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Abstract We develop a Lagrangian approach to conservation-law anomalies in weak solutions of
inviscid Burgers equation, motivated by previous work on the Kraichnan model of turbulent scalar
advection. We show that the entropy solutions of Burgers possess Markov stochastic processes of
(generalized) Lagrangian trajectories backward in time for which the Burgers velocity is a backward
martingale. This property is shown to guarantee dissipativity of conservation-law anomalies for general
convex functions of the velocity. The backward stochastic Burgers flows with these properties are not
unique, however. We construct infinitely many such stochastic flows, both by a geometric construc-
tion and by the zero-noise limit of the Constantin-Iyer stochastic representation of viscous Burgers
solutions. The latter proof yields the spontaneous stochasticity of Lagrangian trajectories backward
in time for Burgers, at unit Prandtl number. It is conjectured that existence of a backward stochastic
flow with the velocity as martingale is an admissibility condition which selects the unique entropy
solution for Burgers. We also study linear transport of passive densities and scalars by inviscid Burgers
flows. We show that shock solutions of Burgers exhibit spontaneous stochasticity backward in time for
all finite Prandtl numbers, implying conservation-law anomalies for linear transport. We discuss the
relation of our results for Burgers with incompressible Navier-Stokes turbulence, especially Lagrangian
admissibility conditions for Euler solutions and the relation between turbulent cascade directions and
time-asymmetry of Lagrangian stochasticity.

Keywords Spontaneous stochasticity · Burgers equation · Weak solution · Dissipative anomaly ·
Admissibility condition · Kraichnan model

1 Introduction

There seems to be a strong relation between the behavior of the Lagrangian trajectories
and the basic hydrodynamic properties of developed turbulent flows: we expect the ap-
pearance of non-unique trajectories for Re → ∞ to be responsible for the dissipative
anomaly, the direct energy cascade, the dissipation of higher conserved quantities and
the pertinence of weak solutions of hydrodynamical equations at Re =∞.

— K. Gawȩdzki & M. Vergassola (2000)
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Energy dissipation in incompressible Navier-Stokes turbulence is, within experimental errors, in-
dependent of viscosity at sufficiently high Reynolds numbers. For a recent review of the evidence,
see [44, 65]. This empirical observation motivated Onsager in 1949 to conjecture that incompressible
fluid turbulence is described by singular (distributional) Euler solutions that dissipate energy by a
nonlinear cascade mechanism [25, 64]. While this conjecture is consistent with all present available
evidence, quite deep theoretical problems remain. Physically, the Lagrangian interpretation of the Eu-
lerian energy cascade is usually in terms of Taylor’s vortex-stretching picture [71,72]. However, Taylor’s
ideas depend on the validity of the Kelvin circulation theorem, which is very unlikely to hold in the
conventional sense for high-Reynolds-number turbulent fluids [20, 40, 59]. Mathematically, Onsager’s
conjectured Euler solutions have not yet been obtained as zero-viscosity limits of Navier-Stokes so-
lutions. While weak Euler solutions have been constructed which dissipate kinetic energy and have
the spatial Hölder regularity of observed turbulent fields [11], such solutions are wildly non-unique.
Admissibility conditions for weak Euler solutions based only on energy dissipation do not select unique
solutions [16].

These problems have been resolved, on the other hand, in a toy turbulence model, the Kraichnan
model of passive scalar advection by a Gaussian random velocity field which is white-noise in time
and rough (only Hölder continuous) in space [27, 50]. In this model there is anomalous dissipation of
the scalar energy due to a turbulent cascade process. In Lagrangian terms the turbulent dissipation
is explained by “spontaneous stochasticity” of the fluid particle trajectories, associated to Richardson
explosive dispersion [4]. As quoted in the epigraph of this introduction, Gawȩdzki & Vergassola [37]
suggested that this non-uniqueness and intrinsic stochasticity of Lagrangian trajectories should under-
lie also the anomalous dissipation in weak solutions of hydrodynamic equations relevant to actual fluid
turbulence. Weak solutions of the passive advection equation in the Kraichnan model have been rigor-
ously constructed and shown to coincide with solutions obtained by smoothing the velocity or adding
scalar diffusivity and then removing these regularizations [18, 19, 56, 57]. One can characterize these
weak solutions by the property that the scalar values are backward martingales for Markov random
processes of Lagrangian trajectories.

This successful theory for the Kraichnan model motivated one of us to conjecture a similar “mar-
tingale hypothesis” for fluid circulations in the weak solutions of incompressible Euler equations that
are believed to be relevant for turbulence [20]. For smooth solutions of Euler equations, the backward
martingale property reduces to the usual Kelvin Theorem on conservation of circulations. However, for
singular solutions it imposes an “arrow of time” which was proposed as an infinite set of admissibility
conditions to select “entropy” solutions of the Euler solutions [21,22]. This conjecture assumes sponta-
neous stochasticity in high-Reynolds Navier-Stokes turbulence, for which numerical evidence has been
obtained in studies of 2-particle dispersion [5,23,67]. Subsequently, in very beautiful work, Constantin
& Iyer [14] established a characterization of the solutions of the incompressible Navier-Stokes solu-
tions as those space-time velocity fields for which the fluid circulations are backward martingales of
a stochastic advection-diffusion process (see also [22]). This “stochastic Kelvin Theorem” is the exact
analogue for Navier-Stokes of the property proposed earlier for entropy solutions of Euler equations.
Of course, the Navier-Stokes result does not imply that for Euler and, at this time, the zero-viscosity
limit is so poorly understood that a mathematical proof (or disproof) for Euler does not seem to be
forthcoming anytime soon.

There are simpler PDE problems, however, where the zero-viscosity limit is much better understood.
These include scalar conservation laws in one space dimension [10,15], with the Burgers equation [2,12]
as a prominent example. The scalar conservation laws possess weak solutions that are uniquely selected
by entropy admissibility conditions and which coincide with solutions obtained by the zero-viscosity
limit. The Burgers equation, in particular, has long been a testing ground for ideas about Navier-Stokes
turbulence1. It is therefore a natural question whether the known entropy solutions of inviscid Burgers
satisfy a version of the martingale property conjectured for “entropy solutions” of incompressible Euler.
Since smooth solutions of inviscid Burgers preserve velocities along straight-line characteristics, the

1 Note, furthermore, that the general scalar conservation law in one-dimension ut+(f(u))x = 0 with a strictly
convex flux function f is equivalent for smooth solutions to Burgers equation for the associated velocity field
v = f ′(u). This equivalence extends to viscosity-regularized equations in a slightly modified form. A simple

calculation shows that ut + (f(u))x = ε uxx is equivalent to vt +
[
1
2
v2 + εg(v)

]
x

= ε vxx, where g(v) = 1/f̂ ′′(v)

and f̂(v) is the Legendre dual of the convex function f(u). Hence, an entropy solution u of ut + (f(u))x = 0
should give an entropy solution v = f ′(u) of Burgers, and inversely.
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natural conjecture for Burgers is that the Lagrangian velocity is a backward martingale. As a matter
of fact, Constantin and Iyer [14] established exactly such a characterization of the solutions of the
viscous Burgers equation. In order for such a representation to hold also for the zero-viscosity limit,
there must be a form of “spontaneous stochasticity” for Burgers flows. It has been argued that these
flows are only coalescing and that stochastic splitting is absent [1]. This is true,however, only forward
in time. The natural martingale property involves instead flows backward in time and it is plausible
that there should exist a suitable stochastic inverse of the forward coalescing flow.

A main result of this paper is that there are indeed well-defined Markov inverses of the forward coa-
lescing flows for the entropy solutions of inviscid Burgers, such that the Burgers velocity is a backward
martingale of these stochastic processes. This result implies a stochastic representation of the standard
entropy solutions of inviscid Burgers exactly analogous to the Constantin-Iyer (C-I) representation
of viscous Burgers solutions. Interestingly, there is more than one way to construct such a stochastic
inverse (in contrast to the Kraichnan model, where the stochastic process of backward Lagrangian
trajectories appears to be essentially unique [56, 57]) 2. We obtain one set of stochastic inverses by
a direct geometric construction, closely related to recent work of Moutsinga [61]. We obtain another
stochastic inverse by the zero-viscosity limit of the backward diffusion processes in the Constantin-Iyer
representation, demonstrating spontaneous stochasticity for Burgers flows backward in time at unit
Prandtl number3. The stochastic inverse flows we obtain are (backward) Markov jump-drift processes
supported on generalized solutions of the Lagrangian particle equations of motion (generalized char-
acteristics in the sense of Dafermos [15].) Although not themselves unique, each constructed backward
stochastic flow enjoys the properties discussed above and provides a representation of the unique en-
tropy solutions of Burgers. Furthermore, we show that the backward martingale property of the Burgers
velocity is exactly what is required to make the solutions dissipate convex entropies. For this purpose,
we derive a novel Lagrangian formula for inviscid Burgers dissipation. We conjecture that existence of
a stochastic process of generalized characteristics with the backward martingale property for velocities
is an admissibility condition for inviscid Burgers which uniquely selects the standard entropy solution.

A second main contribution of this work is to the study of linear transport by Burgers flows, see
Woyczyński [74] and Bauer & Bernard [1]. Because Burgers provides a mathematically tractable exam-
ple of compressible turbulence with shocks, it is possible to gain insight into physically more relevant
transport problems for scalars and densities in compressible Navier-Stokes and magnetohydrodynamic
turbulence. A key question here also is the existence or not of anomalies in the conservation laws of
scalars and densities associated to their own turbulent cascades. The lesson of the Kraichnan model is
that this question is directly related to the spontaneous stochasticity of the turbulent flow for general
Prandtl numbers [27]. Bauer & Bernard concluded on this basis that there are no dissipative anoma-
lies for scalars and densities transported by Burgers because they argued that there is no spontaneous
stochasticity for Burgers flows [1]. For scalar dissipation, however, it is backward-in-time stochasticity
which is relevant and we have shown that this property holds for Burgers, at least at Prandtl number
unity. Extending that result, we further show that spontaneous stochasticity holds backward in time
in some shock solutions of Burgers for all finite values of the Prandtl number. These results imply the
existence of conservation-law anomalies both for densities and for scalars advected by Burgers4. They
also lead to a new notion of a “Lagrangian weak solution” for passive scalars in a compressible flow,
when the standard notion of distributional weak solution in the Eulerian formulation is not available.
Finally, we discuss the importance of the time-irreversibility of Burgers equation and the associated
differences with the time-reversible Kraichnan model. We suggest that the direction of turbulent cas-

2 The “essential uniqueness” is that of the stochastic backward process for a given weak solution of the
passive-scalar advection equation. The Kraichnan model for an intermediate regime of compressibility has
distinct weak solutions in the simultaneous limit ν, κ → 0, obtained by holding fixed different values of the
“turbulent Prandtl number” [18,19]. The backward stochastic process is uniquely fixed by that limit, however,
which fully specifies the boundary conditions at zero-separation. We shall see that the case is otherwise with
Burgers, which has infinitely many distinct stochastic inverse flows for the same, unique dissipative weak
solution.

3 “Prandtl number” here is the ratio of the viscosity to the square-amplitude of a white-noise term in the
Lagrangian particle equation. This is exactly the standard Prandtl (or Schmidt) number for passive scalar
advection, when scalar diffusivity is represented by stochastic particle motion. See section 7.

4 The Bauer-Bernard picture with vanishing anomalies may be valid for the infinite Prandtl number limit,
which is more subtle and only briefly discussed in this paper. See the recent work [34].
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cades is related generally in irreversible fluid models to the time-asymmetry of Lagrangian particle
behavior.

The detailed contents of this paper are as follows: In section 2 we derive our Lagrangian formula for
conservation-law anomalies in Burgers. Section 3 presents the geometric construction of the stochastic
inverse to the forward coalescing flow for Burgers. In section 4 we study the zero-viscosity limit of the
Constantin-Iyer representation of viscous Burgers solutions and establish spontaneous stochasticity
backward in time for unit Prandtl number. Section 5 discusses the non-uniqueness of the backward
stochastic flows for Burgers but their conjectured unique characterization of the entropy weak solution.
Section 6 discusses passive densities in Burgers and sticky-particle dynamics. Section 7 studies passive
scalars, their conservation-law anomalies, and establishes spontaneous stochastic backward in time for
Burgers shocks at arbitrary Prandtl numbers. Section 8 discusses the time-asymmetry of Lagrangian
particle statistics and its possible relation to dissipative anomalies. Two appendices provide more
technical details for some of the proofs.

2 Lagrangian Formulation of Anomalous Dissipation

We derive first a Lagrangian expression for dissipative anomalies of inviscid Burgers.

2.1 Basic Burgers Facts

Before beginning, we remind the reader of some standard results about Burgers, many quite elementary.
For example, see [2]. Let u be a smooth solution of the inviscid Burgers equation for initial data u0 at
time t0. Using the standard method of characteristics, one can see that

x = a+ (t− t0)u0(a), u(x, t) = u0(a). (1)

Note that
ξt0,t(a) = a+ (t− t0)u0(a)

is the Lagrangian flow map of fluid mechanics, with inverse αt0,t = ξ−1
t0,t the “back-to-labels”’ map so

that u(x, t) = u0(αt0,t(x)). All of the following are simple consequences of (1):

u′(x, t) = u′0(αt0,t(x))α′t0,t(x)

ξ′t0,t(a) = 1 + (t− t0)u′0(a)

α′t0,t(x) = 1− (t− t0)u′(x, t) = [ξ′t0,t(a)]−1

and thus

u′(x, t) =
u′0(a)

1 + (t− t0)u′0(a)
.

It follows from the latter formula that, wherever u′(a) < 0 at any initial point a, a shock will form in
finite time from smooth initial data u0(a). The singularity will occur (unless the particle is absorbed
first by another shock) at time

t = t0 +
1

max{0,−u′0(a)}
.

The first shock occurs at the minimum of the above quantity, related to the maximum of the negative
velocity gradient. At later times, all of the previous results for smooth solutions are valid at points
between shocks.

We consider Burgers solutions of bounded variation with countably many shocks located at co-
ordinates {x∗i }∞i=1 at time t. Let u−i be the velocity immediately to the left of the ith shock and u+

i
the velocity immediately to the right. The Rankine-Hugoniot jump conditions require that the shock
velocity u∗i = dx∗i /dt for any weak solution be an average:

u∗i =
u−i + u+

i

2
. (2)
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Entropy solutions of inviscid Burgers have the property u−i > u+
i . As a matter of fact, it is well-

known that the energy conservation anomaly at a Burgers shock is 1
12 (u+

i − u
−
i )3, which is negative

(dissipative) precisely when u−i > u+
i . This is also the Lax admissibility condition for weak solutions [55]

in the context of Burgers. Thus, each shock corresponds to a Lagrangian interval [a−i , a
+
i ] such that

u±i = u0(a±i ) and

x∗i = a−i + tu−i = a+
i + tu+

i . (3)

The union of shock intervals in the Lagrangian space is denoted below as S =
⋃∞
i=1[a−i , a

+
i ].

2.2 Dissipative Anomalies

Our goal in this section is to derive fundamentally Lagrangian expressions for dissipative anomalies in
inviscid Burgers, analogous to those obtained for integral invariants of passive scalars in the Kraichnan
model [4,37] . Thus let ψ be a continuous function and Ψ its anti-derivative. Take t0 = 0 for simplicity.
Then ∫

R
dx ψ(u(x, t)) =

∫
R\{x∗i }∞i=1

dx ψ(u(x, t)) =

∫
R\{x∗i }∞i=1

dx ψ(u0(αt0,t(x)))

=

∫
R\S

da ψ(u0(a)) ξ′t0,t(a)

=

∫
R

da ψ(u0(a))
(
1 + tu′0(a)

)
−
∫
S

da ψ(u0(a))
(
1 + tu′0(a)

)
=

∫
R

da ψ(u0(a)) + t

∫
R

da
d

da
Ψ(u0(a))−

∫
S

da ψ(u0(a))
(
1 + tu′0(a)

)
=

∫
R

da ψ(u0(a))−
∫
S

da ψ(u0(a))
(
1 + tu′0(a)

)
We used the assumption lima→±∞ u0(a) = u∞ to set

∫
R da d

daΨ(u0(a)) = 0.We see that
∫
R dx ψ(u(x, t))

is conserved for a smooth Burgers solution, when S = ∅.
We now consider the case of weak solutions with shocks. We can rewrite the second term:∫

S

da ψ(u0(a))
(
1 + tu′0(a)

)
=

∫
S

da ψ(u0(a)) + t

∫
S

da ψ(u0(a))u′0(a)

=

∞∑
i=1

[ ∫ a+i

a−i

da ψ(u0(a)) + t

∫ a+i

a−i

da ψ(u0(a))u′0(a)

]

=

∞∑
i=1

[ ∫ a+i

a−i

da ψ(u0(a))− t
∫ u−i

u+
i

du ψ(u)

]
Thus, ∫

R
dx ψ(u(x, t))−

∫
R

da ψ(u0(a)) = −
∞∑
i=1

[ ∫ a+i

a−i

da ψ(u0(a))− t
∫ u−i

u+
i

du ψ(u)

]
(4)

The right-hand side is a Lagrangian representation of the conservation law anomaly.
A Burgers solution u is a dissipative if, for any convex function ψ,∫ a+i

a−i

da ψ(u0(a)) ≥ t
∫ u−i

u+
i

du ψ(u), i = 1, 2, . . . (5)

Dividing by a+
i − a

−
i and using the relationship (3), this is equivalent to

1

a+
i − a

−
i

∫ a+i

a−i

da ψ(u0(a)) ≥ 1

u−i − u
+
i

∫ u−i

u+
i

du ψ(u), i = 1, 2, . . . (6)
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Since both ψ(u) = u and ψ(u) = −u are convex functions, any dissipative solution must satisfy the
relation

1

a+
i − a

−
i

∫ a+i

a−i

u0(a) da =
1

2
(u−i + u+

i ), (7)

which will prove fundamental to our later work. Note that (7) is equivalent to the standard “Maxwell
construction” of the dissipative solution at shocks, in which one chooses the Lagrangian map of the
weak solution to satisfy ξ∗t0,t(a) = x∗i (t) for a ∈ [a−i , a

+
i ], under the constraint∫ a+

a−
da
[
ξt0,t(a)− ξ∗t0,t(a)

]
= 0, (8)

with ξt0,t(a) = a + u0(a)t the naive Lagrangian map [2]. To see this, substitute the definitions of the
maps and integrate to give an equivalent expression of the Maxwell construction as

x∗i (t) =
1

2
(a−i + a+

i ) +
t

a+
i − a

−
i

∫ a+i

a−i

u0(a) da.

On the other hand, the average of the two expressions in (3) gives

x∗i (t) =
1

2
(a−i + a+

i ) +
t

2
(u−i + u+

i ), (9)

from which (7) is obviously equivalent to (8).
We now show that (9) with u−i > u+

i implies (5), at any final time tf . Since the argument applies
to every shock, we hereafter drop the i subscript. The argument is best understood graphically, so we
refer to the Fig.1 below which plots a typical Burgers shock:

a− a+a*

(x*,t*)

(xf,tf)

Fig. 1 Spacetime Plot of a Burgers Shock. Shown in green are the straight lines corresponding to the smooth
particle motions. These converge onto the shock curve in black, which begins at (x∗, t∗) and ends at (xf , tf ),
the final time considered. On the abscissa is the space of Lagrangian positions at time 0, showing the shock
interval [a−, a+] and, in red, the label a∗ and straight-line characteristic where the shock first forms at time t∗.

Note that the straight characteristic passing through the initial point with label a has slope equal
to 1/u0(a). Thus, this graph represents the configuration used to obtain the average on the lefthand
side of (6). On the other hand, the righthand side of (6) is obtained from a uniformized configuration
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in which the true initial velocity u0(a) at each point a is replaced by an “apparent initial velocity”
(x∗f −a)/tf . This configuration is represented in Fig.2 below by the straight line drawn from each point

(a, 0) to the final point (x∗f , tf ). The inequality in (6) is the statement that the uniform distribution

on the velocity interval [u+, u−] is less spread out than the distribution of the true initial velocity, as
measured by the convex function ψ. To show this, we can gradually “lift” the characteristic lines along
the shock curve x∗(s) from s = t∗ to s = tf . We can expect that the integral is successively decreased
by this operation. To make this argument analytically, we introduce the function

∆ψ(s) =

∫ a+(s)

a−(s)

ψ

(
x∗(s)− a

s

)
da+

∫
[a−,a−(s)]∪[a+(s),a+]

ψ(u0(a)) da,

a− a+a*

(x*,t*)

(xf,tf)

Fig. 2 “Uniformized” Burgers Shock. Compared with the previous Fig.1, all straight-line characteristics have
been replaced by straight lines from initial point (a, 0) to the final point (x∗f , tf ).

for s ∈ [0, t], where [a−(s), a+(s)] is the Lagrangian interval at time 0 for the shock located at x∗(s)
at time s. Note that for s < t∗, the time of first appearance of the shock,

∆ψ(s) =

∫ a+

a−

ψ(u0(a)) da,

while for s = t

∆ψ(t) =

∫ a+

a−

ψ

(
x∗(t)− a

t

)
da = t

∫ u−

u+

ψ(u) du.

Thus, the total dissipative anomaly over time interval [0, t] (for a single shock) is the difference ∆ψ(t)−
∆ψ(0). We shall show that ∆ψ(s) is non-increasing in s. Taking the s-derivative and using (3) gives

d

ds
∆ψ(s) =

1

s

∫ a+(s)

a−(s)

ψ′
(
x∗(s)− a

s

)(
u∗(s)−

x∗(s)− a
s

)
da

Convexity of ψ implies that ψ
(
x∗(s)−a

s

)
+ ψ′

(
x∗(s)−a

s

)(
u∗(s)− x∗(s)−a

s

)
≤ ψ(u∗(s)) and thus

d

ds
∆ψ(s) ≤ 1

s

∫ a+(s)

a−(s)

[
ψ(u∗(s))− ψ

(
x∗(s)− a

s

)]
da. (10)
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On the other hand, condition (9) for time s can be rewritten as

u∗(s) =
1

a+(s)− a−(s)

∫ a+(s)

a−(s)

x∗(s)− a
s

da, (11)

so that convexity of ψ yields also

ψ(u∗(s)) ≤
1

a+(s)− a−(s)

∫ a+(s)

a−(s)

ψ

(
x∗(s)− a

s

)
da, (12)

and hence the non-positivity of the righthand side of (10). Thus, ∆ψ is non-increasing, and ∆ψ(t) ≤
∆ψ(0), which is equivalent to (5).

This proof gives a simple Lagrangian interpretation of the dissipative anomaly for Burgers equation:
information about the initial velocity is “erased” as the particles fall into the shock and the initial
velocity distribution is replaced by a uniform distribution in the shock interval. This decreases the
average value of any convex function of the velocities because, instantaneously, the velocities are mixed
(homogenized) by the shock to be closer to its own velocity u∗(s).

5 Note that the above argument yields
a new Lagrangian expression for the dissipative anomaly:∫

R
dx ψ(u(x, t))−

∫
R

da ψ(u0(a))

=

∞∑
i=1

∫ t

0

ds

s

∫ a+i (s)

a−i (s)

ψ′
(
x∗i (s)− a

s

)(
u∗i (s)−

x∗i (s)− a
s

)
da

=

∞∑
i=1

∫ t

0

ds

s

∫ a+i (s)

a−i (s)

(
ψ(u∗i (s))− ψ(ui(s))−Dui(s)

ψ (u∗i (s), ui(s))
)

da. (13)

We have introduced here the notation ui(s) =
x∗i (s)−a

s and used the definition of the Bregman divergence
between u and u∗ with respect to the convex function ψ [7]:

Du
ψ(u∗, u) = ψ(u∗)− ψ(u)− ψ′(u) · (u∗ − u).

Instantaneously, one has

d

dt

∫
R

dx ψ(u(x, t)) =
1

t

∞∑
i=1

∫ a+i (t)

a−i (t)

(
ψ(u∗i (t))− ψ(ui(t))−Dui

ψ (u∗i (t), ui(t))
)

da. (14)

Since Du
ψ(u∗, u) ≥ 0, we can easily see that the contribution from each shock to the anomaly is

non-positive using inequality (12).
We recall the standard Eulerian result for the dissipative anomaly

d

dt

∫
R

dx ψ(u(x, t)) =

∞∑
i=1

(
u∗i (t)(ψ(u−i )− ψ(u+

i ))− (J(u−i )− J(u+
i ))
)
.

Here (ψ, J) is a Lax entropy pair with entropy flux function defined by

J(u) =

∫
du u ψ′(u).

See [10,15]. Our Lagrangian formula makes connection with the work of Khanin & Sobolevskĭı [47] on
particle dynamics for Hamilton-Jacobi equations. They defined a “dissipative anomaly” which mea-
sured the rate of the difference in the action functional between true action minimizers and trajectories
of particles on shocks. For Burgers as a Hamilton-Jacobi equation, the Hamiltonian and Lagrangian

5 This result is a sort of Burgers-equation version of Landauer’s principle in the physical theory of com-
putation, which states that erasure of information implies entropy production [54]. One may also see some
resemblance with the generalized second law of black-hole thermodynamics [62], with the shock being analo-
gous to the event horizon of the black hole.
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coincide with the convex function ψ(u) = 1
2u

2. With this choice of ψ, the “dissipative anomaly” of [47]

is the maximum over ± of the Bregman divergences D
u±i
ψ (u∗i , u

±
i ) = 1

2 |u
±
i −u∗i |2. Further relations with

their work will be explored in section 8.
However, we first exploit the results of the present section to show how to construct, for any

entropy solution u of inviscid Burgers, a backward Markov process of generalized solutions of the
ODE dx/dt = u(x, t). This process is thus a generalized (stochastic) inverse of the forward coalescing
flow for inviscid Burgers, which has been considered by many authors [1, 6]. The essential property of
the stochastic inverse considered here is that the velocities of the process are backward martingales,
generalizing the result for smooth solutions of inviscid Burgers that velocities are Lagrangian invariants
(preserved along characteristics). As we shall see, it is this backward martingale property which implies
Lagrangian dissipativity of the entropy solution and it is natural to conjecture that this property
uniquely characterizes the entropy solution. On the other hand, the stochastic inverses with the above
stated properties are not themselves unique. In the following section we construct a set of such inverses
by a direct geometric method. Then in section 4 we obtain another such stochastic inverse via the
zero-viscosity limit of the backward diffusion process in the Constantin-Iyer representation of viscous
Burgers solutions.

3 Geometric Construction

To present the geometric construction first in the simplest case, we consider the situation that a single
shock has formed at time t∗ > 0 and consider a later time tf > t∗, but before the shock in question
has merged with any other. The location of this shock for times t ∈ [t∗, tf ] is denoted by x∗(t) and,

at the final time, xf∗ = x∗(tf ). The random process will consist of continuous curves x(t) over the

time interval [0, tf ] satisfying x(tf ) = xf∗ a.s. The guiding idea of the construction is to consider

the interval of Lagrangian positions [bf−, b
f
+] at any time t0 ∈ [0, t∗) which belong to the shock at

time tf and to assume a uniform probability distribution over the positions b in this interval. The
definition of the random process can be understood geometrically, with reference to Fig.1 for the
choice t0 = 0. The uniform probability on the interval [a−, a+] is mapped to the shock curve by the
straight-line characteristics. Points a to the left of a∗ map to the shock curve a probability density
p−(τ) at the time τ = (x∗(τ) − a)/u(a) when the characteristic enters the shock. Likewise, points a
to the right of a∗ map to the shock curve a probability density p+(τ) at the time also determined by
τ = (x∗(τ) − a)/u(a). Backward in time, the random process corresponds to paths which follow the
shock curve until they leave either to the right or to the left of the shock at time τ with probability
densities p±(τ), respectively. After leaving the shock, the paths of the random process move along
straight-line characteristics backward in time to initial time 0.

We now describe the construction analytically, for any choice of initial time t0 ∈ [0, t∗). Let u±(τ)
be the velocities to the right/left of the shock at times τ ∈ [t∗, tf ]. The realizations of the random
process which we construct are of the form

x±(t; τ) =

{
x∗(t) t ≥ τ
x∗(τ) + u±(τ) · (t− τ) t < τ

, t ∈ [0, tf ], τ ∈ [t∗, tf ]. (15)

These are generalized solutions of the ODE dx/dt = u(x, t) in the sense of [1]. That is, they satisfy

D+
t x(t) = ū(x(t), t)

with D+
t x(t) = limε→0+

x(t+ε)−x(t)
ε and ū(x, t) = 1

2 (u(x+, t) + u(x−, t)). Thus, as stated above, the
curve coincides with the shock moving backward to time τ and then branches off to the right/left as
a particle trajectory for a smooth solution of Burgers. To specify the process we need only give the
probability densities p±(τ) to branch off at time τ which satisfy∫ tf

t∗

dτ [p+(τ) + p−(τ)] = 1. (16)
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To assign these probabilities we note that the positions at time t of particles located at b at time t0
are given by x = b+ u(b, t0)(t− t0). Hence, these particles hit the shock at time τ for the two points
b±(τ) determined by

x∗(τ) = b± + u(b±, t0)(τ − t0). (17)

We now assume a uniform probability distribution of these b on the interval [bf+, b
f
−], that is, b+

is distributed on [b∗, b
f
+] with density db/(bf+ − bf−) and b− is distributed on [bf−, b∗] with density

db/(bf+ − b
f
−), where b∗ is the particle location which shocks at time t∗. Using (17) these probability

assignments can be transformed into probability densities p±(τ). Note taking the τ -derivative of (17)
gives

ḃ±(τ) = ±
1
2 (u−(τ)− u+(τ))

1 + u′(b±(τ), t0)(τ − t0)
= ±1

2
(u−(τ)− u+(τ))(1− u′±(τ)(τ − t0)),

with u′±(τ) = u′(x∗(τ)±0, τ). Since also bf+−b
f
− = (uf−−u

f
+)(tf − t0) we obtain the unique assignment

p±(τ) =
(u−(τ)− u+(τ))(1− u′±(τ)(τ − t0))

2(uf− − u
f
+)(tf − t0)

, τ ∈ [t∗, tf ]. (18)

which completely specifies the process.
This random process is Markov in an extended state space X(τ) ⊂ R×{−1, 0, 1}, which is defined,

precisely, by

X(τ) = {(x,−1) : x ≤ x∗(τ)}
⋃
{(x, 0) : x = x∗(τ)}

⋃
{(x,+1) : x ≥ x∗(τ)}

for τ ≥ t∗, with the three subsets denoted X−1(τ), X0(τ), X+1(τ), respectively. Likewise,

X(τ) = {(x,−1) : x < a∗(τ)}
⋃
{(x, 0) : x = a∗(τ)}

⋃
{(x,+1) : x > a∗(τ)}

for τ < t∗ with x∗(τ) replaced by the particle position a∗(τ) at time τ which evolves into the shock at
time t∗. The time-dependent infinitesimal generator L(τ) of the process is

L(τ)f(x,±1) = −u(x, τ)f ′(x,±1), x ∈ X±1(τ)

L(τ)f(x, 0) = −u∗(τ)f ′(x, 0) +
∑
α=±1

λα(τ)[f(x, α)− f(x, 0)], x ∈ X0(τ)

for τ ≥ t∗, and

L(τ)f(x, α) = −u(x, τ)f ′(x, α), (x, α) ∈ X(τ)

for τ < t∗. Here we have used the definitions of jump rates to the right/left off the shock as

λ±(τ) = p±(τ)/P (τ), P (τ) =

∫ τ

t∗

dt [p+(t) + p−(t)].

The factor P (τ) is the probability that the particle remains on the shock at time τ backward in time
and appears because of the definition of the generator through a conditional expectation. Consistent
with the fact that the particle must leave the shock by time t∗ a.s., limτ→t∗+ λ±(τ) = +∞. Notice that
this is a jump-drift process in the extended state space but, projected down to R, the realizations x(t)
are continuous functions of time t. On the other hand, the velocity process D+

t x(t) = ū(x(t), t)—which
we denote for simplicity as ẋ(t)—is only right-continuous with jump discontinuities at discrete times.

We next establish an important property for this process:

Proposition 1

E(ẋ(t)) = uf∗ for all t ∈ [0, tf ].
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Proof: This is obvious for t = t0 since, by construction,

E(ẋ(t0)) =
1

bf+ − b
f
−

∫ bf+

bf−

db u(b, t0) = uf∗ . (19)

Next consider 0 ≤ t < t0. Since all of the realizations of the process are smooth solutions of Burgers
for t < t0, we have a smooth invertible relation between the Lagrangian positions at times t0 and t:

b = c+ u(c, t)(t0 − t), u(b, t0) = u(c, t). (20)

The uniform distribution on b ∈ [bf−, b
f
+] is transformed into the distribution with density

p(c, t) =
1 + u′(c, t)(t0 − t)

bf+ − b
f
−

(21)

on the shock interval [cf−, c
f
+] at time t. Note this density is nonnegative and

∫ cf+
cf−

dc p(c, t) = 1 using

bf+ − b
f
− = cf+ − c

f
− + (uf+ − u

f
−)(t0 − t). We can immediately infer that for 0 ≤ t < t0.

E(ẋ(t)) =

∫ cf+

cf−

dc u(c, t) p(c, t)

=
1

bf+ − b
f
−

[∫ cf+

cf−

dc u(c, t) +
1

2
(|uf+|2 − |u

f
−|2)(t0 − t)

]

=
1

cf+ − c
f
−

∫ cf+

cf−

dc u(c, t) = uf∗ (22)

using in the second line 1
2 (uf+ + uf−) = 1

cf+−c
f
−

∫ cf+
cf−

dc u(c, t) to obtain the third line. Although we have

verified these properties by explicit calculations with (21), they indeed follow directly by its definition.
In particular, the average of u(c, t) for p(c, t) must coincide by (20) with the uniform average of u(b, t0)

over [bf−, b
f
+].

Finally, we consider the case t0 < t < tf . When t0 < t < t∗, the analysis is similar to that above,
except that particle labels c at time t are related to those at time t0 by

c = b+ u(b, t0)(t− t0), u(c, t) = u(b, t0), (23)

where c ∈ [cf−, c
f
+]. A uniform distribution on [bf−, b

f
+] implies a density

p(c, t) =
1− u′(c, t)(t− t0)

bf+ − b
f
−

(24)

which is nonnegative, as seen from 1− u′(c, t)(t− t0) = [1 + u′(b, t)(t− t0)]−1, and integrates to 1 and
has mean value u∗f . However, when t∗ < t < tf , the situation is different, as illustrated in Fig. 3 for the

special choice (b, t0) = (a, 0). Now there are two components to the probability distribution of x(t),
a continuous component and an atom of positive probability associated to the shock. The continuous
component has total probability∫ tf

t

dτ [p+(τ) + p−(τ)] =
1

bf+ − b
f
−

∫
[bf−,b−(t)]∪[b+(t),bf+]

db = 1−

(
b+(t)− b−(t)

bf+ − b
f
−

)
(25)

and the atom has the complementary probability b+(t)−b−(t)

bf+−b
f
−

. In Fig. 3 this latter probability corre-

sponds to the relative length of the subinterval [a−(t), a+(t)] inside [af−, a
f
+], which is mapped by the

forward coalescing flow into the atom (magenta lines). The continuous component is again given by

(23),(24), but now b ∈ [bf−, b−(t)] ∪ [b+(t), bf+] and the continuous density integrates to the value in
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a− a+a−(t) a+(t)

(x*,t*)

(xf,tf)

(x*(t),t)c− c+

Fig. 3 Particle Positions at Time t > t∗. The horizontal black line shows the set of possible positions [c−, c+]
at time t of particles in the shock interval. There is an atom of positive probability situated on the shock
itself, indicated by the black dot. The probability of this atom is the fraction of the interval [af−, a

f
+] inside the

subinterval [a−(t), a+(t)] which maps into the shock at time t.

the right-hand side of (25). The last statement follows because the transformation c ↔ b is smooth

and invertible between [cf−, c
f
+] and [bf−, b−(t)] ∪ [b+(t), bf+], or can be checked by explicit calculation.

It likewise follows that the contribution of the continuous component to E(ẋ(t)) is now:

∫ cf+

cf−

dc u(c, t) p(c, t) =
1

bf+ − b
f
−

∫
[bf−,b−(t)]∪[b+(t),bf+]

db u(b, t).

The contribution of the atom to E(ẋ(t)), on the other hand, is(
b+(t)− b−(t)

bf+ − b
f
−

)
· u∗(t) =

1

bf+ − b
f
−

∫
[b−(t),b+(t)]

db u(b, t),

where we have used the fundamental property (7) that

u∗(t) =
1

b+(t)− b−(t)

∫ b+(t)

b−(t)

db u(b, t).

Finally, adding the two contributions gives

E(ẋ(t)) =
1

bf+ − b
f
−

∫ bf+

bf−

db u(b, t) = uf∗ .

�
An elaboration of these arguments shows furthermore that

Proposition 2

E
(
ẋ(t)

∣∣ẋ(s)
)

= ẋ(s) for all t ≤ s, t, s ∈ [0, tf ].
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Proof: We discuss separately the cases where ẋ(s) = u∗(s) and ẋ(s) 6= u∗(s).
When u 6= u∗(s), then the set {ẋ(s) = u} has zero probability and the conditional distribution

is supported on smooth characteristics for Burgers solutions which pass through the finite number of
points yi which satisfy u(yi, s) = u. Since the velocity is preserved along characteristics, the conditional
distribution can likewise be defined as that supported on smooth characteristics which pass through
the finite number of points xi which satisfy u(xi, t) = u, with the two sets of points related by
yi = xi + u · (s− t). The conditional distribution p(x, t|ẋ(s) = u) thus has the standard definition

p(x, t|ẋ(s) = u) =
p(x, t)δ(u(x, t) = u)∫

dx p(x, t)δ(u(x, t) = u)
.

But

δ(u(x, t) = u) =
∑
i

δ(x− xi)
|u′(xi, t)|

,

so that
p(x, t|ẋ(s) = u) =

∑
i

wiδ(x− xi)

with wi = p(xi,t)
N |u′(xi,t)| and N =

∑
i
p(xi,t)
|u′(xi,t)| . However, since u(xi, t) = u for all i, it is immediate that

E(ẋ(t)
∣∣ẋ(s) = u) =

∫
dx u(x, t)p(x, t|ẋ(s) = u) =

∑
i

wiu(xi, t) = u.

On the other hand, when u = u∗(s), then the set {ẋ(s) = u} has positive probability and the
conditional distribution is supported on the generalized characteristics which are at x∗(s) at time s.
Note that there may be smooth characteristics not in the shock at time s which also happen to have
the same velocity u, but these have zero probability and may be neglected. By the construction of
the original random process, the conditional distribution is identical to that obtained by assuming a
uniform distribution on the interval of Lagrangian positions [b−(s), b+(s)] at time t0 which map into
x∗(s) at time s. See Fig. 3 for (b, t0) = (a, 0), changing t there to s. Note that if t∗ < t < s, then this
distribution has an atom located at the shock and if t < t∗ then it has only a continuous part. In either
case

E(ẋ(t)
∣∣ẋ(s) = u) = ẋ∗(s) = u

by the arguments used in proving Proposition 3.1. �

Remark # 1: By the Markov properties of the process,

E
(
ẋ(t)

∣∣{ẋ(τ), τ ≥ s}
)

= E
(
ẋ(t)

∣∣ẋ(s)
)
.

Thus, the velocity process is a backward martingale. It is also a backward martingale with respect to
the position process x(t), that is,

E
(
ẋ(t)

∣∣{x(τ), τ ≥ s}
)

= E
(
ẋ(t)

∣∣x(s)
)

= ẋ(s).

Remark # 2: Proposition 3.2 in fact implies Proposition 3.1 by choosing s = tf and noting that

ẋ(tf ) = uf∗ with probability one, so that

E(ẋ(t)) = E
(
ẋ(t)

∣∣ẋ(tf ) = uf∗
)

= uf∗ .

Remark # 3: The generalization of the above geometric construction to Burgers solutions with
countably many shocks is straightforward, but the details are a bit tedious. We outline the multi-shock
construction in Appendix A.
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Remark # 4: As the present paper was being prepared for publication, we became aware of an
interesting recent work of Moutsinga [61], whose results are closely related to those of the present
section. Moutsinga’s goal was to derive the entropy solution of inviscid Burgers equation from a suitable
sticky particle model corresponding to a forward coalescing flow with initial uniform mass density
ρ0(db) = db (Lebesgue measure). His Theorem 2.1 gave the time-evolved mass measure as

ρt(dc) = dc− (t− t0)du(c, t)

where du(c, t) is the measure defined by the Lebesgue-Stieltjes integral with respect to the Burgers
solution u(·, t). This result coincides with our formulas (24),(25), except that our “mass densities” are
normalized to be probability measures. Furthermore, Moutsinga’s Theorem 2.2 gave the martingale
property in our Proposition 3.2 as

u(ξs,t, t) = Eρs [u(·, s)| ξs,t] , ρs − a.e. t0 ≤ s ≤ t,

when transcribed into our notations. Moutsinga’s result is itself a generalization of earlier such theorems
for forward coalescing flows in sticky particle models of pressure-less gas dynamics [17]. The main
innovation in our work here is to point out the existence of a stochastic inverse of the forward flow which
is Markov backward in time and under which the fluid particle velocities are backward martingales.

4 Zero-Viscosity Limit

We now construct a fundamentally different stochastic inverse by considering the zero-viscosity limit
of the stochastic representation of Constantin & Iyer [14] for the viscous Burgers solutions.

4.1 The Constantin-Iyer Representation

To make our discussion self-contained, we begin by presenting a new derivation of the Constantin-Iyer
representation for viscous Burgers solutions. We then establish the close relation of this stochastic
representation to the classical Hopf-Cole representation. These results hold for any space dimension
d ≥ 1, so that we discuss in this section multi-dimensional Burgers.

Consider a solution u to the viscous Burgers equation on the space-time domain D = Rd × [t0, tf ]

with initial condition u0(x) and define the backward stochastic flow ξ̃t,s for tf ≥ t ≥ s ≥ t0 by the
solution of the stochastic differential equation

dξ̃t,s(x) = u(ξ̃t,s(x), s)ds+
√

2ν d̂W̃(s) (26)

with final conditions

ξ̃t,t(x) = x, x ∈ Rd, t ∈ [t0, tf ]. (27)

Here W̃(t) denotes an Rd-valued Wiener process and “d̂” in (26) implies a backward Ito SDE. These

flows enjoy the semigroup property ξ̃s,r ◦ ξ̃t,s = ξ̃t,r a.s. for t ≥ s ≥ r. For the basic theory of backward
Itō integration and stochastic flows that we use below, see [32,52].

The fundamental property of the backward stochastic flows defined above for the viscous Burgers
velocity field is given by the following:

Proposition 3 The stochastic Lagrangian velocity ṽ(s|x, t) = u(ξ̃t,s(x), s) is a backward martingale
of the stochastic flow defined by (26), (27). That is,

E
(
ṽ(s|x, t)

∣∣Ft,r) = ṽ(r|x, t), t ≥ r ≥ s,

where Ft,r is the filtration of sigma algebras σ{W̃(u) : t ≥ u ≥ r}.
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Proof By the backward Itō formula for flows [52], we have, for any x ∈ Rd and for each t, t′ satisfying
t0 ≤ t′ ≤ t < tf that

du(ξ̃t,t′(x), t′) = utdt
′ + (d̂ξ̃t,t′ ·∇x)u− 1

2
uxixjd〈ξ̃it,t′ , ξ̃

j
t,t′〉,

where the quadratic variation can be calculated from (26) to be d〈ξ̃it,t′ , ξ̃
j
t,t′〉 = 2νδijdt′. Thus,

du(ξ̃t,t′(x), t′) =
(

(ut + (u ·∇)u− ν4u) dt′ +
√

2ν d̂W̃(t′) ·∇xu
)∣∣∣

(
˜ξt,t′ (x),t′)

=
√

2ν d̂W̃(t′) ·∇xu(ξ̃t,t′(x), t′)

In passing to the second line, we used the fact that u solves Burgers equation on D. Integrating over
t′ ∈ [s, r] gives

u(ξ̃t,s(x), s) = u(ξ̃t,r(x), r) +
√

2ν

∫ r

s

d̂W̃(t′) ·∇xu(ξ̃t,t′(x), t′)

Since E
( ∫ r

s
d̂W̃(t′) ·∇xu(ξ̃t,t′(x), t′)

∣∣∣Ft,r) = 0 for a backward Itō integral, the result follows. �

Note that unconditional expectation gives

E
(
u(ξ̃t,s(x), s)

)
= E

(
u(ξ̃t,s(x), s)

∣∣Ft,t) = u(x, t). (28)

This leads to the Constantin-Iyer representation:

Proposition 4 A smooth function u on the space-time domain D = Rd × [t0, tf ] is a solution to the
viscous Burgers equation with initial data u(·, t0) = u0 if and only if for each (x, t) ∈ D it satisfies

u(x, t) = E
[
u0(ξ̃t,t0(x))

]
, (29)

where the map ξ̃t,s is the stochastic flow defined by (26), (27) for the velocity field u.

Proof First suppose that u solves the viscous Burgers equation with initial condition u0. Using (28)
with s = 0 yields formula (29). Now for the other direction, assume that (29) holds, together with

(26),(27). Using the semigroup property of the stochastic flow maps and the Ft,s-measurability of ξ̃t,s
gives for any t, t′ ∈ [t0, tf ], t ≥ t′

E
[
u0(ξ̃t,0(x))

]
= E

[
u0

(
ξ̃t′,0 ◦ ξ̃t,t′(x)

)]
= E

[
E
[
u0

(
ξ̃t′,0

(
ξ̃t,t′(x)

)) ∣∣∣Ft,t′]]
= E

[
E
[
u0

(
ξ̃t′,0(y)

)]∣∣∣˜ξt,t′ (x)=y

]
= E

[
u(ξ̃t,t′(x), t′)

]
.

We therefore see that the following equivalent representation is implied for t ≥ t′:

u(x, t) = E
[
u(ξ̃t,t′(x), t′)

]
.

An application of the backward Itō’s formula to u ◦ ξ̃t,t′ gives:

u(x, t) = u(ξ̃t,t′(x), t′) +

∫ t

t′
(∂su + (u ·∇)u− ν4u)|

(
˜ξt,s(x),s)

ds+
√

2ν

∫ t

t′
d̂W̃s ·∇xu(ξ̃t,s(x), s)

Using the above results for t > t′ and computing

0 =
u(x, t)− E

[
u(ξ̃t,t′(x), t′)

]
t− t′

= E

∫ tt′ (∂sus + us ·∇us − ν4us)|
(
˜ξt,s(x),s)

ds

t− t′


which, at the coincidence limit t′ ↗ t, proves that any u satisfying (29) must solve the viscous Burgers
equation. �
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The C-I representation (29) for Burgers is exactly analogous to that employed for studies of passive
scalar advection the Kraichnan model [4, 37] and can be written also as

u(x, t) =

∫
dda u(a, s) pu(a, s|x, t), s ≤ t

where

pu(a, s|x, t) = E
[
δd(a− ξ̃t,s(x))

]
is the transition probability for the backward diffusion. Unlike the linear relation for the Kraichnan
model, however, the C-I representation is a nonlinear fixed point condition for the Burgers solution,
because the drift of the diffusion process is the Burgers velocity itself. There should be close connections
with the stochastic control formulation introduced by P.-L. Lions for general Hamilton-Jacobi equations
[30, 58]. Note, however, that the C-I representation requires no assumption that the velocity field is
potential. When this latter condition holds it is possible to establish a direct relation with the Hopf-Cole
solution [13,43], by means of the following:

Proposition 5 The backward transition probabilities pu(a, s|x, t) of the stochastic Lagrangian trajec-
tories in the C-I representation of viscous Burgers equation have the form

pu(a, s|x, t) =
exp

(
− 1

2νS(a, s|x, t)
)∫

Rd exp
(
− 1

2νS(a′, s|x, t)
)

dda′
(30)

with

S(a, s|x, t) =
|x− a|2

2(t− s)
+ φ(a, s)− φ(x, t), (31)

and φ is any solution of the KPZ/Hamilton-Jacobi equations

∂tφ+
1

2
|∇φ|2 = ν4φ+ γ(t), (32)

φ(x, t0) = φ0(x) + c0,

where u0 =∇φ0 but the function γ(t) and constant c0 may be freely chosen.

Proof Calculate the transition probability by the Girsanov transformation

pu(a, s|x, t) = EW
[
δd(ξ̃t,s(x)− a)

]
= Eξ,νx

[
δ(ξ̃t,s(x)− a)

(
dPW

dPξ,νx

)]
,

where the first expectation EW is over the Wiener measure PW associated to the Brownian motion W̃,

the second expectation is over the (scaled) Wiener measure Pξ,νx associated to the Brownian motion

ξ̃t,s(x) ∼ x +
√

2νW̃(s), and the Radon-Nikodym derivative (change of measure) is given by the
backward Girsanov formula:

dPW

dPξ,νx

= exp

[
1

2ν

∫ t

s

(
u(ξ̃t,τ (x), τ) · d̂ξ̃τ −

|u(ξ̃t,τ (x), τ)|2

2
dτ

)]

Now, suppose we are considering potential flow so that u(x, t) = ∇φ(x, t). Demanding that u satisfy
the viscous Burgers equation, φ must satisfy (32). By the backward Itō formula we have that

dφ(ξ̃t,τ (x), τ) = (∂τφ− ν4φ)
∣∣
(
˜ξt,τ (x),τ)

dτ + d̂ξ̃t,τ ·∇φ(ξ̃t,τ (x), τ)

= γ(τ)dτ − 1

2
|∇φ(ξ̃t,τ (x), τ)|2dτ + d̂ξ̃t,τ ·∇φ(ξ̃t,τ (x), τ)
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The Girsanov formula thus becomes:

dPW

dPξ,νx

=
1

N
exp

(
1

2ν

(
φ(x, t)− φ(ξ̃t,s(x), s)

))
where N must be chosen to satisfy the normalization condition Eξ,νx

[
dPW
dPξ,νx

]
= 1. Using the equality

in distribution ξ̃t,s(x) ∼ x +
√

2νW̃(s), one obtains

pu(a, s|x, t) =
1

N
Eξ,νx

[
δ(ξ̃t,s(x)− a) exp

(
1

2ν

(
φ(x, t)− φ(ξ̃t,s(x), s)

))]
=

1

N
Eξ,νx

[
δ(ξ̃t,s(x)− a)

]
exp

(
1

2ν
(φ(x, t)− φ(a, s))

)
=

1

N
1

(4πνt)d/2
exp

(
− |x− a|2

4ν(t− s)
+

1

2ν
(φ(x, t)− φ(a, s))

)
with

N =
1

(4πνt)d/2

∫
Rd

exp

(
− |x− a|2

4ν(t− s)
+

1

2ν
(φ(x, t)− φ(a, s))

)
dda.

�

Remark # 1: For related calculations using a forward Girsanov transformation, see [35]. The backward
Girsanov formula is equivalent to the Lagrangian path-integral

pu(a, s|x, t) =

∫
x(t)=x

Dx δd(x(s)− a) exp

(
− 1

4ν

∫ t

s

|ẋ(τ)− u(x(τ), τ)|2 dτ

)
,

which appears in the physics literature [27, 68]. For a careful discussion of this equivalence, see the
Appendix of [23].

Remark # 2: It is now straightforward to show that the C-I representation is equivalent to the
Hopf-Cole formula [13,43]:

u(x, t) = −2ν∇x ln

[
1

(4πνt)d/2

∫
Rd

exp

(
−|x− a|2

4νt
− φ0(a)

2ν

)
dda

]
.

Using the chain rule and moving the gradient inside the integral gives

u(x, t) =

1
(4πνt)d/2

∫
Rd 2ν∇a exp

(
− |x−a|

2

4νt

)
· exp

(
−φ0(a)

2ν

)
dda

1
(4πνt)d/2

∫
Rd exp

(
− |x−a|

2

4νt −
φ0(a)

2ν

)
dda

=

∫
Rd exp

(
− |x−a|

2

4νt −
φ0(a)

2ν

)
∇aφ0(a)dda∫

Rd exp
(
− |x−a|

2

4νt −
φ0(a)

2ν

)
dda

=

∫
Rd

u0(a) pu(a, 0|x, t)dda (33)

using integration by parts, u0(a) =∇φ0(a), and the expression:

pu(a, s|x, t) =
exp

(
− |x−a|

2

4ν(t−s) −
1
2νφ(a, s)

)
∫
Rd exp

(
− |x−a

′|2
4ν(t−s) −

1
2νφ(a′, s)

)
dda′

(34)

with some common factors canceled.
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4.2 Spontaneous Stochasticity

We now employ the results of the previous section to show that the backward diffusion process as-
sociated to the C-I representation remains random (non-deterministic) as ν → 0, which is exactly
the property of spontaneous stochasticty (backward in time). We here explicitly denote the viscosity
dependence of the Burgers solution by subscript, as uν =∇φν , and the zero-viscosity limit is denoted
by u∗ =∇φ∗. We also define the measure on Rd

P s;x,tν (da) = dda puν (a, s|x, t)

associated to the backward diffusion with densities (30). Our limit result is then stated as:

Proposition 6 For any sequence xν = x + O(ν), the probability measures P s;xν ,tν on Rd for each

ν > 0 converge weakly along subsequences in the limit ν → 0 to probability measures P s;x,t∗ , which may
depend on the subsequence but which are always supported on atoms in the finite set

As;x,t = argmina

[
|x− a|2

2(t− s)
+ φ∗(a, s)

]
.

If (x, t) is a regular point of the limiting inviscid Burgers solution u∗, then P s;xν ,tν
w−→ P s;x,t∗ = δa(s;x,t),

where a(s;x, t) = x − u∗(x, t)(t − s) is the inverse Lagrangian image at time s < t of x at time t.
Suppose instead that (x, t) is a generic point on the shock set of u∗ and the sequence xν satisfies

lim
ν→0

uν(xν , t) = p u∗(x
−, t) + (1− p)u∗(x+, t), p ∈ [0, 1] (35)

where the velocities u(x±, t) are the limits from the two sides of the shock. Then

P s;xν ,tν
w−→ P s;x,t∗ = p δa+(s;x,t) + (1− p)δa−(s;x,t) (36)

where a±(s;x, t) = x − u∗(x
±, t)(t − s) are the two inverse Lagrangian images at time s < t of x at

time t, so that As;x,t = {a−(s;x, t),a+(s;x, t)}. In particular, if xν satisfies uν(xν , t) = ū∗(x, t), then
p = 1/2 and

P s;xν ,tν
w−→ P s;x,t∗ =

1

2
δa+(s;x,t) +

1

2
δa−(s;x,t). (37)

Proof The solutions φν have limits φ∗ as ν → 0 given by the Lax-Oleinik formula for the zero-viscosity
Burgers solution [2]:

φ∗(x, t) = inf
a

[
|x− a|2

2(t− s)
+ φ∗(a, s)

]
.

This implies existence of the continuous limiting function

S∗(a, s|x, t) = lim
ν→0

Sν(a, s|x, t) =
|x− a|2

2(t− s)
+ φ∗(a, s)− φ∗(x, t) (38)

with the properties S∗(a, s|x, t) ≥ 0 and = 0 only for the finite set As;x,t ⊂ Rd of a-values at which
the infinimum in the Lax-Oleinik formula is achieved. Because velocities uν = ∇φν are bounded in
the limit as ν → 0, then Sν(a, s|xν , t) = Sν(a, s|x, t) +O(ν) if xν = x +O(ν), so that

1

ν
Sν(a, s|xν , t) =

1

ν
Sν(a, s|x, t) +O(1).

It follows that outside the finite set As;x,t, probabilities for P s;xν ,tν decay exponentially as ν → 0. These
measures are thus exponentially tight and have weak limits along subsequences which are supported
on atoms in the set As;x,t.

In the case where (x, t) is a regular point of u∗, the set As;x,t = {a(s;x, t)}, a singleton, and every
weak subsequential limit is the delta measure δa(s;x,t).
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In the case where (x, t) is a generic point in the shock set of u∗, the setAs;x,t = {a+(s;x, t), a−(s;x, t)}.
Hence, every weak subsequential limit is of the form

p∗ δa+(s;x,t) + (1− p∗)δa−(s;x,t)

for some p∗ ∈ [0, 1]. However, taking the limit as ν → 0 of the C-I representation uν(xν , t) =∫
uν(a, s)P s;xν ,tν (da) gives

p u∗(x
+, t) + (1− p)u∗(x−, t) =

∫
u∗(a, s)P

s;xν ,t
∗ (da) = p∗ u∗(x

+, t) + (1− p∗)u∗(x−, t),

or (p − p∗)(u∗(x
+, t) − u∗(x

−, t)) = 0. Since u∗(x
+, t) 6= u∗(x

−, t), p∗ = p for every subsequence
νk → 0 and thus (36) holds. �

Remark # 1: Following the approach of [53], we may define the shock surface for ν > 0 as

Sν(t) =

{
x : |x− x∗| = O

(
ν

|∆u|

)
for some x∗ ∈ S∗(t) and uν(x, t) =

u∗(x
−
∗ , t) + u∗(x

+
∗ , t)

2

}
where S∗(t) is the shock surface of the inviscid limit u∗ and where ∆u = u− − u+. The previous
proposition thus implies that (37) holds for a sequence xν ∈ Sν(t) such that xν → x ∈ S∗(t). This
means that stochastic particles which are “exactly on the shock” at time t for ν > 0 must jump off the
shock backward in time as ν → 0, with equal probability to the left or to the right.

4.3 One-Dimensional Case

There is special interest in the one-dimensional case, because we wish to use Burgers as a toy model
to understand the relation between spontaneous stochasticity and anomalous dissipation. It is only
in 1D that the local integrals Iψ(t) =

∫
dx ψ(u(x, t)) are invariants of smooth inviscid solutions.

Furthermore, there is more detailed analysis of shock solutions available in 1D which we can exploit.
For the remainder of this article we discuss primarily the one-dimensional problem.

For a solution uν of 1D Burgers the shock surface Sν(t) consists of isolated points xiν(t), i =
1, 2, 3, ....This follows from a matched asymptotic analysis of [39] for systems of conservation laws in
1D. More generally, if (x, t) is a shock point of the inviscid Burgers solution u∗ where u± = u∗(x

±, t),
then for any υ ∈ (u+, u−) there exists a unique point xν(t; υ) such that

uν(xν(t; υ), t) = υ, xν(t; υ) = x∗(t) +O(ν/∆u)

with ∆u = u− − u+. Defining the stretched spatial variable ξ = (x − xν(t; υ))/ν similarly as in [53]
and thus

ūν(ξ, t; υ) = uν(xν(t; υ) + νξ, t),

the 1D viscous Burgers equation becomes

ẋν(t)ūξ − ūūξ + ūξξ = νūt. (39)

Integrating over ξ, one finds

ẋν(t; υ) =
1

2
(u− + u+) +

ν

u− − u+

∫ +∞

−∞
dξ ūt(ξ, t; υ) =

1

2
(u− + u+) +O

( ν

T∆u

)
up to exponentially small terms. Thus, the points xν(t; υ) for all υ ∈ (u+, u−) “move with the shock”
asymptotically for ν → 0. Neglecting the O(ν) term on the right side of eq.(39), likewise using the
similarity variable ξ = (x− x∗(t))/ν, and therefore replacing ẋν(t) with ẋ∗(t) = 1

2 (u− + u+) , eq.(39)
becomes the equation for the zeroth-order inner solution in the matched asymptotic analysis of [39],
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specialized to Burgers. The zeroth-order solution for the boundary conditions ū(−∞, t) = u−(t),
ū(+∞, t) = u+(t) is

ū0(ξ, t) = ẋ∗(t)−
∆u

2
tanh

(
(ξ − δ0)∆u

4

)
,

where δ0 is a constant of translation which is undetermined at this order. To fix this constant, [39]
showed that one must match velocity-gradients at next order in the asymptotic expansion.

It follows for υ = 1
2 (1− λ)u− + 1

2 (1 + λ)u+ with λ ∈ (−1, 1) that

xν(t; υ)
.
= x∗(t) + ν

(
4

∆u
tanh−1(λ) + δ0

)
+O(ν2).

These are just the first terms in an asymptotic expansion in powers of ν that follows from the method
of [39]. For λ = 0 this expansion gives the shock location in the sense of [53]. Proposition 4.4 implies
that the stochastic trajectories moving backward in time from the point xν(t; υ) remain random as
ν → 0, moving to the left with probability 1−λ

2 and to the right with probability 1+λ
2 .

It is helpful to illustrate these results by a concrete example, the Khokhlov sawtooth solution of
viscous Burgers. This is the velocity field

uν(x, t) =
x− L tanh(Lx/2νt)

t
(40)

defined for x ∈ R and t > 0 [69]. As the previous discussion shows, the Khokhlov solution has the
universal form of a viscously-smoothed shock in 1D Burgers, sufficiently close to the shock and in its
rest frame. Since the velocity potential of the Khokhlov solution is

φν(x, t) =
x2

2t
− 2ν ln cosh

(
Lx

2νt

)
,

it is straightforward to calculate from Proposition 4.3 the transition probability

puν (a, s|0, t) =
1

Z
cosh

(
La

2νs

)
exp

(
− t

4νs(t− s)
a2

)
, s < t

for this solution. Since cosh(x) ∼ e|x|/2 for |x| � 1, it follows that the density becomes

puν (a, s|0, t) ∼ 1

2Z
exp

[
1

4νs

(
2L|a| − t

t− s
a2

)]
,

as ν → 0, except for a narrow interval around the origin of width ∼ νs/L. An application of the
Laplace method shows that the associated probability measure converges to (36) with

a±(s; 0, t) = ±L
(

1− s

t

)
,

which are indeed the Lagrangian pre-images at time s of the shock at the origin at time t, for the
limiting velocity u∗(x, t) = 1

t [x− L sign(x)]. The Laplace method also yields

Z−1 ∼
√

t

4πνs(t− s)
exp

[
− L2

4νs

(
1− s

t

)]
for ν → 0, which is the asymptotic value of p(0, s|0, t). Thus, the probability to remain at the shock
is transcendentally small as ν → 0, for any s < t. This is not surprising, because close to the shock
center the equation for stochastic Lagrangian trajectories becomes

dξ̃ = −
(
L2

2νt
− 1

)
ξ̃

dt

t
+
√

2ν dW̃ (t)

and backward in time there is a strong repulsion from the shock. This corresponds to a standard problem
in statistical physics: a noise-induced transition from an unstable equilibrium. It is well-known that for
weak noise the realizations exit quickly from the unstable point and transit to a deterministic solution
of the equation without noise [70].
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4.4 Limiting Backward Process

Of the limiting probabilities obtained in Proposition 4.4 there is a distinguished case in which the
particle starts “exactly on the shock” for ν > 0 and then jumps off to the right or the left with equal
probabilities as ν → 0. It is only for this case that the particle drift velocity at the shock equals
the limiting shock velocity. This case corresponds to a random process x̃∗(t) which enjoys the same
properties as the processes obtained by the geometric construction in section 3. It is clearly Markovian
backward in time in an extended state space X(t) ⊂ R× {−1, 1} with label α = +1 indicating to the
right of the shock and α = −1 to the left. The Markov generator is

L(t)f(x,±) = −u(x±, t)f ′(x,±)

and initial conditions for (x, t) a shock point of u∗ assign α = +1 or −1 with probability 1/2. The
realizations of this random process move always along straight-line characteristics. The Lagrangian
velocity ū∗(x̃∗(t), t) is also a martingale backward in time. For (x, t) a regular point of u∗, this is the
usual conservation of velocity along straight-line characteristics, while, for (x, t) a shock point of u∗,
the martingale property depends also on the definition ū(x, t) = 1

2 [u(x+, t) + u(x−, t)] . Note that, as
for the geometric construction, the martingale property implies in 1D the positivity of dissipation.
Indeed, the shock velocity can be represented using the martingale property as

u∗(t) =
1

2
[u+(t) + u−(t)]

=
1

2

[(
x∗(t)− a+

t

)
+

(
x∗(t)− a−

t

)]
=

1

a+ − a−

∫ a+

a−

(
x∗(t)− a

t

)
da, (41)

which is exactly the condition (11) needed to show positivity. The Lax entropy condition u− > u+ is
implicit in this formulation, since it guarantees that a+ > a−.

5 Non-uniqueness, Dissipation and a Conjecture

The results of the previous two sections can be restated as follows: the entropy (viscosity, dissipative)
solution u of inviscid Burgers equation in one space dimension with smooth initial data u0 satisfies the
identity

ū(x, t) = E[u0(x̃(0))|x̃(t) = x] =

∫
da u0(a)pu(a, 0|x, t) (42)

where E is expectation with respect to any of the random processes x̃(τ) backward in time constructed
in the previous sections and pu(a, s|x, t) is the transition probability for this process. The random
process x̃(τ) has the following properties:

(i) The realizations of the process projected to coordinate space are generalized solutions of the ODE
dx̃/dτ = ū(x̃, τ).

(ii) The process is Markov backward in time.
(iii) The velocity process D+

τ x̃(τ) = ū(x̃(τ), τ) is a backward martingale.

The formula (42) is the analogue of the representation of the weak solutions for passive scalars in the
Kraichnan model [18, 56] and is an inviscid analogue of the Constantin-Iyer representation of viscous
Burgers solutions. Note that it is a consequence of (i) that, at points of smoothness of u(x, t), the
process x̃(τ) is deterministic and consists of the single characteristic curve which arrives to (x, t). On
the other hand, when (x, t) is located on a shock, the previous constructions contain an interesting
element of non-uniqueness. The two approaches, the geometric one of section 3 and the zero-viscosity
limit of section 4 (which applies also for dimensions d ≥ 1), lead to quite different stochastic processes.
Even within the geometric approach there is an important element of non-uniqueness, because the time
t0 before formation of the first shock —when the positions are chosen to be uniformly distributed on

the Lagrangian interval [bf−, b
f
+] — is completely arbitrary. As can be seen from (21),(24), assuming a

uniform distribution on particle positions [bf−, b
f
+] at time t0 < t∗ does not lead to uniform distributions

at other times t < t∗. Hence there are uncountably many distinct definitions of random processes for
which (42) is valid and all of the properties (i),(ii),(iii) hold.
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To the non-uniqueness of the stochastic process of backward particle motions there corresponds a
similar non-uniqueness in the Lagrangian expression (14) of anomalous dissipation. In that expression,
one may likewise chose any initial time t0 < t∗ and represent the dissipation by integrals over the
Lagrangian intervals [b−i (t), b+i (t)] of particle positions at time t0 that will have fallen into shocks at
time t:

d

dt

∫
R

dx ψ(u(x, t)) =
1

t− t0

∞∑
i=1

∫ b+i (t)

b−i (t)

(
ψ(u∗i (t))− ψ(ui(t))−Dui

ψ (ui(t), u
∗
i (t))

)
db,

ui(t) =
x∗i (t)− b
t− t0

. (43)

Note that this anomalous dissipation may be directly represented in terms of the corresponding random
process (with uniform distribution on positions in shock intervals at time t0) as

d

dt

∫
R

dx ψ(u(x, t)) =

∞∑
i=1

∆ui E
[
ψ(u∗i (t))− ψ

(
x̃(t)− x̃(t0)

t− t0

)
−Dui

ψ

(
x̃(t)− x̃(t0)

t− t0
, u∗i (t)

) ∣∣∣ ˙̃x(t) = u∗i (t)

]
, (44)

where ∆ui = u−i − u
+
i > 0. The negative sign of the dissipation is then seen to be directly due to the

backward martingale property (iii) of the random process. Note indeed that it is a consequence of the
Bauer-Bernard [1] definition that solutions of ẋ = ū(x, t) in their sense satisfy

x̃(t′)− x̃(t′′) =

∫ t′

t′′
dτ ū(x̃(τ), τ).

Therefore, integrating with respect to time t in Proposition 3.2 gives as a direct corollary

E
( x̃(t′)− x̃(t′′)

t′ − t′′
∣∣∣ ˙̃x(t) = u

)
= u for all t′′ < t′ ≤ t, t′′, t′, t ∈ [0, tf ].

This property for t′ = t, t′′ = t0 and, in particular, the consequence that for any convex function ψ

E
[
ψ
( x̃(t)− x̃(t0)

t− t0

)∣∣∣ẋ(t) = u
]
≥ ψ(u) for all s ∈ [0, tf ].

is thus the basic property required to show dissipativity of the Burgers solution.
The above fundamental connection between the backward martingale property and dissipation

motivates the following:

Conjecture: The only space-time velocity field u on R × [0, tf ] which satisfies the identity (42) for
a stochastic process x̃(τ) with the properties (i),(ii),(iii) is the unique viscosity (entropy, dissipative)
solution of inviscid Burgers with initial condition u0 on R. 6

In particular, it should follow directly from the dissipation implied by the backward martingale property
that the field defined by the stochastic representation satisfies the conditions to be an “admissible weak
solution” (e.g. see [15], Def. 6.2.1). The condition imposed is highly implicit, since the velocity u which
appears as the result of the average in (42) is the same as the velocity u which appears in the ODE
in (i) governing particle motion. The conjecture as stated above is not explicit enough to be subject
to proof or disproof or even to be entirely well-formulated, without additional conditions. A natural
requirement on spatial regularity is that the velocity field be of bounded-variation at each fixed time
t, u(·, t) ∈ BV (R) for all t ∈ [0, tf ]. In that case u(·, t) is continuous except at a countable set of points
where right- and left-hand limits exist, so that the field ū(x, t) = 1

2 (u(x−, t) + u(x+, t) is well-defined.

Some temporal regularity must also certainly be assumed, such as u ∈ C([0, tf ];L1(R)).
It is important to emphasize that the uniqueness claim in the conjecture above is for the weak

solution u only and not for the random process x̃. As we have already seen by explicit construction,

6 The results of section 4 suggest that the conjecture should also hold for space dimensions d ≥ 1, although
the entropy conditions are no longer valid.
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there is more than one such random process x̃ for the same entropy solution u. There is thus an
arbitrariness in how the Burgers velocities can be regarded to be transported by their own flow. This
is similar to the arbitrariness that exists even for some smooth problems, e.g. the Lie-transport of a
magnetic field B (closed 2-form) by a smooth velocity field u, governed by the induction equation

∂tB =∇× (u×B).

It has long been known (e.g. [63]) that there is more than one “motion” which can be consistently
ascribed to the magnetic field-lines governed by the above equation. This arbitrariness holds in that
case even for the linear problem of passive transport of the magnetic field by a smooth velocity. We
shall next explore such passive transport problems for 1D Burgers, which may be a toy model of such
transport in more realistic situations, as previously considered in [1, 74]. In one dimension there are
two types of geometric transport which are possible, passive densities (1-forms) and passive scalars
(0-forms). We consider these in the following two sections.

6 Passive Densities

A density (d-form) is transported according to the continuity equation, which for d = 1 becomes

ρt + (uρ)x = 0. (45)

For smooth solutions there is the explicit solution

ρ(x, t) =
ρ(a, t0)

|ξ′t0,t(a)|

∣∣∣∣
αt0,t(x)

=

∫
da δ(x− ξt0,t(a))ρ(a, t0) (46)

given by the flow maps ξt0,t generated by u and the inverse maps αt0,t = ξ−1
t0,t. In integrated form, with

M([x, x′], t) =
∫ x′
x

dy ρ(y, t) the mass in the interval [x, x′], (46) expresses mass conservation:

M([x, x′], t) = M([αt0,t(x), αt0,t(x
′)], t0).

This is the Lie-derivative Theorem for ρ transported by u as a differential 1-form
For non-smooth fields there may, of course, be many distinct weak solutions of (45) obtained by dif-

ferent regularizations and limits. For compressible Navier-Stokes fluids the equation (45) is unchanged
but implicitly regularized by the addition of viscous terms to the momentum equation, which smooth
the velocity u. Instead, [1, 37] have explicitly regularized (45) with a positive diffusivity κ > 0 as well
as possibly a smoothed velocity uν :

ρt + (uνρ)x = κρxx. (47)

In molecular fluids the mass density is protected from any such dissipative transport, because its space
flux vector is itself a conserved density (momentum density, j = ρu). The regularization (47) has
however some appealing mathematical properties. For example, the solution (46) can be generalized
by means of the stochastic flows solving the forward Itō SDE

dξ̃t0,t(a) = uν(ξ̃t0,t(a), t)dt+
√

2κdW̃ (t), ξ̃t0,t0(a) = a. (48)

The first formula in (46) is replaced by

ρ(x, t) = E

 ρ(a, t0)

|ξ̃′t0,t(a)|

∣∣∣∣∣
α̃t0,t(x)

 , t > t0.

where E is the expectation over the Brownian motion in (48). See [37]. In this formulation, the mass
in an interval becomes a backward martingale, so that

M([x, x′], t) = E [M([α̃t0,t(x), α̃t0,t(x
′), t0)] .
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The second formula in (46) is also generalized, as

ρ(x, t) =

∫
da pν,κ(x, t|a, t0)ρ0(a), t > t0 (49)

where pν,κ(x, t|a, t0) = E
[
δ(x− ξ̃t0,t(a))

]
is the transition probability for the forward diffusion process.

It turns out that the weak solutions obtained from the limit ν, κ → 0 of eq.(47) have also great
physical interest for Burgers. The work of [47, 48] shows that for two choices of Prandtl number

Pr ≡ ν/κ, Pr = 0 and Pr =∞, the forward stochastic flow ξ̃t0,t(a) converges in the limits κ→ 0 and
ν → 0, respectively, to the deterministic, forward coalescing flow for Burgers. In that case, pν,κ(x, t|a, t0)
converges to

p∗(x, t|a, t0) =

{
δ(x− ξt0,t(a)) u smooth at x
δ(x− x∗i (t))χ[a−i (t),a+i (t)](a) u with shock at x = x∗i (t)

Although we know of no rigorous proof, it is plausible that the same limit is obtained as ν, κ→ 0 for
any fixed value of Pr. In that case, the limit of (49) gives

ρ(x, t) = ρ0(αt0,t(x))|α′t0,t(x)|+
∑
i

δ(x− x∗i (t))Mi(t),

where the first smooth part is well-defined except at shock points (x, t) and the delta function part
contains

Mi(t) =

∫ a+i (t)

a−i (t)

da ρ0(a),

which is the mass absorbed into the ith shock at time t > t0. The measure ρ(·, t) is well-defined for
initial density ρ0 any positive Radon measure. Using the elementary result

ẋ∗i (t) = [1 + (t− t0)u′0(a±i (t))]ȧ±i (t) + u±i (t),

it is straightforward to check that this measure gives a weak (distributional) solution of the Burgers-
mass transport system:

ut + (
1

2
u2)x = 0, ρt + (uρ)x = 0.

Because ρ is a measure with atoms at the shock, it is essential here to use the convention that u = ū
at shock points. This weak solution corresponds to the “adhesion model” widely employed in studies
of the cosmological mass distribution [41,73].

As was pointed out by Brenier & Grenier [9], this weak solution does not satisfy momentum
conservation. It is thus also true that the entropy inequalities (ρh(u))t+(uρh(u))x ≤ 0 do not hold for all
convex h, since this would imply momentum conservation. Instead there is a momentum-conservation
anomaly which is explicitly calculable for piecewise smooth solutions, as:

(ρu)t + (ρu2)x =
∑
i

δ(x− x∗i (t))
{ d
dt

[Mi(t)ẋ
∗
i (t)]

−
[
(ρu)−i (t)(u−i (t)− ẋ∗i (t))− (ρu)+

i (t)(u+
i (t)− ẋ∗i (t))

] }
= −1

4

∑
i

δ(x− x∗i (t))
[
(∆ui)

2(ρ−i − ρ
+
i ) +∆ui(u

−′
i − u

+′
i )Mi(t)

]
.

Here, u±′i (t) = ux(x∗i (t)±, t). The first expression for the anomaly is obtained by a standard elementary
calculation. It has a simple physical meaning, since the term inside the curly bracket is the rate of
change of momentum of the shock minus the flux of momentum from the left and the right into the
moving shock. The second expression for the anomaly can be obtained from the first using the easily
obtained relations

Ṁi(t) =
1

2
∆ui(ρ

−
i + ρ−i ), ẍ∗i (t) = −1

4
∆ui(u

−′
i − u

+′
i ).
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(It follows, incidentally, that Ṁi ≥ 0.) This anomaly may have either sign, as can be seen from the
Khokhlov sawtooth example. If one starts with initial density ρ0(a) = ρ±0 for sign(a) = ±1, it evolves in
the Khokhlov flow to ρ(x, t) = ρ±0 · t0/t for sign(x) = ±1 and t > t0. The momentum anomaly from the

shock at the origin in the Khokhlov solution is explicitly (ρ+(t)− ρ−(t))
(
L
t

)2
= (ρ+

0 − ρ
−
0 )
(
t0
t

) (
L
t

)2
.

Its sign is determined by the relative magnitude of ρ+
0 and ρ−0 , which can be arbitrarily chosen.

7 Passive Scalars

The other transport problem of interest is advection of a passive scalar (0-form), governed by the
equation

θt + uθx = 0. (50)

When u, θ are smooth, then pointwise scalar values are “frozen-in” and conserved along Lagrangian
trajectories, so that

θ(x, t) = θ0(ξt,t0(x)) =

∫
da δ(a− ξt,t0(x))θ0(a). (51)

The physically natural regularizations of (50) are a smoothed velocity uν and a molecular diffusivity
κ > 0, so that θ satisfies

θt + uνθx = κθxx. (52)

In that case, (51) is generalized to

θ(x, t) =

∫
da pν,κ(a, t0|x, t)θ0(a), (53)

where pν,κ(a, s|x, t) is the transition probability for the backward diffusion:

dξ̃t,s(x) = uν(ξ̃t,s(x), s)ds+
√

2κ d̂W̃ (s), s < t; ξ̃t,t(x) = x. (54)

This is the same formula used to analyze passive scalar advection in the Kraichnan model [27]. The
nature of the solutions of (52) depends on the behavior of the statistics of the backward-in-time diffusion
process (54).

We shall show that there is spontaneous stochasticity backward-in-time in (54) for uν a Burgers
solutions with shocks, at any finite value of Pr = ν/κ. That is, the statistics of (54) remain random as
ν, κ→ 0 with Pr fixed. We do not have a general proof which covers an entire class of shock solutions, as
for the Pr = 1 case in section 4.2, but we shall prove the result for the Khokhlov sawtooth shock which,
we have seen, exemplifies the universal form of the viscous Burgers shock. For simplicity we present
here the proof for an even more elementary case, a stationary shock solution of Burgers equation,

uν(x) = −u0 tanh(u0x/2ν),

where, obviously, u0 = ∆u/2. The details for the Khokhlov solution are very similar but somewhat
more complicated, and are presented in Appendix B. To treat evolution backward in time in the most
transparent manner, we take uν(x) → −uν(x) and discuss instead a stochastic particle position ξ̃(t)

starting at ξ̃(0) = 0 and moving forward for t > 0. Consider then

dξ̃(t) = u0 tanh(u0ξ̃/2ν)dt+
√

2κdW̃ (t), ξ̃(0) = 0. (55)

We prove the following:

Proposition 7 For solution ξ̃(t) of (55) with ξ̃(0) = 0 at any t > 0, for α = min{1, 1
Pr}, and for any

ε ∈ (0, 1),

lim
κ→0

Pr=ν/κ fixed

Pν,κ

(
|ξ̃(t)| ≥ α(1− ε)u0t

)
= 1.
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Proof Consider the velocity potential

φν(x) = 2ν ln cosh(u0x/2ν)

which is non-negative, less than u0|x|, and convergent to u0|x| as ν → 0. By the (forward) Itō formula

dφν(ξ̃(t), t) = u2
0[tanh2(u0ξ̃/2ν) + sech2(u0ξ̃/2ν)/Pr]dt+

√
2κ u0 tanh(u0ξ̃/2ν)dW̃ (t).

It follows using tanh2(z) + sech2(z) = 1 that

φν(ξ̃(t)) > αu2
0t+

√
2κ u0

∫ t

0

tanh(u0ξ̃(s)/2ν)dW̃ (s)

with α = min
{

1, 1
Pr

}
. Hence for any ε ∈ (0, 1)

Pν,κ

(
φν(ξ̃(t)) < (1− ε)αu2

0t

)
< Pν,κ

(√
2κ

∫ t

0

tanh(u0ξ̃(s)/2ν)dW̃ (s) < −εαu0t

)
=

1

2
Pν,κ

(∣∣∣∣√2κ

∫ t

0

tanh(u0ξ̃(s)/2ν)dW̃ (s)

∣∣∣∣ > εαu0t

)
By Itō isometry the variance of η̃(t) =

√
2κ
∫ t

0
tanh(u0ξ̃(s)/2ν)dW̃ (s) is

Eν,κ(η̃2(t)) = 2κ

∫ t

0

Eν,κ
(

tanh2(u0ξ̃(s)/2ν)
)
ds < 2κt.

Thus the Chebyshev inequality

Pν,κ

(∣∣∣∣√2κ

∫ t

0

tanh(u0ξ̃(s)/2ν)dW̃ (s)

∣∣∣∣ > εαu0t

)
< 2κ/ε2α2u2

0t,

gives
Pν,κ

(
|ξ̃(t)| < (1− ε)αu0t

)
< Pν,κ

(
φν(ξ̃(t)) < (1− ε)αu2

0t
)
< κ/ε2α2u2

0t, (56)

which completes the proof. �

This result shows that the particle does not remain at its initial position ξ̃(0) = 0, but instead moves
away from the origin at least at speed αu0 as ν, κ → 0. As a matter of fact, the speed must be u0

even when α < 1. Standard theorems on zero-noise limits for smooth dynamics show that the motion
becomes deterministic with constant speed u0 away from the origin [31]. By symmetry, the probabilities
for the particle to move right or left must be equal. We thus obtain two limiting particle trajectories
ξ+(t) and ξ−(t), right moving and left moving at speed u0, with probabilities 1/2.

Remark #1: The previous proof is valid even for Pr = 0 (ν = 0) directly, when u∗(x) = −u0sign(x)
and, after reversal u∗ → −u∗, φ∗(x) = u0|x|. In that case,

dξ̃ = u0sign(ξ̃)dt+
√

2κdW̃ (t), ξ̃(0) = 0

leads to
d|ξ̃(t)| = u0dt+ κdL̃(t) +

√
2κu0 sign(ξ̃)dW̃ (t).

Here L̃(t) =
∫ t

0
δ(W̃ (s)) is the local time process of Brownian motion at 0 (see [45]), which replaces the

hyperbolic secant square term in the equation for dφν above. Since L̃(t) ≥ 0 a.s., the previous proof
goes through unchanged, with α = 1.

The case Pr = ∞ (κ = 0) is much more delicate. As for the Kraichnan model, any spontaneous
stochasticity must now arise from randomness in the initial data ξ(0) for the deterministic ODE

ξ̇ = uν(ξ) rather than from random noise [18]. It is clear that particle trajectories will remain stochastic
for suitable random initial data (or, really, final data, since the evolution considered is backward in
time) which become deterministic as ν → 0. For example, if the data are spread continuously over
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a symmetric interval of length ∼ ν/u0 about 0, then the initial velocities are spread over an interval
∼ (−u0, u0). It is obvious that trajectories will then escape with positive probabilities to both right
and left of the shock. We do not offer here any more precise statement. See the recent preprint of
Frishman-Falkovich [34] for more specific analysis of the Pr =∞ problem.

Remark #2: The presence of the factor α in the previous rigorous argument suggests that escape
from the origin may be retarded for Pr > 1, when α < 1. One can heuristically estimate the escape

time as τesc ∼ α−1 κ
u2
0

= max{κ,ν}
u2
0

and the distance required to escape as `esc = α−1/2 κ
u0
.

Consider first Pr < 1, when α = 1. Then at distance `esc = κ/u0, uν(`esc) = u0 tanh( 1
2Pr

−1) ∼ u0.

Hence, a particle starting at distance `esc would diffuse back to the origin in the time `2esc/κ ∼ κ/u2
0 ∼

τesc, which is the same as the time `esc/uν(`esc) ∼ τesc required to move distance `esc away from the
origin by advection. Hence particles further away from the origin than `esc = κ/u0 are unlikely to
return. This heuristic argument is in agreement with the previous rigorous argument. Define

tB = B
κ

u2
0

= Bτesc.

for some large constant B � 1. The probability bound (56) for ε = 1/2 and α = 1 becomes

Pν,κ
(
|ξ̃(tB)| < B`esc

)
<

4

B
.

We thus see that τesc is the characteristic time to escape from the shock backward in time.
Next consider Pr > 1. A similar argument suggests that the escape distance is `esc = Pr1/2κ/u0.

In fact, at that distance uν(`esc) = u0 tanh( 1
2Pr

−1/2) ∼ u0Pr
−1/2. Thus, in time τesc ∼ Pr · κ/u2

0 the

distance moved by diffusion , (κτesc)
1/2, and the distance moved by advection, uν(`esc)τesc, both equal

`esc. At smaller distances diffusion dominates and at larger distances advection away from the origin
dominates, supporting the idea that `esc = Pr1/2κ/u0 is the escape distance and τesc ∼ Pr · κ/u2

0 the
escape time. This conclusion seems plausible, although the bound (56) is not sharp enough for Pr > 1
to verify it.

Remark #3: Spontaneous stochasticity at Pr = 0 is analogous to a zero-temperature phase transition
for a one-dimensional spin system in infinite volume. This is true not only for Burgers velocities, but
in general.

Consider, for example, the 1-dimensional Ising model in finite-volume [−N, ..., N ]

PN [σ] =
1

Z
exp

(
− 1

kBT
H[σ]

)
, H[σ] =

J

2

N∑
i = −N
σ−N = +1

(σi − σi+1)2

with boundary condition σ−N = +1. In the zero-temperature limit

PN [σ]→
N∏

i=−N

δσi,+1 as T → 0,

the unique ground-state with σ−N = +1. This is analogous to the fact that the Lagrangian path-integral
for a smoothed velocity uν in the zero-noise limit κ→ 0 satisfies

P ν,κu [x] Dx =
1

Z
exp

(
− 1

4κ

∫ tf

t0

dτ |ẋ(τ)− uν(x(τ), τ)|2
)∣∣∣∣

x(t0)=x0

Dx

→
∏

τ∈[t0,tf ]

δ3(x(τ)− x∗(τ)) Dx,

with x∗(t) the unique solution of ẋ = uν(x, t), x(t0) = x0.
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On the other hand, consider the 1-dimensional Ising model in infinite-volume (N →∞)

P∞[σ] =
1

Z
exp

(
− 1

kBT
H[σ]

)
, H[σ] =

J

2

∑
i

(σi − σi+1)2.

In the zero-temperature limit

P∞[σ]→ 1

2

∏
i

δσi,+1 +
1

2

∏
i

δσi,−1 as T → 0,

the symmetric mixture of ground-states, a zero-temperature phase transition. See [38] for more careful
statements. Likewise, in the zero-noise limit with first ν → 0, then κ→ 0, the Lagrangian path-integral

P 0,κ
u [x] Dx =

1

Z
exp

(
− 1

4κ

∫ t

t0

dτ |ẋ(τ)− u(x(τ), τ)|2
)∣∣∣∣

x(t0)=x0

Dx

−→
∫
Π(dα)

∏
τ∈[t0,t]

δ3(x(τ)− xα(τ)) Dx.

where Π is a nontrivial probability measure on the non-unique solutions xα of ẋ = u(x, t), x(t0) = x0.
These solutions are the analogues of the zero-temperature ground states7.

The comparison with the one-dimensional Ising model is especially apt for Burgers, since we have
seen that there are precisely two “ground states” in the zero-noise limit for Burgers8, a trajectory
leaving to the right of the shock and another leaving to the left, with equal probabilities. One can say,
roughly, that Burgers is in the “Ising class.”

With the above information on the statistics of the backward-in-time diffusion process (54) for Burgers,
we can now discuss the limits ν, κ→ 0 of the solutions of the passive scalar equation (52). The transtion

7 There is a strong analogy of the high-Reynolds limit of turbulence with the semi-classical limit of quantum
mechanics, e.g. see [51], section 6. This raises the possibility of quantum spontaneous stochasticity. Consider
a non-relativistic quantum-mechanical particle of mass m and electric charge q moving in an electric field
E = −∇Φ− (1/c)∂tA and magnetic field B =∇×A governed by the Schrödinger equation

i~∂tΨ =
1

2m

(
−i~∇− q

c
A
)2
Ψ + qΦΨ,

or with transition amplitudes given by Feynman’s path-integral formula [29]

〈x, t|x0, 0〉 =

∫ x(t)=x

x(0)=x0

Dx exp

(
i

~

∫ t

0

ds L(x(s), ẋ(s), s)

)
,

where the classical Lagrangian is

L(x, ẋ, t) =
1

2
m|ẋ|2 +

q

c
A(x, t) · ẋ− qΦ(x, t).

When E,B are Lipschitz, then the classical equations of motion

mẍ = q

[
E(x, t) +

1

c
ẋ × B(x, t)

]
have unique solutions and the stationary phase argument of Feynman [29] yields classical dynamics for ~→ 0.
However, if the electromagnetic fields are non-Lipschitz, then quantum superposition effects could persist in
the classical limit. This would presumably require classical electromagnetic fields which are “rough” down to
the de Broglie wavelength λ = h/p of the particle.

8 As shown in section 3, there are actually uncountably many solutions ξ(s) of D+
s ξ(s) = ū(ξ(s), s) for a

final point (x, t) in the shock set of the Burgers solution u. Note by Kneser’s Theorem [42] that there are in
general uncountably many solutions of the initial-value problem for velocity fields u which are continuous, when
non-uniqueness of solutions occurs at all. However, only two of these “ground states”, the extremal solutions,
are selected for Burgers by the zero-noise limit.
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probabilities for 0 ≤ Pr <∞ converge weakly to

p∗(a, t0|x, t) =

{
δ(a− ξt,t0(x)) u smooth at (x, t)
1
2 [δ(a− ξ−(t0)) + δ(a− ξ+(t0))] u with shock at (x, t),

where, of course, ξ±(t0) = a±(t), i.e. the endpoints of the Lagrangian interval at time t0. We therefore
obtain the limit of the scalar solutions to be θ∗(x, t) =

∫
da p∗(a, t0|x, t)θ0(a), or

θ∗(x, t) =

{
θ0(ξt,t0(x)) u smooth at x
1
2 [θ0(ξ−(t0)) + θ0(ξ+(t0))] u with shock at (x, t).

(57)

Pointwise scalar values θ(x, t) are not “frozen-in” deterministically, i.e. are not generally equal to θ0(a)
for a = ξt,t0(x). This property does hold in a probabilistic sense, as the formula (57) for t0 = s

can be rewritten as θ∗(x, t) = E∗[θ∗(ξ̃t,s(x), s)] where ξ̃t,s(x) is the ensemble of stochastic Lagrangian
trajectories obtained from the limit ν, κ → 0. The generalization of the “frozen-in” property is that
θ∗(ξ̃t,s(x), s) for s < t is a backward-in-time martingale.

It is important to emphasize that θ∗(x, t) given by (57) is not a weak (distributional) solution of the
scalar advection equation (50). In fact, the standard notion of weak solution is not usually available
for (50), since it is not of conservation form for ∇ · u 6= 0. Formally, (50) can be rewritten as∫

dx

∫
dt [ψt(x, t) + u(x, t)ψx(x, t) +∇ · u(x, t)ψ(x, t)] θ(x, t) = 0,

for a smooth test function ψ, but the expression on the left is generally ill-defined for non-smooth fields
θ when ∇ · u itself exists only as a distribution. For Burgers the lefthand side is well-defined for θ∗
defined by (57) but not equal to zero. One can instead regard (57) as a new notion of a “Lagrangian
weak solution,” which generalizes the method of characteristics for smooth solution fields rather than
generalizing the Eulerian equations of motion.

An important question addressed in the prior work of Bauer & Bernard [1] is whether passive scalars
in a Burgers flow preserve the invariants of smooth solutions or whether the scalar conservation-laws
are afflicted with anomalies. It was concluded in [1] that there are no anomalies “in the limit κ→ 0”9

for passive scalars advected by Burgers velocities with shocks, for scalar quantities of the form

Iψ(t) =

∫
dx ψ(θ(x, t)) (58)

given by a smooth function ψ. They argued that shocks occur only on a set of Lebesgue measure zero
and, therefore, do not alter the conservation properties of the scalar fields, which remain smooth almost
everywhere. We disagree both with this conclusion and even with the formulation of the problem.

In the first place, the quantities in (58) are not “invariants” of the scalar field, since even for smooth
fields

d

dt
Iψ(t) =

∫
dx ψ(θ(x, t))(∇ · u(x, t)) 6= 0. (59)

Therefore, if pumping and damping of this invariant are provided, the scalar will not enter a statistical
stationary state in which driving and dissipation are balanced against each other. The natural invariants
of a passive scalar are instead of the form

Jψ(t) =

∫
dx ρ(x, t) ψ(θ(x, t)), (60)

in which ρ is a conserved density, as in the previous section 6. Since for smooth solutions

(ρψ(θ))t + (ρψ(θ)u)x = 0,

the quantities Jψ(t) are indeed conserved quantities for such standard smooth solutions.
The second disagreement with the conclusions of [1] is that the natural integral invariants (60) of

the scalar for smooth dynamics are, as a matter of fact, afflicted with anomalies when using the same

9 It was never clearly specified in [1] how the joint limits ν → 0, κ→ 0 should be taken. Their analysis seems
to be best justified for the Pr =∞ problem, taking first κ→ 0, then ν → 0. This case remains open.



30

regularizations considered by those authors. Thus, when the passive density and passive scalar are
both regularized by smoothing the Burgers velocity with viscosity ν > 0 and by adding a diffusivity
κ > 0, then the solutions for ρ and θ obtained in the limit ν, κ → 0 with Pr < ∞ fixed, which
were characterized in the previous sections, do not preserve the invariants (60). Instead, there are
conservation-law anomalies which are easily calculable, either in Lagrangian or in Eulerian forms. The
Lagrangian expression derived by the approach of section 2.2,∫

R
ρ(x, t)ψ(θ(x, t)) dx−

∫
R
ρ0(a)ψ(θ0(a)) da

=
∑
i

∫ a+i (t)

a−i (t)

[ψ(θ∗i (t))− ψ(θ0(a))]ρ0(a) da. (61)

shows that the origin of the scalar anomalies is the loss of information about the initial scalar distribu-
tion. This is similar to the conservation-law anomalies associated to the Burgers velocity, except that
the scalar anomalies can have either sign10. The corresponding Eulerian form of the scalar anomalies
is

(ρψ(θ))t + (ρuψ(θ))x =
∑
i

δ(x− x∗i (t))(u−i − u
+
i )

×
[

1

2

(
ρ+
i (ψ(θ∗i )− ψ(θ+

i )) + ρ−i (ψ(θ∗i )− ψ(θ−i ))
)
− 1

4
ψ′(θ∗i )(θ−′i − θ

+′
i )Mi(t)

]
.

The argument of [1], that scalar anomalies are absent because shocks occur only on a set of zero
Lebesgue measure, fails among other reasons11 because the density ρ for the limiting solutions develops
positive mass atoms precisely at these shocks.

It is worth noting that there is an anomaly even for ψ(θ) = θ :

(ρθ)t + (ρuθ)x

= −1

4

∑
i

δ(x− x∗i (t))(u−i − u
+
i )
[
(θ−i − θ

+
i )(ρ−i − ρ

+
i ) + (θ−′i − θ

+′
i )Mi(t)

]
.

Thus, % = ρθ is also not a weak (distributional) solution of %t + (u%)x = 0.

8 Time-Asymmetry of Particle Stochasticity

We have shown in the preceding that there is spontaneous stochasticity in the zero-noise limit at
finite-Pr for Lagrangian particles in a Burgers flow moving backward in time. On the contrary, the
zero-noise limit forward in time at any Pr should lead to a natural coalescing flow for Burgers [1], as
has been proved rigorously at Pr = 0 [47,48]. The Burgers system is thus quite different from the time-
reversible Kraichnan model, where strongly compressible flows lead to coalescence both forward and
backward in time [19,37]. Based on studies in the Kraichnan model, the difference between stochastic
splitting or sticking of particles has been viewed as a consequence of the degree of compressibility of
the velocity field, with weakly compressible/near-solenoidal velocities leading to splitting and strongly

10 This is also true for the diffusive violation of the conservation laws in the regularized equations. If the
density ρ and scalar θ are both subject to the same diffusivity κ > 0, then it is not hard to show that

(ρψ(θ))t + [uνρψ(θ)− κ(ρψ(θ))x]x = −κρθ′′(θ)θ2x − 2κρxψ
′(θ)θx.

The first “dissipation” term on the right is non-positive when the function ψ is convex, but the second term is
of indeterminate sign. It would be interesting to know whether the κ→ 0 limit of this dissipation term yields
the same result (61) as for the “Lagrangian weak solution.”
11 The dissipative anomalies for the kinetic energy of an inviscid Burgers solution arise, of course, entirely
from the shocks. Experiments on the multifractal structure of real hydrodynamic turbulence indicate that its
energy dissipation set has fractal dimension also less than the space dimension (three) [46, 60]. Thus, it is not
unusual in turbulent systems that dissipative anomalies arise from zero-measure sets! If ν = κ (Pr = 1) and
the initial value of the scalar is the same as that for the Burgers velocity, θ0 = u0, then solutions θ and u agree
for all times. In that case the “invariants” (58) considered by [1] are also not conserved for ν, κ→ 0.
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compressible/near-potential velocities leading to sticking [18,19,37,56,57]. However, the Burgers equa-
tion with a velocity that is pure potential can produce both sticking and splitting, in different directions
of time.

The Burgers system appears in fact to have a remarkable similarity in particle behaviors to in-
compressible Navier-Stokes turbulence, even though the Burgers velocity is pure potential and the
Navier-Stokes velocity is pure solenoidal. Because the Navier-Stokes equation just as viscous Burgers
is not time-reversible, it can exhibit distinct particle behaviors forward and backward in time. Navier-
Stokes turbulence appears to lead to Richardson 2-particle dispersion and, consequently, stochastic
particle splitting, both forward and backward in time. Remarkably, however, the rate of dispersion is
found in empirical studies of three-dimensional Navier-Stokes turbulence to be greater backward in
time than forward [3,23,66]. This is the same tendency seen in a very extreme form in Burgers, where
there is particle splitting backward in time but only coalescence forward in time.

We have also shown in this work, at least for Burgers, that there is a direct connection between
spontaneous stochasticity and anomalous dissipation for hydrodynamic equations, as had been sug-
gested earlier in [37]. More precisely, the relation we have found is between the sign of conservation-law
anomalies in Burgers and spontaneous stochasticity backward in time. In turbulence language, the di-
rect cascade of energy to small scales in Burgers is due to stochastic particle splitting backward in time.
The empirical observations on particle dispersion in Navier-Stokes turbulence cited above lead us to
suggest more generally a deep relation between cascade direction and the time-asymmetry of particle
dispersion. Indeed, three-dimensional Navier-Stokes turbulence has a forward cascade of energy, just
as Burgers, and likewise a faster particle dispersion backward in time than forward. This conjecture is
strengthened by the numerical observation of a reversed asymmetry for the inverse energy cascade of
two-dimensional turbulence, with Richardson particle dispersion in 2D inverse cascade instead faster
forward in time than backward [26].

There is a well-known connection in statistical physics between dissipation/entropy production and
the asymmetry between forward and backward processes, embodied in so-called fluctuation theorems.
For a recent review of this theory, see [36]. Since it is natural to suspect a relation with our conjectures
above, we briefly recall here that the fluctuation theorems state that

E(eW [x̃]) = 1 (62)

where eW = dP ′/dP is a Radon-Nikodým derivative of the path measure for a time- reversed process
with respect to the path measure for the direct process. Physically, −kBW has often the meaning of
“entropy production” and the consequence of Jensen’s inequality,

E(W [x̃]) ≤ 0,

implies the sign of energy dissipation or entropy production in the 2nd law of thermodynamics. How-
ever, the fluctuation theorems are a considerable refinement of the 2nd law, since they state not only
the existence of entropy production on average but also provide information about the likelihood of
2nd-law violations.

Fluctuation theorems are straightforward to derive for stochastic particle motion in Burgers gov-
erned by the SDE

dx̃ = u(x̃, t)dt+
√

2ν dW̃(t), t ∈ [t0, tf ],

especially when the velocity is potential with u(x, t) =∇φ(x, t). In this case, the time-reverse process
is the same as the direct process with merely the time-change t′ = t0 +tf−t [49]. Also, for any gradient
dynamics with additive noise, the accompanying measures (or instantaneously stationary measures) at
time t are

nt(dx) =
1

Zt
exp

(
φ(x, t)

ν

)
.

The standard recipes [36] then give (62) with

W [x̃] =
1

ν
φ(x̃(tf ), tf )− ln ρf (x̃(tf ))

+
1

ν

∫ tf

t0

∂tφ(x̃(t), t)dt− 1

ν
φ(x̃(t0), t0) + ln ρ0(x̃(t0))
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where ρ0(x) and ρf (x) are starting probability densities for the forward and backward processes which
may be freely chosen. The trajectories x̃(t) in the expectation E of (62) are sampled from solutions of
the forward SDE with initial data chosen from ρ0.

An intriguing question is whether such fluctuation theorems for stochastic particle motion in Burg-
ers have any relation with anomalous dissipation in the limit ν → 0. For Burgers the potential satisfies
the KPZ/Hamilton-Jacobi equation

∂tφν(x̃(t), t) = −1

2
|∇φν(x̃(t), t)|2 + ν4φν(x̃(t), t).

Also, the forward stochastic flow x̃ν(t) converges to the coalescing flow x∗(t) for Burgers as ν → 0.
Note that the laplacian term has been shown [47, 48] to have the limit along the trajectories of the
forward coalescing flow given by

lim
τ↓0

lim
ν↓0

ν4φν(x∗(t+ τ), t+ τ) = −min
±

D
u±(t)
L (u∗(t),u±(t)) ,

the Bregman divergence for the free-particle Lagrangian L(t,x,v) = 1
2 |v|

2, or just the kinetic energy.
(Note the sign error in [47], p.1591) The quantity ∂tφν(x̃(t), t) then has an enticing similarity to
our expression (13) for the dissipative anomaly, when ψ = L. Unfortunately, we are skeptical that
any general connection exists. A counterexample12 is the stationary shock solution of viscous Burgers
considered in section 7, which has a kinetic energy anomaly − 2

3u
3
0δ(x) in the limit ν → 0, but for

which ∂tφ(x) = 0! It remains to be seen whether any ideas related to the fluctuation theorems can be
at all connected with dissipative anomalies in Burgers or elsewhere.

9 Final Discussion

Our work has verified that many of the relations suggested by the Kraichnan model [4, 37], between
Lagrangian particle stochasticity, anomalous dissipation, and turbulent weak solutions, remain valid
for the inviscid Burgers equation. Our results for Burgers give, as far as we are aware, the first proof of
spontaneous stochasticity for a deterministic PDE problem. There is some similarity with the results
of Brenier [8] on global-in-time existence of action minimizers for incompressible Euler fluids via “gen-
eralized flows”. However, unlike Brenier’s work which dealt with a two-time boundary-value problem,
our stochastic representation (42) is valid for solutions of the Cauchy problem, like the similar repre-
sentations for weak solutions in the Kraichnan model. As in Brenier’s work, however, and unlike in the
Kraichnan model, we find that the stochastic Lagrangian flows for inviscid Burgers are generally non-
unique (even for entropy solutions). An important question left open by our work is whether existence
of suitable stochastic processes of Lagrangian trajectories, which are backward Markov and for which
the velocity is a backward martingale, uniquely characterize the entropy solution of Burgers.

The most important outstanding scientific issue is certainly the validity of similar results for more
physically realistic hydrodynamic equations, such as the incompressible Navier-Stokes equation. It
is an entirely open mathematical question whether standard weak solutions of incompressible Euler
can be obtained by the zero-viscosity limit of incompressible Navier-Stokes solutions and whether
these Euler solutions are characterized by a backward martingale property for the fluid circulations,
as earlier conjectured by us [20–22]. It is not even known whether the “arrow of time” specified by
the martingale property is the same as the arrow specified by dissipation of energy. That is to say,
it is unknown whether weak Euler solutions (if any) satisfying the backward martingale property for
circulations must have kinetic energies always decreasing in time. There is not even a formal physicists’
argument that this is so, let alone a rigorous proof.

The existence of non-vanishing energy dissipation in the limit of zero viscosity has been termed
the “zeroth law of turbulence” [33]. Explaining such anomalous dissipation is indeed the zeroth-order
problem for any theory of turbulence. While much is known about turbulent energy cascade in Eulerian
representation from a synthesis of experiment, simulations and theory, the Lagrangian aspects remain
rather mysterious. G. I. Taylor’s vortex-stretching picture [71,72] is still the most common and popu-
larly taught Lagrangian view of turbulent dissipation (e.g. see Feynman’s undergraduate lectures [28],

12 There is also a physical puzzle what quantity would constitute the “temperature” to relate the “entropy
production” −kBW [x̃] to energy dissipation.
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volume II, section 41-5). Taylor’s line-stretching mechanism is exemplified by the Kazantsev-Kraichnan
model of kinematic magnetic dynamo in its “free decay regime”, but this example also shows that Tay-
lor’s mechanism becomes much more subtle in the presence of spontaneous stochasticity [24]. We
believe that the possibility exists for fundamentally new Lagrangian perspectives on turbulent energy
dissipation for Navier-Stokes and related equations. We hope that the current work may provide some
useful hints in that direction.
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Appendix A: Multi-Shock Geometric Construction

The discussion in section 3 assumed a single shock, but the main results (including Proposition 3.1
and 3.2) hold also with multiple shocks and mergers. We now discuss the construction of the random
process and the verification of its properties in the general case.

(xf,tf)

S1
M1

S11
S12

F11

F12

a− a+
Fig. 4 Merger of Two Primitive Shocks. Two shocks S11 and S12 form at the space-time points F11 and F12,
then merge at pointM1 into the single shock S1. The straight green lines are some typical characteristic curves
originating in the shock interval [a−, a+] at time 0.

We begin with the simplest example of a point (x∗f , tf ) located on a shock which resulted from
the merger of two earlier “primitive” shocks. The situation is illustrated by the space-time diagram in
Fig. 4. The shock set S in space-time consists of three segment curves. Two segments S11, S12 consist
of shocks which formed at points F11 = (x∗F11

, tF11) and F12 = (x∗F12
, tF12), and then merged at point

M1 = (x∗M1
, tM1

). The third segment is the single shock S1 which resulted from the merger, ending in
the chosen point (x∗f , tf ). The random process is defined in the same manner as for the single shock

case, by assigning to all shock segments the probability densities p±1 (τ), p±1a(τ), a = 1, 2 to leave the
shock surface (backward in time) either to the right or left at time τ. These probabilities are assigned
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in the same way as before, by choosing a time t0 < tF11 (assuming here that tF11 ≤ tF12) and then

mapping the uniform distribution on the shock interval [bf−, b
f
+] at time t0 into the shock set via the

coalescing forward flow. This is illustrated in Fig. 4 for the case (b, t0) = (a, 0), where the uniform

distribution on the interval [af−, a
f
+] is mapped by the straight-line characteristics (green) to the shock.

Note that the formula (18) previously derived for the probability density still holds separately for each
segment of the shock set.

This assignment of probabilities again has the properties stated in the propositions of section 3.
Here we check the result E(ẋ(t)) = u∗f of Proposition 3.1 (which is also basic to Proposition 3.2). If
t < tF12

, then we have the single shock case of section 3. However, if t > tF12
, then one must take

into account both shocks. First consider the case tF12
< t < tM1

, which is illustrated in Fig. 5 for

the case (b, t0) = (a, 0). The probability distribution on the particle labels [cf−, c
f
−] at time t has a

continuous part p(c, t) and two atoms located at x∗11(t), x∗12(t) on the shocks S11, S12. The two atoms

have probabilities b1+(t)−b1−(t)

bf+−b
f
−

and b2+(t)−b2−(t)

bf+−b
f
−

corresponding to the relative lengths of the intervals

which map into those points. (See the magenta curves in Fig. 5). The continuous part of the distribution
makes a contribution to E(ẋ(t)) of the form∫ cf+

cf−

dc u(c, t) p(c, t) =
1

bf+ − b
f
−

∫
[bf−,b

f
+]\([b1−(t),b1+(t)]∪[b2−(t),b2+(t)])

db u(b, t).

The contribution of each atom to E(ẋ(t)) is(
ba+(t)− ba−(t)

bf+ − b
f
−

)
· u∗1a(t) =

1

bf+ − b
f
−

∫
[ba−(t),ba+(t)]

db u(b, t), a = 1, 2,

using again the fundamental property (7). Adding all of the contributions gives

E(ẋ(t)) =
1

bf+ − b
f
−

∫ bf+

bf−

db u(b, t) = uf∗ .

(xf,tf)

c− c+

a− a+a1−(t) a1+(t) a2−(t) a2+(t)

Fig. 5 Particle Positions with Two Shocks Before Merger. The black segment denotes the interval [cf−, c
f
+] of

particle positions at a time tF12 < t < tM1 . There are two atoms of finite probability located at x∗11(t), x∗12(t)
on the shocks S11, S12.
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(xf,tf)

a− a+

c− c+

a−(t) a+(t)

Fig. 6 Particle Positions with Two Shocks After Merger. The black segment denotes the interval [cf−, c
f
+] of

particle positions at a time tM1 < t < tf . There is a single atom of finite probability located at x∗1(t) on the
shock S1.

When instead tM1
< t < tf , the situation is very much like the single shock case considered before

(with any merger). This situation is illustrated in Fig. 6 for the case (b, t0) = (a, 0). The probability

distribution on the particle labels [cf−, c
f
−] at time t has a continuous part p(c, t) and one atom located

at x∗1(t) on the shocks S1. It is readily seen by the same calculation as in section 3 that E(ẋ(t)) = u∗f .
Although the definition of the random process and the verification of Propositions 3.1-2 are quite

straightforward geometrically, the demonstration of its Markov properties backward in time become a
bit cumbersome. To define the state-space of the (non-stationary) Markov process we must decompose
the space-time set which lies outside the shock S = S1 ∪S11 ∪S12 but which ends up at point (x∗f , tf ).

We define the right/left flanks of each shock segment S±1 ,S
±
1a, a = 1, 2 as those points which are carried

into the shock from the right/left by the forward coalescing flow. Set S± = S±1 ∪ S
±
11 ∪ S

±
12 We also

denote the straight-line characteristic entering the merger point as M↓1 and those entering the shock

formation points as F↓1a, a = 1, 2. The state space of the backward Markov process at time τ is then

X(τ) = (S(τ)× {−1, 0,+1}) ∪ (M(τ)× {0,±1, ↓})

· · · ∪ (S+(τ)× {+1}) ∪ (S−(τ)× {−1}) ∪ (F↓(τ)× {0}) ∪ (M↓(τ)× {↓})
where we use the notation A(τ) to denote the time-τ section of a space-time set A. These sections
may be the empty set for some τ. The discrete labels indicate the property to be on 13 the shock (0),
right of the shock (+), left of the shock (−), and downward from the shock (↓). The time-dependent
infinitesimal generator L(τ) of the process is then obtained by straightforward calculations to be

tM < τ < tf :

L(τ)f(x,±1) = −u(x, τ)f ′(x,±1), x ∈ S±1 (τ)

L(τ)f(x, 0) = −ū(x, τ)f ′(x, 0) +
∑
α=±1

λα1 (τ)[f(x, α)− f(x, 0)], x ∈ S1(τ)

L(τ)f(x,±1) = −u(x±, τ)f ′(x,±1), x ∈ S1(τ) (63)

with

λ±1 (τ) = p±1 (τ)/P1(τ), P1(τ) = 1−
∫ tf

τ

dt [p+
1 (t) + p−1 (t)].

13 Note that on the curves F↓1a which will form shocks at times tF1a , a = 1, 2, the label is also “0.”
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τ = tM1

L(τ)f(x,±1) = −u(x, tM )f ′(x,±1), x ∈ S±1 (tM )

L(τ)f(xM , 0) = −
∑
a=1,2

B1au
∗
1a(tM1

)f ′(xM , 0) +
∑

α∈{−1,↓,+}

λαM [f(xM , α)− f(xM , 0)]

L(τ)f(xM ,±1) = −u(xM±, tM )f ′(x,±1)
L(τ)f(xM , ↓) = −u(xM , tM−)f ′(x, ↓) (64)

with

B1a =
P1a

P11 + P12
, P1a =

∫ tM1

tF1a

dt [p+
1a(t) + p−1a(t)], a = 1, 2.

λ+
M = p+

12(tM )/(P11 + P12), λ−M = p−11(tM )/(P11 + P12),

λ↓M = (p+
11(tM ) + p−12(tM ))/(P11 + P12),

tF12
< τ < tM :

L(τ)f(x,±1) = −u(x, τ)f ′(x,±1), x ∈ S±(τ)

L(τ)f(x, 0) = −ū(x, τ)f ′(x, 0) +
∑
α=±1

λα1a(τ)[f(x, α)− f(x, 0)], x ∈ S1a(τ), a = 1, 2

L(τ)f(x,±1) = −u(x±, τ)f ′(x,±1), x ∈ S1a(τ), a = 1, 2

L(τ)f(x, ↓) = −u(x, τ)f ′(x, ↓), x ∈M↓1 (τ) (65)

with

λ±1a(τ) = p±1a(τ)/P1a(τ), P1a(τ) =

∫ τ

tF1a

dt [p+
1a(t) + p−1a(t)].

tF11 < τ < tF12 :

L(τ)f(x,±1) = −u(x, τ)f ′(x,±1), x ∈ S±(τ)

L(τ)f(x, 0) = −ū(x, τ)f ′(x, 0) +
∑
α=±1

λα11(τ)[f(x, α)− f(x, 0)], x ∈ S11(τ)

L(τ)f(x,±1) = −u(x±, τ)f ′(x,±1), x ∈ S11(τ)

L(τ)f(x, ↓) = −u(x, τ)f ′(x, ↓), x ∈M↓1(τ)

L(τ)f(x, 0) = −u(x, τ)f ′(x, 0), x ∈ F↓12(τ) (66)

0 < τ < tF11 : L(τ)f(x, β) = −u(x, τ)f ′(x, β), (x, β) ∈ X(τ) (67)

At t = tM1
the random particle on the shock segment S1 moving backward in time branches to S11

or S12 with probabilities B11, B12, respectively. The particle may also jump off the shock right, left or
downward at the merger point M1. Note that

B11u
∗
11(tM1

) +B12u
∗
12(tM1

) = u∗1(tM1
)

as follows from the fundamental property (7) applied to each of the shock segments S1,S11,S12 at the
merger point M1.

The above construction can be made completely general, using well-known facts about the entropy
solution of inviscid Burgers [2]. The fundamental property which enables our construction is that
any straight-line characteristic which hits the shock set S in space-time has not hit the shock set at
any earlier time. The shock set S at a fixed final time tf is, in general, a set of disconnected trees
branching backward in time. The trees consists of segments that end (backward in time) either in a
merger point or a formation point. At a merger point the shock segment branches into two or more
shock segments. Generically, there will be exactly two shock segments branching off at each merger
point, but non-generic mergers are possible that involve more than two lower segments branching off.
At each formation point the shock set terminates backward in time. At the final time tf one thus
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starts with a countable number of shock segments Sn1 , n1 = 1, 2, 3, .... Each shock segment Sn1 ends
in either a formation formation point Fn1

or a merger point Mn1
. At a merger point Mn1

a second
generation of shock segments appears, typically Sn11, Sn12, but occasionally also Sn13, Sn14,..., etc.
These second-generation segments Sn1n2

also end either in a merger pointMn1n2
or a formation point

Fn1n2
. Assuming that the inviscid Burgers solution started with smooth initial data u0, this branching

continues backward in time until every segment Sn1n2...np ends in a formation point Fn1n2...np . Call Tn1

the tree of shock segments branching from Sn1
(including segment Sn1

itself). Except for the merger and
formation points, every point on a shock segment Sn1n2...np is intersected by exactly two straight-line
characteristics curves, one from the left and one from the right. These characteristics for the tree Tn1

,

n1 = 1, 2, 3, ... all originate in a corresponding Lagrangian shock interval [b
(n1)
− , b

(n1)
+ ], n1 = 1, 2, 3, ... at

any time t0 before the first shock has appeared. A uniform distribution distribution on that interval
then maps to an assignment of probabilities p±Sn1n2...np

(τ) for all segments Sn1n2...np ∈ Tn1 . For each

tree Tn1
, n1 = 1, 2, 3, ... one has that∑

S#∈Tn1

∫ tf#

ti#

dτ [p+
S#(τ) + p−S#(τ)] = 1,

where ti#, t
f
# are the initial and final times of the segment S#. This specification of probabilities to

leave the shock right or left backward in time fully specifies the random process x̃(τ) and it is easy to
verify that it satisfies Propositions 3.1 and 3.2 by straightforward extensions of the previous arguments.

Appendix B: Spontaneous Stochasticity in the Khokhlov Solution For Pr <∞

We present here the proof of spontaneous stochasticity of backward Lagrangian trajectories at any
value of Prandtl number Pr < ∞ for the Khokhlov solution (40) of viscous Burgers. This is a more
generic example of a decaying Burgers solution than the stationary shock solution considered in section
7. Although it blows up at time t = 0 and is ill-defined there, it tends to zero in a typical way in the
limit t→ +∞.

To describe evolution backward in time from some chosen time tf > 0, we introduce the variable
τ = ln(tf/t), so that t = tfe

−τ and t ↓ 0 as τ ↑ +∞. The equation for backward-in-time stochastic
trajectories thus by the change of time becomes

dξ̃ = −[ξ̃ − L tanh(Lξ̃eτ/2νtf )]dτ +
√

2κtfe−τ dW̃ (τ). (68)

With uν(x, τ) ≡ −[x− L tanh(Lxeτ/2νtf )] we introduce a potential

φν(x, τ) ≡ −2νtfe
−τ ln cosh(Lxeτ/2νtf ) +

1

2
x2,

so that uν(x, τ) = −dφν(x, τ)/dx. This sign is opposite to that used previously in the paper, but is
chosen here so that φν acts formally as a Lyapunov function in the zero-noise limit and also so that
φν(x, τ) as a function of x has the form of a typical “double-well” potential, with a local maximum at
x = 0 and a pair of global minima near x = ±L. Note, in particular, that

φ∗(x) = lim
ν→0

φν(x, τ) = lim
τ→∞

φν(x, τ) = −L|x|+ 1

2
x2,

and φ∗(x) ≤ φν(x, τ) for all ν, τ > 0. The naive ν, κ→ 0 limit of (68) is

dξ = −[ξ − L sign(ξ)]dτ, (69)

with two deterministic solutions
ξ±(τ) = ±L(1− e−τ )

for τ > 0, both satisfying ξ±(0) = 0 and

φ∗(ξ±(τ)) = −1

2
L2(1− e−2τ ).

The statement of spontaneous stochasticity that we prove here is:



38

Proposition 8 For solution ξ̃(τ) of (68) with ξ̃(0) = 0 at any τ > 0, for α = min{1, 1
2Pr}, and for

any ε ∈ (0, 1),

lim
κ→0

Pr=ν/κ fixed

Pν,κ

(
φ∗(ξ̃(τ), τ) ≤ −1

2
α(1− ε)L2(1− e−2τ )

)
= 1.

Proof An application of the Itō lemma gives

d
(
e2τφν(ξ̃(τ), τ)

)
= −L2

[
tanh2

(
Lξ̃eτ

2νtf

)
+

1

2Pr
sech2

(
Lξ̃eτ

2νtf

)]
e2τdτ

+2νtf

[(
Lξ̃eτ

2νtf

)
tanh

(
Lξ̃eτ

2νtf

)
− ln cosh

(
Lξ̃eτ

2νtf

)]
eτdτ

+κtfe
τdτ −

√
2κtfe−τ uν(ξ̃, τ) e2τdW̃ (τ) (70)

Using tanh2(z) + sech2(z) = 1, the first term on the righthand side is ≤ −αL2e2τdτ. Integrating from
0 to τ thus yields

φ∗(ξ̃(τ)) ≤ φν(ξ̃(τ), τ) ≤ −1

2
αL2(1− e−2τ ) + κtfe

−τ (1− e−τ ) + R̃(1)
ν,κ(τ) + R̃(2)

ν,κ(τ)

with

R̃(1)
ν,κ(τ) = 2νtfe

−2τ

∫ τ

0

[(
Lξ̃(σ)eσ

2νtf

)
tanh

(
Lξ̃(σ)eσ

2νtf

)
− ln cosh

(
Lξ̃(σ)eσ

2νtf

)]
eσdσ

and

R̃(2)
ν,κ(τ) =

√
2κtfe

−2τ

∫ τ

0

[ξ̃(σ)− L tanh(Lξ̃(σ)eσ/2νtf )] e3σ/2dW̃ (σ).

Using 0 ≤ z tanh(z)− ln cosh(z) ≤ ln 2, it follows that

0 ≤ R̃(1)
ν,κ(τ) ≤ νtf (ln 2)e−τ (1− e−τ )

and thus

φ∗(ξ̃(τ)) > −1

2
α(1− ε)L2(1− e−2τ )

=⇒ R̃(2)
ν,κ(τ) >

1

2
εαL2(1− e−2τ )− (κ+ ν(ln 2))tfe

−τ (1− e−τ ).

Note that the lower bound in the latter inequality is positive for sufficiently small ν, κ. To bound the
probability of this event, we can use Chebyshev inequality. By the Itō isometry

Eν,κ
(
|R̃(2)
ν,κ(τ)|2

)
= 2κtfe

−4τ

∫ τ

0

Eν,κ
∣∣∣ξ̃(σ)− L tanh(Lξ̃(σ)eσ/2νtf )

∣∣∣2 e3σdσ

≤ 2κtfe
−4τ

∫ τ

0

[
Eν,κ|ξ̃(σ)|2 + L2

]
e3σdσ.

To obtain a bound on Eν,κ|ξ̃(τ)|2 we again use the Itō lemma, as

d(ξ̃2) = 2ξ̃dξ̃ + 2κtfe
−τdτ

=
[
−2ξ̃2 + 2ξ̃L tanh(Lξ̃(τ)eτ/2νtf ) + 2κtfe

−τ
]

dτ + dM̃

where M̃(τ) is a martingale with Eν,κ(M̃) = 0. By a Young’s inequality

2xL tanh(Lxeτ/2νtf ) ≤ x2 + L2 tanh2(Lxeτ/2νtf ) ≤ x2 + L2,

so that

dEν,κ(ξ̃2) ≤
(
−Eν,κ(ξ̃2) + L2 + 2κtfe

−τ
)

dτ.
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This integrates to

Eν,κ
(
ξ̃2(τ)

)
≤ L2(1− e−τ ) + 2κtfτe

−τ ≤ L2 + 2κtfτe
−τ

and then

Eν,κ
(
|R̃(2)
ν,κ(τ)|2

)
≤ 2κtfe

−τ
[

2

3
L2(1− e−3τ ) + κtfe

−τ
(
τ − 1

2
(1− e−2τ

)]
.

Since this vanishes as κ→ 0, the Chebyshev inequality completes the proof. �
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