
B, so that we can apply the robust decomposition lemma (which is introduced in
Section [7]).

More precisely, similarly as in the proof of Theorem [[.6] we construct a collection
of localized balanced exceptional systems. Together these path systems contain all
the edges in G[A] and G[B]. Again, each balanced exceptional system balances out
the sizes of A and B and covers the exceptional vertices in G (i.e. those vertices
having high degree into both A and B).

By replacing edges of the balanced exceptional systems with fictive edges, we
obtain from G an auxiliary (multi)graph G* which only contains edges between A
and B and which does not contain the exceptional vertices of G. This will allow
us to apply the robust decomposition lemma. In particular this ensures that each
Hamilton cycle obtained in G* contains a collection of fictive edges corresponding to
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a single balanced exceptional system (the set-up of the robust decomposition lemma
does allow for this). Each such Hamilton cycle in G* then corresponds to a Hamilton
cycle in G.

We now give an example of how we introduce fictive edges. Let m be an integer
so that (m —1)/2 is even. Set m’ := (m — 1)/2 and m” := (m + 1)/2. Define the
graph G as follows: Let A and B be disjoint vertex sets of size m. Let Ay, As be a
partition of A and By, By be a partition of B such that |[A;] = |B1| = m”. Add all
edges between A and B. Add a matching M; = {e1,..., ey /2} covering precisely
the vertices of Ay and add a matching My = {€},... €, /2} covering precisely the
vertices of Bsy. Finally add a vertex v which sends an edge to every vertex in 41U Bj.
So G is (m + 1)-regular (and v would be regarded as a exceptional vertex).

Now pair up each edge e; with the edge e,. Write e; = x9;_1x9; and €, = ya;_1y2;
for each 1 < i < m'/2. Let Ay = {a1,...,amr} and By = {b1,..., by} and write
fi = a;b; for all 1 < i < m/. Obtain G* from G by deleting v together with the edges
in My U My and by adding the following fictive edges: add f; for each 1 <7 < m”
and add z;y; for each 1 < j < m’. Then G* is a balanced bipartite (m + 1)-regular
multigraph containing only edges between A and B.

First, note that any Hamilton cycle C* in G* that contains precisely one fictive
edge f; for some 1 < i < m” corresponds to a Hamilton cycle C' in G, where we
replace the fictive edge f; with a;v and b;v. Next, consider any Hamilton cycle C* in
G* that contains precisely three fictive edges; f; for some 1 < i < m” together with
Z2j—1Y2j—1 and xo;yo; for some 1 < j < m’/2. Further suppose C* traverses the
vertices a;, b, £2j—1, Y21, 25, y2; in this order. Then C* corresponds to a Hamilton
cycle C in G, where we replace the fictive edges with a;v, b;v, e; and e;- (see Figure[I]).
Here the path system J formed by the edges a;v, b;v,e; and e;- is an example of a
balanced exceptional system. The above ideas are formalized in Section [l

FiGURE 1. Transforming the problem of finding a Hamilton cycle in
G into finding a Hamilton cycle in the balanced bipartite graph G*
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We can now summarize the steps leading to proof of Theorem L5l In Section [l we
find and remove a set of edge-disjoint Hamilton cycles covering all edges in G[Ag, By].
We can then find the localized balanced exceptional systems in Section Bl After this,
we need to extend and combine them into certain path systems and factors (which
contain fictive edges) in Section [6] before we can use them as an ‘input’ for the
robust decomposition lemma in Section [7 Finally, all these steps are combined in
Section [0 to prove Theorem

4. ELIMINATING EDGES BETWEEN THE EXCEPTIONAL SETS

Suppose that G is a D-regular graph as in Theorem The purpose of this
section is to prove Corollary .13l Roughly speaking, given K € N, this corollary
states that one can delete a small number of edge-disjoint Hamilton cycles from G
to obtain a spanning subgraph G’ of G and a partition A, Ay, B, By of V(G) such
that (amongst others) the following properties hold:

e almost all edges of G’ join AU Ag to B U By;

e |A| = |B| is divisible by K;

e every vertex in A has almost all its neighbours in B U By and every vertex
in B has almost all its neighbours in A U Ag;

e Ay U By is small and there are no edges between Ay and By in G'.

We will call (G', A, Ag, B, By) a framework. (The formal definition of a framework
is stated before Lemma [£.12]) Both A and B will then be split into K clusters of
equal size. Our assumption that G is eq-bipartite easily implies that there is such
a partition A, Ag, B, By which satisfies all these properties apart from the property
that there are no edges between Ay and By. So the main part of this section shows
that we can cover the collection of all edges between Ay and By by a small number
of edge-disjoint Hamilton cycles.

Since Corollary E.13] will also be used in the proof of Theorem [I.6] instead of
working with regular graphs we need to consider so-called balanced graphs. We also
need to find the above Hamilton cycles in the graph F' O G rather than in G itself
(in the proof of Theorem [[.5] we will take F' to be equal to G).

More precisely, suppose that G is a graph and that A’, B’ is a partition of V(G),
where A’ = AgU A, B’ = ByU B and A, Ay, B, By are disjoint. Then we say that G
is D-balanced (with respect to (A, Ag, B, By)) if

(B1) eq(A’) —ea(B') = (|A'| — |B'|)D/2;

(B2) all vertices in Ay U By have degree exactly D.

Proposition [£.I] below implies that whenever A, Ay, B, By is a partition of the vertex
set of a D-regular graph H, then H is D-balanced with respect to (A, Ag, B, By).
Moreover, note that if G is Dg-balanced with respect to (A, Ay, B, By) and H is a
spanning subgraph of G which is Dy-balanced with respect to (A, Ay, B, By), then
G — H is (Dg — Dp)-balanced with respect to (A4, Ag, B, By). Furthermore, a graph
G is D-balanced with respect to (A, Ay, B, Bp) if and only if G is D-balanced with
respect to (B, By, A, Ayp).
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Proposition 4.1. Let H be a graph and let A’, B' be a partition of V(H). Suppose
that Ag, A is a partition of A" and that By, B is a partition of B' such that |A| = |B].
Suppose that dg(v) = D for every v € AgU By and dg(v) = D’ for everyv € AUB.
Then ey (A’) —ey(B') = (|A'| — |B'|)D/2.

Proof. Note that

> du(z,B)=en(A,B)= > duly A

zeA’ yeB’
Moreover,
2e(A') = Y (D—dg(z,B))+> (D'—dy(z,B')) = D|Ag|+D'|A|- > dpu(z, B')
T€AQ z€A zeA’
and
2ep(B) = Y (D—du(y, A)+) _(D'~du(y,A")) = D|Bo|+D'|B|- ) _ du(y,A').
y€Bo yeB yeB’
Therefore
2en(A")—2er(B') = D(|Ao| —|Bo|)+D'(|A|—|B|) = D(|Ao| —|Bol) = D(|A'|~|B']),
as desired. O

The following observation states that balancedness is preserved under suitable
modifications of the partition.

Proposition 4.2. Let H be D-balanced with respect to (A, Ay, B, By). Suppose that
Aj), B}, is a partition of AgUBy. Then H is D-balanced with respect to (A, Aj, B, Bj)).

Proof. Observe that the general result follows if we can show that H is D-balanced
with respect to (4, A, B, B})), where A = AgU{v}, Bj = Bo\{v} and v € By. (B2)
is trivially satisfied in this case, so we only need to check (B1) for the new partition.
For this, let A" := AgU A and B’ := By U B. Now note that (B1) for the original
partition implies that

eH(A6 U A) — eH(B(/] U B) = eH(A') + dH(U, A/) - (eH(B/) — dH(U, B/))
= (1A= |B')D/2+ D = (|[AgU A| - [By U B|)D/2.
Thus (B1) holds for the new partition. O

Suppose that G is a graph and A’, B’ is a partition of V(G). For every vertex
v e A we call dg(v, A") the internal degree of v in G. Similarly, for every vertex
v € B" we call dg(v, B') the internal degree of v in G.

Given a graph F' and a spanning subgraph G of F' | we say that (F, G, A, Ay, B, By)
is an (¢,¢', K, D)-weak framework if the following holds, where A’ := AgU A, B’ :=
ByU B and n := |G| = |F:

(WF1) A, Ay, B, By forms a partition of V(G) = V(F);
(WF2) G is D-balanced with respect to (A, Ag, B, By);
(WF3) eq(A),eq(B') < en?;
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(WF4) |A| = |B] is divisible by K. Moreover, a + b < en, where a := |Apy| and
b= |Byl;

(WF5) all vertices in A U B have internal degree at most €'n in F;

(WF6) any vertex v has internal degree at most dg(v)/2 in G.

Throughout the paper, when referring to internal degrees without mentioning the
partition, we always mean with respect to the partition A’, B’, where A’ = AgU A
and B’ = By U B. Moreover, a and b will always denote |Ag| and | By|.

We say that (F,G, A, Ao, B, By) is an (g,&', K, D)-pre-framework if it satisfies
(WF1)-(WF5). The following observation states that pre-frameworks are preserved
if we remove suitable balanced subgraphs.

Proposition 4.3. Let ¢,¢’ > 0 and K, D¢, Dy € N. Let (F,G, A, Ay, B, By) be an
(e,¢', K, Dg)-pre framework. Suppose that H is a Dy-reqular spanning subgraph of
F such that GNH 1is Dy -balanced with respect to (A, Ag, B, By). Let F' := F—H and
G :=G—H. Then (F',G', A, Ay, B, By) is an (¢,¢', K, Dg — Dy )-pre framework.

Proof. Note that all required properties except possibly (WF2) are not affected by
removing edges. But G’ satisfies (WF2) since GN H is Dy-balanced with respect to
(A7A07B7B0)' U

Lemma 4.4. Let 0 < 1/n < e € ¢,1/K < 1 and let D > n/200. Suppose that
F is a graph on n vertices which is e-bipartite and that G is a D-reqular spanning
subgraph of F. Then there is a partition A, Ag,B,By of V(G) = V(F) so that
(F,G,A, Ay, B, By) is an (51/3,6/,K,D)—weak framework.

Proof. Let S1,S3 be a partition of V/(F') which is guaranteed by the assumption that
F is e-bipartite. Let S be the set of all those vertices € Sy with dp(z,S1) > V/en
together with all those vertices x € Sy with dp(z,S2) > \/en. Since F is e-bipartite,
it follows that |S| < 4/en.

Given a partition X,Y of V(F), we say that v € X is bad for X,Y if dg(v, X) >
dg(v,Y) and similarly that v € Y is bad for X,Y if dg(v,Y) > dg(v, X). Suppose
that there is a vertex v € S which is bad for S1, So. Then we move v into the class
which does not currently contain v to obtain a new partition S7, S5. We do not
change the set S. If there is a vertex v’ € S which is bad for S}, S%, then again we
move it into the other class.

We repeat this process. After each step, the number of edges in G between the
two classes increases, so this process has to terminate with some partition A’, B’
such that A’ A Sy C S and B’ A Sy C S. Clearly, no vertex in S is now bad for A’,
B’. Also, for any v € A"\ S we have

(4.1) dg(v, A") < dp(v, A") < dp(v,S1) + |S| < Ven +4ven < e'n
< D/2=dg(v)/2.

Similarly, dg(v,B’) < &¢'n < dg(v)/2 for all v € B"\ S. Altogether this implies
that no vertex is bad for A’, B and thus (WF6) holds. Also note that eg(A’, B') >
e (S1,92) > e(G) — 2en?. So

(4.2) eq(A'),eq(B') < 2en?.
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This implies (WF3).

Without loss of generality we may assume that |A’| > |B’|. Let A{, denote the set
of all those vertices v € A" for which dp(v, A’) > &’'n. Define B C B’ similarly. We
will choose sets A C A"\ A and Ay 2 Aj) and sets B C B’ \ B{, and By D B(, such
that |A| = |B| is divisible by K and so that A, Ay and B, By are partitions of A’ and
B’ respectively. We obtain such sets by moving at most ||A"\ Aj| — |B'\ By|| + K
vertices from A’ \ Af to A} and at most [|A"\ Aj| —|B"\ By|| + K vertices from
B’ \ B{ to Bj. The choice of A, Ay, B, By is such that (WF1) and (WF5) hold.
Further, since |A| = | B|, Proposition [A1] implies (WF2).

In order to verify (WF4), it remains to show that a + b = |4y U By| < '/3n. But
(A1) together with its analogue for the vertices in B’ \ S implies that Aj U Bj, C S.
Thus |Aj| + |Bj| < |S| < 4y/en. Moreover, (WF2), (£2]) and our assumption that
D > n/200 together imply that

|A'| — |B'| = (eq(A") —eq(B")/(D/2) < 2en?/(D/2) < 800en.
So altogether, we have
a+b< |AyU B +2||[A"'\ Ay| - |B"\ Byl| + 2K
< dven+2||A'| = |B'| - (|AG] — [Bo))| + 2K
< 4y/en + 1600en + 8v/en + 2K < e'/3n.
Thus (WF4) holds. O

Throughout this and the next section, we will often use the following result, which
is a simple consequence of Vizing’s theorem and was first observed by McDiarmid
and independently by de Werra (see e.g. [30]).

Proposition 4.5. Let H be a graph with mazimum degree at most A. Then E(H)
can be decomposed into A+1 edge-disjoint matchings My, ..., Ma11 such that || M;|—
|M;|| <1 foralli,j <A+1.

Our next goal is to cover the edges of G[Ay, By] by edge-disjoint Hamilton cycles.
To do this, we will first decompose G[Ay, By] into a collection of matchings. We
will then extend each such matching into a system of vertex-disjoint paths such that
altogether these paths cover every vertex in G[Ag, Byl, each path has its endvertices
in AU B and the path system is 2-balanced. Since our path system will only contain
a small number of nontrivial paths, we can then extend the path system into a
Hamilton cycle (see Lemma F10).

We will call the path systems we are working with AyBy-path systems. More
precisely, an AgBy-path system (with respect to (A, Ag, B, By)) is a path system Q
satisfying the following properties:

e Every vertex in Ag U By is an internal vertex of a path in Q.
e A U B contains the endpoints of each path in () but no internal vertex of a
path in Q.
The following observation (which motivates the use of the word ‘balanced’) will often
be helpful.
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Proposition 4.6. Let Ag, A, By, B be a partition of a vertex set V.. Then an AgBy-
path system Q with V(Q) C V is 2-balanced with respect to (A, Ay, B, By) if and only
if the number of vertices in A which are endpoints of nontrivial paths in Q) equals
the number of vertices in B which are endpoints of nontrivial paths in Q.

Proof. Note that by definition any AgBy-path system satisfies (B2), so we only
need to consider (B1). Let n4 be the number of vertices in A which are endpoints of
nontrivial paths in @ and define np similarly. Let a := |Ag|, b:= |By|, A" := AU Ay
and B’ := B U By. Since dg(v) = 2 for all v € Ay and since every vertex in A is
either an endpoint of a nontrivial path in @ or has degree zero in @), we have

2eq(A') + eq(A, B') = do(v) =20+ na.
veA’

Sona =2(eq(A") —a) +eq(A’, B'), and similarly ng = 2(eq(B’) — b) + eq(A’, B).
Therefore, ny = np if and only if 2(eg(A’) — eq(B’) —a+ b) = 0 if and only if Q
satisfies (B1), as desired. O

The next observation shows that if we have a suitable path system satisfying (B1),
we can extend it into a path system which also satisfies (B2).

Lemma 4.7. Let 0 < 1/n < a < 1. Let G be a graph on n vertices such that there
is a partition A’', B' of V(G) which satisfies the following properties:
(i) A =AgUA, B'=ByUB and Ay, A, By, B are disjoint;
(ii)) |A| = |B| and a+ b < an, where a := |Ap| and b := |By|;
(iii) if v € Ag then dg(v, B) > 4an and if v € By then dg(v, A) > 4an.

Let Q' C G be a path system consisting of at most an nontrivial paths such that AUB
contains no internal vertex of a path in Q' and eq(A’) —eq/(B') = a—b. Then
G contains a 2-balanced AgBy-path system @ (with respect to (A, Ao, B, By)) which
extends Q' and consists of at most 2an nontrivial paths. Furthermore, E(Q)\ E(Q’)
consists of AgB- and ABg-edges only.

Proof. Since AU B contains no internal vertex of a path in Q" and since Q' contains
at most an nontrivial paths, it follows that at most 2an vertices in A U B lie on
nontrivial paths in Q. We will now extend @’ into an AgBy-path system () consisting
of at most a 4+ b+ an < 2an nontrivial paths as follows:

o for every vertex v € Ay, we join v to 2 — d¢g/(v) vertices in B;
e for every vertex v € By, we join v to 2 — dg(v) vertices in A.

Condition (iii) and the fact that at most 2an vertices in AU B lie on nontrivial paths
in Q' together ensure that we can extend @’ in such a way that the endvertices in
AU B are distinct for different paths in (). Note that eg(A’) —eq(B’) = eg/(A") —
eq'(B") = a — b. Therefore, Q is 2-balanced with respect to (A, Ao, B, By). O

The next lemma constructs a small number of 2-balanced AgBg-path systems
covering the edges of G[Ag, By|. Each of these path systems will later be extended
into a Hamilton cycle.
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Lemma 4.8. Let 0 < 1/n < ¢ € ¢,1/K < a < 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F. Suppose that (F,G, A, Ay, B, By) is
an (g,€', K, D)-weak framework with 6(F) > (1/4 + a)n and D > n/200. Then for
some r* < en the graph G contains r* edge-disjoint 2-balanced AgBg-path systems
Q1,...,Qq which satisfy the following properties:

(i) Together Q1,...,Q. cover all edges in G[Ag, Bol;
(il) For each i < r*, Q; contains at most 2en nontrivial paths;
(iii) For each i < r*, Q; does not contain any edge from G[A, B].

Proof. (WF4) implies that |Ag| + |By| < en. Thus, by Proposition [4.5] there exists
a collection Mj,..., M. of r* edge-disjoint matchings in G[Ay, By that together
cover all the edges in G[Ay, By|, where r* < en.

We may assume that a > b (the case when b > a follows analogously). We
will use edges in G[A'] to extend each M into a 2-balanced AoBj-path system.
(WF2) implies that eg(A’) > (a — b)D/2. Since dg(v) = D for all v € Ay U By
by (WF2), (WF5) and (WF6) imply that A(G[A’]) < D/2. Thus Proposition
implies that F(G[A’]) can be decomposed into [D/2] 4+ 1 edge-disjoint matchings
May, ..., M| pjaj4+1 such that [[Ma;| — [Ma,l| <1 foralli,j < |D/2] + 1.

Notice that at least en of the matchings My ; are such that M4 ;| > a—b. Indeed,
otherwise we have that

(a—b)D/2 <eq(A) <en(a—b)+ (a—b—1)(D/2+1—en)
=(a—-b)D/24+a—b—D/2—1+¢n
<(a—=b)D/2+2en—D/2 < (a—b)D/2,

a contradiction. (The last inequality follows since D > n/200.) In particular, this
implies that G[A’] contains r* edge-disjoint matchings M7, ..., M. that each consist
of precisely a — b edges.

For each @ < r*, set M; := M/ U M. So for each i < r*, M; is a path system
consisting of at most b+ (a — b) = a < en nontrivial paths such that AU B contains
no internal vertex of a path in M; and en,(A’) — en,(B') = ey (A') = a —b.

Suppose for some 0 < r < r* we have already found a collection Qq,...,Q, of r
edge-disjoint 2-balanced AgBg-path systems which satisfy the following properties
for each 7 < r:

(o); Q; contains at most 2en nontrivial paths;

(B)i M; € Q;

(7)i Qi and M; are edge-disjoint for each j < r* such that ¢ # j;
(0); Q; contains no edge from G[A, B].

(Note that (a)o—(0)o are vacuously true.) Let G’ denote the spanning subgraph of
G obtained from G by deleting the edges lying in Q1 U---UQ,. (WF2), (WF4) and
(WF6) imply that, if v € Ag, dgr(v,B) > D/2 —en — 2r > 4en and if v € By then
dgr (v, A) > 4en. Thus Lemma [£7] implies that G’ contains a 2-balanced AyBp-path
system @41 that satisfies (a)p11—(0)r+1-
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So we can proceed in this way in order to obtain edge-disjoint 2-balanced AgBy-
path systems Q1,...,Q,« in G such that («);—(d); hold for each i < r*. Note that
(i)—(iii) follow immediately from these conditions, as desired. O

The next lemma (Corollary 5.4 in [13]) allows us to extend a 2-balanced path
system into a Hamilton cycle. Corollary 5.4 concerns so-called ‘(A, B)-balanced’-
path systems rather than 2-balanced AyBy-path systems. But the latter satisfies the
requirements of the former by Proposition

Lemma 4.9. Let 0 < 1/n < ¢/ < a < 1. Let F be a graph and suppose that
Ap, A, By, B is a partition of V(F) such that |A| = |B| = n. Let H be a bipartite
subgraph of F with vertex classes A and B such that 6(H) > (1/2 + a)n. Suppose
that Q is a 2-balanced AgBy-path system with respect to (A, Ay, B, By) in F' which
consists of at most €'n nontrivial paths. Then F contains a Hamilton cycle C which
satisfies the following properties:

e QCC;

o E(C)\ E(Q) consists of edges from H.

Now we can apply Lemma to extend a 2-balanced AgBg-path system in a
pre-framework into a Hamilton cycle.

Lemma 4.10. Let0 < 1/n < e < e,1/K < a < 1. Let F be a graph on n vertices
and let G be a spanning subgraph of F. Suppose that (F,G, A, Ay, B, By) is an
(e,¢', K, D)-pre-framework, i.e. it satisfies (WF1)-(WF5). Suppose also that 6(F) >
(1/4 + a)n. Let Q be a 2-balanced AgBy-path system with respect to (A, Ay, B, By)
in G which consists of at most €'n nontrivial paths. Then F contains a Hamilton
cycle C which satisfies the following properties:

(i) Q cC;

(ii) E(C)\ E(Q) consists of AB-edges;

(i) C NG is 2-balanced with respect to (A, Ao, B, By).

Proof. Note that (WF4), (WF5) and our assumption that 6(F) > (1/4 + a)n
together imply that every vertex x € A satisfies

dp(z, B) > dp(z, B') — | Bo| > dp(z) — £'n — |Bo| > (1/4 + a/2)n > (1/2 + a/2)|B|.

Similarly, dp(z, A) > (1/2 + «/2)|A| for all x € B. Thus, 6(F[A,B]) > (1/2 +
a/2)|A|. Applying Lemma [£9 with F[A, B] playing the role of H, we obtain a
Hamilton cycle C' in F' that satisfies (i) and (ii). To verify (iii), note that (ii) and
the 2-balancedness of () together imply that

ecnc(4') — ecna(B') = eq(A’) —eq(B') = a—b.
Since every vertex v € Ay U By satisfies dong(v) = dg(v) = 2, (iii) holds. O

We now combine Lemmas [£.8 and [£.10] to find a collection of edge-disjoint Hamil-
ton cycles covering all the edges in G[Ay, By.
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Lemma 4.11. Let 0 < 1/n < ¢ < ¢/,1/K < a < 1 and let D > n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F. Suppose that
(F,G, A, Ay, B, By) is an (g,¢', K, D)-weak framework with §(F) > (1/4+a)n. Then
for some r* < en the graph F contains edge-disjoint Hamilton cycles C1,...,Cpx
which satisfy the following properties:

(i) Together Cy,...,Cp cover all edges in G[Ag, By);

(ii) (CLU---UCy) NG is 2r*-balanced with respect to (A, Ay, B, By).

Proof. Apply Lemma [£8 to obtain a collection of r* < en edge-disjoint 2-balanced
AgByg-path systems Q1,...,Q+ in G which satisfy Lemma [L.8|(i)—(iii). We will ex-
tend each Q; to a Hamilton cycle C;.

Suppose that for some 0 < r < r* we have found a collection Cq,...,C, of r
edge-disjoint Hamilton cycles in F' such that the following holds for each 0 <14 < r:
()i Qi € Cj;

(B)i E(Ci)\ E(Qi) consists of AB-edges;

(7)i GNC; is 2-balanced with respect to (A4, Ao, B, By).
(Note that (a)o—(7)o are vacuously true.) Let H, := Cqy U---UC, (where Hy :=
(V(G),0)). So H, is 2r-regular. Further, since G N C; is 2-balanced for each i < r,
GNH, is 2r-balanced. Let G, := G—H, and F, := F'—H,. Since (F,G, A, Ay, B, By)
is an (e,¢’, K, D)-pre-framework, Proposition [£3] implies that (F,, G, A, Ay, B, By)
is an (g,¢’, K, D — 2r)-pre-framework. Moreover, 6(F,) > 6(F) —2r > (1/4+ «/2)n.
Lemma [A.8(iii) and (8)1—(8), together imply that Q,41 lies in G,. Therefore,
Lemma .10l implies that F, contains a Hamilton cycle C,; which satisfies (a)y41—
(’Y)r—i—l-

So we can proceed in this way in order to obtain r* edge-disjoint Hamilton cycles
Ci,...,Cp in F such that for each i < r*, («);—(7); hold. Note that this implies
that (ii) is satisfied. Further, the choice of Q1,...,Q,~ ensures that (i) holds. O

Given a graph G, we say that (G, A, Ao, B, By) is an (¢,¢’, K, D)-framework if the
following holds, where A’ := AgU A, B’ := ByU B and n := |G|:
(FR1) A, Ay, B, By forms a partition of V(G);
(FR2) G is D-balanced with respect to (A, Ag, B, Bp);
(FR3) eg(4'),eq(B') < en?;
(FR4) |A| = |B] is divisible by K. Moreover, b < a and a + b < en, where a := |Ag|

and b := |By|;

(FR5) all vertices in AU B have internal degree at most ¢'n in G;
(FRG) e(G[Ao, By]) = 0
(FR7) all vertices v € V(G) have internal degree at most dg(v)/2 + en in G.
Note that the main differences to a weak framework are (FR6) and the fact that a
weak framework involves an additional graph F. In particular (FR1)—(FR4) imply
(WF1)-(WF4). Suppose that e; > ¢, ¢} > ¢’ and that K; divides K. Then note
that every (e,¢’, K, D)-framework is also an (e1,€], K1, D)-framework.

Lemma 4.12. Let 0 < 1/n < ¢ < ¢/,1/K < a < 1 and let D > n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F. Suppose that
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(F,G, A, Ay, B, By) is an (g,¢', K, D)-weak framework. Suppose also that 6(F) >
(1/4 4 a)n and |Ag| > |Bo|. Then the following properties hold:
(i) thereis an (e,€', K, Dgr)-framework (G, A, Ay, B, By) such that G’ is a span-
ning subgraph of G with Dgr > D — 2en;
(ii) there is a set of (D — D¢r)/2 < en edge-disjoint Hamilton cycles in F — G’
containing all edges of G — G'. In particular, if D is even then Dgr is even.

Proof. Lemma [17] implies that there exists some r* < en such that I’ contains a
spanning subgraph H satisfying the following properties:

(a) H is 2r*-regular;

(b) H contains all the edges in G[Ag, Byl;

(¢) G N H is 2r*-balanced with respect to (A, Ag, B, By);

(d) H has a decomposition into r* edge-disjoint Hamilton cycles.

Set G’ := G — H. Then (G, A, Ay, B, By) is an (¢,¢', K, D¢ )-framework where
Dg == D — 2r* > D — 2en. Indeed, since (F,G, A, Ay, B, By) is an (g,&', K, D)-
weak framework, (FR1) and (FR3)—(FR5) follow from (WF1) and (WF3)—(WF5).
Further, (FR2) follows from (WF2) and (c) while (FR6) follows from (b). (WF6)
implies that all vertices v € V(@) have internal degree at most dg(v)/2 in G. Thus
all vertices v € V(G') have internal degree at most dg(v)/2 < (dg/(v) + 2r*)/2 <
dg(v)/2 +en in G'. So (FR7) is satisfied. Hence, (i) is satisfied.

Note that by definition of G’, H contains all edges of G — G'. So since r* =
(D — D¢r)/2 < en, (d) implies (ii). O

The following result follows immediately from Lemmas .4 and

Corollary 4.13. Let 0 < 1/n < e € ¢* <« ¢/,1/K < a < 1 and let D > n/100.
Suppose that F is an e-bipartite graph on n vertices with §(F) > (1/4+a)n. Suppose
that G is a D-regular spanning subgraph of F'. Then the following properties hold:
(i) there is an (¢*,€', K, Dgr)-framework (G', A, Ag, B, By) such that G' is a
spanning subgraph of G, Der > D — 2¢Y/3n and such that F satisfies (WF5)
(with respect to the partition A, Ay, B, By);
(ii) there is a set of (D — Dgr)/2 < e'/*n edge-disjoint Hamilton cycles in F — G’
containing all edges of G — G'. In particular, if D is even then D¢ is even.

5. FINDING PATH SYSTEMS WHICH COVER ALL THE EDGES WITHIN THE CLASSES

The purpose of this section is to prove Corollary [5.1T] which, given a framework
(G, A, Ag, B, By), guarantees a set C of edge-disjoint Hamilton cycles and a set J
of suitable edge-disjoint 2-balanced AgBy-path systems such that the graph G* ob-
tained from G by deleting the edges in all these Hamilton cycles and path systems
is bipartite with vertex classes A’ and B’ and Ay U By is isolated in G*. Each of the
path systems in J will later be extended into a Hamilton cycle by adding suitable
edges between A and B. The path systems in J will need to be ‘localized’ with
respect to a given partition. We prepare the ground for this in the next subsection.

Throughout this section, given sets S,5" C V(G) we often write E(S), E(S,S5’),
e(S) and e(S,S") for Eg(S), Eg(S,S"), ec(S) and eq(S, S") respectively.
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5.1. Choosing the partition and the localized slices. Let K,m € Nand e > 0.
A (K, m,e)-partition of a set V of vertices is a partition of V into sets Ay, 41,..., Ak
and By, Bi,..., Bk such that |[A;| = |B;| = m for all 1 < i < K and |Ag U By| <
e|V|. We often write Vj for Ag U By and think of the vertices in V| as ‘exceptional
vertices’. The sets Ay,..., Ax and By,..., Bg are called clusters of the (K, m,eq)-
partition and Ay, By are called exceptional sets. Unless stated otherwise, when
considering a (K, m,e)-partition P we denote the elements of P by Ay, A1,...,Ax
and By, B, ..., Bk as above. Further, we will often write A for A; U---U Ax and
B for ByU---U Bg.

Suppose that (G, A, Ag, B, By) is an (g,&', K, D)-framework with |G| = n and
that 1,69 > 0. We say that P is a (K, m,e,¢e1,e9)-partition for G if P satisfies the
following properties:

(P1) P is a (K, m,¢)-partition of V(G) such that the exceptional sets Ay and By
in the partition P are the same as the sets Ay, By which are part of the
framework (G, A, Ao, B, By). In particular, m = |A|/K = |B|/K;

(P2) d(v, 4;) = (d(v,A) £ein)/K for all 1 <i < K and v € V(G);
(P3) e(A;, Aj) = 2(e(A) £ eomax{n,e(A)})/K? for all 1 <i < j < K;
(P4) e(A;) = (e(A) £ eg max{n,e(A)})/K? forall 1 <i < K;

(P5) e(Ao, 4;) = (e(Ag, A) £ egmax{n,e(A4g, A)})/K forall 1 <i< K;

(P6) e(A;, Bj) = (e(A, B) £ 3e2e(A, B))/K? for all 1 <i,j < K;
and the analogous assertions hold if we replace A by B (as well as A; by B; etc.) in
(P2)—(P5).

Our first aim is to show that for every framework we can find such a partition
with suitable parameters (see Lemmal[5.2)). To do this, we need the following lemma.

Lemma 5.1. Suppose that 0 < 1/n < €,61 € g9 < 1/K < 1, that r < 2K, that
Km > n/4 and that r,K,n,m € N. Let G and F be graphs on n wvertices with
V(G) = V(F). Suppose that there is a vertex partition of V(G) into U, Ry,..., R,
with the following properties:

. U=

e §(G[U]) > en or A(G[U]) < en.

o For each j < r we either have dg(u, R;) < en for allu € U or dg(z,U) > en

forall x € R;.

Then there exists a partition of U into K parts U, ...,Uk satisfying the following
properties:

(i) |Uil =m for alli < K.

(ii) dg(v,U;) = (dg(v,U) £ e1n)/K for allv € V(G) and all i < K.

(iii) eq(U;, Uy) = 2(eq(U) £ eomax{n,eq(U)})/K? for all 1 <i#4d < K.

(iv) eq(U;) = (eq(U) & eamax{n,eq(U)})/K? for all i < K.

(v) G(UZ,R ) = (eq(U, Rj) £ eomax{n,eq(U,R;)})/K for alli < K and j <r.
(vi) dp(v,U;) = (dr (v, U)j:&?ln)/Kfor allvEV( ) and all i < K.

Proof. Consider an equipartition Uy, ..., Uk of U which is chosen uniformly at
random. So (i) holds by definition. Note that for a given vertex v € V(G), dg(v,U;)
has the hypergeometric distribution with mean dg(v,U)/K. Soif dg(v,U) > ein/K,
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Proposition 2.3 implies that

2
P < da(v,U;) — dG(’U,U)‘ > EldG(v,U)> < 2exp (_M) < %

K K 3K
Thus we deduce that for all v € V(G) and all i < K,

P (|dg(v,U;) — dg(v,U)/K| > ein/K) < 1/n?.

Similarly,
P(|dr(v,U;) — dr(v,U)/K| > ein/K) < 1/n?.

So with probability at least 3/4, both (ii) and (vi) are satisfied.

We now consider (iii) and (iv). Fix ¢,¢ < K. If i # ¢, let X := eq(U;,Uy). If
i =1, let X := 2eq(U;). For an edge f € E(G[U]), let Ef denote the event that
f € E(U;,Uy). Soif f =xy and i # i, then
m m
ol jul-1
Similarly, if f and f’ are disjoint (that is, f and f’ have no common endpoint) and
i # i, then

(5.1) ]P’(Ef) = 2]P’(x S U,)]P’(y e Uy ’ T € UZ) =2

m—1 m-—1 m - m

2 P(Ey | Er) =2 . <2—- =P(Eq
By (1)), if @ # 4/, we also have

eq(U) |U| 2eq(U) 2eq(U)

. E(X)=2 1+ — )| ———=1=%e/4) ——.

If f =2y and :=17, then

(5.4) P(Ef) = ]P’(a: S UZ)]P’(y e U; ‘ WS U)

So if 4 = 4/, similarly to (5.2]) we also obtain P(Es | Ey) < P(Ey) for disjoint f and
/' and we obtain the same bound as in (5.3]) on E(X) (recall that X = 2eq(U;) in

this case).
Note that if 4 # i’ then
Var(X) = Z Z P(EfNEyp) — P(Ef)P(Ef’))
fEEWU) f'eE(U
= > P(Ef) > (P(Ey | Ef) — P(Ep))
FEE(U) FEEU)
G2 B3 3¢
£y e 2aew) £ XD aa@w) < c)a@iv)
feEU)

Similarly, if ¢ = ¢/ then

Var(X) =4 > Z P(E; N Ep) —P(Ep)P(Ef)) < eq(U)A(G[U]).
fEEU) f'eE(U
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Let a := eq(U)A(G[U]). In both cases, from Chebyshev’s inequality, it follows that

P <\X —E(X)| > W) <el/?,

Suppose that A(G[U]) < en. If we also have have eg(U) < n, then /a/el/2 <
eV4n < egn/2K2. If eq(U) > n, then \/a/el/2 < e'/teq(U) < ereq(U)/2K2.

If we do not have A(G[U]) < en, then our assumptions imply that §(G[U]) >
en. So A(G[U]) < n < eeq(G[U]) with room to spare. This in turn means that
Va/el2 < ellteq(U) < egeq(U)/2K2. So in all cases, we have

(5.5) P <|X CE(X)| > 2 maXé;{z;G(U)}> <l

Now note that by (5.3) we have

(5.6)

E(X) - QBG(U)‘ < e2e6(U)

K? 2K?

So (B.5) and (5.6) together imply that for fixed ,4' the bound in (iii) fails with
probability at most e'/2. The analogue holds for the bound in (iv). By summing
over all possible values of 7,7 < K, we have that (iii) and (iv) hold with probability
at least 3/4.

A similar argument shows that for all i < K and j < r, we have

EG(L,]fj) €2 max{n, EG(L,]{]‘)} 1/2
. P > < .

Indeed, fix i < K, j < r and let X := eq(U;, R;). For an edge f € G[U, R;], let
E¢ denote the event that f € E(U;,R;). Then P(Ef) = m/|U| = 1/K and so
E(X) = eq(U, R;)/K. The remainder of the argument proceeds as in the previous
case (with slightly simpler calculations).

So (v) holds with probability at least 3/4, by summing over all possible values
of i < K and j < r again. So with positive probability, the partition satisfies all
requirements. O

ec(Ui, Rj) —

Lemma 5.2. Let 0 < 1/n < ¢ € ¢/ < g1 € g9 < 1/K < 1. Suppose that
(G, A, Ay, B, By) is an (g,€', K, D)-framework with |G| = n and §(G) > D > n/200.
Suppose that F is a graph with V(F) = V(G). Then there exists a partition P =
{A(),Al, e ,AK, B(), Bl, e ,BK} Of V(G) so that
(i) P is a (K,m,e,e1,e92)-partition for G.
(ii) dp(v, A;) = (dp(v,A) £ e1n)/K and dp(v, B;) = (dp(v, B) £ e1n)/K for all
1<i< K andv € V(QG).

Proof. In order to find the required partitions Aq,...,Ax of A and By,...,Bg
of B we will apply Lemma [E.1] twice, as follows. In the first application we let
U:= A, Ry := Ay, Ry := By and R3 := B. Note that A(G[U]) < &'n by (FR5) and
de(u, Rj) < |Rj| <en <é&'nforall w € U and j = 1,2 by (FR4). Moreover, (FR4)
and (FRT) together imply that dg(z,U) > D/3 > &'n for each € R3 = B. Thus we
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can apply Lemma [5.1] with ¢ playing the role of € to obtain a partition Uy, ..., Uk
of U. We let A; :=U; for all i < K. Then the A; satisfy (P2)—-(P5) and
(5.8) eq(A;,B) = (eq(A, B) £ egmax{n,eq(A,B)})/K = (1 £e)eq(A, B)/K.
Further, Lemma [B.T|(vi) implies that

dr(v,A;) = (dr(v,A) £ en)/K

forall1 <i¢ < K and v € V(G).

For the second application of Lemma 5.1l we let U := B, Ry := By, Ry := Ag
and R; := A;_o for all 3 < j < K 4 2. As before, A(G[U]) < ¢'n by (FR5) and
da(u,Rj) < en < e'nfor all u € U and j = 1,2 by (FR4). Moreover, (FR4) and
(FR7) together imply that dg(z,U) > D/3 > ¢'n for all 3 < j < K 4 2 and each
z € Rj = Aj_5. Thus we can apply Lemma [5.]] with ¢’ playing the role of ¢ to
obtain a partition Uq,...,Uk of U. Let B; := U; for all ¢ < K. Then the B; satisfy
(P2)—(P5) with A replaced by B, A; replaced by B;, and so on. Moreover, for all
1<4,j <K,

ec(Ai, Bj) ¢ (Ai, B) £ eamax{n,eq(4;, B)})/ K

68

(e
(1 £e2)eq(A, B) £e2(1 4 e3)eq(A, B)) /K2
(eq(A, B) & 3e9eg(A, B)) /K2,

i.e. (P6) holds. Since clearly (P1) holds as well, Ay, A1,...,Ax and By, By, ..., Bk
together form a (K, m, e, e1,e9)-partition for G. Further, Lemma [5l(vi) implies that
dr(v,B;) = (dp(v,B) £e1n)/K
forall1 <¢< K and v € V(G). O

The next lemma gives a decomposition of G[A'] and G[B’] into suitable smaller
edge-disjoint subgraphs H f]‘- and H 5 . We say that the graphs H {2' and H 5 guaranteed
by Lemma [5.3] are localized slices of G. Note that the order of the indices i and j
matters here, i.e. H{} =+ Hﬁ Also, we allow ¢ = j.

Lemma 5.3. Let 0 < 1/n € ¢ € ¢/ € g1 € g2 < 1/K < 1. Suppose that
(G, A, Ay, B, By) is an (¢,e', K, D)-framework with |G| = n and D > n/200. Let
Ap, Aq,..., Ak and By, By,...,Bg be a (K,m,e,e1,e9)-partition for G. Then for
all 1 <1i4,5 < K there are graphs Hf?’ and Hg with the following properties:

(1) HA is a spanning subgraph of G[Ag, A; U A;1 U G[A;, A;] U G[Ao];

(ii) The sets E(HA) over all 1 <i,j < K form a partition of the edges of G|A'];

(ili) e(H; ) (e(A") + 9eo max{n,e(A)})/K? for all1 <i,j < K;

(iv) eHA(AO,A UA4;) = (e(Ao, A) £ 2eg max{n, e(Ag, A)})/K? for all 1 <i,j <

K;
(v) egya(Ai, Aj) = (e(A) £ 2eo max{n,e(A)})/K? for all 1 <i,j < K;
ij

(vi) For all 1 < 4,5 < K and all v € Ay we have dya(v) = dya(v,A; U Aj) +

ij ij
dya(v, Ag) = (d(v, A) £4e1n) /K>
ij
The analogous assertions hold if we replace A by B, A; by B;, and so on.
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Proof. In order to construct the graphs H;? we perform the following procedure:

e Initially each H{;‘ is an empty graph with vertex set Ao U A; U A;.

e For all 1 < i < K choose a random partition E(Ag, 4;) into K sets U; of
equal size and let E(HZ‘;‘) = Uj. (If E(Ap, A;) is not divisible by K, first
distribute up to K —1 edges arbitrarily among the U; to achieve divisibility.)

e For all i < K, we add all the edges in F(4;) to HZ.

e For all 4,5 < K with i # j, half of the edges in E(A;, A;) are added to H;;¥
and the other half is added to H ﬁ- (the choice of the edges is arbitrary).

e The edges in G[Ag] are distributed equally amongst the HZ‘;‘ (Soe HS(AO) =
e(Ag)/K? £1.)

Clearly, the above procedure ensures that properties (i) and (ii) hold. (P5) implies
(iv) and (P3) and (P4) imply (v).

Consider any v € Ay. To prove (vi), note that we may assume that d(v, A) >
ein/K2 Let X := dH;;‘. (v, A; U Aj). Note that (P2) implies that E(X) = (d(v, A) £+

2e1n)/K? and note that E(X) < n. So the Chernoff-Hoeffding bound for the hyper-
geometric distribution in Proposition 2.3 implies that

P(|X — E(X)| > e1n/K?) < P(IX —E(X)| > e1B(X)/K?) < 2 <1BX)/BE < 1 /p2.

Since dya (v, Ag) < |Ap| < e1n/K?, a union bound implies the desired result. Finally,
ij
observe that for any a,bq,...,bs > 0, we have

4
Zmax{a, bi} < 4max{a,by,...,bs} < 4dmax{a,by +---+ bs}.
i=1

So (iii) follows from (iv), (v) and the fact that eya(Ag) = e(A4g)/K? £ 1. O
ij

Note that the construction implies that if ¢ # j, then H{;‘ will contain edges
between Ay and A; but not between Ay and A;. However, this additional information
is not needed in the subsequent argument.

5.2. Decomposing the localized slices. Suppose that (G, A, Ay, B, By) is an
(e,¢', K, D)-framework. Recall that a = |Ag|, b = |By| and a > b. Since G is
D-balanced by (FR2), we have e(A’) — e(B’) = (a — b)D/2. So there are an integer
q > —b and a constant 0 < ¢ < 1 such that

(5.9) e(AY=(a+q+¢c)D/2 and e(B")=(b+q+c)D/2.
The aim of this subsection is to prove Lemma 5.6l which guarantees a decomposition

of each localized slice H{} into path systems (which will be extended into AyBp-path

systems in Section [5.4]) and a sparse (but not too sparse) leftover graph Gg‘}.
The following two results will be used in the proof of Lemma [5.0]

Lemma 5.4. Let 0 < 1/n < o, 3,7 so that v < 1/2. Suppose that G is a graph

on n vertices such that A(G) < an and e(G) > fn. Then G contains a spanning
subgraph H such that e(H) = [(1 —v)e(G)| and A(G — H) < 6yan/5.
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Proof. Let H' be a spanning subgraph of G such that

e A(H') < 6yan/5;

e e(H') > ~ve(@G).
To see that such a graph H’ exists, consider a random subgraph of G obtained by
including each edge of G with probability 11v/10. Then E(A(H')) < 11yan/10 and
E(e(H')) = 11ve(G)/10. Thus applying Proposition 2:3] we have that, with high
probability, H' is as desired.

Define H to be a spanning subgraph of G such that H O G — H' and e(H) =

[(1—7)e(G)]. Then A(G — H) < A(H') < 6yan/5, as required. O

Lemma 5.5. Suppose that G is a graph such that A(G) < D — 2 where D € N is
even. Suppose Ay, A is a partition of V(G) such that dg(x) < D/2—1 for allx € A
and A(G[Ag]) < D/2 —1. Then G has a decomposition into D /2 edge-disjoint path
systems P, ..., Ppy such that the following conditions hold:

(i) For each i < D/2, any internal vertex on a path in P; lies in Ay;
(i) |e(P,) — o(P,)| < 1 for all i,j < DJ2.

Proof. Let (G; be a maximal spanning subgraph of G under the constraints that
G[A(]] Q Gl and A(Gl) S D/Z—l. Note that G[A(]]UG[A] Q Gl. Set G2 = G—Gl.
So Go only contains AgA-edges. Further, since A(G) < D — 2, the maximality of Gy
implies that A(G2) < D/2 — 1.

Define an auxiliary graph G’, obtained from G as follows: write Ag = {a1,...,an}.
Add a new vertex set Aj = {a,...,al,} to G1. For each i < m and = € A, we add
an edge between a; and z if and only if a;z is an edge in Gy.

Thus G'[Ap U A] is isomorphic to G; and G'[A(, A] is isomorphic to G2. By
construction and since dg(z) < D/2—1 for all z € A, we have that A(G') < D/2—1.
Hence, Proposition [L.5]implies that F(G’) can be decomposed into D /2 edge-disjoint
matchings My, ..., Mp s such that [[M;| — [M;|[ <1 for all 4,5 < D/2.

By identifying each vertex a, € A{, with the corresponding vertex a; € Ay,
My, ..., Mp/y correspond to edge-disjoint subgraphs Pi,..., Pp/, of G such that

e Pi,..., Pp/ together cover all the edges in G}
o |e(P) —e(Pj)| <1foralli,j<D/2.

Note that dps,(z) < 1 for each € V(G’'). Thus dp,(z) < 1 for each € A and
dp,(x) < 2 for each x € Ay. This implies that any cycle in P; must lie in G[Ay].
However, M, is a matching and G'[Aj] U G'[Ag, Aj] contains no edges. Therefore, P;
contains no cycle, and so F; is a path system such that any internal vertex on a path
in P lies in Ag. Hence Py, ..., Pp/, satisfy (i) and (ii). O

Lemma 5.6. Let 0 < 1/n < e <&/ K g1 K63 K ey Keg < 1/K < 1. Suppose
that (G, A, Ao, B, By) is an (g,&', K, D)-framework with |G| = n and D > n/200.
Let Ay, Ay, ..., Ax and By, Bi,...,Bg be a (K,m,e,e1,e9)-partition for G. Let
H;? be a localized slice of G as guaranteed by Lemmal5.3. Define ¢ and q as in (2.9).



26 BELA CSABA, DANIELA KUHN, ALLAN LO, DERYK OSTHUS AND ANDREW TREGLOWN

Suppose that t := (1 — 20e4)D/2K? € N. If e(B') > e3n, set t* to be the largest
integer which is at most ct and is divisible by K2. Otherwise, set t* := 0. Define

0 if e(A") < e3n;
ly:=X a—1b if e(A") > e3n but e(B') < e3n;
a+q—+c otherwise
and
0 if e(B') < e3n;
by = s
b+ q+c otherwise.
Then Hi‘;‘- has a decomposition into t edge-disjoint path systems Pp,..., P, and a

spanning subgraph Gg‘} with the following properties:
(i) For each s <'t, any internal vertex on a path in Py lies in Ag;
(i) e(P1) =--- = e(F) = [la] and e(Pri1) = --- = e(P) = [fa];

(iii) e(Ps) < /en for every s < t;

(iv) A(Gf}) <13e4D/K?.

The analogous assertion (with £, replaced by ¢, and Agy replaced by By) holds for
each localized slice Hg of G. Furthermore, [£] — [ly] = [la] — |4p] = a —b.
Proof. Note that (5.9) and (FR3) together imply that ¢,D/2 < (a+ ¢+ ¢)D/2 =
e(A’) < en? and so [¢,] < y/zn. Thus (iii) will follow from (ii). So it remains to
prove (i), (ii) and (iv). We split the proof into three cases.

Case 1. e(A4') < e3n

(FR2) and (FR4) imply that e(A’) —e(B’) = (a—b)D/2 > 0. So e(B’) < e(A') <
egn. Thus ¢, = f, = 0. Set G{} = H{;‘» and Gf; = Hg Therefore, (iv) is satisfied
as A(H;?) < e(A') < e3n < 13e4D/K?. Further, (i) and (ii) are vacuous (i.e. we set
each P; to be the empty graph on V(G)).

Note that a = b since otherwise a > b and therefore (FR2) implies that e(A’) >
(a—b)D/2 > D/2 > e3n, a contradiction. Hence, [{,]|—[ly]| = [la] —[lp] =0 = a—b.
Case 2. ¢(A4) > e3n and e(B’') < esn

Since £, = 0 in this case, we set Gg- = Hﬁ and each P; to be the empty graph on
V(G). Then as in Case 1, (i), (ii) and (iv) are satisfied with respect to Hg Further,
clearly [lo] =[] = [{a] — [6] = a —D.

Note that a > b since otherwise a = b and thus e(A’ )
contradiction to the case assumptions. Slnce e(A") —e(B') =
Lemma [5.3(iii) implies that

e(H{}) > (1 —9e2)e(A)/K? — 9e9n/K? > (1 — 9e3)(a — b)D/(2K?) — 9eon/ K>
(5.10) > (1 —¢3)(a —b)D/(2K?) > (a — b)t.

Similarly, Lemma [5.3|(iii) implies that
(5.11) e(H{}) < (1+e4)(a—b)D/(2K?).
Therefore, (5.10) implies that there exists a constant v > 0 such that

(1- ’y)e(H{?) = (a — b)t.

= e(B’) by (FR2), a
(e —b)D/2 by (FR2),
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Since (1 —19e4)(1 —e3) > (1 — 20e4), (5.I0) implies that v > 19e4 > 1/n. Further,
since (1 +¢e4)(1 — 21ey) < (1 — 20e4), (B.II) implies that v < 21ey.
Note that (FR5), (FR7) and Lemma [5.3|(vi) imply that

(5.12) A(H{) < (D/2 + 5e1n) /K.

Thus Lemma B4 implies that H {3‘ contains a spanning subgraph H such that e(H) =
(1- y)e(Hi‘?) = (a — b)t and

A(H{ — H) < 6y(D/2 + 5¢1n)/(5K?) < 13e4D /K?,

where the last inequality follows since v < 21e4 and e; < 1. Setting Gg‘} = H{? - H
implies that (iv) is satisfied.

Our next task is to decompose H into ¢ edge-disjoint path systems so that (i) and
(ii) are satisfied. Note that (5.12]) implies that

A(H) < A(H{}) < (D)2 + 5e1n) /K? < 2t — 2.

Further, (FR4) implies that A(H[Ao]) < |Ao| < en <t —1 and (FR5) implies that
di(z) <e'n <t—1forall z € A. Since e(H) = (a — b)t, Lemma [5.5] implies that H
has a decomposition into ¢t edge-disjoint path systems Pj, ..., P, satisfying (i) and
so that e(Ps) =a — b=/, for all s <t. In particular, (ii) is satisfied.

Case 3. e¢(4'),e(B’) > esn

By definition of ¢, and ¢, we have that [{,] — [¢y] = [la] — | ] = a — b. Notice
that since e(A’) > e3n and g9 < €3, certainly eze(A’)/(2K?) > 9e9n/K?. Therefore,
Lemma [5.3(iii) implies that

e(H{}) > (1 —9e9)e(A)/K? — 9eqn /K>
(5.13) > (1 —e3)e(A)/K?
> Egn/(QKz).

Note that 1/n < e3/(2K?). Further, (59) and (5.I3) imply that
e(Hj) > (1 = e3)e(A)/K*
(5.14) =(1—e3)(a+q+c)D/2K?) > (a+ q)t +t*.
Similarly, Lemma [5.3|(iii) implies that
(5.15) e(H{j) < (1+e3)(a+q+c)D/(2K?).
By (B.14]) there exists a constant v > 0 such that
(L= y)e(H) = (a+q)t + 1"

Note that (5.I4]) implies that 1/n < 194 < v and (5.15) implies that v < 21ey.
Moreover, as in Case 2, (FR5), (FR7) and Lemma B.3((vi) together show that

(5.16) A(H}}) < (D/2 + bein) /K2,
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Thus (as in Case 2 again), Lemma[5.4limplies that H;? contains a spanning subgraph
H such that e(H) = (1 — ’y)e(H{]‘-) = (a+ ¢)t +t* and

A(Hj; — H) < 6v(D/2 + 5e1n)/(5K?) < 13e4D/K>.

Setting G;g- = H{]‘- — H implies that (iv) is satisfied. Next we decompose H into ¢
edge-disjoint path systems so that (i) and (ii) are satisfied. Note that (5.16]) implies
that
A(H) < A(H{}) < (D)2 + 5e1n) /K? < 2t — 2.

Further, (FR4) implies that A(H[Ao]) < |Ao| < en <t —1 and (FR5) implies that
dp(z) <e'n<t—1forall z € A Since e(H) = (a + q)t + t*, Lemma [5.5 implies
that H has a decomposition into t edge-disjoint path systems Pj,..., P; satisfying
(i) and (ii). An identical argument implies that (i), (ii) and (iv) are satisfied with
respect to Hg also. O

5.3. Decomposing the global graph. Let Gﬁlob be the union of the graphs GZ-A}-
guaranteed by Lemma over all 1 < ¢,57 < K. Define Gﬁ o Similarly. The next
lemma gives a decomposition of both G;lob and Gﬁob into suitable path systems.
Properties (iii) and (iv) of the lemma guarantee that one can pair up each such path
system Q4 C G;‘lob with a different path system Qg C G]g%ob such that Q4 U Qp is
2-balanced (in particular e(Q4) — e(Qp) = a — b). This property will then enable

us to apply Lemma [£.10] to extend Q4 U @ p into a Hamilton cycle using only edges
between A’ and B'.

Lemma 5.7. Let 0 < 1/n K e K ¢/ K 61 K g3 K g3 K g4 < 1/K < 1. Suppose
that (G, A, Ag, B, By) is an (g,&', K, D)-framework with |G| = n and such that D >
n/200 and D is even. Let Ay, Aq,...,Ax and By, By,...,Bg be a (K,m,e,e1,¢9)-
partition for G. Let G?lob be the union of the graphs G{} guaranteed by Lemma
over all 1 < 1,7 < K. Define Gﬁob similarly. Suppose that k := 10e4D € N. Then
the following properties hold:

(i) There is an integer ¢ and a real number 0 < ¢ < 1 so that e(G;‘lob) =
(a+¢ + )k and e(GE ) = (b+ ¢ + k.

glob
(i) A(Ghip)s AGE,,) < 3k/2.
(iii) Let k* := k. Then G;‘lob has a decomposition into k* path systems, each

containing a + ¢ + 1 edges, and k — k* path systems, each containing a + ¢
edges. Moreover, each of these k path systems @ satisfies dg(x) < 1 for all
x € A.

(iv) Gﬁob has a decomposition into k* path systems, each containing b+ ¢ + 1
edges, and k — k* path systems, each containing b+ q' edges. Moreover, each
of these k path systems Q satisfies dg(x) <1 for all z € B.

(v) Each of the path systems guaranteed in (iii) and (iv) contains at most \/en

edges.
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Note that in Lemmal5.7 and several later statements the parameter 63 is implicitly
defined by the application of Lemmal[5.6] which constructs the graphs G4 qlob and GB

Proof. Let t* and ¢ be as defined in Lemma [5.6l Our first task is to show that (i)
is satisfied. If e(A’),e(B’) < e3n then Gglob = G[A’] and GBl , = G[B']. Further,
a = b in this case since otherwise (FR4) implies that a > b and so (FR2) yields that

e(A") > (a—b)D/2 > D/2 > e3n, a contradiction. Therefore, (FR2) implies that
e(Gyiop) — e(Gyiop) = e(A') —e(B)=(a — 0)D/2 =0 = (a — bk.

Ife(A") > egn and e(B’) < e3n then Gglob = G[B']. Further, Gﬁlob is obtained from

G[A’] by removing tK? edge-disjoint path systems, each of which contains precisely
a — b edges. Thus (FR2) implies that

e(Gyiop) — €(Ggiop) = e(4A') — e(B') = tK*(a —b) = (a — 0)(D/2 — tK”) = (a — b)k.

glob®

Finally, consider the case when e(A’),e(B’) > e3n. Then Gﬁlob is obtained from
G[A’] by removing t*K? edge-disjoint path systems, each of which contain exactly
a+q+1 edges, and by removing (t —t*)K? edge-disjoint path systems, each of which
contain exactly a+q edges. Similarly, Gﬁ oy is obtained from G[B'] by removing t*K 2
edge-disjoint path systems, each of which contain exactly b + g + 1 edges, and by
removing (t — t*)K? edge-disjoint path systems, each of which contain exactly b+ ¢
edges. So (FR2) implies that

e(G‘gL‘lob) — e(Gﬁob) =e(A') —e(B') — (a — b)tK? = (a — b)k.
Therefore, in every case,
(517) e(Gﬁlob) (Gglob) ((1 - b)k

Define the integer ¢’ and 0 < ¢/ < 1 by e(Gglob) (a+ ¢+ )k. Then (5IT) implies
that e(Gﬁob) (b+q +)k. This proves (i). To prove (ii), note that Lemma [5.6](iv)
implies that A(Gglob) < 13e4D < 3k/2 and similarly A(Gglob) < 3k/2.

Note that (FR5) implies that dga b( x) <en<k-1forallz € Aand A(G‘g“lob[Ao]) <

glo

|Ao| < en < k — 1. Thus Lemma together with (i) implies that (iii) is satisfied.
(iv) follows from Lemma [5.5] analogously.

(FR3) implies that e(GglOb) <eg(A') <en? and e(Gﬁob) < eq(B') < en?. There-

fore, each path system from (iii) and (iv) contains at most [en?/k] < v/en edges.
So (v) is satisfied. O

We say that a path system P C G[A'] is (i, j, A)-localized if
(i) E(P) C E(G[Ag, A; U Aj]) U E(G[A;, Aj]) U E(G[Ao));
(ii) Any internal vertex on a path in P lies in Ay.
We introduce an analogous notion of (i, j, B)-localized for path systems P C G[B’].
The following result is a straightforward consequence of Lemmas [5.3], and .71
It gives a decomposition of G[A’] U G[B’] into pairs of paths systems so that most of

these are localized and so that each pair can be extended into a Hamilton cycle by
adding A’ B’-edges.
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Corollary 5.8. Let 0<1/n < ek e Ke1 K ey KegKey < 1/K < 1. Suppose
that (G, A, Ag, B, By) is an (g,&', K, D)-framework with |G| = n and such that D >
n/200 and D is even. Let Ay, Ay,...,Ax and By, By,...,Bg be a (K,m,e,e1,¢€9)-
partition for G. Let tg := (1 —20e4)D/2K* and k := 10e4D. Suppose that tx € N.
Then there are K* sets M ivigiy, one for each 1 < iy,19,13,74 < K, such that each
M isigi, consists of ti pairs of path systems and satisfies the following properties:

(a) Let (P, P') be a pair of path systems which forms an element of M iyigi,-
Then
(i) P is an (i1,1i2, A)-localized path system and P’ is an (ig,i4, B)-localized
path system;
(ii) e(P) —e(P') =a—b;
(iii) e(P),e(P") < /en.

(b) The 2tk path systems in the pairs belonging to M, iy, are all pairwise
edge-disjoint.

(¢) Let G(Miyizisi,) denote the spanning subgraph of G whose edge set is the
union of all the path systems in the pairs belonging to M izizi,. Then
the K* graphs G(Mi,iyisi,) are edge-disjoint. Further, each x € Ag satis-
fies dg(Mi1i2i3i4)($) > (dg(x, A) — 15e4D)/K* while each y € By satisfies

dG(Mi1i2iSi4)(y) > (dG(yv B) - 15541))/1(4
(d) Let Ggiop be the subgraph of G[A'] U G[B'] obtained by removing all edges
contained in G(M; iyizi,) for all 1 < iy ig,iz,ia < K. Then A(Ggop) <
3k/2.  Moreover, Gy, has a decomposition into k pairs of path systems
(Q1,4,Q1,B), -+, (Qr,a,Qr,B) so that
(') Qia € GaablA'] and Qs B € Ggop|B'] for all i < k;
(ii") dg, A(x) <1 for all z € A and dg, 5(x) <1 for all x € B;
(iti") e(Qia) —e(Qip) =a—"0b for alli < k;
(iv") e(Qi,a),e(QiB) < en foralli <k.

Proof. Apply Lemma [5.3] to obtain localized slices H;;x and Hg (for all 7,5 < K).

Let t := K2ty and let t* be as defined in Lemma Since t/K?%,t*/K? € N we
have (t — t*)/K? € N. For all iy,ip < K, let Mf}w be the set of ¢ path systems in
H{l‘iz guaranteed by Lemma We call the t* path systems in Mﬁiz of size [{,]
large and the others small. We define ./\/lgi , as well as large and small path systems
in Mgm analogously (for all i3,i4 < K).

We now construct the sets M i,izi, as follows: For all 71,79 < K, consider a
random partition of the set of all large path systems in Mg‘}i , into K 2 sets of equal
size t*/K? and assign (all the path systems in) each of these sets to one of the
M isigi, With i3,74 < K. Similarly, randomly partition the set of small path systems
in Mf}iz into K2 sets, each containing (¢—t*)/K? path systems. Assign each of these
K? sets to one of the M igizi, With i3,74 < K. Proceed similarly for each ./\/lgi4 in
order to assign each of its path systems randomly to some M ;,i,i,. Then to each
M iyizi, We have assigned exactly t*/K? large path systems from both M{iw and

MB. . Pair these off arbitrarily. Similarly, pair off the small path systems assigned

1314 "
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to M iyigi, arbitrarily. Clearly, the sets M i, Obtained in this way satisfy (a)
and (b).
We now verify (c). By construction, the K* graphs G(Mj, i) are edge-disjoint.
So consider any vertex z € Ay and write d := dg(z, A). Note that dya (z) >
112

(d — 421n)/K? by Lemma BE3(vi). Let G(M;},)) be the spanning subgraph of G

whose edge set is the union of all the path systems in M‘{ih. Then Lemma [5.6(iv)
implies that

d—4ein  13e4D _ d— 14e4D
A 1 4 4

So a Chernoff-Hoeffding estimate for the hypergeometric distribution (Proposition 2.3])
implies that

dema

KD

1 [(d—14e4D d — 15¢4D
dG(MiliziSM)(x) - ﬁ T —en2 W

(Note that we only need to apply the Chernoff-Hoeffding bound if d > en say, as (c)
is vacuous otherwise.)

It remains to check condition (d). First note that k& € N since tx,D/2 € N.
Thus we can apply Lemma [5.7] to obtain a decomposition of both G;‘lob and Gﬁob
into path systems. Since Ggiop = Gﬁlob U Gﬁob, (d) is an immediate consequence of

Lemma [B.7(ii)—(v). O

5.4. Constructing the localized balanced exceptional systems. The localized
path systems obtained from Corollary B.8 do not yet cover all of the exceptional
vertices. This is achieved via the following lemma: we extend the path systems to
achieve this additional property, while maintaining the property of being balanced.
More precisely, let

P = {A07A17"'7AK7B(]7B17"'7BK}

be a (K, m,e)-partition of a set V' of n vertices. Given 1 < iy,19,13,i4 < K and gy >

0, an (i1,192,13,14)-balanced exceptional system with respect to P and parameter g is

a path system J with V(J) C AgU ByU A;, U A;, U B;, U B;, such that the following

conditions hold:

(BES1) Every vertex in Ag U By is an internal vertex of a path in J. Every vertex
ve A, UA;, UB;, UB,, satisfies dj(v) < 1.

(BES2) Every edge of J[A U B is either an A;, A;,-edge or a B;, B;,-edge.

(BES3) The edges in J cover precisely the same number of vertices in A as in B.

(BES4) e(J) < gon.

To shorten the notation, we will often refer to J as an (i1, i, i3, i4)-BES. If V' is the

vertex set of a graph G and J C G, we also say that J is an (i, i9,13,14)-BES in G.

Note that (BES2) implies that an (i1, 1i9,43,74)-BES does not contain edges between

A and B. Furthermore, an (iy,i9,13,74)-BES is also, for example, an (is, 1,14, 13)-

BES. We will sometimes omit the indices 41,192,13,74 and just refer to a balanced

exceptional system (or a BES for short). We will sometimes also omit the partition

P, if it is clear from the context.
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(BES1) implies that each balanced exceptional system is an AgByp-path system
as defined before Proposition (However, the converse is not true since, for
example, a 2-balanced AgBy-path system need not satisfy (BES4).) So (BES3) and
Proposition imply that each balanced exceptional system is also 2-balanced.

We now extend each set M, ;,ii, obtained from Corollary 5.8 into a set J;,iqigi,
of (il, ’iQ, ig, ’i4)-BES.

Lemma 5.9. Lt 0 < I/n K e K g0 K € K g1 K g9 K 3 € g4y < 1/K < 1.
Suppose that (G, A, Ag, B, By) is an (e,&', K, D)-framework with |G| = n and such
that D > n/200 and D is even. Let P := {Ag,A1,...,Ax,Bo,B1,...,Bg} be a
(K,m,e,e1,e2)-partition for G. Suppose that tx = (1 — 20e4)D/2K* € N. Let
M ivisiy be the sets returned by Corollary [5.8. Then for all 1 < iy,i9,i3,i4 < K
there is a set Jiyiyigi, Which satisfies the following properties:
(1) Jiyigizi, consists of tx edge-disjoint (i1,1i2,13,14)-BES in G with respect to P
and with parameter e.
(ii) For each of the tx pairs of path systems (P, P") € M, iyisi,, there is a unique
J € Tiyigiziy Which contains all the edges in P U P'. Moreover, all edges in
E(J) \E(P @] Pl) lie in G[A(], B23] @] G[Bo, Au]
(111) Whenever (i17i27i37i4) 7& (Z,17Z/27Z/37Z21): J € u7i1i2i3i4 and J' € '-77,’12’22’37{1; then
J and J' are edge-disjoint.

We let J denote the union of the sets Ji,iqizi, over all 1 < iy, 9,143,104 < K.

Proof. We will construct the sets J;,i,i5i, greedily by extending each pair of path
systems (P, P’) € M, iyizi, in turn into an (i1,42,%3,44)-BES containing P U P’.
For this, consider some arbitrary ordering of the K* 4-tuples (i1, 12, i3,44). Suppose
that we have already constructed the sets Ty for all (if,d5,i3,7)) preceding
(i1,92,13,14) so that (i)—(iii) are satisfied. So our aim now is to construct J;,iyigi,-
Consider an enumeration (P, Py),..., (P, P/, ) of the pairs of path systems in
M isigi,- Suppose that for some i < tx we have already constructed edge-disjoint
(i1,142,13,14)-BES Ji,...,Ji_1, so that for each ¢’ < i the following conditions hold:

e J; contains the edges in Py U P};
e all edges in E(Jy) \ E(Py UP)) lie in G[Ap, B;,] U G[By, A;,];
e J; is edge-disjoint from all the balanced exceptional systems in U(i,1 i, Titi

Y 7
23,24) 273747

where the union is over all (i}, ,15,4)) preceding (i1, 1i2,13,174).

We will now construct J := J;. For this, we need to add suitable edges to P; U P/
to ensure that all vertices of Ag U By have degree two. We start with Ap. Recall
that a = |Ag| and write Ag = {z1,...,24}. Let G’ denote the subgraph of G[A’, B']
obtained by removing all the edges lying in Jq,...,J;_1 as well as all those edges
lying in the balanced exceptional systems belonging to U(ill it i) it i, (where as
before the union is over all (4}, 15, i, 7)) preceding (i1,i2,13,i4)). We will choose the
new edges incident to A in J inside G'[Ag, Bi,)-

Suppose we have already found suitable edges for x1,...,2;_1 and let J(j) be the
set of all these edges. We will first show that the degree of z; inside G'[Ag, By,] is
still large. Let d; := dg(z;,A’). Consider any (i},15,145,1)) preceding (i1, 2,13,%4).
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Let G(ji/l iéiéig) denote the union of the tx balanced exceptional systems belonging

to Jiriii- Thus dG(‘Z’li’zi’gig)(xj) = 2tg. However, Corollary (.8|(c) implies that

dawm,, ., ., (@) > (d; —15e4D)/K*. So altogether, when constructing (the balanced
"1'2"3%

exceptional systems in) Jy i ., we have added at most 2tx — (d; — 15e4D)/K* new

edges at x;, and all these edges join x; to vertices in BZ-IB. Similarly, when constructing

Ji,...,Ji—1, we have added at most 2t — (dj — 15e4D)/K* new edges at xj. Since
the number of 4-tuples (i}, i, %, 7)) with i§ = i3 is K?, it follows that

d; — 15e4D
ooy, By) = doay. By) < K° (20 = L5 D)
1
= 77 (1 =2024)D — d; + 1524 D)

:%(D—dj—5€4D).

Also, (P2) with A replaced by B implies that

dg(zj,B) —ein _ dg(x;) —dg(xj, A') —emn D —d; —en
di(ey, B,y > el D) e, doley) — daly ~Dodizean

where here we use (FR2) and (FR6). So altogether, we have
de/(xj, Biy) > (5e4D —e1n) /K > e4n/50K.

Let Bj, be the set of vertices in Bj;; not covered by the edges of J(j) U P;. Note
that |Bj,| > |Bi;| — 2|Ao| — 2e(P]) > |Bi;| — 3y/en since a = |A4g| < en by (FR4)
and e(P]) < /en by Corollary 5.8(a)(iii). So dg(z;, Bj,) > ean/51K. We can add
up to two of these edges to J in order to ensure that x; has degree two in J. This
completes the construction of the edges of J incident to Ag. The edges incident to
By are found similarly.

Let J be the graph on AgUByUA;, UA;, UB;,UB;, whose edge set is constructed
in this way. By construction, J satisfies (BES1) and (BES2) since P; and P] are
(11,12, A)-localized and (i3, 14, B)-localized respectively. We now verify (BES3). As
mentioned before the statement of the lemma, (BES1) implies that .J is an AyBy-path
system (as defined before Proposition [£.6]). Moreover, Corollary [5.8|(a)(ii) implies
that P; U P/ is a path system which satisfies (B1) in the definition of 2-balanced.
Since J was obtained by adding only A’B’-edges, (B1) is preserved in J. Since by
construction J satisfies (B2), it follows that J is 2-balanced. So Proposition
implies (BES3).

Finally, we verify (BES4). For this, note that Corollary 5.8(a)(iii) implies that
e(P;),e(P!) < y/en. Moreover, the number of edges added to P; U P/ when con-
structing J is at most 2(]Ag| + | Bo|), which is at most 2en by (FR4). Thus e(J) <
2\/en + 2en < gon. O



34 BELA CSABA, DANIELA KUHN, ALLAN LO, DERYK OSTHUS AND ANDREW TREGLOWN

5.5. Covering G, by edge-disjoint Hamilton cycles. We now find a set of
edge-disjoint Hamilton cycles covering the edges of the ‘leftover’ graph obtained
from G — G[A, B] by deleting all those edges lying in balanced exceptional systems
belonging to J.

Lemma 5.10. Let 0 < 1/n K e € g9 K €/ K 61 €K g3 K 63 € &4 € 1/K <
1. Suppose that (G, A, Ay, B, By) is an (g,¢', K, D)-framework with |G| = n and
such that D > n/200 and D is even. Let P := {Ao, A1,...,Ax,By,B1,...,Bx}
be a (K, m,e,e1,e2)-partition for G. Suppose that tx = (1 — 20e4)D/2K* € N.
Let J be as defined after Lemma and let G(J) C G be the union of all the
balanced exceptional systems lying in J. Let G* := G — G(J), let k := 10e4D and let
(Q1,4,Q1.B),---,(Qk.a,QkB) be as in Corollary [5.8(d).
(a) The graph G*—G*[A, B] can be decomposed into k AygBy-path systems Q1, ..., Qx
which are 2-balanced and satisfy the following properties:
(i) Qi contains all edges of Qi 4 U Qi B;
(ii)) @1, ..., QK are pairwise edge-disjoint;
(i) €(Q:) < 3v/en.
(b) Let Q1,...,Qk be as in (a). Suppose that F is a graph on V(G) such that
G C F, 0(F) > 2n/5 and such that F satisfies (WF5) with respect to €.
Then there are edge-disjoint Hamilton cycles Cy,...,Cy in F — G(J) such
that Q; C C; and C; NG is 2-balanced for each i < k.

Proof. We first prove (a). The argument is similar to that of Lemma (5.7l Roughly
speaking, we will extend each @; 4 into a path system Q; 4 by adding suitable AyB-
edges which ensure that every vertex in Ay has degree exactly two in Qg’ 4~ Similarly,
we will extend each @; g into Qg’ p by adding suitable ABjy-edges. We will ensure
that no vertex is an endvertex of both an edge in Qg’ 4 and an edge in Q; p and take
Q); to be the union of these two path systems. We first construct all the Q; A

Claim 1. G*[A'] U G*[Ag, B] has a decomposition into edge-disjoint path systems
Las-» Q4 such that
® Qia C Q4 and E(Q] 4) \ E(Qi,a) consists of AgB-edges in G* (for each
i <k);
° dQ;YA(:E) = 2 for every x € Ag and dQ;YA(:E) <1 for every x ¢ Ag;
e no vertex is an endverter of both an edge in Q;A and an edge in Q; p (for
each i < k).

To prove Claim 1, let Ggop be as defined in Corollary [5.8(d). Thus Gglob[ N =
Q1,4U---UQg, 4. On the other hand, Lemma [5.9(ii) implies that G*[A’] = Ggob[A’].
Hence,

(5.18) G*[A] = Guap[Al = QraU - UQp.a.

Similarly, G*[B'] = Ggiob[B'] = Q1,8U- - -UQk, 5. Moreover, Gy = G*[A'|UG*[B'].
Consider any vertex x € Ag. Let dgiop(2) denote the degree of z in Q14U+ U Q. 4.
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So dgiop(x) = dg=(z, A") by (G.I8). Let

(5.19) djoe(x) = dg(z, A') — dgiob()

(520) = dG($, A/) - dG* ($, A/) = dg(s) ($, A/)
Then

(5.21) oel®) + da(, B) + dgio() B2 ds(x) = D,

where the final equality follows from (FR2). Recall that J consists of K%y edge-
disjoint balanced exceptional systems. Since x has two neighbours in each of these
balanced exceptional systems, the degree of z in G(J) is 2K*tx = D—2k. Altogether
this implies that

dg<(z,B") = dg(z,B') —dgg)(x,B') = da(z, B') — (dgg)(z) — dg ) (x, A'))
(5.22) (@) dg(ﬂj, B/) — (D — 2k — dloc(ﬂj)) @ 2k — dglob(ﬂj).

Note that this is precisely the total number of edges at x which we need to add to
@1,4,-.-,Qk 4 in order to obtain @) 4,...,Q} 4 as in Claim 1.

We can now construct the path systems Q; 4. For each x € Ay, let n;i(z) =
2—dg, ,(z). So 0 < ni(x) <2forall i <k. Recall that a := |Ap| and consider an
ordering T1,..., %, of the vertices in Ag. Let G} := G*[{z1,...,z;}, B]. Assume that
for some 0 < j < a, we have already found a decomposition of G} into edge-disjoint
path systems Q1 j,...,Qy,; satisfying the following properties (for all i < k):

(') no vertex is an endvertex of both an edge in @; ; and an edge in Q; p;
(ii") z; has degree n;(z;) in Q; ; for all 7/ < j and all other vertices have degree
at most one in @ ;.
We call this assertion A;. We will show that A4 holds (i.e. the above assertion
also holds with j replaced by j + 1). This in turn implies Claim 1 if we let Q; A=
QiaUQj 4 for all i < k.

To prove Aj;1, consider the following bipartite auxiliary graph H;,q. The vertex
classes of H; 1 are Njiq := Ng+(zj11)NB and Zj41, where Z; 1 is a multiset whose
elements are chosen from Q1.p,...,Qrp. Each Q;p is included exactly n;(z;41)
times in Zj1;. Note that N;y1 = Ng«(xj41) N B’ since e(G[Ag, Bo]) = 0 by (FR6).
Altogether this implies that

k k

(5:23) 1Zjal = D milwirn) =2k =Y _dg, 4 (x541) = 2k — dgiob(j41)
=1 i=1

= dg* (1’j+1,B/) = ’Nj+1‘ Z k/2
The final inequality follows from (5.22]) since

GI8)
dgiob(Tj41) < A(Ggop[A']) < 3k/2

by Corollary 5.8(d). We include an edge in H;1; between v € Nj1 and Q; B € Zj11
if v is not an endvertex of an edge in Q); p U Q; ;.
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Claim 2. Hjq has a perfect matching M]’-H.

Given the perfect matching guaranteed by the claim, we construct Q; j+1 from Q; ; as
follows: the edges of Q; j4+1 incident to x4 are precisely the edges z;11v where vQ; B
is an edge of M}, (note that there are up to two of these). Thus Claim 2 implies
that A;4; holds. (Indeed, (i')—(ii’) are immediate from the definition of Hjy1.)

To prove Claim 2, consider any vertex v € N;i1. Since v € B, the number of path
systems (); p containing an edge at v is at most dg (v, B’). The number of indices
i for which @); ; contains an edge at v is at most dg(v, Ag) < |Ag|. Since each path
system (); p occurs at most twice in the multiset Z;4, it follows that the degree of
v in Hjqy is at least |Z;j41] — 2dg (v, B') — 2|Ag|. Moreover, dg(v,B’) < ¢'n < k/16
(say) by (FR5). Also, |Ag] < en < k/16 by (FR4). So v has degree at least
| Zja| = k/4 2 |Zj41]/2 in Hjpq.

Now consider any path system Q;p € Zj1i. Recall that e(Q;p) < en <
k/16 (say), where the first inequality follows from Corollary BE.8(d)(iv"). Moreover,
e(Qij) < 2|Ag| < 2en < k/8, where the second inequality follows from (FR4). Thus
the degree of Q; g in Hj 1 is at least

[Njy1] — 2e(Qi.B) — e(Qij) > [Nj1| — k/4 > [Njpa]/2.
Altogether this implies that H;,q has a perfect matching M ]’ 41, as required.
This completes the construction of Q] 4, ..., Q;a - Next we construct Q) g, .-, Q;a B
using the same approach.
Claim 3. G*[B’| U G*[By, A] has a decomposition into edge-disjoint path systems
1.8+ Q) p such that
® Qip C Q) p and E(Q] ) \ E(Qip) consists of BoA-edges in G* (for each
i <k);
. ng’B () = 2 for every x € By and dQ;B(:E) <1 for every x ¢ By;
e no vertex is an endvertex of both an edge in Q;A and an edge in Q;B (for
each i < k).

The proof of Claim 3 is similar to that of Claim 1. The only difference is that when
constructing Q; p» we need to avoid the endvertices of all the edges in Q; 4 (not just
the edges in @Q; 4). However, e(Q; 4 — Qia) < 2|Aol, so this does not affect the
calculations significantly.
We now take Q; := Q;A U Q;B for all ¢ < k. Then the @); are pairwise edge-disjoint
and

e(Q;) < e(Qia) +e(Qip)+2/Ag UBy| < 2y/en+2en < 3y/en
by Corollary 5.8(d)(iv’) and (FR4). Moreover, Corollary [5.8/(d)(iii’) implies that

(5.24) eqi(A) = eq,(B') = e(Qi.a) — e(Qs) = a—b.

Thus each Q); is a 2-balanced AgBp-path system. Further, Qq, ..., Qx form a decom-
position of

G*[A'] U G*[Ay, B] U G*[B'| U G*[By, A] = G* — G*[A, B.



PROOF OF THE 1-FACTORIZATION & HAMILTON DECOMPOSITION CONJECTURES II 37

(The last equality follows since e(G[Ag, Byo]) = 0 by (FR6).) This completes the
proof of (a).

To prove (b), note that (F,G, A, Ag, B, By) is an (e,&’, D)-pre-framework, i.e. it
satisfies (WF1)—(WF5). Indeed, recall that (FR1)-(FR4) imply (WF1)—-(WF4) and
that (WF5) holds by assumption. So we can apply Lemma [£10] (with @; playing
the role of @) to extend ()1 into a Hamilton cycle C;. Moreover, Lemma [A.T0l(iii)
implies that C; NG is 2-balanced, as required. (Lemma [£.10(ii) guarantees that C}
is edge-disjoint from Q2 ..., Q) and G(J).)

Let Gy := G —C; and Fy := F — (4. Proposition 3] (with Cy playing the role of
H) implies that (Fy,Gq, A, Ay, B, By) is an (,&', D — 2)-pre-framework. So we can
now apply Lemma [TI0 to (Fy,G1, A, Ay, B, By) to extend Q2 into a Hamilton cycle
Cy, where Cy N G is also 2-balanced.

We can continue this way to find Cj, ..., Cy. Indeed, suppose that we have found
Ci,...,C; for i < k. Then we can still apply Lemma 10 since §(F) — 2i > §(F) —
2k > n/3. Moreover, C; N G is 2-balanced for all j <, so (C1U---UC;) NG is 2i-
balanced. This in turn means that Proposition [4.3] (applied with C;U- - -UC; playing
the role of H) implies that after removing C1, ..., C;, we still have an (¢,¢’, D — 2i)-
pre-framework and can find Cjy. O

We can now put everything together to find a set of localized balanced exceptional
systems and a set of Hamilton cycles which altogether cover all edges of G outside
GJA, B]. The localized balanced exceptional systems will be extended to Hamilton
cycles later on.

Corollary 5.11. Let 0< I/n < e <K g <K €1 K a9 K g3 K gy < 1/K < 1.
Suppose that (G, A, Ao, B, By) is an (,€', K, D)-framework with |G| = n and such
that D > n/200 and D is even. Let P := {Ag, A1,...,Ax,By,B1,...,Bx} be a
(K,m,e,e1,e2)-partition for G. Suppose that tx = (1 — 20e4)D/2K* € N and let
k := 10e4D. Suppose that F is a graph on V(G) such that G C F, §(F) > 2n/5
and such that F satisfies (WF5) with respect to €. Then there are k edge-disjoint
Hamilton cycles Cq,...,Cy in F and for all 1 < i1,19,i3,14 < K there is a set
Tivigizia Such that the following properties are satisfied:

(1) Tiyigisis consists of tx (i1,i2,13,14)-BES in G with respect to P and with
parameter ey which are edge-disjoint from each other and from C1U---UCl.
(11) Whenever (i17i27i37i4) 7& (Z/17Z/27Z£’>7Z£1): J € u7i1i2i3i4 and J' € '-72’11’2@’3221; then
J and J' are edge-disjoint.
(iii) Given anyi <k and v € AyU By, the two edges incident to v in C; lie in G.
(iv) Let G° be the subgraph of G obtained by deleting the edges of all the C; and
all the balanced exceptional systems in Jiyiyiziy (for all 1 <iy,ia,i3,i4 < K).
Then G° is bipartite with vertex classes A', B and Vy = AgUBy is an isolated
set in G°.

Proof. This follows immediately from Lemmas [5.9 and [5.10(b). Indeed, clearly (i)—
(iii) are satisfied. To check (iv), note that G° is obtained from the graph G* defined
in Lemma [5.101 by deleting all the edges of the Hamilton cycles C;. But Lemma [5.10]
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implies that the C; together cover all the edges in G* — G*[A, B]. Thus this implies
that G° is bipartite with vertex classes A’, B’ and 1} is an isolated set in G°. O

6. SPECIAL FACTORS AND BALANCED EXCEPTIONAL FACTORS

As discussed in the proof sketch, the proof of Theorem proceeds as follows.
First we find an approximate decomposition of the given graph G and finally we
find a decomposition of the (sparse) leftover from the approximate decomposition
(with the aid of a ‘robustly decomposable’ graph we removed earlier). Both the
approximate decomposition as well as the actual decomposition steps assume that
we work with a bipartite graph on AU B (with |A| = |B|). So in both steps, we
would need Ag U By to be empty, which we clearly cannot assume. On the other
hand, in both steps, one can specify ‘balanced exceptional path systems’ (BEPS)
in G with the following crucial property: one can replace each BEPS with a path
system BEPS* so that

(cv1) BEPS* is bipartite with vertex classes A and B;
(a2) a Hamilton cycle C* in G* := G[A, B] + BEPS* which contains BEPS* cor-
responds to a Hamilton cycle C' in G which contains BEPS (see Section [6.1]).

Each BEPS will contain one of the balanced exceptional sequences BES constructed
in Section 5l BEPS* will then be obtained by replacing the edges in BES by suitable
“fictive’ edges (i.e. which are not necessarily contained in G).

So, roughly speaking, this allows us to work with G* rather than G in the two
steps. A convenient way of specifying and handling these balanced exceptional path
systems is to combine them into ‘balanced exceptional factors’ BF (see Section [6.3]
for the definition).

One complication is that the ‘robust decomposition lemma’ (Lemma [T.4]) we use
from [I5] deals with digraphs rather than undirected graphs. So to be able to apply
it, we need a suitable orientation of the edges of G and so we will actually consider
directed path systems BEPS}; instead of BEPS* above (whereas the path systems
BEPS are undirected).

The formulation of the robust decomposition lemma is quite general and rather
than guaranteeing (ag) directly, it assumes the existence of certain directed ‘special
paths systems’ SPS which are combined into ‘special factors’ SF. These are intro-
duced in Section Each of the Hamilton cycles produced by the lemma then
contains exactly one of these special path systems. So to apply the lemma, it suffices
to check separately that each BEPS}; satisfies the conditions required of a special
path system and that it also satisfies (aw).

6.1. Constructing the graphs J* from the balanced exceptional systems J.
Suppose that J is a balanced exceptional system in a graph G with respect to a
(K, m,eq)-partition P = {Ag, A1,...,Ax, By, B1,...,Bg} of V(G). We will now
use J to define an auxiliary matching J*. Every edge of J* will have one endvertex
in A and its other endvertex in B. We will regard J* as being edge-disjoint from
the original graph G. So even if both J* and G have an edge between the same
pair of endvertices, we will regard these as different edges. The edges of such a J*
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will be called fictive edges. Proposition [6.I)(ii) below shows that a Hamilton cycle
in G[AU B] + J* containing all edges of J* in a suitable order will correspond to a
Hamilton cycle in G which contains J. So when finding our Hamilton cycles, this
property will enable us to ignore all the vertices in Vy = Ag U By and to consider a
bipartite (multi-)graph between A and B instead.

We construct J* in two steps. First we will construct a matching J7 5 on AUB and
then J*. Since each maximal path in J has endpoints in AU B and internal vertices
in Vj by (BES1), a balanced exceptional system J naturally induces a matching J7 5
on AU B. More precisely, if Py,..., Py are the non-trivial paths in J and x;,y; are
the endpoints of P;, then we define J% 5 := {x;y; : @ < ¢'}. Thus J} 5 is a matching
by (BES1) and e(J} 5) < e(J). Moreover, J} 5 and E(J) cover exactly the same ver-
tices in A. Similarly, they cover exactly the same vertices in B. So (BES3) implies
that e(JizlA]) = e(J4z[B]). We can write E(J}5[A]) = {z122,..., 251225},
E(JZB (B]) = {y1y2,..-,y2s-1¥y2s} and E(JZB [A,B]) = {Z2s41Y2541,-- - TsYs' }»
where z; € A and y; € B. Define J* := {x;y; : 1 < i < §’}. Note that
e(J*) =e(J4p) < e(J). All edges of J* are called fictive edges.

As mentioned before, we regard J* as being edge-disjoint from the original graph G.
Suppose that P is an orientation of a subpath of (the multigraph) G[AU B]+ J*. We
say that P is consistent with J* if P contains all the edges of J* and P traverses the
vertices x1,Y1,%2,...,Ys—1,Ts,Ys in this order. (This ordering will be crucial for
the vertices x1,¥1, ..., T2s, Y25, but it is also convenient to have an ordering involving
all vertices of J*.) Similarly, we say that a cycle D in G[AUB|+J* is consistent with
J* if D contains all the edges of J* and there exists some orientation of D which
traverses the vertices x1,y1,%2,...,Ys_1, T, Y in this order.

The next result shows that if J is a balanced exceptional system and C is a
Hamilton cycle on A U B which is consistent with J*, then the graph obtained
from C' by replacing J* with J is a Hamilton cycle on V(G) which contains J, see
Figure When choosing our Hamilton cycles, this property will enable us ignore
all the vertices in 1 and edges in A and B and to consider the (almost complete)
bipartite graph with vertex classes A and B instead.

Proposition 6.1. Let P = {Ag, A1,..., Ak, By, B1,..., Bk} be a (K, m,e)-partition
of a vertex set V. Let G be a graph on'V and let J be a balanced exceptional system
with respect to P.

(i) Assume that P is an orientation of a subpath of G[AU B] + J* such that P
is consistent with J*. Then the graph obtained from P — J* + J by ignoring
the orientations of the edges is a path on V(P) U Vy whose endvertices are
the same as those of P.

(ii) If J € G and D is a Hamilton cycle of G[A U B] + J* which is consistent
with J*, then D — J* + J is a Hamilton cycle of G.

Proof. We first prove (i). Let s := e(J}z[A]) = e(J415[B]) and J® := {z1y1, ..., T2sy2s}
(where the z; and y; are as in the definition of J*). So J* := J°U{Z2s+1Y2s+1;-- -, Ts'Ys' I
where s’ := e(J*). Let P denote the path obtained from P = z; ... 29 by reversing
its direction. (So P¢ = z5...z traverses the vertices yy, Zs, Y25 —1,---,2T2,Y1,T1 in
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A By A By A By
® ® ®
A B A B A B
(a) J (B) Jig (c) J*

FIGURE 2. The thick lines illustrate the edges of J, J}5 and J*
respectively.

this order.) First note
P' = 21 Pr122 P y1ya Praa Pysys . . . w25 1725 P Yas—1y2s P2o
is a path on V(P). Moreover, the underlying undirected graph of P’ is precisely
P—J°+ (JiplA]UJp[B]) =P —J + J)p.

In particular, P’ contains J% 5. Now recall that if wjws is an edge in J% g, then
the vertices w; and wq are the endpoints of some path P* in J (where the internal
vertices on P* lie in Vp). Clearly, P’ — wyws + P* is also a path. Repeating this step
for every edge wiws of J% 5 gives a path P” on V(P)UV;. Moreover, P = P—J*+J.
This completes the proof of (i).

(ii) now follows immediately from (i). O

6.2. Special path systems and special factors. As mentioned earlier, in order
to apply Lemma [T we first need to prove the existence of certain ‘special path
systems’. These are defined below.

Suppose that

IP — {AO,Al,,AK,BO,Bl,,BK}

is a (K, m,eg)-partition of a vertex set V and L,m/L € N. We say that (P,P’)
is a (K, L,m,eq)-partition of V if P’ is obtained from P by partitioning A; into L
sets A;1,...,A; 1 of size m/L for all 1 < ¢ < K and partitioning B; into L sets
Bii,...,B;p of size m/L for all 1 <4 < K. (So P’ consists of the exceptional sets
Ao, By, the KL clusters A; ; and the KL clusters B;;.) Unless stated otherwise,
whenever considering a (K, L, m, eg)-partition (P,P’) of a vertex set V we use the
above notation to denote the elements of P and P’.

Let (P,P') be a (K, L,m,eq)-partition of V. Consider a spanning cycle C' =
A1B; ... Ag Bk on the clusters of P. Given an integer f dividing K, the canonical
interval partition T of C into f intervals consists of the intervals

Ak f+1Ba-0 K/ 1 AGi-0)K/f+2 - BikpAik ) 41
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for all : < f. (Here Ag41:= Aj.)

Suppose that G is a digraph on V' \ Vp and h < L. Let I = A;B;Aj11... Ay be
an interval in Z. A special path system SPS of style h in G spanning the interval
I consists of precisely m /L (non-trivial) vertex-disjoint directed paths P, ..., Py /r,
such that the following conditions hold:

(SPS1) Every P; has its initial vertex in A and its final vertex in Aj 4.

(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)
avoid the endclusters A; and Aj: of I and such that E(Ps) \ Fict(SPS) C
E(G).

(SPS3) The vertex set of SPSis A, UBjpUAj1p,U---UBj_15UAj .

The edges in Fict(SPS) are called fictive edges of SPS.

Let T = {Iy,...,Is} be the canonical interval partition of C' into f intervals. A
special factor SF with parameters (L, f) in G (with respect to C, P’) is a 1-regular
digraph on V' \ Vi which is the union of Lf digraphs SPS;, (one for all j < f and
h < L) such that each SPS;, is a special path system of style i in G’ which spans ;.
We write Fict(SF') for the union of the sets Fict(SPS; ) over all j < fand h < L
and call the edges in Fict(SF) fictive edges of SF.

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that special factors SFi,...,SF, are pairwise
edge-disjoint from each other and from some digraph @ on V \ Vj, then this means
that @ and all the SF; — Fict(SF;) are pairwise edge-disjoint, but for example there
could be an edge from z to y in @ as well as in Fict(SF;) for several indices i < 7.
But these are the only instances of multiedges that we allow, i.e. if there is more
than one edge from x to y, then all but at most one of these edges are fictive edges.

6.3. Balanced exceptional path systems and balanced exceptional factors.
We now define balanced exceptional path systems BEPS. It will turn out that they (or
rather their bipartite directed versions BEPS}; involving fictive edges) will satisfy
the conditions of the special path systems defined above. Moreover, (bipartite)
Hamilton cycles containing BEPS}; correspond to Hamilton cycles in the ‘original’
graph G (see Proposition [6.2)).

Let (P,P’) be a (K, L, m,ep)-partition of a vertex set V. Suppose that K/f € N
and h < L. Consider a spanning cycle C = A1B;... Ax Bg on the clusters of P.
Let Z be the canonical interval partition of C into f intervals of equal size. Suppose
that G is an oriented bipartite graph with vertex classes A and B. Suppose that
I = A;jB;...Aj is an interval in Z. A balanced exceptional path system BEPS
of style h for G spanning I consists of precisely m/L (non-trivial) vertex-disjoint
undirected paths P, ..., P, /1, such that the following conditions hold:

(BEPS1) Every P has one endvertex in Aj;j and its other endvertex in A j.

(BEPS2) J := BEPS — BEPS|A, B] is a balanced exceptional system with respect
to P such that P; contains all edges of J and so that the edge set of J is
disjoint from A;; and A ;. Let P g;; be the path obtained by orienting P
towards its endvertex in A;/ j and let Jg;; be the orientation of J obtained in
this way. Moreover, let Jj,. be obtained from J* by orienting every edge in
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J* towards its endvertex in B. Then Pi dir = Pr.dir — Jair + J3;, is a directed
path from A;; to Ay j which is consistent with J*.
(BEPS3) The vertex set of BEPS is Vo U A, UBjUAj 1, U---UBj_1,UAjp.
(BEPS4) For each 2 < s < m/L, define P; g, similarly as P gi;. Then E(Psgir) \
E(Jair) € E(G) for every 1 < s <m/L.

Let BEPS;, be the path system consisting of Py, P2 dirs - - - > Pryr,die- Then
BEPS};, is a special path system of style h in G which spans the interval I and such
that Fict(BEPS},,) = J3;,-

Let T = {Iy,...,Is} be the canonical interval partition of C' into f intervals. A
balanced exceptional factor BF with parameters (L, f) for G (with respect to C, P’)
is the union of Lf undirected graphs BEPS; ), (one for all j < f and h < L) such
that each BEPS}), is a balanced exceptional path system of style h for G which
spans I;. We write BF}; for the union of BEPS;’:h,dir over all j < f and h < L.
Note that BF}; is a special factor with parameters (L, f) in G' (with respect to C,
P') such that Fict(BFg,) is the union of J7, i over all j < f and h < L, where
Jin = BEPS;;, — BEPS;|A, B] is the balanced exceptional system contained in
BEPS;}, (see condition (BEPS2)). In particular, BEF}; is a l-regular digraph on
V' \ Vo while BF is an undirected graph on V with

(6.1) dpr(v) =2 forallve V\V, and dpr(v)=2Lf forallveVj.

Given a balanced exceptional path system BEPS, let J be as in (BEPS2) and
le¢ BEPS* := BEPS — J + J*. So BEPS* consists of P/ := P —J + J* as
well as P, ..., Py . The following is an immediate consequence of (BEPS2) and
Proposition

Proposition 6.2. Let (P,P’) be a (K, L, m,eq)-partition of a vertezx set V. Suppose
that G is a graph on V \ Vi, that Ggi, is an orientation of G[A, B] and that BEPS
is a balanced exceptional path system for Ggy. Let J be as in (BEPS2). Let C be a
Hamilton cycle of G + J* which contains BEPS*. Then C — BEPS*+ BEPS is a
Hamilton cycle of G U J.

Proof. Note that C — BEPS*+ BEPS = C — J*+ J. Moreover, (BEPS2) implies
that C' contains all edges of J* and is consistent with J*. So the proposition follows
from Proposition [6.11(ii) applied with G U J playing the role of G. O

6.4. Finding balanced exceptional factors in a scheme. The following defini-
tion of a ‘scheme’ captures the ‘non-exceptional’ part of the graphs we are working
with. For example, this will be the structure within which we find the edges needed
to extend a balanced exceptional system into a balanced exceptional path system.

Given an oriented graph G and partitions P and P’ of a vertex set V, we call
(G,P,P") a K, L,m,eg,¢e|-scheme if the following properties hold:

(Schl’) (P, P")is a (K, L, m,eg)-partition of V. Moreover, V(G) = AU B.
(Sch2’) Every edge of G has one endvertex in A and its other endvertex in B.
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(Sch3’) G[A;j, By ;] and G[By j1, A; j] are [e,1/2]-superregular for all ¢,7’ < K and
all j,j < L. Further, G[A;, Bj] and G[Bj, A;] are [¢,1/2]-superregular for all
i,j < K.

(Schd) |NZ(z)NNg (y)NB;j| > (1—e)m/5L for all distinct 2,y € A4, all i < K and
all j < L. Similarly, [NZ (z) N Ng (y) N 4; ;| > (1 —e)m/5L for all distinct
x,y € Byallt < K and all j < L.

If L =1 (and so P = P’), then (Schl’) just says that P is a (K, m,eg)-partition of
V(G).

The next lemma allows us to extend a suitable balanced exceptional system into
a balanced exceptional path system. Given h < L, we say that an (i1, 12,3, i4)-BES
J has style h (with respect to the (K, L, m,eq)-partition (P, P’)) if all the edges of .J
have their endvertices in Vo U A;, , U Aj, , U Biy U B, .

Lemma 6.3. Suppose that K,L,n,m/L € N, that 0 < 1/n < e,e9 < 1 and
g0 < 1/K,1/L. Let (G,P,P") be a [K,L,m,eg,c]-scheme with |V(G) U V| =
n. Consider a spanning cycle C = A1By... AgBg on the clusters of P and let
I = AjBjAji1...Aj be an interval on C of length at least 10. Let J be an
(i1,142,13,14)-BES of style h < L with parameter g (with respect to (P,P’)), for
some i1,i9,i3,14 € {j +1,...,5' — 1}. Then there exists a balanced exceptional path
system of style h for G which spans the interval I and contains all edges in J.

Proof. For each k < 4, let my denote the number of vertices in A;, , U B;, 3,
which are incident to edges of J. We only consider the case when iy, i9, i3 and iy4
are distinct and my > 0 for each k < 4, as the other cases can be proved by similar
arguments. Clearly my + --- + myg < 2egn by (BES4). For every vertex = € A, we
define B(x) to be the cluster B;j, € P’ such that A; contains z. Similarly, for every
y € B, we define A(y) to be the cluster A, € P’ such that B; contains y.

Let z1y1,...,T4yy be the edges of J*, with z; € A and y; € B for all i < s'.
(Recall that the ordering of these edges is fixed in the definition of J*.) Thus s’ =
(my+---+my)/2 < ggn. Moreover, our assumption that eg < 1/K,1/L implies that
gon < m/100L (say). Together with (Sch4’) this in turn ensures that for every r < ¢/,
we can pick vertices w, € B(x,) and z, € A(y,) such that w,x,, y,z, and z,w, 1 are
(directed) edges in G and such that all the 45’ vertices z;, Y., w,., z, (for r < ') are
distinct from each other. Let P| be the path wixiyiz1wazayazows ... yszy. Thus
P/ is a directed path from B to A in G+ J},, which is consistent with J*. (Here J};.
is obtained from J* by orienting every edge towards B.) Note that |V (P])NA;, x| =
my = |V(P]) N By, | for all k& < 4. (This follows from our assumption that i1, 42, i3
and i4 are distinct.) Moreover, V(P]) N (A; U B;) =0 for all i ¢ {i1,1i2,13,i4}.

Pick a vertex 2’ in A, so that 2z’w; is an edge of G. Find a path P} from zy to
Ajrp in G such that the vertex set of P/’ consists of zy and precisely one vertex in
each A;p, foralli € {j+1,...,7} \ {i1,72,43,44} and one vertex in each B, for all
i€{j,..., 5" —1}\ {i1,i2,43,44} and no other vertices. (Schd’) ensures that this can
be done greedily. Define P}y, to be the concatenation of z'wi, P{ and P/’. Note
that Py, is a directed path from 4;p to Ajip in G+ J3,, which is consistent with
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J*. Moreover, V(Pidir) C UiSK Ain U Bjp,

1 forie{j,....,5'}\ {i1, iz, 43,04},
V(P air) N Aip| = (my for i =i and k < 4,
0 otherwise,

while

1 forie{j""7j/_1}\{i17i27i37i4}7
V(P giy) N Bip| = Qmy, for i =1ij and k < 4,
0 otherwise.

(Sch4’) ensures that for each k < 4, there exist my —1 (directed) paths P, ... ,P,’f@k_l
in G such that

° Pf is a path from A;j, to A p, for each r <my — 1 and k < 4;

e each P* contains precisely one vertex in A;, for each i € {j,...,5'} \ {ix},

one vertex in B;, for each i € {j,...,j’ — 1} \ {ix} and no other vertices;
) Pidir, P}, ... ,Prlnl_l, P ... ,P;,lu_l are vertex-disjoint.
Let @ be the union of P 4, and all the PF over all k <4 and r < my — 1. Thus Q
is a path system consisting of mi + - - - + my — 3 vertex-disjoint directed paths from
Ajp to Ay . Moreover, V(Q) consists of precisely my +- - - +my — 3 < 2ggn vertices
in A;p, for every j < i < j’ and precisely m + - - - + my — 3 vertices in B; ), for every
j<i<j'. Set A, = Aip\V(Q) and Bj, := B; , \ V(Q) for all i < K. Note that,
forall j <i <y,
m

m m m
(6.2) |A;7h| :f—(m1+---—|—m4—3) zf—%onz f—5eomK2 (1—\/5)f

since g9 < 1/K,1/L. Similarly, [B;,| > (1 — /Zo)m/L for all j < i < j'. Pick
a new constant &’ such that €,69 < & < 1. Then (Sch3’) and (6.2) together with
Proposition 211 imply that G[A],, B; ;] is still [¢/,1/2]-superregular and so we can
find a perfect matching in G[A],, B;,] for all j < i < j'. Similarly, we can find
a perfect matching in G[B;,, A, ,] for all j < i < j'. The union Q' of all these
matchings forms m/L — (mg + - - - 4+ my4) + 3 vertex-disjoint directed paths.

Let P; be the undirected graph obtained from P 4y — J§ip +J by ignoring the
directions of all the edges. Proposition[6.1](i) implies that P, is a path on V' (Py 4, )UVo
with the same endvertices as Pl*,dir‘ Consider the path system obtained from (Q U
QNH\ {Pl*’dir} by ignoring the directions of the edges on all the paths. Let BEPS be
the union of this path system and P;. Then BEPS is a balanced exceptional path
system for GG, as required. O

The next lemma shows that we can obtain many edge-disjoint balanced exceptional
factors by extending balanced exceptional systems with suitable properties.

Lemma 6.4. Suppose that L, f,q,n,m/L,K/f € N, that K/f > 10, that 0 < 1/n <
g,60 < 1, that e9 < 1/K,1/L and Lq/m < 1. Let (G,P,P") be a [K,L,m,eq,e|-
scheme with |V (G) U Vp| = n. Consider a spanning cycle C = A1By ... Axk Bk on
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the clusters of P. Suppose that there exists a set J of Lfq edge-disjoint balanced
exceptional systems with parameter g such that

e foralli < f and all h < L, J contains precisely q (i1,1i2,13,14)-BES of style

h (with respect to (P, P')) for which i1,i2,i3,14 € {(i—1)K/f+2,...,iK/f}.

Then there exist q edge-disjoint balanced exceptional factors with parameters (L, f)
for G (with respect to C, P') covering all edges in |JJ .

Recall that the canonical interval partition Z of C into f intervals consists of the
intervals

Ay Ba-n)k/ 1Ak e - Aik
for all ¢+ < f. So the condition on J ensures that for each interval I € 7 and
each h < L, the set J contains precisely ¢ balanced exceptional systems of style h
whose edges are only incident to vertices in Vj and vertices belonging to clusters in

the interior of I. We will use Lemma to extend each such balanced exceptional
system into a balanced exceptional path system of style h spanning I.

Proof of Lemma Choose a new constant & with ¢, Lg/m < ¢ < 1.
Let J1,...,J; be a partition of J such that for all j < ¢, h < L and i < f,
the set J; contains precisely one (iy,i2,13,%4)-BES of style h with iy,19,13,14 €
{(it = 1)K/f +2,...,iK/f}. Thus each J; consists of Lf balanced exceptional
systems. For each j < ¢ in turn, we will choose a balanced exceptional factor
EF; with parameters (L, f) for G such that BF; and BFj are edge-disjoint for
all 7/ < j and BF; contains all edges of the balanced exceptional systems in Jj.
Assume that we have already constructed BFy,...,BF;_;. In order to construct
BF}, we will choose the Lf balanced exceptional path systems forming BF} one by
one, such that each of these balanced exceptional path systems is edge-disjoint from
BFy,...,BF;_; and contains precisely one of the balanced exceptional systems in
Jj. Suppose that we have already chosen some of these balanced exceptional path
systems and that next we wish to choose a balanced exceptional path system of
style h which spans the interval I € Z of C' and contains J € J;. Let G’ be the
oriented graph obtained from G by deleting all the edges in the balanced path systems
already chosen for BF; as well as deleting all the edges in BFy,...,BF;_;. Recall
from (Schl’) that V(G) = AUB. Thus A(G—G’) < 2j < 3¢ by (6.1). Together with
Proposition 2] this implies that (G',P,P’) is still a [K, L, m,eq,e']-scheme. (Here
we use that A(G — G') < 3¢ = 3Lg/m - m/L and ¢,Lg/m < ¢ < 1.) So we can
apply Lemma [6.3] with ¢’ playing the role of € to obtain a balanced exceptional path
system of style h for G’ (and thus for G) which spans I and contains all edges of J.
This completes the proof of the lemma. O

7. THE ROBUST DECOMPOSITION LEMMA

The robust decomposition lemma (Corollary [Z.5]) allows us to transform an ap-
proximate Hamilton decomposition into an exact one. As discussed in Section [ it
will only be used in the proof of Theorem (and not in the proof of Theorem [L.0)).
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In the next subsection, we introduce the necessary concepts. In particular, Corol-
lary relies on the existence of a so-called bi-universal walk. The (proof of the)
robust decomposition lemma then uses edges guaranteed by this universal walk to
‘balance out’ edges of the graph H when constructing the Hamilton decomposition
of G*P + H.

7.1. Chord sequences and bi-universal walks. Let R be a digraph whose ver-
tices are Vi,...,V, and suppose that C' = V; ...V} is a Hamilton cycle of R. (Later
on the vertices of R will be clusters. So we denote them by capital letters.)

A chord sequence C'S(V;, V;) from Vj to V; in R is an ordered sequence of edges of
the form

CS(Vi, V) = (Viy-1Vig, Viy—1Vig, - -, Vi1 Vi),
where V;, =V;, V;,., = V; and the edge V;,_1V;_,, belongs to R for each s <.

If © = j then we consider the empty set to be a chord sequence from V; to V.
Without loss of generality, we may assume that C'S(V;,V;) does not contain any
edges of C. (Indeed, suppose that V;,_1V; _, is an edge of C. Then iy = i,y and
so we can obtain a chord sequence from V; to V; with fewer edges.) For example, if
Vi—1Vito € E(R), then the edge V;_1Vj12 is a chord sequence from V; to Vj4o.

The crucial property of chord sequences is that they satisfy a ‘local balance’ con-
dition. Suppose that C'S is obtained by concatenating several chord sequences

CS(Viy, Vi), €S (Vig, Vig)s - -+, CS(Viy_ys Vi) CS(Vig, Vi)

where Vi, = V;,,,. Then for every V;, the number of edges of C'S leaving V;_; equals
the number of edges entering V;. We will not use this property explicitly, but it
underlies the proofs of e.g. Lemma [(.4] and appears implicitly e.g. in (BU3) below.

A closed walk U in R is a bi-universal walk for C with parameter £’ if the following
conditions hold:

(BU1) The edge set of U has a partition into Uyqq and Ueyen. For every 1 <i < k
there is a chord sequence ECSbi(‘/i,‘/i+2) from V; to Vi1 such that Uegyen
contains all edges of all these chord sequences for even i (counted with multi-
plicities) and U,qq contains all edges of these chord sequences for odd i. All
remaining edges of U lie on C.

(BU2) Each ECS"(V;, Vi 2) consists of at most v/¢//2 edges.

(BU3) Uegyen enters every cluster V; exactly ¢'/2 times and it leaves every cluster V;
exactly ¢'/2 times. The same assertion holds for Uyqq.

Note that condition (BU1) means that if an edge V;V; € E(R)\ E(C) occurs in total

5 times (say) in ECSPM(Vi,V3),..., ECSY(V}, V5) then it occurs precisely 5 times

in U. We will identify each occurrence of V;V; in ECSPY(Vi,V3),..., ECSY(Vy, Va)

with a (different) occurrence of V;V; in U. Note that the edges of ECSP(V;, Vii2)

are allowed to appear in a different order within U.

Lemma 7.1. Let R be a digraph with vertices Vi,...,Vi where k > 4 is even.
Suppose that C = Vi ... Vi is a Hamilton cycle of R and that V;_1V;4o € E(R) for
every 1 <i < k. Let {' > 4 be an even integer. Let Uy; ¢ denote the multiset obtained
from 0" — 1 copies of E(C) by adding V;—1Vi1o € E(R) for every 1 < i < k. Then
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the edges in Uy; ¢ can be ordered so that the resulting sequence forms a bi-universal
walk for C with parameter {'.

In the remainder of the paper, we will also write Uy, ¢ for the bi-universal walk
guaranteed by Lemma [Tl

Proof. Let us first show that the edges in Uy; » can be ordered so that the resulting
sequence forms a closed walk in R. To see this, consider the multidigraph U obtained
from Uy; ¢ by deleting one copy of E(C'). Then U is (¢ — 1)-regular and thus has
a decomposition into 1-factors. We order the edges of Uy as follows: We first
traverse all cycles of the 1-factor decomposition of U which contain the cluster V;.
Next, we traverse the edge V1 V5 of C'. Next we traverse all those cycles of the 1-factor
decomposition which contain V5 and which have not been traversed so far. Next we
traverse the edge V5V3 of C' and so on until we reach V; again.

Recall that, for each 1 < ¢ < k, the edge V;_1V;12 is a chord sequence from V; to
Viy2. Thus we can take ECS"(V;, Viis) := V;_1Viio. Then Upier satisfies (BU1)-
(BU3). Indeed, (BU2) is clearly satisfied. Partition one of the copies of E(C) in U, ¢
into Feven and FEoqq where Eeven = {V;Viy1| @ even} and Eoqq = {ViVit1] @ odd}.
Note that the union of Feyven together with all ECSbi(‘/i,‘/i+2) for even 7 is a 1-
factor in R. Add ¢'/2 — 1 of the remaining copies of E(C) to this 1-factor to obtain
Uecven- Define Uyqq to be E(Upi ) \ Ueven. By construction of Ueyen and Uygq, (BU1)
and (BU3) are satisfied. O

7.2. Bi-setups and the robust decomposition lemma. The aim of this sub-
section is to state the robust decomposition lemma (Lemma [T4] proved in [15])
and derive Corollary [T.5, which we shall use later on. The robust decomposition
lemma guarantees the existence of a ‘robustly decomposable’ digraph Gfﬁf within a
‘bi-setup’. Roughly speaking, a bi-setup is a digraph G together with its ‘reduced
digraph’ R, which contains a Hamilton cycle C' and a universal walk U. In our
application, G[A, B] will play the role of G and R will be the complete bipartite
digraph. To define a bi-setup formally, we first need to define certain ‘refinements’
of partitions.

Given a digraph G and a partition P of V(G) into k clusters Vi, ..., V} of equal
size, we say that a partition P’ of V(G) is an ¢'-refinement of P if P’ is obtained
by splitting each V; into ¢ subclusters of equal size. (So P’ consists of ¢’k clusters.)
P’ is an e-uniform {'-refinement of P if it is an ¢'-refinement of P which satisfies
the following condition: Whenever x is a vertex of G, V is a cluster in P and
ING(z) N V| > e|V]| then [NZ(z) NV'| = (1 +¢)|NJ(z) NV]|/¢ for each cluster
V' € P’ with V' C V. The inneighbourhoods of the vertices of G satisfy an analogous
condition. We will use the following lemma from [I5].

Lemma 7.2. Suppose that 0 < 1/m < 1/k,e < €',d,1/¢ <1 and that k,¢,m/¢ € N.
Suppose that G is a digraph and that P is a partition of V(G) into k clusters of size
m. Then there exists an e-uniform (-refinement of P. Moreover, any e-uniform
(-refinement P’ of P automatically satisfies the following condition:
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e Suppose that V., W are clusters in P and V', W' are clusters in P’ with
VICV and W CW. If GIV,W] is [e,d'|-superregular for some d' > d then
GV, W] is [, d']-superregular.

We will also need the following definition from [15], which describes the struc-
ture within which the robust decomposition lemma finds the robustly decomposable
graph. (G,P,P',R,C,U,U’") is called an (¢, k,m, e, d)-bi-setup if the following prop-
erties are satisfied:

(ST1) G and R are digraphs. P is a partition of V(G) into k clusters of size m
where k is even. The vertex set of R consists of these clusters.

(ST2) For every edge VW of R, the corresponding pair G[V, W] is (e, > d)-regular.

(ST3) C = Vj...V is a Hamilton cycle of R and for every edge V;V;41 of C the
corresponding pair G[V;, Vi41] is [e, > d]-superregular.

(ST4) U is a bi-universal walk for C' in R with parameter ¢ and P’ is an e-uniform
¢'-refinement of P.

(ST5) Let le, Cee ngl denote the clusters in P’ which are contained in V;} (for each
1 <j <k). Then U’ is a closed walk on the clusters in P’ which is obtained
from U as follows: When U visits V; for the ath time, we let U’ visit the
subcluster V (for all 1 <a < /').

(ST6) For every edge V Vij,l of U’ the corresponding pair G[Vi],Vj/] is [e,> d]-
superregular.

In [I5], in a bi-setup, the digraph G could also contain an exceptional set, but since
we are only using the definition in the case when there is no such exceptional set,
we have only stated it in this special case.

Suppose that (G, P,P’) is a [K, L,m, &g, e]-scheme and that C = A1B; ... Ax Bk
is a spanning cycle on the clusters of P. Let P := {Ai,..., Ak, B1,...,Br}.
Suppose that ¢,m/¢' € N with ¢/ > 4. Let P/ be an e-uniform ¢'-refinement of Py;
(which exists by Lemmal7.2]). Let Cy; be the directed cycle obtained from C' in which
the edge A1B; is oriented towards B; and so on. Let Ry; be the complete bipartite
digraph whose vertex classes are {A1,...,Ax} and {B,...,Bk}. Let Uy be a
bi-universal walk for C' with parameter ¢ as defined in Lemmal[T.Il Let U{)M, be the
closed walk obtained from Uy; ¢ as described in (ST5). We will call

/! /!
(G, Pui, Pris Bois Obi, Ui ers Uy 1)

the bi-setup associated to (G, P,P’). The following lemma shows that it is indeed a
bi-setup.

Lemma 7.3. Suppose that K,L,m/L,¢',m/t' € N with ! > 4, K > 2 and 0 <
1/m < 1/K,e < &',1/¢'. Suppose that (G,P,P") is a [K,L,m,eq,e|-scheme and
that C = A1By ... Ax Bk is a spanning cycle on the clusters of P. Then

(G, Pri, Pogs R, Coi, Uiy, Upy 1)
is an (¢',2K,m, &', 1/2)-bi-setup.
Proof. Clearly, (G, Pui, Pp;; Bbi, Cbi, Unipr, Uy o) satisties (ST1). (Sch3d’) implies
that (ST2) and (ST3) hold. Lemma [[T] implies (ST4). (ST5) follows from the
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definition of Uy . Finally, (ST6) follows from (Sch3’) and Lemma [T.2] since P/} is
an e-uniform ¢'-refinement of Py;. O

We now state the robust decomposition lemma from [I5]. This guarantees the
existence of a ‘robustly decomposable’ digraph Gfﬁl’ , whose crucial property is that
H+ GE?P has a Hamilton decomposition for any sparse bipartite regular digraph H
which is edge-disjoint from Gfi‘i’f’ .

G*eP consists of digraphs C'Ag;,(r) (the ‘chord absorber’) and PC A, (r) (the ‘par-
ity extended cycle switcher’) together with some special factors. Gfi‘i’f’ is constructed
in two steps: given a suitable set SF of special factors, the lemma first ‘constructs’
CAgir(r) and then, given another suitable set SF’ of special factors, the lemma
‘constructs’ PC'Agi (7). The reason for having two separate steps is that in [15], it
is not clear how to construct CAg;(r) after constructing SF’ (rather than before),
as the removal of SF’ from the digraph under consideration affects its properties

considerably.

Lemma 7.4. Suppose that 0 < 1/m < 1/k € e € 1/¢ < 1/f < ri/m € d <
1/0,1/g < 1 where {' is even and that rk?> < m. Let

ro = 960'g°kr, r3:=rfk/q, 10 i=ri+ro+r—(¢—1)rs, & =rfk+7r°

and suppose that k/14,k/f,k/g,q/f,m/4l', fm/q,2fk/39(g — 1) € N. Suppose that
(G,P,P',R,C,UU") is an ({',k,m,e,d)-bi-setup and C = V;...Vj. Suppose that
P* isa(q/f)-refinement of P and that SFy,...,SF,, are edge-disjoint special factors
with parameters (q/f, f) with respect to C, P* in G. Let SF := SF; +--- + SF,,.
Then there exists a digraph CAgi (1) for which the following holds:

(i) CAgir(r) is an (r1 + ro)-regular spanning subdigraph of G which is edge-
disjoint from SF.

(ii) Suppose that SFY{,...,SF). are special factors with parameters (1,7) with
respect to C, P in G which are edge-disjoint from each other and from
CAgir(r) + SF. Let SF' := SF| + --- + SF!s. Then there exists a digraph
PC Agi (1) for which the following holds:

(a) PCAqgir(r) is a 5r°-regular spanning subdigraph of G which is edge-
disjoint from CAgy (1) + SF + SF'.

(b) Let SPS be the set consisting of all the s' special path systems contained
in SF+SF'. Let Voyen denote the union of all V; over all even1 < i <k
and define Vogq stmilarly. Suppose that H is an r-reqular bipartite di-
graph on V (G) with vertex classes Veyen and Voqq which is edge-disjoint
from GE?P = CAgir(r) + PCAgi; (1) + SF+SF'. Then H + Gfﬁ? has a

decomposition into s’ edge-disjoint Hamilton cycles Cy,...,Cy. More-
over, C; contains one of the special path systems from SPS, for each
i< g,

Recall from Section [6.2]that we always view fictive edges in special factors as being
distinct from each other and from the edges in other graphs. So for example, saying
that C'Agi(r) and SF are edge-disjoint in Lemma [7.4] still allows for a fictive edge
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zy in SF to occur in C'Ag;, (1) as well (but C'Ag; () will avoid all non-fictive edges
in SF).
We will use the following ‘undirected’ consequence of Lemma [7.4]

Corollary 7.5. Suppose that 0 < 1/m < €9,1/K < e < 1/L < 1/f < ri/m <
1/0,1/g < 1 where {' is even and that 4rK? < m. Let

ro:=1920'¢*Kr, r3:=2rK/L, v°:=ri+r+r—(Lf—1rs, s :=2rfK+7r°

and suppose that L, K/T7,K/f, K/g,m/4¢' m/L,4fK/3g(g — 1) € N. Suppose that
(Gair, P, P') is a [K, L,m,eqg,e]-scheme and let G’ denote the underlying undirected
graph of Ggir. Let C = A1By... AgxBg be a spanning cycle on the clusters in
P. Suppose that BFy,...,BF,, are edge-disjoint balanced exceptional factors with
parameters (L, f) for Gai (with respect to C, P'). Let BF := BFy + --- + BF,,.
Then there exists a graph C A(r) for which the following holds:

(i) CA(r) is a 2(r1 + r2)-regular spanning subgraph of G' which is edge-disjoint
from BF.

(ii) Suppose that BFY, ..., BF/s are balanced exceptional factors with parameters
(1,7) for Gair (with respect to C, P) which are edge-disjoint from each other
and from CA(r) + BF. Let BF := BF| +---+ BF/,. Then there exists a
graph PC'A(r) for which the following holds:

(a) PCA(r) is a 10r°-reqular spanning subgraph of G' which is edge-disjoint
from CA(r) + BF + BF'.

(b) Let BEPS be the set consisting of all the s’ balanced exceptional path
systems contained in BF +BF'. Suppose that H is a 2r-reqular bipartite
graph on V (Ggiy) with vertex classes Ufil A; and Ufil B; which is edge-
disjoint from G™" := CA(r) + PCA(r) + BF + BF'. Then H + G™P
has a decomposition into s’ edge-disjoint Hamilton cycles C1,...,Cqy.
Moreover, C; contains one of the balanced exceptional path systems from

BEPS, for each i < .

We remark that we write Aq,..., Ak, B1,..., Bk for the clusters in P. Note
that the vertex set of each of EF, EF', G™P includes Vj while that of Gg;,, CA(r),
PCA(r), H does not. Here Vy = Ay U By, where Ay and By are the exceptional sets
of P.

Proof. Choose new constants ¢’ and d such that ¢ < ¢/ < 1/L and r/m < d <
1/¢/,1/g. Consider the bi-setup (Gdir,Pbi,P{D’i,Rbi,C'bi,Ubw,U];i’z,) associated to
(Gair, P, P"). By LemmalZ3] (Gair, Poi, Pry> Rbi, Chis Unier, U];M,) isan (¢,2K,m,e',1/2)-
bi-setup and thus also an (¢, 2K, m,&’, d)-bi-setup. Let BF:Glir be as defined in Sec-
tion Recall from there that, for each i < rg, BFZ-’fdir is a special factor with
parameters (L, f) with respect to C', P’ in G, such that Fict(BFifdir) consists of all
the edges in the J* for all the L f balanced exceptional systems J contained in BF;.
Thus we can apply Lemma [T.4] to (Gair, Phi, Pry, Rbi, Coi, Ui, U{)M,) with 2K, Lf,
¢’ playing the roles of k, ¢, € in order to obtain a spanning subdigraph C Ag;.(r) of
Gg4ir which satisfies Lemma [7.4)(i). Hence the underlying undirected graph C' A(r) of
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C Agir (1) satisfies Corollary [75](i). Indeed, to check that C'A(r) and BF are edge-
disjoint, by Lemma [7.4{i) it suffices to check that C'A(r) avoids all edges in all the
balanced exceptional systems J contained in BF; (for all i < r3). But this fol-
lows since E(Ggir) 2 E(CA(r)) consists only of AB-edges by (Sch2’) and since no
balanced exceptional system contains an AB-edge by (BES2).

Now let BFY,...,BF), be balanced exceptional factors as described in Corol-
lary [Z5(ii). Similarly as before, for each i < r°, (BF})Y, is a special factor with
parameters (1,7) with respect to C, P in Gg;, such that Fict((BF)}, ) consists of
all the edges in the J* over all the 7 balanced exceptional systems J contained in
BF!. Thus we can apply Lemma [T.4] to obtain a spanning subdigraph PC Ag;, (1) of
Gair which satisfies Lemma [74((ii)(a) and (ii)(b). Hence the underlying undirected
graph PC'A(r) of PC Aqi;(r) satisfies Corollary [7.5ii)(a).

It remains to check that Corollary [7.5ii)(b) holds too. Thus let H be as described
in Corollary [7.5((ii)(b). Let Hqgiy be an r-regular orientation of H. (To see that such
an orientation exists, apply Petersen’s theorem to obtain a decomposition of H into
2-factors and then orient each 2-factor to obtain a (directed) 1-factor.) Let BF;, be
the union of the BEF;, over all i <rg and let (BF ")4;; be the union of the (BE))%;,
over all ¢ < r°. Then Lemma [7.4{ii)(b) implies that Hgy, + C Agir (1) + PC Agir (1) +
BFi, + (BF')%,. has a decomposition into s” edge-disjoint (directed) Hamilton cycles
C1s ..., C} such that each C} contains BEPS] j;, for some balanced exceptional path
system BEPS; from BEPS. Let C; be the undirected graph obtained from C! —
BEPS] 4, +BEPS,; by ignoring the directions of all the edges. Then Proposition
(applied with G’ playing the role of G) implies that Cy,...,Cy is a decomposition
of H+G™ = H+CA(r)+ PCA(r) + BF + BF into edge-disjoint Hamilton cycles.

O

8. PROOF OF THEOREM

The proof of Theorem is similar to that of Theorem except that we do not
need to apply the robust decomposition lemma in the proof of Theorem For
both results, we will need an approximate decomposition result (Lemma BTl), which
is stated below and proved as Lemma 3.2 in [4]. The lemma extends a suitable set
of balanced exceptional systems into a set of edge-disjoint Hamilton cycles covering
most edges of an almost complete and almost balanced bipartite graph.

Lemma 8.1. Suppose that 0 < 1/n € ¢ < 1/K < p < 1 and 0 < p < 1,
where n, K € N and K is even. Suppose that G is a graph on n vertices and P is

a (K, m,eq)-partition of V(G). Furthermore, suppose that the following conditions
hold:

(a) d(w,B;) = (1 —4p+4/K)m and d(v,A;) = (1 —4p+4/K)m for all w € A,
veEBandl1 <i< K.

(b) There is a set J which consists of at most (1/4—pu—p)n edge-disjoint balanced
exceptional systems with parameter g in G.
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(c) J has a partition into K* sets Tir igsisia (0me for all 1 < iy,ig,i3,i4 < K)
such that each Ji, iy.isis consists of precisely |J|/K* (i1, 12,3, i4)-BES with
respect to P.

(d) Each v € AU B is incident with an edge in J for at most 2eon J € J.

Then G contains |J| edge-disjoint Hamilton cycles such that each of these Hamilton
cycles contains some J € J.

To prove Theorem [LLG, we find a framework via Corollary 13l Then we choose
suitable balanced exceptional systems using Corollary B.11l Finally, we extend these
into Hamilton cycles using Lemma Bl

Proof of Theorem Step 1: Choosing the constants and a framework.
By making a smaller if necessary, we may assume that a < 1. Define new constants
such that

0<1l/np<Kex << ep<Ke K <Kan<Ka<ag<l/Kk<ake< ],

where K € N and K is even.

Let G, F and D be as in Theorem Apply Corollary 413l with eex, ¢ playing
the role of €, £* to find a set C; of at most séf)n edge-disjoint Hamilton cycles in F' so
that the graph GG7 obtained from G by deleting all the edges in these Hamilton cycles
forms part of an (gg, &', K, D1)-framework (G1, A, Ay, B, By) with D; > D — 25%4311.

Moreover, F satisfies (WF5) with respect to & and
(8.1) G| = (D = D1)/2.

In particular, this implies that 6(G1) > D; and that D is even (since D is even).
Let F; be the graph obtained from F' by deleting all those edges lying on Hamilton
cycles in C;. Then

(8.2) §(Fy) > 6(F) —2|C1| > (1/2 — 3¢X®)n.
Let
A _|B| (1 =20e4)Dy
m = - K and tg = 57 .

By changing ¢4 slightly, we may assume that tx € N.
Step 2: Choosing a (K, m,¢p)-partition P. Apply Lemmal5.2to (Gy, A, Ay, B, By)
with Fy, g9 playing the roles of F', ¢ in order to obtain partitions Aq,..., Ax and
Bi,...,Bg of A and B into sets of size m such that together with Ay and By the
sets A; and B; form a (K, m,eg,e1,e2)-partition P for Gy.

Note that by Lemma [(.2(ii) and since F' satisfies (WF5), for all x € A and
1< j < K, we have

dry (x, B) — ein WF) dp, (¥) —€'n — | Bo| — e

B2 (1/2 - 3e -2
(8.3) 2 (1/2-3 }‘{)n e

Similarly, dp, (y, Ai) > (1 —b5e1)m for all y € Band 1 <i < K.
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Step 3: Choosing balanced exceptional systems for the almost decom-
position. Apply Corollary 511 to the (g9,&’, K, D1)-framework (G, A, Ag, B, By)
with Fi, G1, €9, €, D1 playing the roles of F, G, ¢, g9, D. Let J’ be the union of
the sets Jii,i5i, guaranteed by Corollary 511l So J’ consists of Kty edge-disjoint
balanced exceptional systems with parameter e;, in G (with respect to P). Let Co
denote the set of 10e4D7 Hamilton cycles guaranteed by Corollary B.11l Let F5 be
the subgraph obtained from Fj by deleting all the Hamilton cycles in Cs. Note that

(8.4) Dy := Dy —2|Co| = (1 — 20e4) Dy = 2Kty = 2|7|.

Step 4: Finding the remaining Hamilton cycles. Our next aim is to apply
Lemma B with F», J’, ¢ playing the roles of G, 7, .

Clearly, condition (c) of Lemma [81]is satisfied. In order to see that condition (a)
is satisfied, let p := 1/K and note that for all w € A we have

B.3)
sz(w,Bi) > dFl(w,Bi) - 2’C2‘ > (1 — 561)m - 20€4D1 > (1 — 1/K)m

Similarly dg, (v, 4;) > (1 —1/K)m for all v € B.

To check condition (b), note that

7 B @ < 5 <(1/2-a)5 < (1/4—p—af3)n

Thus condition (b) of Lemma Rl holds with «/3 playing the role of p. Since the
edges in J' lie in G; and (Gq, A, Ag, B, By) is an (gg,&’, K, D1)-framework, (FR5)
implies that each v € AUB is incident with an edge in J for at most 'n+|Vy| < 2¢'n
J € J'. (Recall that in a balanced exceptional system there are no edges between
A and B.) So condition (d) of Lemma [81] holds with £’ playing the role of .

So we can indeed apply Lemma B1] to obtain a collection Cs of | 7’| edge-disjoint
Hamilton cycles in F» which cover all edges of | JJ’. Then C; UCs UCs is a set of
edge-disjoint Hamilton cycles in F' of size

D-Dy D —-Dy Dy D
|Cl|+|C2|+|Cg|mm} 5 L 12 2+72:§,

as required. O

9. PROOF OF THEOREM

As mentioned earlier, the proof of Theorem is similar to that of Theorem
except that we will also need to apply the robust decomposition lemma. This means
Steps 2-4 and Step 8 in the proof of Theorem do not appear in the proof of
Theorem Steps 2—4 prepare the ground for the application of the robust decom-
position lemma and in Step 8 we apply it to cover the leftover from the approximate
decomposition step with Hamilton cycles. Steps 5—7 contain the approximate de-
composition step, using Lemma 8]

In our proof of Theorem it will be convenient to work with an undirected
version of the schemes introduced in Section [6.4l Given a graph G and partitions P
and P’ of a vertex set V', we call (G,P,P’) a (K, L, m,eq,c)-scheme if the following
properties hold:
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(Schl) (P,P') is a (K, L,m,ep)-partition of V. Moreover, V(G) = AU B.

(Sch2) Every edge of G joins some vertex in A to some vertex in B.

(Sch3) dg(v, A;j) > (1—e)m/L and dg(w, B; ;) > (1—¢e)m/L for allv € B, w € A,
1< K and j<L.

We will also use the following proposition.

Proposition 9.1. Suppose that K,L,n,m/L € N and 0 < 1/n < €,690 < 1. Let
(G,P,P") be a (K,L,m,eg,c)-scheme with |G| = n. Then there exists an orientation
Gair of G such that (Ggir, P, P') is a [K, L, m,eq,2+/2]-scheme.

Proof. Randomly orient every edge in G to obtain an oriented graph Ggi,. (So
given any edge xy in G with probability 1/2, zy € E(Gg;,) and with probability 1/2,
yx € F(Ggir).) (Schl’) and (Sch2’) follow immediately from (Schl) and (Sch2).
Note that Fact and (Sch3) imply that G[A;;, By j/| is [1,+/e]-superregular
with density at least 1 — e, for all 4,4/ < K and j,j/ < L. Using this, (Sch3’)
follows easily from the large deviation bound in Proposition 23l (Sch4’) follows
from Proposition 2.3 in a similar way. ([l

Proof of Theorem
Step 1: Choosing the constants and a framework. Define new constants such
that

(9.1) 0<1/ng<Keex K6 KK epKe e Koy Keg<Key <1/Ky
KYKLI/K <" <1/Lkl/f<sn<l/g<e <],

where K1, Ks,L, f,g € N and both K5, g are even. Note that we can choose the
constants such that
Ky Ky 4f K,
28fgL’ 49LK,’ 3g(g — 1)

e N.

Let G and D be as in Theorem By applying Dirac’s theorem to remove a
suitable number of edge-disjoint Hamilton cycles if necessary, we may assume that
D < n/2. Apply Corollary 13 with G, ecx, €, €0, K2 playing the roles of F', e, £*,
¢/, K to find a set C; of at most séf)n edge-disjoint Hamilton cycles in G so that the
graph GG obtained from G by deleting all the edges in these Hamilton cycles forms
part of an (e, &g, K2, Dy)-framework (G1, A, Ag, B, By), where
(9.2)
|Al4+eon >n/2> Dy = D—=2|C1| > D—2¢!3n > D—eqn > n/2—2egn > |A|—2eon.

Note that G is Di-regular and that D; is even since D was even. Moreover, since
Ky/LK; € N, (G1, A, Ay, B, By) is also an (g4, &9, K1L, Dy)-framework and thus an
(€4, €', K1 L, Dq)-framework.
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Let
A B
1= % = %, ri=ym, 71 = Y1Mma, To 1= 19293K1r,
2rK
ry = TLl, r’i=ri+ro+r—(Lf—1)rs,
1 —20e4)Dy
Dy =Dy —2(L 7re t = —( .
4 1—2(Lfrs+7r°), KL 3(K\L)!

Note that (FR4) implies m;/L € N. Moreover,
(9.3) ro, T3 < 71/2m1 < 71/37"1, r1/2 <r° < 2rq.

Further, by changing v, 71, €4 slightly, we may assume that r/K3,71,tk, . € N. Since
K, /L € N this implies that r3 € N. Finally, note that

@.3) @2
(94)  (1+3e)|A[>D>Dy > Di—mn > [A]—=2yn > (1—5v)|Al

Step 2: Choosing a (Ki,L,my,e0)-partition (P, P]). We now prepare the
ground for the construction of the robustly decomposable graph G™P, which we will
obtain via the robust decomposition lemma (Corollary [7.5]) in Step 4.

Recall that (G1, A, Ay, B, By) is an (g4, €', K1 L, Dy )-framework. Apply Lemma[5.2]
with G, D1, K1L, e« playing the roles of G, D, K, ¢ to obtain partitions A7, ..., A% |
of A and Bj,..., By ; of B into sets of size m1/L such that together with Ay
and By all these sets A} and B] form a (KL, m;/L,e,,¢e1,¢e2)-partition Pj for Gy.
Note that (1 —eg)n < n — |Ap U By| = 2Kymy < n by (FR4). For all i < K;
and all h < L, let A;), = A’(i_l)LJrh. (So this is just a relabeling of the sets
AlL.) Define B;j, similarly and let A; := {J,<; Ain and B; := |Jp<; Bin- Let
Py = {Ag, By, A1,...,Ax,,Bi1,...,Bg,} denote the corresponding (K1, m1,eq)-
partition of V(G). Thus (P, Pf) is a (K, L, my,ep)-partition of V(G), as defined in
Section

Let Gy := G1[A, B]. We claim that (G2, P1,P'1)is a (K1, L,mq, &g, €’ )-scheme. In-
deed, clearly (Schl) and (Sch2) hold. To verify (Sch3), recall that that (G1, A, Ay, B, Bp)
is an (g4, 9, K1 L, D1)-framework and so by (FR5) for all x € B we have

) @.2)
dg,(z,A) > dg, (x) —dg,(x,B") — |Ag| > D1 —egn — |Ag| > |A| — 4egn

and similarly dg,(y, B) > |B| — 4eon for all y € A. Since g9 < &'/K;L, this
implies (Sch3).

Step 3: Balanced exceptional systems for the robustly decomposable
graph. In order to apply Corollary [[.5l we first need to construct suitable bal-
anced exceptional systems. Apply Corollary B.11] to the (e4,¢’, K1L, Dq)-framework
(G1,A, Ay, B, By) with Gy, K1L, P{, €, playing the roles of F, K, P, ¢ in order to
obtain a set J of (K 1L)4t K, 1 edge-disjoint balanced exceptional systems in G with
parameter eg such that for all 1 < i}, i), 45,4 < KL the set J contains precisely tx, 1,
(i}, 14, 14,1, )-BES with respect to the partition Pj. (Note that F' in Corollary G.11]
satisfies (WF5) since Gy satisfies (FR5).) So J is the union of all the sets Jy i1

returned by Corollary 5.1l (Note that we will not use all the balanced exceptional
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systems in J and we do not need to consider the Hamilton cycles guaranteed by this
result. So we do not need the full strength of Corollary [5.11] at this point.)

Our next aim is to choose two disjoint subsets Jca and Jpca of J with the
following properties:

(a) In total Jca contains Lfrs balanced exceptional systems. For each i < f
and each h < L, Jca contains precisely rs (i1,12,13,14)-BES of style h (with
respect to the (K, L, mq,eq)-partition (Py,P;)) such that i1,1ia,i3,i4 € {(i —

(b) In total Jpca contains 7r® balanced exceptional systems. For each i < 7,
Jpca contains precisely ¢ (iy,1i9,13,14)-BES (with respect to the partition
Pl) with i1,19,13,14 € {(Z — 1)K1/7 +2,... ,iK1/7}.

(Recall that we defined in Section when an (i1,19,13,14)-BES has style h with
respect to a (K, L, mq,&q)-partition (P1,P;).) To see that it is possible to choose
Joa and Jpca, split J into two sets J; and J5 such that both [J; and J5 contain
at least tg,1./3 (i},1h,1%,1))-BES with respect to Pj, for all 1 <4},4,%,4) < KiL.
Note that there are (Ki/f — 1)* choices of 4-tuples (i, 42, 13,44) with i1,do,43,44 €
{G—1)K1/f+2,...,iK;1/f}. Moreover, for each such 4-tuple (i1, 42, i3,74) and each
h < L there is one 4-tuple (4}, i, i5, 7)) with 1 <4/,45, 4%, ) < K;L and such that any
(44,1, 15,1, )-BES with respect to Pj is an (i1, i2,13,14)-BES of style h with respect
to (P1,P;). Together with the fact that

(K1 /f = D'gr Dy 1/2 0.3
> >~in >
3 —T(LHr T =

this implies that we can choose a set Jca C J; satisfying (a).

Similarly, there are (K /7 —1)* choices of 4-tuples (i1, 2, 43,14) With iy, 49, i3,74 €
{(i = 1)K1/7+ 2,...,iK1/7}. Moreover, for each such 4-tuple (iy,i9,13,14) there
are L* distinct 4-tuples (i, 1,i4,4)) with 1 < i},d5,4%,4, < KiL and such that
any (i, 15,15, ) )-BES with respect to Pj is an (i1, i2, i3,74)-BES with respect to P;.
Together with the fact that

<
r )

_1\ar4
(K1/7 1) LtK1L>&> n (@)
3 -7 T3
this implies that we can choose a set Jpca C Jo satistying (b).

Step 4: Finding the robustly decomposable graph. Recall that (G2, Py, P;)
is a (K1, L,mq,¢q,e’)-scheme. Apply Proposition with Ga, P1, P;, K1, mq, €
playing the roles of G, P, P’, K, m, ¢ to obtain an orientation Gg gi; of G such that
(Ga,4ir, P1,P]) is a [K1, L, myq,e0,2Ve]-scheme. Let C = A1 B1Ay... Ax, Bk, be a
spanning cycle on the clusters in P;.

Our next aim is to use Lemma [6.4] in order to extend the balanced exceptional
systems in Jca into r3 edge-disjoint balanced exceptional factors with parameters
(L, f) for G2 qir (with respect to C, P;). For this, note that the condition on Jca
in Lemma with 73 playing the role of ¢ is satisfied by (a). Moreover, Lrs/m; =
2rKi/my = 2yK; < 1. Thus we can indeed apply Lemma to (Ga,gir, P1, P1)
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with Jeoa, 2Ve, K1, r3 playing the roles of 7, ¢, K, ¢ in order to obtain r5 edge-
disjoint balanced exceptional factors BF1,. .., BF,, with parameters (L, f) for Go gir
(with respect to C, P}) such that together these balanced exceptional factors cover
all edges in |JJca. Let BFca := BFy + -+ + BF,,.

Note that mi/4g,m1/L € N since m; = |A|/K; and |A| is divisible by K3 and
thus my is divisible by 4gL (since K3/4gLK; € N by our assumption). Further-
more, 4rK? = 4ym1 K? < v/2my < my. Thus we can apply Corollary to the
[K1, L,m,0,€"]-scheme (G qir, P1,P;) with K1, ¢”, g playing the roles of K, ¢, ¢/
to obtain a spanning subgraph C'A(r) of G as described there. (Note that G2 equals
the graph G’ defined in Corollary [[.5l) In particular, CA(r) is 2(rq +1r2)-regular and
edge-disjoint from BFca.

Let G5 be the graph obtained from G by deleting all the edges of CA(r)+ BFca.
Thus G3 is obtained from Gy by deleting at most 2(ry + ro + r3) < 6r1 = 6y1my
edges at every vertex in AUB = V(G3). Let G3 gy be the orientation of G'3 in which
every edge is oriented in the same way as in G gqi;. Then Proposition 2.1l implies
that (G qir, P1,P1) is still a [K7,1,my, g, €]-scheme. Moreover,

re @3) 2,
N é i
m1 m1

= 2’71 < 1

Together with (b) this ensures that we can apply Lemma [6.4] to (G'3 qir, P1) with
Pi1, Tpca, K1, 1, 7, r° playing the roles of P, J, K, L, f, q in order to obtain r°
edge-disjoint balanced exceptional factors BFY,..., BF, with parameters (1,7) for
G's qir (with respect to C, Py) such that together these balanced exceptional factors
cover all edges in |J Jpca. Let BFpca := BF| + -+ + BF..

Apply Corollary to obtain a spanning subgraph PCA(r) of G as described
there. In particular, PC' A(r) is 10r°-regular and edge-disjoint from C'A(r)+BFca+
BFpca.

Let G™ := CA(r)+PCA(r)+BFca+BFpca. Note that by (G.I) all the vertices
in Vp := Ag U By have the same degree ré"b :=2(Lfrz +7r°) in G*P. So

63 @D
(9.5) Ty < g < 30r.

Moreover, (6.1)) also implies that all the vertices in AU B have the same degree 7P

in G™P where ™" = 2(r + ro 4+ 73 + 61°). So
r(r)Ob — b =9 (Lfrs41° = (r1+7r2+13)) = 2(Lfrs+r— (Lf —1)r3 —r3) = 2r.

Step 5: Choosing a (K2, mg,cp)-partition P;. We now prepare the ground for
the approximate decomposition step (i.e. to apply Lemma [81]). For this, we need to
work with a finer partition of AU B than the previous one (this will ensure that the
leftover from the approximate decomposition step is sufficiently sparse compared to
Grob)‘

Let Gy := G1 — G™P (where G was defined in Step 1) and note that

(9.6) Dy =Dy —ri°® = Dy — ™" — 2,
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So
(9.7) dg,(x) =Dy +2r for all z € AUB and dg,(z) = Dy for all z € V.

(Note that Dy is even since D; and r{)Ob are even.) So Gy is Dy-balanced with respect

to (A, Ag, B, By) by Proposition Il Together with the fact that (G1, A, Ay, B, By)
is an (e, 0, K2, D1)-framework, this implies that (G4, G4, A, Ao, B, By) satisfies con-
ditions (WF1)-(WF5) in the definition of an (e, €0, K2, Dy)-weak framework. How-
ever, some vertices in Ag U By might violate condition (WF6). (But every vertex
in AU B will still satisfy (WF6) with room to spare.) So we need to modify the
partition of V) = Ag U By to obtain a new weak framework.

Consider a partition Af, B; of Ag U By which maximizes the number of edges in
G4 between Aj U A and B U B. Then dg,(v,Af U A) < dg,(v)/2 for all v € A
since otherwise A{ \ {v}, B§ U {v} would be a better partition of Ay U By. Similarly
dg,(v, B UB) < dg,(v)/2 for all v € B§. Thus (WF6) holds in G4 (with respect
to the partition A U Aj and B U Bj). Moreover, Proposition implies that G4
is still Dy-balanced with respect to (A, Aj, B, Bg). Furthermore, with (FR3) and
(FR4) applied to G1, we obtain e, (AU Af) < eq, (AU Ag) + |Af||A U Af| < eon?
and similarly eg, (BU B}) < gon?. Finally, every vertex in AU B has internal degree
at most gon + |Ag U By| < 2¢gon in G4 (with respect to the partition A U A§ and
B U Bf). Altogether this implies that (G4, G4, A, Aj, B, By) is an (g9, 250, Ko, Dy)-
weak framework and thus also an (eg, &', Ko, Dy)-weak framework.

Without loss of generality we may assume that |Aj| > |Bj|. Apply Lemma .12l to
the (g9,¢’, Ko, Dy)-weak framework (G4, G, A, Aj, B, B}) to find a set Cy of |Ca| <
gon edge-disjoint Hamilton cycles in (G4 so that the graph G5 obtained from G4
by deleting all the edges of these Hamilton cycles forms part of an (gq,&’, Ko, Ds)-
framework (G5, A, Aj, B, By), where

(98) D5 = D4 - 2’C2‘ > D4 — 26071.

Since Dy is even, Dy is even. Further,
(9.9)

da,(x) @ Ds+2r for all x € AUB and da,(x) @ Dy for all z € AjUB;.
Choose an additional constant £} such that e3 < € < 1/K5 and so that
(1 — 20¢,) D5
2K5
Now apply Lemma 5.2 to (G5, A, AS, B, B}) with D5, K, €g playing the roles of

D, K, € in order to obtain partitions Aj,..., Ak, and By, ..., Bk, of A and B into
sets of size

(9.10) mo = ‘A’/KQ

such that together with Af and Bj the sets A; and B; form a (K3, mg,¢c0,1,€2)-
partition Ps for G5. (Note that the previous partition of A and B plays no role in
the subsequent argument, so denoting the clusters in Py by A; and B; again will
cause no notational conflicts.)

K, 1= e N.
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Step 6: Balanced exceptional systems for the approximate decomposition.
In order to apply Lemma BTl we first need to construct suitable balanced exceptional
systems. Apply Corollary [5.11] to the (g9,¢’, K2, Ds)-framework (G5, A, A§, B, B§)
with Gs, €o, €, €y, K2, D5, Po playing the roles of F, ¢, ¢, €4, K, D, P. (Note that
since we are letting G5 play the role of F', condition (WF5) in the corollary imme-
diately follows from (FR5).) Let J’ be the union of the sets J;,iyisi, guaranteed by
Corollary 5.1l So J' consists of K3t, edge-disjoint balanced exceptional systems
with parameter ¢, in G5 (with respect to Py). Let C3 denote the set of Hamilton
cycles guaranteed by Corollary B.I1l So |Cs| = 10/ Ds.

Let Gg be the subgraph obtained from G5 by deleting all those edges lying in the
Hamilton cycles from Cs. Set Dg := D5 — 2|Cs]. So
(9.11)

deg () @) Dg+2r forallz € AUB and deg () @) D¢ for all z € V.

(Note that Vo = Ay U By = A§ U B{.) Let G§ denote the subgraph of G obtained
by deleting all those edges lying in the balanced exceptional systems from 7’. Thus

t = G°, where G° is as defined in Corollary [5.1T{iv). In particular, V} is an isolated
set in G and Gy is bipartite with vertex classes AU Aj and B U B (and thus also
bipartite with vertex classes A’ = AU Ay and B’ = B U By).

Consider any vertex v € V. Then v has degree D5 in (G5, degree two in each
Hamilton cycle from C3, degree two in each balanced exceptional system from J’
and degree zero in Gy. Thus

@.9)
D¢ +2|C3] = D5 =" dg,(v) = 2|Cs| + 2|j/| + dgé(v) = 2|C3| + 2|._7/|
and so
(9.12) D¢ =2|T|.
Step 7: Approximate Hamilton cycle decomposition. Our next aim is to
apply Lemma 8.1l with Gg, P2, Ko, mo, J', €' playing the roles of G, P, K, m, 7,
0. Clearly, condition (c) of Lemma B.1] is satisfied. In order to see that condition

(a) is satisfied, let p := (ri°® — 2r)/4Kymy and note that

Y1ma < r1 — 2r @ @ 307 < 3071

0< 1.
~ 4Komy — 4K9moy T o= 4Komoe — K <
Recall that every vertex v € B satisfies
dg.(v) "= Ds+2r = Dy —rt® +2r £2n = |A| —ri°® 4+ 2r £ degn.
Moreover,

dG5 (Uv A) = dG5 (U) - dG5 (’U’B U BS) - |A8| > dG5 (U) - 25/”7
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where the last inequality holds since (G5, A, Ajy, B, Bj)) is an (eg, €', K2, D5 )-framework
(c.f. conditions (FR4) and (FR5)). Together with the fact that Py is a (Ka, ma, €0, €1, €2)-
partition for G (c.f. condition (P2)), this implies that

das(v,A) £en |A] — 7P 4+ 2r £ 2610 rob _ oy
da. (v, A;) = =2 _ (ot
s (v, 4i) Ko K, Koty €1 | mo

=(1—4p+5e1)me = (1 —4pu £+ 1/Ka)ma.

Recall that Gy is obtained from G5 by deleting all those edges lying in the Hamilton
cycles in C3 and that

Q.4 @©.10)
’Cg‘ = 10€2D5 < 1OEZLD4 < 1162’14‘ < mg/Kg.

Altogether this implies that dg, (v, A;) = (1 —4p£4/K3)me. Similarly one can show
that dgg(w, Bj) = (1 —4p £ 4/K2)my for all w € A. So condition (a) of Lemma 8]
holds.

To check condition (b), note that

1
%—,u-QKgmg—rg <——,u—i>n.

@12 Ds _ Dy .8 Dy — rpe®
2 4 3K,

!/
= 20 =
7 <5< =5

<
5 =

Thus condition (b) of Lemma B1] holds with /3K playing the role of p.

Since the edges in J' lie in G5 and (G5, A, A§, B, By) is an (g9, €', Ko, D5 )-framework,
(FR5) implies that each v € AU B is incident with an edge in J for at most
e'n + |Vo| < 2¢'n of the J € J'. (Recall that in a balanced exceptional system
there are no edges between A and B.) So condition (d) of Lemma B1] holds with &’
playing the role of «.

So we can indeed apply Lemma [B1] to obtain a collection C4 of | 7’| edge-disjoint
Hamilton cycles in G which cover all edges of | JJ'.

Step 8: Decomposing the leftover and the robustly decomposable graph.
Finally, we can apply the ‘robust decomposition property’ of G™P guaranteed by
Corollary to obtain a Hamilton decomposition of the leftover from the previous
step together with G*°P.

To achieve this, let H' denote the subgraph of Gg obtained by deleting all those
edges lying in the Hamilton cycles from C4. Thus (@.I1]) and ([@O.12]) imply that every
vertex in Vj is isolated in H' while every vertex v € AU B has degree dg,(v) —
2|TJ'| = Dg+2r—2|J'| = 2r in H' (the last equality follows from (@.12))). Moreover,
H'[A] and H'[B] contain no edges. (This holds since H' is a spanning subgraph of
Gs —UJ' = G§ and since we have already seen that G§ is bipartite with vertex
classes A’ and B’.) Now let H := H'[A, B]. Then Corollary [Z.5(ii)(b) implies that
H + G™P has a Hamilton decomposition. Let Cs denote the set of Hamilton cycles
thus obtained. Note that H + G™P is a spanning subgraph of G which contains all
edges of G which were not covered by C; UCo UC3UC4. So CiUCoUC3UCLUCs is a
Hamilton decomposition of G. O
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