
ar
X

iv
:1

40
1.

56
56

v2
  [

m
at

h.
C

T
] 

 7
 F

eb
 2

01
4

YONEDA LEMMA FOR COMPLETE SEGAL SPACES

DAVID KAZHDAN AND YAKOV VARSHAVSKY

Abstract. In this note we formulate and give a self-contained proof of the
Yoneda lemma for ∞-categories in the language of complete Segal spaces.

To the memory of I.M.Gelfand
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Introduction

In recent years∞-categories or, more formally, (∞, 1)-categories appear in vari-
ous areas of mathematics. For example, they became a necessary ingredient in the
geometric Langlands problem. In his books [Lu1, Lu2] Lurie developed a theory of
∞-categories in the language of quasi-categories and extended many results of the
ordinary category theory to this setting.

In his work [Re1] Rezk introduced another model of ∞-categories, which he
called complete Segal spaces. This model has certain advantages. For example, it
has a generalization to (∞, n)-categories (see [Re2]).

It is natural to extend results of the ordinary category theory to the setting of
complete Segal spaces. In this note we do this for the Yoneda lemma.

D.K. was partially supported by the ERC grant No. 247049-GLC, Y.V. was partially supported
by the ISF grant No. 1017/13.
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To formulate it, we need to construct a convenient model of the ”∞-category of
spaces”, which an ∞-analog of the category of sets. Motivated by Lurie’s results,
we define this ∞-category to be the simplicial space ”classifying left fibrations”.
After this is done, the construction of the Yoneda embedding and the proof of the
Yoneda lemma goes almost like in the case of ordinary categories.

In our next works [KV1, KV2] we study adjoint functors, limits and colimits,
show a stronger version of the Yoneda lemma, and generalize results of this paper
to the setting of (∞, n)-categories.

We thank Emmanuel Farjoun, Vladimir Hinich and Nick Rozenblyum for stim-
ulating conversations and valuable remarks.

This paper is organized as follows. To make the work self-contained, in the first
section we introduce basic definitions and discuss properties of model categories,
simplicial sets, simplicial spaces and Segal spaces, assuming only basic category
theory. In the second section we introduce left fibrations, construct the∞-category
of spacesS, and formulate and prove the Yoneda lemma. Next, in the third section,
we study quasifibrations of simplicial spaces, which are needed for our argument and
are also very interesting objects for their own. Finally, the last section is devoted
to the proof of the properties of S, formulated in the second section.

1. Preliminaries

1.1. Model categories.

1.1.1. Notation. Let C be a category. (a) For an element Z ∈ C, we denote by
C/Z the overcategory over Z.

(b) For a pair of morphisms i : A → B and p : X → Y in C, we denote by
HomC(i, p) the set of commutative diagrams in C

(1.1)

A
a

−−−−→ X

i

y p

y

B
b

−−−−→ Y.

We say that i is a retract of p, if there exist α ∈ HomC(i, p) and β ∈ HomC(p, i)
such that β ◦ α = Idi.

(c) We say that p has the right lifting property (RLP) with respect to i (and that
i has the left lifting property (LLP) with respect to p), if for every commutative
diagram (1.1) there exists a morphism c : B → X such that p ◦ c = b and c ◦ i = a.

Equivalently, this happens if and only if the natural map of sets

(i∗, p∗) : Hom(B,X)→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )

is surjective.
(d) Assume that C has fiber products. Then for every morphism f : X → Y in

C/Z and morphism g : Z ′ → Z in C, we write g∗(f) : g∗(X) → g∗(Y ) instead of
f ×Z Z ′ : X ×Z Z ′ → Y ×Z Z ′ and call it the pullback of f .

(e) We say that a category C is Cartesian, if C has finite products, and for
every X,Y ∈ C there exists an element XY ∈ C, representing a functor Z 7→
Hom(Z × Y,X), which is called the internal hom of X and Y .

1.1.2. Example. Let C be the category of functors C = Fun(Γop, Set), where Γ is
a small category, and Set is the category of sets.
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(a) Since category Set has all limits and colimits, category C also has these
properties. Explicitly, every functor α : I → C defines a functor α(γ) : I → Set
for each γ ∈ Γ, and we have limI(α)(γ) = limI(α(γ)) and similarly for colimits. In
particular, category C has products.

(b) For every γ ∈ Γ, denote by Fγ ∈ C the representable functor HomΓ(·, γ).
Then for every X,Y ∈ C there exists their internal hom XY ∈ C, defined by the
rule XY (γ) = Hom(Y × Fγ , X) with obvious transition maps. In other words,
category C is Cartesian.

The following lemma is straightforward.

Lemma 1.1.3. Let C be a Cartesian category, and let i : A→ B, j : A′ → B′ and
p : X → Y be morphisms in C. Then j has the LLP with respect to (i∗, p∗) : X

B →
XA ×Y A Y B if and only if (i∗, j∗) : (A × B

′) ⊔(A×A′) (B × A
′) → B × B′ has the

LLP with respect to p.

Definition 1.1.4. (compare [GJ, II,1]). A model category is a category C, equipped
with three collections of morphisms, called cofibrations, fibrations and weak equiv-
alences, which satisfy the following axioms:

CM1: The category C has all finite limits and colimits.

CM2 (2-out-of-3): In a diagram X
f
→ Y

g
→ Z if any two of the morphisms f, g

and g ◦ f are weak equivalences, then so is the third.
CM3 (retract): If f is a retract of g, and g is a weak equivalence/fibration/cofibration

then so is f .
CM4 (lifting property): Let i be a cofibration and p be a fibration. Then p has

the RLP with respect to i, if either i or p is a weak equivalence.
CM5 (decomposition property): any morphism f has a decomposition
(a) f = p ◦ i, where p is fibration, and i is a cofibration and weak equivalence;
(b) f = q ◦ j, where q is fibration and weak equivalence, and j is a cofibration.

1.1.5. Notation. (a) A map in a model category C is called a trivial cofibration
(resp. trivial fibration) if it is cofibration (resp. fibration) and a weak equivalence.

(b) By CM5, every morphism f : X → Y can be written as a composition

X
i
→ X ′ p

→ Y , where i is a trivial cofibration, and p a fibration. In such a case, we
say that p is a fibrant replacement of f .

(c) An element X ∈ C is called fibrant (resp. cofibrant), if the canonical map
X → pt (resp. ∅ → X), where pt (resp ∅) is the final (resp. initial) object of C, is
a fibration (resp. cofibration).

For the following basic fact see, for example, [GJ, II, Lem. 1.1].

Lemma 1.1.6. A map f : X → Y in a model category C is a cofibration (resp.
trivial cofibration) if and only if it has the LLP with respect to all trivial fibrations
(resp. fibrations).

(b) A map f : X → Y in a model category C is a fibration (resp. trivial fi-
bration) if and only if it has the RLP with respect to all trivial cofibrations (resp.
cofibrations).

1.1.7. Remarks. (a) Lemma 1.1.6 implies in particular that (trivial) cofibrations
and (trivial) fibrations are closed under compositions, and that all isomorphisms
are trivial cofibrations and trivial fibrations.
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(b) It also follows immediately from Lemma 1.1.6 that (trivial) fibrations are pre-
served by all pullbacks, and that (trivial) cofibrations are preserved by all pushouts.

(c) It follows from CM5 (a) and CM2 that every weak equivalence f has a
decomposition f = p ◦ i, where p is trivial fibration, and i is a trivial cofibration.

Definition 1.1.8. We call a model category C Cartesian, if C is a Cartesian cat-
egory, the final object of C is cofibrant, and for every cofibration i : A → B and
fibration p : X → Y , the induced map q : XB → XA ×Y A Y B is a fibration and,
additionally, q is a weak equivalence if either i or p is.

1.1.9. Remark. Taking A = ∅ or Y = pt in the definition of Cartesian model
category, we get the following particular cases.

(a) If B is cofibrant, then for every (trivial) fibration X → Y , the induced map
XB → Y B is a (trivial) fibration.

(b) If X is fibrant, then for every (trivial) cofibration A→ B, the induced map
XB → XA is a (trivial) fibration.

Lemma 1.1.10. Let C be a model category, which is Cartesian as a category, and
such that the final object of C is cofibrant. Then C is a Cartesian model category
if and only if for every two cofibrations i : A → B and i′ : A′ → B′, the induced
morphism j : (A×B′)⊔(A×A′) (B×A

′)→ B×B′ is a cofibration and, additionally,
j is a weak equivalence, if either i or i′ is.

Proof. This follows from a combination of Lemma 1.1.6 and Lemma 1.1.3. �

Definition 1.1.11. A model category C is called:
(a) right proper, if weak equivalences are preserved by pullbacks along fibrations;
(b) left proper, if weak equivalence are preserved by pushouts along cofibrations;
(c) proper, if it is both left and right proper.

1.2. Simplicial sets.

1.2.1. Category ∆. (a) For n ≥ 0, we denote by [n] the category, corresponding
to a partially ordered set {0 < 1 < . . . < n}. Let ∆ be the full subcategory of the
category of small categories Cat, consisting of objects [n], n ≥ 0.

(b) For each (m + 1)-tuple of integers 0 ≤ k0 ≤ k1 ≤ . . . ≤ km ≤ n, we denote
by δk0,...,km the map δ : [m]→ [n] such that δ(i) = ki for all i.

(c) For 0 ≤ i ≤ n we define an inclusion di : [n − 1] →֒ [n] such that i /∈ Im di;
for 0 ≤ i < j ≤ n, we define an inclusion di,j : [n− 2] →֒ [n] such that i, j /∈ Im di,j ;
for 0 ≤ i ≤ n−m we define an inclusion ei : [m]→ [n] defined by ei(k) := k + i.

1.2.2. Spaces. (a) By the category of spaces or, what is the same, the category
simplicial sets we mean the category of functors Sp := Fun(∆op, Set).

(b) For X ∈ Sp, we set Xn := X([n]). For every τ : [n] → [m] in ∆, we denote
by τ∗ : Xm → Xn the induced map of sets. For every morphism f : X → Y in Sp
we denote by fn the corresponding map Xn → Yn.

(c) By 1.1.2, category Sp is Cartesian and has all limits and colimits.

1.2.3. The standard n-simplex. (a) For every n ≥ 0, we denote by ∆[n] ∈ Sp
the functor Hom∆(·, [n]) : ∆op → Set. Then pt := ∆[0] is a final object of Sp.

(b) The Yoneda lemma defines identifications HomSp(∆[n], X) = Xn and
HomSp(∆[n],∆[m]) = Hom∆([n], [m]) for all X ∈ Sp and all n,m ≥ 0.

(c) We denote by ∆i[n] the image of the inclusion di : ∆[n− 1]→ ∆[n], and set
∂∆[n] := ∪ni=0∆

i[n] ⊂ ∆[n] and Λk[n] := ∪i6=k∆
k[n] ⊂ ∆[n] for all k = 0, . . . , n.
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1.2.4. Fibers. (a) For X ∈ Sp, we say x ∈ X instead of x ∈ X0. By 1.2.3 (b),
each x ∈ X corresponds to a map x : pt→ X .

(b) For every morphism f : Y → X , we denote by f−1(x) or Yx the fiber product
{x} ×X Y := pt×x,XY and call it the fiber of f at x.

(c) For every Z ∈ Sp and X,Y ∈ Sp/Z, we denote by MapZ(X,Y ) the fiber of
Y X → ZX over the projection (X → Z) ∈ ZX .

Definition 1.2.5. (a) A map f : X → Y in Sp is called a (Kan) fibration, if it has
the RLP with respect to inclusions Λk[n] →֒ ∆[n] for all n > 0, k = 0, . . . , n.

(b) A map f : X → Y in Sp is called a weak equivalence, if it induces a weak
equivalence |f | : |X | → |Y | between geometric realisations (see [GJ, p. 60]).

(c) A map f : X → Y in Sp is called a cofibration, if fn : Xn → Yn is an inclusion
for all n.

Theorem 1.2.6. Category Sp has a structure of a proper Cartesian model category
such that cofibrations, fibrations and weak equivalences are defined in Definition
1.2.5. In particular, all X ∈ Sp are cofibrant, and trivial fibrations are precisely
the maps which have the RLP with respect to inclusions ∂∆[n] →֒ ∆[n], n ≥ 0.

Proof. See [GJ, I, Thm 11.3, Prop 11.5 and II, Cor 8.6] and note that in the case
of model category Sp, ”Cartesian” means the same as ”simplicial”. �

Definition 1.2.7. We say that X ∈ Sp is a (contractible) Kan complex, if the
projection X → pt is a (trivial) fibration.

1.2.8. Connected components. (a) We say that X ∈ Sp is connected, if it can
not be written as X = X ′ ⊔ X ′′, where X ′, X ′′ 6= ∅. We say that Y ⊂ X is a
connected component of X , if it is a maximal connected subspace of X . Notice that
X is a disjoint union of its connected components.

(b) We denote the set of connected components of X by π0(X). Then every map
f : X → Y in Sp induces a map π0(f) : π0(X)→ π0(Y ). Note that X is connected
if and only if its geometric realization |X | is connected. In particular, we have an
equality π0(X) = π0(|X |). Therefore for every weak equivalence f : X → Y in Sp,
the map π0(f) is a bijection.

(c) For x, y ∈ X , we say that x ∼ y, if x and y belong to the same connected
component of X . If X is a Kan complex, then x ∼ y if and only if there exists a
map α : ∆[1]→ X such that α(0) = x and α(1) = y (see [GJ, Lem 6.1]).

Lemma 1.2.9. (a) Let f : X → Y be a trivial fibration. Then the space of sections
MapY (Y,X) of f is non-empty and connected.

(b) Let f : X → Y be a fibration in Sp. Then f is trivial if and only if the Kan
complex f−1(y) is contractible for every y ∈ Y .

(c) Let f : X → Y is a map of fibrations over Z in Sp. Then f is a weak
equivalence if and only if the map of fibers fz : Xz → Yz is a weak equivalence for
every z ∈ Z.

Proof. (a) Since Y is cofibrant, the projection XY → Y Y is a trivial fibration (by
1.1.9 (a)). Hence its fiber MapY (Y,X) is a contractible Kan complex (by 1.1.7 (b)),
therefore it is non-empty and connected by 1.2.8 (b).

(b) By the last assertion of Theorem 1.2.6, the fibration f is trivial if and only if
its pullback τ∗(f) is a trivial fibration for all τ : ∆[n] → Y . Thus we may assume
that Y = ∆[n]. Then for each y ∈ ∆[n], the inclusion y : ∆[0] → ∆[n] is a weak
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equivalence. Thus Xy → X is a weak equivalence, because Sp is right proper.
Hence, by 2-out-of-3, f is a weak equivalence if and only if Xy → ∆[0] is.

(c) will be proven in 1.3.13. �

1.3. Simplicial Spaces.

1.3.1. Notation. (a) By the category of simplicial spaces, we mean the category
of functors sSp = Fun(∆op, Sp) = Fun(∆op ×∆op, Set).

(b) For X ∈ sSp and n,m ≥ 0, we set Xn := X([n]) ∈ Sp and Xn,m := (Xn)m ∈
Set. For every morphism f : X → Y in sSp, we denote by fn : Xn → Yn the
corresponding morphism in Sp.

(c) For every τ : [n]→ [m] in ∆, we denote by τ∗ : Xm → Xn the induced map of
spaces. We also set δk0,...,km := (δk0,...,km)∗ : Xn → Xm, di := (di)∗ : Xn → Xn−1,
and ei := (ei)∗ : Xn → Xm.

(d) By 1.1.2, category sSp is Cartesian and has all limits and colimits. For
X,Y ∈ sSp, we define the mapping space Map(Y,X) := (XY )0 ∈ Sp.

1.3.2. Two embeddings Sp →֒ sSp. (a) Denote by diag : Sp → sSp (resp.
diag : Set→ Sp) the map which associates to each X the constant simplicial space
(resp. set) [n] 7→ X, τ 7→ IdX . For each X ∈ Sp, we denote the constant simplicial
space diag(X) ∈ sSp simply by X .

(b) The embedding diag : Set → Sp gives rise to an embedding disc : Sp =
Fun(∆op, Set)→ sSp = Fun(∆op, Sp). Then the image of disc, consists of discrete
simplicial spaces, that is, X ∈ sSp such that Xn ∈ Sp is discrete (that is, each map
∆[1]→ Xn is constant) for all n.

(c) We set F [n] := disc(∆[n]), ∂F [n] := disc(∂∆[n]) and F i[n] := disc(Λi[n]).

1.3.3. Standard bisimplex. (a) For n,m ≥ 0, we set [n,m] := ([n], [m]) ∈ ∆2

and ✷[n,m] := F [n]×∆[m] ∈ sSp. In particular, we have equalities F [n] = ✷[n, 0],
∆[m] = ✷[0,m] and pt = F [0] = ∆[0].

(b) Note that ✷[n,m] is the functor Hom∆×∆(·, [n,m]). Then, by the Yoneda
lemma, we get identifications Hom(✷[n,m],✷[n′,m′]) = Hom([n,m], [n′,m′]) and
Hom(✷[n,m], X) = Xn,m. In particular, we have identifications
Map(F [n], X) = Xn and Hom(F [n], F [m]) = Hom([n], [m]).

(c) We also set ∂✷[n,m] := (∂F [n]×∆[m]) ⊔(∂F [n]×∂∆[m]) (F [n]× ∂∆[m]) and
X∂n := Map(∂F [n], X).

1.3.4. Fibers. (a) For X ∈ sSp, we say x ∈ X instead of x ∈ X0,0, and x ∼ y ∈ X
instead of x ∼ y ∈ X0. By 1.3.3 (b), each x ∈ X corresponds to a map x : pt→ X .

(b) As in 1.2.4, for every morphism f : Y → X in sSp, we denote by f−1(x) or
Yx the fiber product {x} ×X Y := pt×x,XY and call it the fiber of f at x.

(c) For every Z ∈ sSp and X,Y ∈ sSp/Z we denote byMapZ(X,Y ) ∈ sSp the
fiber of Y X → ZX over the projection (X → Z) ∈ ZX . We also set
MapZ(X,Y ) :=MapZ(X,Y )0 ∈ Sp.

Definition 1.3.5. We say that a map f : X → Y in sSp is a (Reedy) fibration if
for every n ≥ 0 the induced map f̄n : Xn → Yn ×Y∂n

X∂n is a Kan fibration in Sp.

Theorem 1.3.6. Category sSp has Cartesian proper model category such that cofi-
brations and weak equivalences are degree-wise and fibrations are Reedy fibrations.

Proof. All the assertions, except that the model category is Cartesian, are proven
in [GJ, IV,Thm 3.9]. For the remaining assertion, we use Lemma 1.1.10. Now
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the assertion follows from the fact that pushouts, products, cofibrations and weak
equivalences are defined degree-wise, and the model category Sp is Cartesian. �

1.3.7. Remarks. (a) It follows from Lemma 1.1.3 that a map f : X → Y in sSp
is a fibration if and only if it has the RLP with respect to all inclusions
(∂F [n]×∆[m]) ⊔(∂F [n]×Λi[m]) (F [n]× Λi[m]) →֒ ✷[n,m].

(b) If f : X → Y is a Reedy fibration, then the map fn : Xn → Yn is a fibration
for all n. Indeed, f0 = f̄0 is a fibration by definition, fF [n] : XF [n] → Y F [n] is a
fibration by 1.1.9 (a), hence fn = (fF [n])0 is a fibration.

(c) Let X → Y be a fibration in sSp, and let i : A → B be a cofibration
over Y . Then the map XB → Y B ×Y A XA is fibration by Theorem 1.3.6. Hence
taking fibers at (B → Y ) ∈ Y B and passing to zero spaces, we get that the map
i∗ : MapY (B,X)→ MapY (A,X) is a fibration, thus MapY (B,X) is a Kan complex.

1.3.8. Homotopy equivalence. Let Z ∈ sSp (resp. Z ∈ Sp).
(a) We say that maps f : X → Y and g : X → Y in sSp/Z (resp. Sp/Z) are

homotopic over Z and write f ∼Z g, if f ∼ g as elements of MapZ(X,Y ).
Notice that if Y → Z is a fibration, then MapZ(X,Y ) ∈ Sp is a Kan complex (by

1.3.7 (c)), thus by 1.2.8 (c) f ∼Z g means that there exists a map h : X×∆[1]→ Y
over Z such that h|0 = f and h|1 = f .

(b) We say that a map f : X → Y is a homotopy equivalence over Z, if there exists
a map g : Y → X over Z, called a homotopy inverse of f , such that f ◦ g ∼Z IdY
and g ◦ f ∼Z IdX .

1.3.9. Remarks. (a) Let f : X → Y be a homotopy equivalence over Z with
homotopy inverse g. Then for every τ : Z ′ → Z, the pullback τ∗(f) is a homotopy
equivalence over Z ′ with homotopy inverse τ∗(g). Similarly, for every K ∈ sSp, the
map fK : XK → Y K is a homotopy equivalence with homotopy inverse gK : Y K →
XK . Also, a composition of homotopy equivalences is a homotopy equivalence.

(b) Any homotopy equivalence is a weak equivalence. Indeed, the assertion for
Sp follows from the fact that if f ∼Z g, then the geometric realizations satisfy
|f | ∼|Z| |g|, and the assertion for sSp follows from that for Sp.

1.3.10. Strong deformation retract. Let Z ∈ sSp (resp. Z ∈ Sp).
(a) We say that an inclusion i : Y →֒ X over Z is a strong deformation retract

over Z, if there exists a map h : X ×∆[1] → X over Z such that h|0 = IdX , and

h|1(X) ⊂ Y , h|Y×∆[1] is Y ×∆[1]
pr2−→ Y →֒ X .

(b) If i : Y →֒ X is a strong deformation retract over Z, then i is a homotopy
equivalence over Z, and h|1 : X → Y is its homotopy inverse. Also in this case,
Y → Z is a retract of X → Z. In particular, if X → Z is a fibration, then Y → Z
is a fibration as well (by CM3).

(c) Conversely, a trivial cofibration i : Y → X between fibrations over Z is a
strong deformation retract over Z.

Proof. Since i : Y → X is trivial cofibration, while Y → Z is a fibration, there
exists a map p : X → Y over Y such that p ◦ i = IdY . Next, the induced map
(∂∆[1]×X) ⊔(∂∆[1]×Y ) (∆[1]× Y ) →֒ ∆[1]×X is a trivial cofibration (see Lemma
1.1.10). Since X → Z is a fibration, there exists a map h : ∆[1] ×X → X over Z
such that h|0 = IdX , h|1 = p and h|∆[1]×Y = pr2. �
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Lemma 1.3.11. (a) A morphism f : X → Y over Z is a homotopy equiva-
lence over Z if and only if for every map α : K → Z in sSp, the induced map
π0(MapZ(K,X))→ π0(MapZ(K,Y )) is a bijection.

(b) Every weak equivalence between fibrations is a homotopy equivalence. In
particular, a pullback of a weak equivalence between fibrations is a weak equivalence.

(c) For each fibration X → Y ×∆[1], there exists a weak equivalence X |0 → X |1
of fibrations over Y .

(d) Let f : YA → A be a fibration and let A →֒ B be trivial cofibration. Then
there exists a fibration g : YB → B, whose restriction to A is f .

Proof. (a) If f is a homotopy equivalence, then the induced map MapZ(K,X) →
MapZ(K,Y ) is a homotopy equivalence (by 1.3.9 (a)), thus the assertion follows
from 1.3.9 (b) and 1.2.8 (b). Conversely, applying the assumption for the projection
Y → Z, we find a morphism g : Y → X over Z such that f ◦ g ∼Z IdY . Next
applying it to the projection X → Z, we find that g ◦ f ∼Z IdX .

(b) By 1.1.7 (c) and 1.3.9 (a), it is enough to consider separately cases of a trivial
cofibration and a trivial fibration. When f is a trivial cofibration, the assertion
follows from 1.3.10 (c) and (b). When f is a trivial fibration, the assertion follows
from (a). Indeed, each map MapZ(K,X)→ MapZ(K,Y ) is a trivial fibration, thus
the map on π0 is a bijection by 1.2.8 (b). The last assertion follows from 1.3.9 (a).

(c) Since each map δi : ∆[0] →֒ ∆[1] is a trivial cofibration, the induced map
(δi)∗ : X∆[1] → X ×∆[1]×Y (Y ×∆[1])∆[1] is a trivial fibration. Taking the pullback

with respect to the inclusion Y →֒ (Y ×∆[1])∆[1], corresponding to IdY×∆[1], we

get a trivial fibration X̃ := X∆[1] ×(∆[1]×Y )∆[1] Y → X |i over Y . Thus both X |0

and X |1 are homotopy equivalent to X̃ over Y (by (b)), hence they are homotopy
equivalent.

(d) will be proven in 3.2.3. �

1.3.12. Remark. It follows from Lemma 1.3.11 (b) and 1.2.8 (b) that a Kan
complex X ∈ Sp is contractible if and only if the projection X → pt is a homotopy
equivalence. Thus by definition this happens if and only if X is non-empty and IdX
is homotopic to a constant map X → {x} ⊂ X .

1.3.13. Proof of Lemma 1.2.9 (c). If f is a weak equivalence, then each fz : Xz →
Yz is a weak equivalence by Lemma 1.3.11 (b).

Conversely, write f as p ◦ i, where i : X → X ′ is a trivial cofibration, and
p : X ′ → Y is fibration. By the ”only if” assertion, each iz is a weak equivalence.
Since each fz is a trivial fibration by assumption, each pz is a weak equivalence
by 2-out-of-3. Since pz : X ′

z → Yz is a fibration, it is a trivial fibration. Hence all
fibers of each pz are contractible. Thus all fibers of p are contractible, hence p is a
trivial fibration by Lemma 1.2.9 (b). Therefore f is a weak equivalence. �

1.4. Segal spaces. We follow closely [Re1].

1.4.1. Notation. (a) We say that X ∈ sSp is a Segal space, if X is fibrant, and

ϕn =: δ01 ×δ1 . . .×δn−1 δn−1,n : Xn → X1 ×X0 . . .×X0 X1

is a weak equivalence for each n ≥ 2.
(b) Notice that since Reedy model category is Cartesian, when X is fibrant, the

map ϕn is a fibration. Thus a fibrant object X ∈ sSp is a Segal space if and only
if each map ϕn is a trivial fibration.
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1.4.2. ”Objects” and ”Mapping spaces”. Let X be a Segal space.
(a) By a space of objects of X we mean space X0. We set ObX := X0,0 and call

it the set of objects of X . As in 1.3.4, we say x ∈ X instead of x ∈ ObX .
(b) For each x, y ∈ X , we denote by map(x, y) = mapX(x, y) ∈ Sp the fiber of

(δ0, δ1) : X1 → X0×X0 over (x, y). Notice that since X is fibrant, the map (δ0, δ1)
is a fibration, thus each space map(x, y) is a Kan complex. For each x, y, z ∈ X ,
we denote by map(x, y, z) the fiber of (δ0, δ1, δ2) : X3 → (X0)

3 over (x, y, z).
(c) For each x ∈ X , we set idx := δ0,0(x) ∈ mapX(x, x).
(d) We call a map between Segal spaces f : X → Y is fully faithful, if for every

x, y ∈ X the induced map mapX(x, y)→ mapY (f(x), f(y)) is a weak equivalence.

1.4.3. The homotopy category. (a) Let X be a Segal space, and x, y, z ∈
X . Then the trivial fibration ϕ2 : X2 → X1 ×X0 X1 induces a trivial fibration
map(x, y, z)→ map(x, y)×map(y, z) (by 1.1.7 (b)), which by Lemma 1.2.9 (a) has
a section s, unique up to homotopy. Thus we have a well-defined map

[s] := π0(s) : π0(map(x, y))× π0(map(y, z))→ π0(map(x, y, z)).

(b) The map δ02 : X2 → X1 induces a map δ02 : map(x, y, z) → map(x, z).
Therefore for every [α] ∈ π0(map(x, y)) and [β] ∈ π0(map(y, z)) we can define

(1.2) [β] ◦ [α] := π0(δ02)([s]([α], [β])) ∈ π0(map(x, z)).

It is not difficult to prove (see [Re1, Prop. 5.4]) that this composition is associative
and satisfies [α] ◦ [idx] = [α] = [idy] ◦ [α] for all α ∈ map(x, y).

(c) Using (b), one can associate to X its homotopy category HoX , whose objects
are ObX , morphisms defined by HomHoX(x, y) := π0(mapX(x, y)), the composi-
tion is defined by (1.2), and the identity map is [idx] ∈ HomHoX(x, x).

1.4.4. Complete Segal spaces. Let X be a Segal space.
(a) We say that α ∈ mapX(x, y) ⊂ X1 is a homotopy equivalence, if the corre-

sponding morphism [α] ∈ MorHoX is an isomorphism. Explicitly, this means that
there exist β ∈ map(y, x) such that [β] ◦ [α] = [idx] and [α] ◦ [β] = [idy].

(b) Let Xheq ⊂ X1 be the maximal subspace such that each α ∈ Xheq is a
homotopy equivalence. It is not difficult to prove (see [Re1, Lem. 5.8]) that Xheq ⊂
X1 is a union of connected components.

(c) Notice that since each [idx] is an isomorphism, we have idx ∈ Xheq for every
x ∈ X . Therefore the map s0 := δ0,0 : X0 → X1 factors through Xheq. We say that
X is called a complete Segal space, if the map s0 : X0 → Xheq is a weak equivalence.

Lemma 1.4.5. Let X ∈ Sp be a Segal space.
(a) Let X ′

1 ⊂ X1 be the union of connected components, intersecting s0(X0), and
set X ′

3 := δ−1
02 (X

′
1) ∩ δ

−1
13 (X

′
1) ⊂ X3. Then X ′

1 ⊂ Xheq and δ12(X
′
3) = Xheq.

(b) X is complete if and only if δ0 : Xheq →֒ X1 → X0 is a trivial fibration.

Proof. (a) SinceXheq ⊂ X1 is a union of connected components, inclusion s0(X0) ⊂
Xheq implies that X ′

1 ⊂ Xheq. Next, for each α ∈ X ′
3 we have δ02(α), δ13(α) ∈

X ′
1 ⊂ Xheq, hence [δ02(α)] = [δ12(α)] ◦ [δ01(α)] and [δ13(α)] = [δ23(α)] ◦ [δ12(α)] are

isomorphisms in HoX . Therefore [δ12(α)] is isomorphism, thus δ12(α) ∈ Xheq.
Conversely, let α ∈ map(x, y) ⊂ Xheq and let β ∈ map(y, x) such that [β] ◦ [α] =

[idx] and [α] ◦ [β] = [idy]. Since ϕ3 is a trivial fibration, it is surjective. Thus there
exists γ ∈ X3 such that δ01(γ) = δ23(γ) = β and δ12(γ) = α. Then, by assumption,
δ02(γ) ∼ idy and δ13(γ) ∼ idx, thus γ ∈ X

′
3.
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(c) By 1.4.4 (b), the composition Xheq →֒ X1 → X0 ×X0 is a fibration, thus a
projection δ0 : Xheq → X0 is a fibration. Since δ0 ◦ s0 = IdX0 , we conclude that
s0 : X0 → Xheq is a weak equivalence if and only if δ0 : Xheq → X0 is a trivial
fibration. �

1.4.6. Cartesian structure. Rezk showed (see [Re1, Cor 7.3]) that if X is a
(complete) Segal space, then XK is a (complete) Segal space for every K ∈ sSp.

2. The Yoneda lemma

2.1. Left fibrations.

Definition 2.1.1. We call a fibration f : X → Y in sSp a left fibration, if the map
(f∗, (δ

0)∗) : XF [1] → X×Y Y F [1], induced by δ0 : F [0] →֒ F [1], is a trivial fibration.

Lemma 2.1.2. (a) A pullback of a left fibration is a left fibration.
(b) If f : X → Y is a left fibration, then fZ : XZ → Y Z is a left fibration for

every Z ∈ sSp.

Proof. (a) follows from the fact that a pullback of a (trivial) fibration is a (trivial)
fibration (see 1.1.7 (b)).

(b) By definition, the map XF [1] → X ×Y Y F [1] is a trivial fibration. Since
Reedy model structure is Cartesian, we conclude that fZ is a fibration, while the
map (XZ)F [1] = (XF [1])Z → (X×Y Y F [1])Z = XZ×YZ

(Y Z)F [1] is a trivial fibration
(use 1.1.9). Thus fZ : XZ → Y Z is a left fibration. �

Lemma 2.1.3. Let f : X → Y be a fibration in sSp. The following conditions are
equivalent:

(a) f is a left fibration.
(b) For every n ≥ 1, the map (f∗, (δ

0)∗) : XF [n] → X ×Y Y F [n], induced by
δ0 : [0] →֒ [n], is a trivial fibration.

(c) For every n ≥ 1, the map pn : Xn → X0×Y0 Yn, induced by δ0 : [0] →֒ [n], is
a trivial fibration.

Proof. (a) =⇒ (b) By (a) and 1.1.9 (a), the map

p : XF [1]×F [n] = (XF [1])F [n] → (X ×Y Y
F [1])F [n] = XF [n] ×Y F [n] Y F [1]×F [n]

is a trivial fibration. Since trivial fibrations are stable under retracts (axiom CM3),
it remains to show that the map XF [n+1] → X ×Y Y F [n+1] is a retract of p. It is
enough to show that δ0 : [0] →֒ [n+1] is a retract of δ0 : [n]×[0] →֒ [n]×[1]. Consider

maps [n+1]
α
−→ [n]× [1]

β
−→ [n+1], where α(0) = (0, 0), α(i) = (i− 1, 1) for i ≥ 1

and β(i, j) = (i+1)j. Then β ◦α = Id, α(0) ∈ [n]×{0} and β([n]×{0}) = 0, thus
α and β realize δ0 : [0] →֒ [n+ 1] as a retract of δ0 : [n]× [0] →֒ [n]× [1].

(b) =⇒ (c) Pass to the zero spaces.
(c) =⇒ (a) First we assume that Y is fibrant. Since f is a fibration, X is fibrant,

and the induced map XF [1] → X ×Y Y F [1] is a fibration. It remains to show
that each map (XF [1])n → Xn ×Yn

(Y F [1])n is a weak equivalence. Since the map
Xn → X0 ×Y0 Yn is a trivial fibration, its pullback

Xn ×Yn
(Y F [1])n → (X0 ×Y0 Yn)×Yn

(Y F [1])n = X0 ×Y0 (Y
F [1])n

is a trivial fibration. It remains to show that the map (XF [1])n → X0×Y0 (Y
F [1])n

or, equivalently, qn : (XF [1]×F [n])0 → X0 ×Y0 (Y
F [1]×F [n])0 is a weak equivalence.
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We follow the argument of [Re1, Lem 10.3]. Let γi : [n + 1] → [n] × [1] (resp.
ǫi : [n]→ [n]× [1]) be the map with sends j to (j, 0), if j ≤ i and to (j− 1, 1) (resp.
(j, 1)) otherwise. Then maps γi and ǫi induce decomposition of F [n]× F [1] as
F [n+ 1] ⊔F [n] . . . ⊔F [n] F [n+ 1], where all maps F [n]→ F [n+ 1] are cofibrations.

Therefore we get decompositions of (XF [n]×F [1])0 and X0 ×Y0 (Y
F [1]×F [n])0 as

(XF [n+1])0 ×(XF [n])0 . . .×(XF [n])0 (X
F [n+1])0 and

(X0 ×Y0 (Y
F [n+1])0)×(X0×Y0 (Y

F [n])0) . . .×(X0×Y0(Y
F [n])0) (X0 ×Y0 (Y

F [n+1])0).

Since X and Y are fibrant, all maps in both fiber products are fibrations.
Thus qn can be written as a fiber products of Xn+1 → X0 ×Y0 Yn+1’s over

Xn → X0 ×Y0 Yn’s. Since these maps are weak equivalences by (c), we conclude
that p is a weak equivalence by Corollary 3.1.5.

For a general Y , we choose a fibrant replacement Y →֒ Y ′. Then by Lemma
1.3.11 (d) there exists a fibration f ′ : X ′ → Y ′, whose restriction to Y is f . We claim
that f ′ satisfies assumption (c). Since f ′ is a fibration, each p′n : X ′

n → X ′
0 ×Y ′

0
Y ′
n

is a fibration. Thus it remains to show that p′n is a weak equivalence.
Consider Cartesian diagram

Xn
pn−−−−→ X0 ×Y0 Yn −−−−→ Yn

i′′

y i′

y i

y

X ′
n

p′n−−−−→ X ′
0 ×Y ′

0
Y ′
n −−−−→ Y ′

n

and note that all horizontal maps are fibrations. Since i is a weak equivalence and
Sp is right proper, we conclude that i′ and i′′ are weak equivalences. Since pn is a
weak equivalence by assumption, p′n is a weak equivalence by 2-out-of-3.

By the application (c) =⇒ (a) for fibrant Y , the map q′ : X ′F [1] → X ′×Y ′ Y ′F [1]

is a trivial fibration. Hence q, being the restriction of q′ to X ×Y Y F [1], is a trivial
fibration as well. �

2.1.4. Remarks. (a) By Lemma 2.1.3 (c), a morphism f : X → Y is a left
fibration if and only if it satisfies the RLP with respect to cofibrations

(F [n]× Λi[m]) ⊔(∂F [n]×Λi[m]) (∂F [n]×∆[m]) →֒ ✷[n,m]

(F [n]× ∂∆[m]) ⊔(F [0]×∂∆[m]) (F [0]×∆[m]) →֒ ✷[n,m].

In particular, a morphism f : X → Y is a left fibration if and only if for every
morphism τ : ✷[n,m]→ Y , the pullback τ∗(f) : τ∗(X)→ ✷[n,m] is a left fibration.

(b) It also can be deduced from Lemma 2.1.3 (c) that if f : X → Y is a left
fibration and Y is a (complete) Segal space, then X is a (complete) Segal space as
well. We will not use this fact.

Lemma 2.1.5. A morphism f : X → Y of left fibrations over Z is a weak equiva-
lence if and only if the map of fibers fz : (Xz)0 → (Yz)0 is a weak equivalence for
each z ∈ Z.

Proof. Notice that f0 : X0 → Y0 is a morphism between fibrations over f0. Thus
f0 is a weak equivalence if and only if the induced map fz : (Xz)0 → (Yz)0 between
fibers is a weak equivalence for all z ∈ Z0 (by Lemma 1.2.9 (c)). Thus it remains
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to show that if f0 is a weak equivalence, then fn is a weak equivalence for each n.
We have a commutative diagram

Xn
fn

−−−−→ Yny
y

X0 ×Z0 Zn
f̃0−−−−→ Y0 ×Z0 Zn,

whose vertical maps are trivial fibrations by Lemma 2.1.3 (c). Since f0 is a weak

equivalence, while X0 → Z0 and Y0 → Z0 are fibrations, the map f̃0 is a weak
equivalence by Corollary 3.1.5. Hence fn is a weak equivalence by 2-out-of-3. �

2.1.6. Undercategory. (a) For X ∈ sSp and x ∈ X , we set x\X := {x} ×X
XF [1] → X , where X → XF [1] is induced by s0 : F [1] → F [0], and put idx :=
s0(x) ∈ {x} ×X0 X1 = (x\X)0.

(b) We claim that the projection pr2 : idx \(x\X) → x\X has a section r such
that r(idx) = ididx

. Indeed, set A := (F [1]×{0})∪({0}×F [1])⊂ F [1]×F [1]. Then
idx \(x\X) ⊂ XF [1]×F [1] can be written as {x}×XA XF [1]×F [1]. Therefore the map
m : [1] × [1] → [1] defined by m(i, j) := ij induces a map m : F [1] × F [1] → F [1]
such that m(A) = 0. Hence m induces a map r : x\X → idx \(x\X), which satisfies
r(idx) = ididx

and pr2 ◦r = Id.

The following result is one of the main steps in the proof of the Yoneda lemma.

Proposition 2.1.7. For every left fibration π : E → X and x ∈ X, the evaluation
map evidx

: MapX(x\X,E) → MapX({idx}, E) = (Ex)0, induced by the inclusion
{idx} →֒ x\X, is a trivial fibration.

Proof. Since {idx} →֒ x\X is a cofibration, while E → X is a fibration, the map
evidx

is a fibration (see 1.3.7 (c)). Therefore it remains to show that for each α ∈ Ex,
the Kan complex MapX(x\X,E)α := ev−1

idx
(α) is contractible (by Lemma 1.2.9 (b)).

Using remark 1.3.12, it suffices to show that the identity map of MapX(x\X,E)α
factors through a contractible Kan complex.

Since E → X is a left fibration, the projection EF [1] → E ×X XF [1] is a trivial
fibration. Thus α\E → x\X , being its fiber over α ∈ E, is a trivial fibration.
Therefore the evaluation map ev′idx

: MapX(x\X,α\E) → ((α\E)idx
)0 is a fibra-

tion between contractible Kan complexes. Hence ev′idx
is a weak equivalence, thus

a trivial fibration. Therefore its fiber ev′−1
idx

(idα) = Mapx\X(x\X,α\E)idα
is a

contractible Kan complex.
Note that the projection pr2 : α\E → E induces a projection

ρ : Mapx\X(x\X,α\E)idα
→ MapX(x\X,E)α.

Thus it remains to show that ρ has a section.
The natural morphism Map(x\X,E) → Map((x\X)F [1], EF [1]) induces a mor-

phism s′ : MapX(x\X,E)α → Mapx\X(idx \(x\X), α\E). By 2.1.6, the projection

pr2 : idx \(x\X)→ x\X has a section r such that r(idx) = ididx
. Then

r∗ ◦ s′ : MapX(x\X,E)α → Mapx\X(idx \(x\X), α\E)→ Mapx\X(x\X,α\E)

has an image in Mapx\X(x\X,α\E)idα
and is a section of ρ. �
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Corollary 2.1.8. Let π : E → X be a left fibration, x ∈ X, and let f and g
be maps x\X → E over X such that f(idx) ∼ g(idx) ∈ Ex. Then f ∼X g. In
particular, f is a weak equivalence if and only if g is a weak equivalence.

Proof. Since evidx
is a trivial fibration (by Proposition 2.1.7), the induced map

π0(evidx
) is a bijection by 1.2.8 (b). �

2.1.9. Remarks. Let X be a Segal space. (a) Then (δ01, δ12) : X2 → X1 ×X0 X1

and its pullback δ12 : X0 ×s0,X1,δ01 X2 → X1 are trivial fibrations.
(b) The map δ02 : X0 ×s0,X1,δ01 X2 → X1 is a fibration. Indeed, δ12 is a

pullback of the map (δ01, δ02) : X2 → X1 ×X0 X1, induced by the inclusion
δ01F [1] ∪ δ02F [1] →֒ F [2]. Thus it is a fibration, because X is fibrant.

(c) The map δ02 from (b) is a weak equivalence. Indeed, the map r = (δ0, δ001) :
X1 → X0×s0,X1,δ01 X2 satisfy δ12 ◦ r = δ02 ◦ r = Id. Since δ12 is a weak equivalence
(by (a)), we deduce that r and δ02 are weak equivalences by 2-out-of-3.

Lemma 2.1.10. Let X be a Segal space and x ∈ X. Then x\X → X is a left
fibration.

Proof. Since X is fibrant, the projection XF [1] → X∂F [1] = X × X is fibration,
hence its pullback x\X → X is a fibration. It remains to show that the map
(x\X)F [1] → (x\X)×X XF [1] is a weak equivalence, or, equivalently, that the map
((x\X)F [1])n → (x\X)n ×Xn

(XF [1])n is a weak equivalence for all n.
Using identifications (XF [m])n = Map(F [m] × F [n], X) = (XF [n])m, we can

rewrite the last map in the form (x\XF [n])1 → (x\XF [n])0 ×(XF [n])0 (XF [n])1.

Since XF [n] is also a Segal space (see 1.4.6), we can replace X by XF [n]. It remains
to show that the map (x\X)1 → (x\X)0 ×X0 X1 is a trivial fibration.

Using decomposition F [1] × F [1] = F [2] ⊔F [1] F [2], we get a decomposition

(XF [1])1 = X2 ×δ02,X1,δ02 X2. Hence we get a decomposition

(2.1) (x\X)1 = ({x} ×X1,δ01 X2)×(x\X)0 ({x} ×X0,δ0 X2),

which identifies the map (x\X)1 → (x\X)0 ×X0 X1 with a composition

(x\X)1
f
−→ {x} ×X0,δ0 X2

g
−→ (x\X)0 ×X0 X1.

We claim that f and g are trivial fibrations. Since g is a pullback of (δ01, δ12) :
X2 → X1 ×X0 X1, while f is a pullback of δ02 : {x} ×X1,δ01 X2 → (x\X)0, hence a
pullback of δ02 : X0 ×s0,X1,δ01 X2 → X1, both assertions follow from 2.1.9. �

2.2. The ∞-category of spaces.

2.2.1. Overcategories. (a) For each K ∈ sSp we denote by [K] the category of
”bisimplexes ofK”. Explicitly, the set objects of [K] is the disjoint union ⊔n,mKn,m

and for every a ∈ Kn,m and b ∈ Kn′,m′ the set of morphisms Mor[K](a, b) is the set
of τ ∈Mor∆×∆([n

′,m′], [n,m]) such that τ∗(a) = b.
(b) Note that we have a natural isomorphism of categories sSp/K → Fun([K], Set).

Namely, each map f : X → K defines a functor [K]→ Set, which sends a ∈ Kn,m

to f−1
n,m(a) ⊂ Xn,m. Conversely, every φ : [K] → Set gives rise to Xφ ∈ sSp/K,

where (Xφ)n,m := ⊔a∈Kn,m
φ(a) with obvious transition maps.

(c) Every map φ : L → K in sSp induces a functor [φ] : [L] → [K]. Then
the bijection of (b) identifies φ∗ : sSp/K → sSp/L with the pullback functor
[φ]∗ : Fun([K], Set)→ Fun([L], Set).
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2.2.2. Universes. From now on we fix an infinite set U , which we call a universe.
(a) Let SetU ⊂ Set be the category of subsets of U , and let Set|U| the category of

sets of cardinality ≤ |U|. Then category SetU is small, and the natural embedding
SetU → Set|U| is an equivalences of categories.

(b) We set SpU := Fun(∆op, SetU) ⊂ Sp and sSpU := Fun(∆op, SpU) ⊂ sSp.
(c) More generally, for every K ∈ sSp, we denote by (sSp/K)U ⊂ sSp/K (resp.

(sSp/K)|U| ⊂ sSp/K) the full subcategory of morphisms f : X → K such that
fibers of all fn,m : Xn,m → Kn,m belong to SetU (resp. Set|U|).

(d) Bijection of 2.2.1 (b) induces a bijection between (sSp/K)U (resp. (sSp/K)|U|)
and functors [K] → SetU (resp. [K] → Set|U|). In particular, category (sSp/K)U
is small, and the inclusion (sSp/K)U → (sSp/K)|U| is an equivalence of categories.

(e) We denote by (LFib/K)U the set of left fibrations X → K, belonging to
(sSp/K)U . By (d), 2.2.1 (c) and Lemma 2.1.2 (a), for every map φ : L → K, the
pullback functor φ∗ : sSp/K → sSp/L maps (LFib/K)U to (LFib/L)U .

2.2.3. Main construction. (a) Let SU ∈ sSp be the simplicial space such that
• (SU )n,m is the set of left fibrations (LFib/✷[n,m])U ;
• for every a ∈ (SU )n,m with the corresponding left fibration Ea → ✷[n,m] and
every ν : [n′,m′]→ [n,m], we have Eν∗(a) = ν∗(Ea) (use remark 2.2.2 (e)).

(b) Consider the ”universal left fibration” pU : EU → SU , where (EU )n,m is
defined to be the disjoint union ⊔a∈(SU )n,m

(Ea)n,m, and pU is the map, which
maps each (Ea)n,m to a ∈ (SU )n,m.

Lemma 2.2.4. The map pU : EU → SU is a left fibration. For each K ∈ sSp, the
map φ 7→ φ∗(pU ) defines a bijection between HomsSp(K,SU ) and (LFib/K)U .

Proof. By construction, for every a ∈ (SU )n,m = Hom(✷[n,m],SU), the pullback
a∗(pU) equals Ea → ✷[n,m]. In particular, each a∗(pU ) is a left fibration. Thus p
is a left fibration by remark 2.1.4 (a).

Next notice that for every φ : K → SU , the pullback φ∗(pU) : φ∗(EU ) → K is
a left fibration, satisfying a∗(φ∗(pU )) = (φ ◦ a)∗(pU ) ∈ (LFib/✷[n,m])U for each
a : ✷[n,m]→ K. Thus φ∗(pU ) ∈ (LFib/K)U .

Conversely, every E ∈ (LFib/K)U defines a map φE : K → SU , which sends a ∈
Kn,m = Hom(✷[n,m],K) to the left fibration a∗(E)→ ✷[n,m] in (LFib/✷[n,m])U .
Then the map E 7→ φE is inverse to φ 7→ φ∗(pU). �

2.2.5. Remarks. (a) The main result of this subsection (Theorem 2.2.11) asserts
that SU is a complete Segal space. It is our model for the ∞-category of spaces,
or, more formally, the (∞, 1)-category of (∞, 0)-categories.

(b) It can be shown that every inclusion i : U →֒ V of infinite sets induces a fully
faithful map i : SU →֒ SV of complete Segal spaces.

(c) One can show (see [KV2]) that SU is equivalent to the fibrant replacement
Nf(SpU ,W ) of the simplicial space N(SpU ,W ), associated by Rezk ([Re1, 3.3]) to
the pair (SpU ,W ), where W denotes weak equivalences.

(d) One can also consider the ”large” (∞, 1)-category of (∞, 0)-categories Ŝ such

that Ŝn,m is the class of all left fibrations E → ✷[n,m].
(e) In [KV2] we generalize 2.2.3 and construct the (∞, n+1)-category of (∞, n)-

categories.
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2.2.6. Notation. (a) For every n ≥ 1 denote by S
(n)
U ∈ sSp the simplicial space

such that (S(n))m,k is the set of diagrams φ : E(0) φ1
−→ . . .

φn
−→ E(n) over ✷[m, k],

where each E(i) → ✷[m, k] belongs to (LFib/✷[m, k])U .

(b) To every map µ : [m]→ [n] we associate morphism µ∗ : S
(n)
U → S

(m)
U , which

sends diagram φ : E(0) φ1
−→ . . .

φn
−→ E(n) to a diagram µ∗(φ) : E(µ(0)) → . . . →

E(µ(m)), whose morphisms are compositions of the φi’s.

(c) Let Swe
U ⊂ S

(1)
U be a simplicial subspace such that (S(we))m,k ⊂ (S(1))m,k

consists of diagrams consists of diagrams E(0) φ
−→ E(1), where φ is a weak equiva-

lence (use Lemma 1.3.11 (b)).

(d) We have a natural projection S
(n)
U → (SU)

n+1, which maps a diagram φ as

in (a) to the (n+ 1)-tuple E(0), . . . , E(n).

2.2.7. Remarks. (a) Note that for every X,Y ∈ sSp/K, to give a map φ ∈
HomK(X,Y ) is the same as to give maps τ∗(φ) ∈ Hom✷[n,m](τ

∗(X), τ∗(Y )) for
all φ : ✷[n,m] → K, compatible with compositions. Using this observation and
Lemma 2.2.4, we conclude that for every K ∈ sSp we have a natural bijection

between HomsSp(K,S
(n)
U ) and set of diagrams φ : E(0) φ1

−→ . . .
φn
−→ E(n) of left

fibrations from (sSp/K)U .

(b) By definition, a map φ ∈ HomsSp(K,S
(1)
U ) belongs to HomsSp(K,S

(we)
U ) if

and only if φ(a) ∈ (S
(we)
U )n,m for every a ∈ Kn,m. Moreover, by Lemma 2.1.5,

it happens if and only if φ(a) ∈ (S
(we)
U )0,0 for every a ∈ K0,0. Using Lemma

2.1.5 again, we see that under the bijection of (a) elements of HomsSp(K,S
(we)
U ) ⊂

HomsSp(K,S
(1)
U ) correspond to weak equivalences φ : E(0) → E(1).

The following two propositions and a corollary will be shown in Section 4.

Proposition 2.2.8. (a) The simplicial space SU ∈ sSp is Ready fibrant.

(b) The projections S
(n)
U → (SU )

n+1 and S
(we)
U → (SU )

2 are fibrations.

(c) Both compositions S
(we)
U → (SU )

2 pi
−→ SU are trivial fibrations.

(d) (Swe
U )0 ⊂ (S

(1)
U )0 is a union of a connected components.

Proposition 2.2.9. (a) There exists a homotopy equivalence (SU )
∆[1] → S

(we)
U

over (SU )
2.

(b) For every n ∈ N there exists a ”natural” homotopy equivalence ψ
(n)
U : S

(n)
U →

(SU)
F [n] over (SU )

n+1, defined uniquely up to a homotopy.
(c) Moreover, for every map µ : [m]→ [n] the diagram

(2.2)

S
(n)
U

ψ(n)

−−−−→ (SU )
F [n]

µ∗

y µ∗

y

S
(m)
U

ψ(m)

−−−−→ (SU )
F [m]

is homotopy commutative, that is, µ∗ ◦ ψ(n) ∼ ψ(m) ◦ µ∗.

Corollary 2.2.10. Let K ∈ sSp, let α, β ∈ Hom(K,SU ), and let Eα → K and
Eβ → K be the corresponding left fibrations. Then α ∼ β in (SU )

K if and only if
the left fibrations Eα and Eβ are homotopy equivalent over K.
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Now we are ready to prove one of the main results of this work.

Theorem 2.2.11. SU is a complete Segal space.

Proof. We denote SU simply by S. Then S is fibrant by Proposition 2.2.8 (a).
To show that S is Segal, we have to prove that for every n ≥ 2 the morphism

ϕn : Sn → S1×S0 . . .×S0 S1 is a weak equivalence. Applying Proposition 2.2.9 (c)
to (δ01, . . . , δn−1,n) : [n]→ [1]× . . .× [1], we get a homotopy commutative diagram

S(n) ψ(n)

−−−−→ SF [n]

y
y

S(1) ×S . . .×S S(1) ψ(1)×...×ψ(1)

−−−−−−−−−→ SF [1] ×S . . .×S SF [1].

We want to show that the right vertical arrow is a weak equivalence, which implies
the Segal conditions by passing to the zero spaces. The top horizontal arrow is
a weak equivalence by Proposition 2.2.9 (b). The bottom horizontal arrow is a
equivalence by Proposition 2.2.9 (b) together with the observation that S(1) → S

and SF [1] → S are fibrations (use Proposition 2.2.8 and Corollary 3.1.5). Next,
since the left vertical arrow is a bijection, while diagram is homotopy commutative,
the right vertical arrow is a weak equivalence, by 2-out-of-3.

To show that S is complete, we have to show that δ0 : Sheq → S0 is a trivial

fibration (by Lemma 1.4.5 (b)). Since p0 : S(we) → S is a trivial fibration by
Proposition 2.2.8 (c), it is enough to show that the map ψ := (ψ(1))0 : (S(1))0 →
(SF [1])0 = S1 from Proposition 2.2.9 (b) induces an equivalence (S(we))0 → Sheq.

Both (S(we))0 ⊂ (S(1))0 and Sheq ⊂ S1 are unions of connected components
(by Proposition 2.2.8 (d) and 1.4.4 (b)). Since ψ is a weak equivalence, it remains
to show that π0(ψ) induces a bijection π0((S

(we))0)→ π0(Sheq).
By Proposition 2.2.9 (c), we have the following homotopy commutative diagram

(2.3)

(S(1))0
δ12←−−−− (S(3))0

δ02,δ13
−−−−→ (S(1) ×S(1))0

s0×s0←−−−− S0 ×S0

ψ(1)

y ψ(3)

y ψ(1)×ψ(1)

y
∥∥∥

S1
δ12←−−−− S3

δ02,δ13
−−−−→ S1 ×S1

s0×s0←−−−− S0 ×S0.

Recall that in Lemma 1.4.5 (a) we introduced unions of connected components
S′

1 ⊂ S1 and S′
3 ⊂ S3 and showed that δ12(S

′
3) = Sheq.

Similarly, we define (S(1))′0 ⊂ (S(1))0 to be the union of connected components,
intersecting s0(S0), and set (S(3))′0 := δ−1

02 ((S(1))′0) ∩ δ
−1
13 ((S

(1))′0) ⊂ (S(3))0.

We claim that δ12((S
(3))′0) = (S(we))0. Indeed, since s0(S0) ⊂ S(we), it follows

from Proposition 2.2.8 (d) that for every φ̃ ∈ (S(3))′0 we have δ02(φ̃), δ13(φ̃) ∈ S(we).

In other words, if φ̃ corresponds to a diagram E(0) φ1
−→ E(1) φ2

−→ E(2) φ3
−→ E(3),

then φ2 ◦ φ1 and φ3 ◦ φ2 are weak equivalences. Therefore φ2 have left and right

homotopy inverses. Hence φ2 is a weak equivalence, thus φ2 = δ12(φ̃) ∈ S(we).
Conversely, every φ ∈ S(we) corresponds to a homotopy equivalence φ : E(0) →

E(1) (by Lemma 1.3.11 (b)), thus there exists a diagram φ̃ : E(1) φ′

−→ E(0) φ
−→

E(1) φ′

−→ E(0) such that φ′ ◦ φ ∼ IdE(0) and φ ◦ φ′ ∼ IdE(1) . By definition, φ̃

corresponds to an element of (S(3))′0 and δ12(φ̃) = φ.
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Now we are ready to show the assertion. Since ψ(3) is a weak equivalence, the
induced map π0(S

(3))0)→ π0(S3) is a bijection. Next, using definitions of (S(3))′0
and S′

3 and the homotopy commutativity of the interior and right inner squares of
(2.3), ψ(3) induces a bijection π0((S

(3))′0)→ π0(S
′
3). Finally, sinceSheq = δ12(S

′
3),

(S(we))0 = δ12((S
(3))′0), and the left inner square of (2.3) is homotopy commutative,

ψ(1) induces a bijection π0(S
(we))→ π0(Sheq). �

2.3. The Yoneda embedding.

2.3.1. The opposite simplicial space. (a) For every map τ : [n] → [m] in ∆,
we denote by ι(τ) : [n] → [m] the map ι(τ)(n − i) := m − τ(i). Then ι defines a
functor ∆→ ∆, hence a functor ι∗ : sSp = Hom(∆op, Sp)→ Hom(∆op, Sp) = sSp.

(b) For everyX ∈ sSp, we setXop := ι∗(X) ∈ sSp. Explicitly, we have (Xop)n =
Xn for all n, and for every τ : [n]→ [m] the map τ∗ : (Xop)m → (Xop)n is the map
ι(τ)∗ : Xm → Xn.

(c) Note that if X is a (complete) Segal space, then Xop is also such, and we
have equality of homotopy categories Ho(Xop) = (HoX)op. Therefore we call Xop

the opposite simplicial space.

2.3.2. The twisted arrow category. (a) Consider the functor µ : ∆ → ∆ such
that µ([n]) = [2n+ 1], and for every τ : [n] → [m] in ∆ the map µ(τ) : [2n+ 1]→
[2m + 1] is defined by formulas µ(τ)(n − i) := m − τ(i) and µ(τ)(n + 1 + j) =
(m+ 1 + τ(j)) for i, j = 0, . . . , n.

(b) For every X ∈ sSp, we define simplicial space M(X) := µ∗(X) ∈ sSp.
Explicitly, we haveM(X)n = X2n+1 for all n, and for every τ : [n]→ [m] the map
τ∗ :M(X)m →M(X)n is the map µ(τ)∗ : X2m+1 → X2n+1.

(c) We have natural morphisms ι→ µ and Id→ µ of functors Hom(∆,∆) which
correspond to maps e0 : [n] → [2n + 1] and en+1 : [n] → [2n + 1], respectively.
These maps corresponds to a morphism πX :M(X)→ Xop ×X in sSp.

2.3.3. Remarks. (a) Note that ∆ is equivalent to the category ∆′ of finite totally
ordered sets, and functors ι, µ : ∆ → ∆ correspond to functors ι, µ : ∆′ → ∆′

defined by ι(P ) = P op and µ(P ) = P op ∗ P , the ”join” of P op and P .
(b) It can be shown (using Lemma 2.3.4 and 2.1.4 (b)) that if X is a (complete)

Segal space, thenM(X) is a (complete) Segal space as well. In this case, the space
of objectsM(X)0 equals the space of morphisms X1, and for every α : x→ y and
α′ : x′ → y′ inM(X)0 = X1, the mapping space mapM(X)(α, α

′) can be intuitively

thought as the space of triples (β, β′, γ), where β : x′ → x and β′ : y → y′ belong
to X1, and γ is a path between β′ ◦ α ◦ β and α′.

From now on in this subsection we always assume that X is a Segal space.

Lemma 2.3.4. The map πX :M(X)→ Xop ×X is a left fibration.

Proof. To show that πX is a fibration, we have to check that the induced map

(2.4) M(X)n →M(X)∂n ×(Xop×X)∂n
(Xop ×X)n

is a fibration for every n ≥ 0. Recall thatM(X)n = X2n+1 = Map(F [2n+ 1], X).
Since ∂F [n] = ∪ni=0d

iF [n − 1] we get thatM(X)∂n = Map(F [2n + 1]′, X), where
F [2n + 1]′ ⊂ F [2n + 1] is the union ∪ni=0d

i,2n+1−i(F [2n − 1]) ⊂ F [2n + 1]. Thus
morphism (2.4) can be identified with the morphism

Map(F [2n+ 1], X)→ Map(F [2n+1]′ ⊔(e0∂F [n]∪en+1∂F [n]) (e
0F [n]∪ en+1F [n]), X).
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Since F [2n + 1]′ ∩ (e0F [n] ∪ en+1F [n]) = e0∂F [n] ∪ en+1∂F [n] ⊂ F [2n + 1], the
natural map F [2n + 1]′ ⊔(e0∂F [n]∪en+1∂F [n]) (e

0F [n] ∪ en+1F [n]) → F [2n + 1] is a
cofibration. Since X is fibrant, the map (2.4) is a fibration.

It remains to show that the fibrationM(X)n →M(X)0×(Xop×X)0 (X
op×X)n

or, equivalently, X2n+1 → Xn ×X0 X1 ×X0 Xn is a weak equivalence. Since X is a
Segal space, thus both the composition

X2n+1 → Xn×X0X1×X0Xn → (X1×X0 . . .×X0X1)×X0X1×X0 (X1×X0 . . .×X0X1)

and the second morphism are trivial fibrations, this follows from 2-out-of-3. �

2.3.5. Remark. It follows from Lemma 2.3.4 and Lemma 2.1.2 (a) that left fibra-
tion πX induces a left fibration {x}×XopM(X)→ X for every x ∈ X . Notice that
({x} ×Xop M(X))0 = {x} ×X0 X1 = (x\X)0.

Lemma 2.3.6. Let X be a Segal space and x ∈ X. There exists a weak equivalence

φ̃ : x\X → {x} ×Xop M(X) of left fibrations over X such that φ̃(idx) ∼ idx.

Proof. It will suffice to construct a homotopy equivalence ψ : {x} ×Xop M(X) →

x\X over X such that ψ(idx) ∼ idx and to take φ̃ to be its homotopy inverse.

To construct ψ, we will construct a simplicial space x̃\X over X and maps ψ′ :

x̃\X → x\X and ψ′′ : x̃\X → {x}×XopM(X) over X such that (x̃\X)0 = (x\X)0,
ψ′
0 = ψ′

0 = Id and ψ′ is a trivial cofibration. Since x\X → X is a fibration, the
map ψ′′ extends to a map ψ : {x} ×Xop M(X)→ x\X over X .

In this case, ψ0 = Id would be a weak equivalence, so ψ would be a weak
equivalence by Lemma 2.1.5, hence a homotopy equivalence by Lemma 1.3.11 (b).

For every map τ : [n]→ [m], we denote by τ ′ the map [n+ 1]→ [m+ 1] defined

by τ ′(0) = 0 and τ ′(i+1) = τ(i) + 1 for all i = 0, . . . , n. Consider x̃\X ∈ sSp such

that (x̃\X)n := {x} ×X0,δ0 Xn+1, and for every τ the map τ∗ : (x̃\X)m → (x̃\X)n
is induced by τ ′∗ : Xm+1 → Xn+1.

Note that projections e1 : Xn+1 → Xn induce a projection x̃\X → X . Next,
map [n]× [1]→ [n+1] : (i, j) 7→ (i+ j)j induces maps F [n]×F [1]→ F [n+1] and

pn : Xn+1 = Map(F [n+ 1], X)→ Map(F [n]× F [1], X) = (XF [1])n.

Then pn’s give rise to a map ψ′ : x̃\X → x\X over X .
Finally, maps r : [2n+ 1]→ [n+ 1], where r(i) = 0 and r(i + n+ 1) = i+ 1 for

all i = 0, . . . , n induce maps Xn+1 → X2n+1 and give rise to a map

ψ′′ : x̃\X → {x} ×Xop M(X) over X , which we claim is a trivial cofibration.
We have to show that ψ′′

n : {x}×X0Xn+1 → {x}×Xn
X2n+1 is a trivial cofibration

for all n. Since X is Segal, the natural map X2n+1 → Xn ×X0 Xn+1 is a trivial
fibration, whose pullback πn : {x}×Xn

X2n+1 → {x}×X0Xn+1 is a trivial fibration,
satisfying πn ◦ψ′′

n = Id. Therefore ψ′′
n : {x}×X0 Xn+1 → {x}×Xn

X2n+1 is a trivial
cofibration by 2-out-of-3, and the proof is complete. �

2.3.7. The Yoneda embedding. We fix an infinite set U , and set S := SU .
(a) For every X ∈ sSpU , we set P(X) := SXop

. Since S is a complete Segal
space, P(X) is also a complete Segal space (by 1.4.6), and we call it the∞-category
of simplicial presheaves on X.

(b) By definition of S, for every Segal space X , the left fibration πX :M(X)→
Xop × X corresponds to the morphism Xop × X → S, hence to the morphism
jX : X → P(X). We call jX the Yoneda embedding of X .
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(c) For every x ∈ X and α ∈ P(X), we form α(x) ∈ S and denote by Eα(x) → pt
the corresponding left fibration.

2.3.8. Example. By definition, for every x ∈ X element jX(x) ∈ P(X) = SXop

corresponds to the left fibrationM(X)×X {x} = {x} ×XM(Xop)→ Xop.

Theorem 2.3.9. Let X be a Segal space, x ∈ X and α ∈ P(X).
(a) We have a ”natural” weak equivalence mapP(X)(jX(x), α)→ (Eα(x))0, canon-

ical up to homotopy.
(b) The Yoneda embedding jX : X → P(X) is fully faithful (see 1.4.2 (d)).

First we have to introduce certain notation.

2.3.10. The universal left fibration over Xop. (a) Let Ẽ → Xop × P(X) be
the left fibration, corresponding to the evaluation map evXop : Xop ×P(X)→ S.

Then for every α ∈ P(X), the pullback Ẽα := Ẽ×P(x) {α} is the left fibration over

Xop, corresponding to α. In particular, for every x ∈ X , its fiber (Ẽα)x is the left
fibration Eα(x) → pt, corresponding to α(x) ∈ S (see 2.3.7 (c)).

(b) For every x ∈ Xop, we set Ẽx := {x} ×Xop Ẽ. Then Ẽx → P(X) is a left

fibration such that (Ẽx)α = Eα(x) for every α ∈ P(X) (by (a)). For every y ∈ X

we have an equality (Ẽx)jX (y) = EjX (y)(x), thus ((Ẽx)jX (y))0 = mapX(x, y). In

particular, we have an element idx ∈ mapX(x, x) of (Ẽx)jX (x).
(c) By definition, left fibration πX : M(X) → Xop × X corresponds to the

composition of Id×jX : Xop×X → Xop×P(X) and evXop . Therefore we have an

equalityM(X) = Ẽ ×P(X) X , hence Ẽx ×P(X) X = {x} ×Xop M(X).

2.3.11. Remarks. The homotopy equivalence ψ(1) : SF [1] → S(1) over S2 (see
Proposition 2.2.9 (b)) induces a homotopy equivalence from P(X)F [1] = (SF [1])X

op

to P(X)(1) := (S(1))X
op

over P(X)2. Hence for every α ∈ P(X) it induces a
homotopy equivalence ψα : α\P(X) → (α\P(X))′ := {α} ×P(X) P(X)(1) over
P(X). Then, by Proposition 2.2.9 (c), we have ψα(idα) ∼ idα.

Lemma 2.3.12. For every x ∈ X, there exists a weak equivalence φ : jX(x)\P(X)→

Ẽx of left fibrations over P(X) such that φ(idjX (x)) ∼ idx ∈ (Ẽx)jX (x).

Proof. We construct φ as a composition of weak equivalences over P(X)

jX(x)\P(X)
φ′′′

−→ (jX(x)\P(X))′
φ′′

−→ ((x\Xop)\P(X))′
φ′

−→ Ẽx.

By definition, if α : K → P(X) corresponds to the left fibration G→ Xop ×K,
then maps K → ((x\Xop)\P(X))′ over α are in bijection with maps ν : (x\Xop)×
K → G over Xop×K, and maps K → (jX(x)\P(X))′ over α are in bijection with
maps ν′ : ({x} ×XM(Xop))×K → G over Xop ×K (use 2.3.8).

Let φ̃ : x\Xop → {x}×X Mor(Xop) be the weak equivalence from Lemma 2.3.6,

and we define φ′′ to be the map, which sends ν′ to ν′ ◦ φ̃. Then φ′′ is a homotopy

equivalence, because φ̃ is such.

Next we observe that maps K → Ẽx over α : K → P(X) are in bijection with
sections s of the left fibration Gx := {x}×Xop G→ K. We define φ′ to be the map,
which sends ν : (x\Xop)×K → G to s := ν|idx

: K → Gx.
Since φ′ is a map between left fibrations, to show that φ′ is a weak equivalence,

it remans to show that for every α ∈ P(X) the induced map (φ′α)0 is a weak
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equivalence of simplicial sets (by Lemma 2.1.5). Let G→ Xop be the left fibration
corresponding to α. Then (φ′α)0 is the trivial fibration evidx

: MapXop(x\Xop, G)→
(Gx)0 from Proposition 2.1.7.

Finally, we define φ′′′ : jX(x)\P(X) → (jX(x)\P(X))′ to be the weak equiva-
lence from 2.3.11, and set φ := φ′◦φ′′◦φ′′′. By construction, we have φ′′′(idjX (x)) ∼

idjX (x), φ
′′(idjX (x)) = φ̃, and φ′(φ̃) = φ̃(idx) ∼ idx. Thus φ(idjX (x)) ∼ idx. �

Now we are ready to prove the Yoneda lemma.

Proof of Theorem 2.3.9. (a) By Lemma 2.3.12, there exists a homotopy equivalence

φ : jX(x)\P(X) → Ẽx of left fibrations over P(X) such that φ(idjX (x)) ∼ idx.

Since for every α ∈ P(X) the fiber of Ẽx at α is Eα(x) (see 2.3.10 (b)), φ induces
an equivalence φα : mapP(X)(jX(x), α)→ (Eα(x))0.

(b) The morphism jX : X → P(X) induces a morphism x\X → jX(x)\P(X)
over jX . Hence jX induces a morphism ψ : x\X → jX(x)\P(X) ×P(X) X of left
fibrations over X . We claim that ψ is a weak equivalence, hence it induces a weak
equivalence of fibers ψb : mapX(a, b)→ mapP(X)(jX(a), jX(b)) for all b ∈ X .

Consider the composition φ ◦ ψ : x\X → Ẽx ×P(X) X , where φ is as in the

proof of (a). Since Ẽx ×P(X) X = {x} ×Xop M(X) (see 2.3.10 (c)), φ ◦ ψ is a map
x\X → {x} ×Xop M(X) over X , which by construction satisfy φ ◦ ψ(idx) ∼ idx.
Therefore φ ◦ ψ is a weak equivalence by Corollary 2.1.8 and Lemma 2.3.6, hence
ψ is a weak equivalence by 2-out-of-3. �

3. Quasifibrations of simplicial spaces

3.1. Definitions and basic properties.

Definition 3.1.1. Let C be a right proper model category. We say that a morphism
p : X → B in C is a quasifibration, if for every weak equivalence g : Y → Z over B,
its pullback p∗(g) : p∗(Y )→ p∗(Z) (see 1.1.1 (d)) is a weak equivalence over X .

3.1.2. Remarks. (a) By definition, any pullback of a quasifibration is a quasifi-
bration, and a composition of quasifibrations is a quasifibration.

(b) When C is a model category of topological spaces, our notion of a quasifibra-
tion is stronger than the classical notion. However we will only use this notion for
model categories of spaces and simplicial spaces, where no classical notion exists.

(c) After this work was essentially completed, we found that quasifibrations
were also studied in a unpublished preprint of Rezk [Re3] under a name of sharp
morphisms. But we think that our terminology is more suggestive.

Lemma 3.1.3. (a) Every fibration in C is a quasifibration.
(b) Let f : X → X ′ be a weak equivalence between quasifibrations p : X → B

and p′ : X ′ → B over B. Then for every morphism τ : A → B the pullback
τ∗(f) : X ×B A→ X ′ ×B A is a weak equivalence.

(c) Conversely, assume that f : X → X ′ is a weak equivalence over B such that
each pullback τ∗(f) is a weak equivalence. Then p : X → B is a quasifibration if
and only if p′ : X ′ → B is a quasifibration.

Proof. (a) follows from the fact that C is right proper.
(b) If τ : A → B is fibration, then τ∗(g) is a weak equivalence by (a). If τ is

a weak equivalence, then τ∗(X) → X and τ∗(X ′) → X ′ are weak equivalences,
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because X → B and X ′ → B are quasifibrations. Therefore τ∗(f) : τ∗(X) →
τ∗(X ′) is a weak equivalence by 2-out-of-3. Since every morphism decomposes as
a composition of a trivial cofibration and a fibration, the general case follows.

(c) Let g : Y → Z be a weak equivalence over B. Then X ×B Y → X ′ ×B Y
and X ×B Z → X ′×B Z are weak equivalences by the assumption on f . Hence, by
2-out-of-3, p′∗(g) : X ′×B Y → X ′×B Z is a weak equivalence if and only if p∗(g) is
a weak equivalence. Thus, by definition, p : X → B is a quasifibration if and only
if p′ : X ′ → B is a quasifibration. �

Corollary 3.1.4. Assume that model category C has the property that a pullback
of a cofibration is a cofibration, and let p′ : X ′ → B be a fibrant replacement of
p : X → B. Then p is a quasifibration if and only if τ∗(p′) is a fibrant replacement
of τ∗(p) for every τ : A→ B.

Proof. By MC5, p decomposes as X
i
−→ X ′ p′

−→ B, where i is a trivial cofibration,
and p is a fibration. Then for every map τ : A → B, τ∗(p′) is a fibration, while
τ∗(i) is a cofibration. Thus we have to show that X → B is a quasifibration if and
only if each τ∗(i) is a weak equivalence. Since p′ : X ′ → B is a quasifibration by
Lemma 3.1.3 (a), the assertion follows from Lemma 3.1.3 (b) and (c). �

Corollary 3.1.5. Suppose we are given a commutative diagram

X ′ −−−−→ Z ′ g′

←−−−− Y ′

y
y

y

X −−−−→ Z
g

←−−−− Y,

where g and g′ are quasifibrations and all vertical morphisms are weak equivalences.
Then the induced map X ′ ×Z′ Y ′ → X ×Y Z is a weak equivalence.

Proof. Weak equivalence Y ′ → Y decomposes as composition Y ′ → Z ′ ×Z Y → Y ,
the second on which is a weak equivalence, because it is a pullback of a weak
equivalence Z ′ → Z along a quasifibration Y → Z. Therefore by 2-out-of-3 Y ′ →
Z ′ ×Z Y is a weak equivalence between quasifibrations over Z ′.

Now map X ′ ×Z′ Y ′ → X ×Y Z decomposes as composition

X ′ ×Z′ Y ′ → X ′ ×Z′ (Z ′ ×Z Y ) = X ′ ×Z Y → X ×Z Y,

the first of which is a weak equivalence, being a pullback of a weak equivalence
between quasifibrations (use Lemma 3.1.3 (b)), while the second one is a weak
equivalence, since Y → Z is a quasifibration, andX ′ → X is a weak equivalence. �

From now on we assume that C is ether category Sp with Kan model structure
(Theorem 1.2.6) or category sSp with Reedy model structure (Theorem 1.3.6).

Lemma 3.1.6. Let XB → B be a quasifibration in sSp, A→ B a cofibration, and
i : XA := XB ×B A → YA a weak equivalence of quasifibrations over A. Then the
pushout YB := XB ⊔XA

YA is a quasifibration over B ⊔A A = B, and the natural
map j : XB → YB is a weak equivalence.

Proof. By Lemma 3.1.3 (c), it is enough to show that for every map τ : B′ → B,
the pullback τ∗(j) is a weak equivalence.

Note that τ∗(j) is a pushout of τ∗(i) : τ∗(XA) → τ∗(YA) along τ∗(XA) →
τ∗(XB). Since A→ B a cofibration, the induced maps XA → XB and τ∗(XA)→
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τ∗(XB) are cofibrations. Since i is a weak equivalence between quasifibrations,
τ∗(i) is a weak equivalence by Lemma 3.1.3 (b). Hence the pushout τ∗(j) is a weak
equivalence, because sSp is left proper. �

Lemma 3.1.7. A morphism p : X → B is a quasifibration in sSp if and only if
pn : Xn → Bn is a quasifibration in Sp for every n.

Proof. Note that if pn is a quasifibration for all n, then for every weak equivalence
g : Y → Z over B, the corresponding maps gn : Yn → Zn are weak equivalences
over Bn for all n. Therefore each p∗(g)n = p∗n(gn) is a weak equivalence, since pn
is a quasifibration. Hence p∗(g) is a weak equivalence, thus p is a quasifibration.

Conversely, assume that p is a quasifibration. Every weak equivalence g̃ : Ỹ → Z̃

over Bn defines a weak equivalence g := g̃ × IdF [n] : Ỹ × F [n] → Z̃ × F [n] over
B × F [n] such that g̃ is the restriction of gn to IdF [n] ∈ F [n]n. Since p is a
quasifibration, the pullback p∗(g) is a weak equivalence over F [n]. Thus p∗n(g̃) =
(p∗(g)n)IdF [n]

is a weak equivalence, implying that pn is a quasifibration. �

Definition 3.1.8. A map f : X → B in sSp is called a left quasifibration, if it
is quasifibration and the morphism Xn → X0 ×B0 Bn, induced by the inclusion
δ0 : [0] →֒ [n], is a weak equivalence for all n.

3.1.9. Remark. It follows from Lemma 2.1.3 (c) that a fibration f : X → B in
sSp is a left fibration if and only if it is a left quasifibration.

Lemma 3.1.10. Suppose we have a commutative diagram

(3.1)

X ′ g
−−−−→ X

f ′

y f

y

B′ h
−−−−→ B

in sSp, where g and h are weak equivalences, while f and f ′ are quasifibrations.
Then f is a left if and only if f ′ is left.

Proof. Consider commutative diagram induced by (3.1)

X ′
n

gn
−−−−→ Xn

p′n

y pn

y

X ′
0 ×B′

0
B′
n

g0×h0
hn

−−−−−−→ X0 ×B0 Bn.

We have to show that pn is a weak equivalence if and only if p′n is. Since g is a weak
equivalence, by 2-out-of-3, it suffices to show that g0 ×h0 hn is a weak equivalence.

By Lemma 3.1.7, maps X0 → B0 and X ′
0 → B′

0 are quasifibrations. Therefore
g0 ×h0 hn is a weak equivalence by assumption and Corollary 3.1.5. �

Corollary 3.1.11. A fibrant replacement of a left quasifibration is a left fibration.

Proof. Apply Lemma 3.1.10 and remark 3.1.9 to the case when B′ = B and f is a
fibrant replacement of f ′. �
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3.2. Extension of fibrations, and fibrant replacements.

Lemma 3.2.1. Suppose we are given a commutative diagram

YA −−−−→ XBy
y

A −−−−→ B

in sSp such that vertical arrows are fibrations, horizontal arrows are cofibration,
and the induced map YA → XA := XB ×B A is a trivial cofibration.

Then there exists the largest simplicial subspace YB ⊂ XB such that YB ×B A =
YA. Moreover, YB ⊂ XB is a strong deformation retract over B. In particular,
YB → B is a fibration, and the inclusion i : YB →֒ XB is a trivial cofibration.

Proof. Consider simplicial subspace YB ⊂ XB such that (YB)n,m is the set of all
τ ∈ (XB)n,m = Hom(✷[n,m], XB) such that τ(τ−1(XA)) ⊂ YA. Then YB ⊂ XB

is the largest subspace such that YB ×B A = YA. By construction, for every
morphism C → B, the set HomB(C, YB) can be identified with the set of maps
f ∈ HomB(C,XB) such that f(C ×B A) ⊂ YA.

Since YA ⊂ XA is a trivial cofibration between fibrations over A, it is a strong
deformation retract (see 1.3.10 (c)). Thus there exists a map g : XA ×∆[1]→ XA

over A such that (i) g|XA×{0} = IdXA
; (ii) g(XA × {1}) ⊂ YA and (iii) g|YA×∆[1] =

pr1 : YA ×∆[1]→ YA ⊂ XA.
Since YB ∩ XA = YA, property (iii) of g implies that g extends to a map g′ :

(XA ⊔YA
YB)×∆[1]→ XB over B such that g′|YB×∆[1] = pr1. Next property (i) of

g implies that g′ extends to a morphism

g′′ : ((XA ⊔YA
YB)×∆[1]) ⊔(XA⊔YA

YB)×{0} (XB × {0})→ XB

over B such that g′′|XB×{0} = IdXB
.

Since {0} →֒ ∆[1] is a trivial cofibration, while model category sSp is Cartesian,
we conclude that

((XA ⊔YA
YB)×∆[1]) ⊔(XA⊔YA

YB)×{0} (XB × {0}) →֒ XB ×∆[1]

is a trivial cofibration, thus g′′ extends to a map h : XB ×∆[1]→ XB over B.
Then h satisfies h|XB×{0} = g′′|XB×{0} = IdXB

, h|YB×∆[1] = g′|YB×∆[1] = pr1
and h(XA × {1}) = g(XA × {1}) ⊂ YA. Thus, by the construction of YB , we get
that h(XB × {1}) ⊂ YB. In other words, h realizes YB as a strong deformation
retract of XB over B. The last assertion follows from 1.3.10 (b). �

Corollary 3.2.2. Let X → B be an quasifibration, and let A →֒ B be a cofibration
such that X ×B A → A is a fibration. Then there exists a fibrant replacement
Y → B of X → B such that X ×B A = Y ×B A.

Proof. Let X
i
−→ Y ′ p

−→ B be any decomposition of X → B, where i is a trivial
cofibration, and p is a fibration. Since X → B is quasifibration, i induces a trivial
cofibration X ×B A →֒ Y ′ ×B A over A (by Lemma 3.1.3 (b)).

Let Y ⊂ Y ′ be the largest simplicial subspace such that Y ×B A = X ×B A.
Then Y → B is a fibration, and Y →֒ Y ′ is a trivial cofibration (see Lemma 3.2.1).
Since trivial cofibration i factors as a composition X →֒ Y →֒ Y ′, the map X →֒ Y
is a trivial cofibration by 2-out-of-3. �
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3.2.3. Proof of Lemma 1.3.11 (d). Composition YA → A → B decomposes as a
composition of a trivial cofibration YA → XB and a fibration XB → B. Now
let YB ⊂ XB be the largest simplicial subspace such that YB ×B A = YA. Then
YB → B is a fibration by Lemma 3.2.1. �

3.2.4. Notation. (a) For X ∈ sSp and n ≥ 0, we define the n-skeleton sknX to be
the smallest simplicial subspace Y ⊂ X such that Ym,k = Xm,k for all m+ k ≤ n.
Then 0 = sk−1X ⊂ sk0X ⊂ . . . ⊂ sknX ⊂ . . . ⊂ X and X = colimn sknX .

(b) For every m, k ≥ 0, we denote by Xnd
m,k := Xm,k r (skm+k−1X)m,k the

set of ”non-degenerate bisimplices”. Then Xnd
0,0 = X0,0, and for each n > 0

the n-th skeleton sknX is naturally isomorphic to the pushout of skn−1X and
⊔m+k=n,a∈Xnd

m,k
✷[m, k] over ⊔m+k=n,a∈Xnd

m,k
∂✷[m, k].

Lemma 3.2.5. Let f : X → K be a morphism in (sSp/K)U such that either
(a) K ∈ sSp|U| or (b) f is a quasifibration. Then f has a fibrant replacement
f ′ : X ′ → K in (sSp/K)U .

Proof. (a) Since (sSp/K)U → (sSp/K)|U| is an equivalence of categories, it is
enough to show the existence of a fibrant replacement f ′ in (sSp/K)|U|. Since
K ∈ sSp|U| and |U| × |U| = |U|, we conclude that X ∈ sSp|U|. Moreover, using
|U| × |U| = |U| again, we get that fibrant replacement f ′ : X ′ → K, constructed in
the proof of Theorem 1.3.6, satisfies X ′ ∈ sSp|U|, thus f

′ ∈ (sSp/K)|U|.
(b) By induction on i, we are going to construct a fibrant replacement f ′[i] :

X ′[i] → skiK of f |skiK : X |skiK → skiK such that f ′[i] belongs to (sSp/skiK)U
and f ′[i+ 1]|skiK = f ′[i].

Assuming this is done, we set f ′ := colimi f
′[i] : X ′ → K. Then f ′ satisfies

f ′|skiK = f ′[i], thus f ′ is a fibration and f ′ ∈ (sSp/K)U . Moreover, sinceX |skiK →֒
X ′[i] is a weak equivalence for all i, we get that X →֒ X ′ is a weak equivalence as
well, thus f ′ is a fibrant replacement of f .

Assume that f ′[i] was already constructed. Set X [i] := X ⊔X|skiK
X ′[i]. Then

it follows from Lemma 3.1.6 that f [i] : X [i] → K is a quasifibration and that
X → X [i] is a weak equivalence. By construction, f [i]|skiK : X [i]|skiK → skiK is
a fibration f ′[i], and we want to show that f [i]|ski+1K has a fibrant replacement
f ′[i + 1], all of whose fibers are in SetU , such that f ′[i+ 1]|skiK = f [i]|skiK .

Recall that ski+1K = skiK ⊔⊔∂✷[n,m] ⊔✷[n,m]. Thus it remains to show that
for every quasifibration f : X → ✷[n,m] from (sSp/✷[n,m])U , whose restriction to
∂✷[n,m] is a fibration, there exists a fibrant replacement f ′ : X ′ → ✷[n,m] from
(sSp/✷[n,m])U such that f ′|∂✷[n,m] = f |∂✷[n,m].

Since ✷[n,m] ∈ sSp|U|, it follows from (a) that there exists a fibrant replacement
f ′′ : X ′′ → ✷[n,m] of f in (sSp/✷[n,m])U . Moreover, since f is a quasifibration,
there exists X ′ ⊂ X ′′ such that X ′|∂✷[n,m] = X |∂✷[n,m], and f

′ := f ′′|X′ is a fibrant
replacement of f (see the proof of Corollary 3.2.2). Then f ′ ∈ (sSp/✷[n,m])U and
f ′|∂✷[n,m] = f |∂✷[n,m]. �

Corollary 3.2.6. In the situation Corollary 3.2.2, assume that the quasifibration
X → B is in (sSp/B)U . Then Y → B can also chosen to be in (sSp/B)U .

Proof. If X → B is in (sSp/B)U , then Y
′ → B from the proof of Corollary 3.2.2 can

be chosen to be in (sSp/B)U by Lemma 3.2.5, thus Y → B is also in (sSp/B)U . �
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4. Complements

4.1. Discrete iterated cylinder.

4.1.1. Observations. (a) Every map p : X → B × F [m] in sSp induces a map
pn : Xn → Bn × F [m]n for all n. Since F [m]n decomposes as

∐
τ :[n]→[m] pt, each

Xn decomposes as a disjoint union Xn =
∐
τ :[n]→[m]Xτ , and pn decomposes as a

disjoint union of pτ : Xτ → Bn.
(b) By definition, all fibers of p belong to SetU if and only of all fibers of each

pτ belong to SetU .
(c) Notice that pn is a quasifibration if and only if each pτ : Xτ → Bn is a

quasifibration. Using Lemma 3.1.7 we conclude that p is a quasifibration if and
only if each pτ is a quasifibration.

(d) Recall that a quasifibration p : X → B × F [m] is left if and only if each
morphism gn : Xn → X0×(B×F [m])0 (B × F [m])n is a weak equivalence. Note that
gn decomposes as a disjoint union of morphisms gτ : Xτ → Xτ |0 ×B0 Bn. Thus f
is left if and only if each gτ is a weak equivalence.

(e) A morphism f : X → Y between left quasifibrations over B×F [m] is a weak
equivalence if and only if f |i : X |i → Y |i is a weak equivalence over B for each
i = 1 . . . ,m.

Proof. By definition, f is a weak equivalence if and only if fn : Xn → Yn is a weak
equivalence for all n, which by (a) is equivalent to the assertion that fτ : Xτ → Yτ
is a weak equivalence for all τ : [n] → [m]. Similarly, f |i is a weak equivalence if
and only if fτ : Xτ → Yτ is a weak equivalence for all τ : [n] → {i} ⊂ [m]. This
implies ”the only if” assertion.

To show the converse, notice that by (d) and 2-out-of-3, fτ is a weak equivalence
if and only if fτ |0 : Xτ |0 ×B0 Bn → Yτ |0 ×B0 Bn is a weak equivalence. Since by (b)
the maps Xτ |0 → B0 and Yτ |0 → B0 are quasifibrations, if follows from Corollary
3.1.5 that f is a weak equivalence if each fτ |0 : Xτ |0 → Yτ |0 is a weak equivalence
or, equivalently, if fτ : Xτ → Yτ is a weak equivalence for all τ : [0]→ [m]. �

4.1.2. Discrete iterated cylinder. For B ∈ sSp and a sequence of morphisms

f : K(0) f1→ . . .
fm
→ K(m) in sSp/B, we define recursively a discrete iterated cylinder

Cyldisc(f) → B × F [m] and morphisms ιj : K(j) × ejF [m − j] → Cyldisc(f) over
B × F [m] for all j = 0, . . . ,m as follows.

If m = 0, we set Cyldisc(f) := K(0), and put ι0 = Id. If m ≥ 1, we denote

by f(1) the sequence f(1) : K(1) f2
→ . . .

fm
→ K(m), and assume by induction that

we have defined an iterated cone Cyldisc(f(1)) → B × F [m − 1] and a morphism
ιj : K

(j) × ejF [m− j]→ e1Cyldisc(f(1)) for all j = 1, . . . ,m.
We define Cyldisc(f)→ B × F [m] to be the pushout

(4.1) Cyldisc(f) := (K(0) × F [m]) ⊔(K(0)×e1F [m−1]) e
1Cyldisc(f(1)),

where the mapK(0)×e1F [m−1]→ e1Cyldisc(f(1)) is defined to be the composition

K(0) × e1F [m− 1]
f1
−→ K(1) × e1F [m− 1]

ι1−→ e1Cyldisc(f(1)).

Finally, we define ι0 : K(0) × F [m] →֒ Cyldisc(f) be the natural embedding.

Lemma 4.1.3. If each K(i) → B is a (left) quasifibration in (sSp/B)U , then
Cyldisc(f)→ B × F [m] is a (left) quasifibration in (sSp/B × F [m])U .
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Proof. We are going to apply 4.1.1 to the projection p : Cyldisc(f)→ B × F [m].

We claim that for each τ : [n]→ [m], we have Cyldisc(f)τ = K
(τ(0))
n . The proof

goes by induction. The assertion is obvious, if m = 0. Next, if m ≥ 1, then (4.1)

implies that Cyldisc(f)τ equals K
(0)
n , if τ(0) = 0, and equals Cyldisc(f(1))τ ′ , where

τ ′ : [n]→ [m− 1] is given by τ ′(i) = τ(i)− 1, if τ(0) ≥ 1. By induction hypothesis,

in the second case Cyldisc(f)τ equals K
(τ ′(1))
n = K

(τ(0))
n .

By the proven above and 4.1.1 (a), each fiber of p is a fiber of someK
(τ(0))
n → Bn.

Thus it belongs to SetU , because K
(τ(0)) → B is in (sSp/B)U .

Moreover, since each K(τ(0)) → B is a quasifibration, each K
(τ(0))
n → Bn is

a quasifibration (by Lemma 3.1.7). Therefore p is a quasifibration by 4.1.1 (c).

Similarly, each projection Cyldisc(f)τ → Cyldisc(f)τ |0 ×B0 Bn is simply K
(τ(0))
n →

K
(τ(0))
0 ×B0 Bn. Therefore it is a weak equivalence, because K(τ(0)) → B is left.

The assertion now follows from 4.1.1 (d). �

Lemma 4.1.4. Let f : X → Y be a map, and E → Y × F [n] be a left fibration.
(a) The map p :MapY×F [n](X × F [n], E)→MapY×F [n](X,E), induced by the

inclusion e0 : F [0] →֒ F [n], is a trivial fibration.
(b) The map

q :MapY×F [n](X × F [n], E)→MapY×F [n](X × (e0F [1] ⊔e1F [0] e
1F [n− 1]), E),

induced by the inclusion e0F [1] ⊔e1F [0] e
1F [n− 1] →֒ F [n], is a trivial fibration.

Proof. (a) Since E → Y ×F [n] is a left fibration, the map EX → (Y ×F [n])X is a
left fibration by Lemma 2.1.2 (b). Then by Lemma 2.1.3 (b), the map

EX×F [n] → EX ×(Y×F [n])X (Y × F [n])X×F [n]

is a trivial fibration. Taking fiber over f × IdF [n] ∈ (Y × F [n])X×F [n], we get the
assertion.

(b) Since e0F [1]⊔e1F [0]e
1F [n−1] →֒ F [n] is a cofibration, the map q is a fibration.

Thus it remains to show that q is a weak equivalence. Consider map

r :MapY×F [n](X × (e0F [1] ⊔e1F [0] e
1F [n− 1]), E)→MapY×F [n](X,E),

induced by the inclusion F [0]
e0

−→ e0F [1] →֒ e0F [1]⊔e1F [0]e
1F [n−1]. Since r◦q = p,

it is a weak equivalence by (a). Thus it remains to show that r is a weak equivalence.
But r can be written as a composition of

MapY×F [n](X × (e0F [1] ⊔e1F [0] e
1F [n− 1]), E)→MapY×F [n](X × e

0F [1], E)

and (e0)∗ :MapY×F [n](X×e
0F [1], E)→MapY×F [n](X,E), so it remains to show

that both maps are trivial fibrations. Since the first map is the pullback of the
morphism MapY×F [n](X × e1F [n − 1], E) → MapY×F [n](X × e1F [0], E), both
maps are trivial fibrations by (a). �

4.2. Proofs. In this subsection we prove Propositions 2.2.8, 2.2.9 and Corollary
2.2.10. The most difficult part is Proposition 2.2.9 (b), whose proof is carried out
in 4.2.7-4.2.9 and 4.2.11-4.2.13. We denote SU simply by S.

4.2.1. Proof of Proposition 2.2.8 (a). By 1.3.7 (a), we have to show that
for every trivial cofibration i : A → B in sSp with B = ✷[n,m] the morphism
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i∗ : Hom(B,S)→ Hom(A,S) is surjective. By Lemma 2.2.4 this means that every
left fibration YA → A in (sSp/A)U extends to a left fibration YB → B in (sSp/B)U .

Note that composition j : YA → A → B belongs to (sSp/B)U , and B ∈ sSp|U|.
Then j decomposes as a composition of a trivial cofibration YA → XB and a
fibration XB → B in (sSp/B)U (by Lemma 3.2.5 (a)). Now let YB ⊂ XB be the
largest simplicial subspace such that YB ×B A = YA (see Lemma 3.2.1). Then
YB → B belongs to (sSp/B)U , and we claim that YB → B is a left fibration.

Let XA := XB ×A B. Since A → B is a weak equivalence and the Reedy
model structure is proper, the inclusion XA → XB is a weak equivalence. Since
YA → XA → XB is also a weak equivalence, we conclude that YA → XA is a weak
equivalence. Then by Lemma 3.2.1, the projection YB → B is a fibration, while
YA →֒ YB is a weak equivalence. Since YA → A is a left fibration, YB → B is a left
fibration by Lemma 3.1.10.

4.2.2. Proof of Proposition 2.2.8 (b). To show that S(n) → Sn+1 is a fibration
we have to show that for every trivial cofibration A →֒ B, the map (S(n))B →
(Sn+1)B ×(Sn+1)A (S(n))A is surjective. Using the observation of 2.2.7, we have to

show that for every (n + 1)-tuple of left fibrations E(0), . . . , E(n) of over B, every
diagram E(0)|A → . . . → E(n)|A over A extends to a diagram E(0)|B → . . . →
E(n)|B over B. For this enough to show that each restriction map

HomB(E
(i), E(i+1))→ HomB(E

(i)|A, E
(i+1)) = HomA(E

(i)|A, E
(i+1)|A)

is surjective. Since E(i) → B is a fibration, A→ B is a trivial cofibration, and the
Reedy model structure is proper, we get that E(i)|A → E(i) is a trivial cofibration.
Thus the assertion follows from the fact E(i+1) → B is a fibration.

To show that S(we) → S2 is a fibration, we argue as above word-by-word, and
note that since E(i)|A → E(i) are trivial cofibrations, it follows from 2-out-of-3
that the morphism E(0) → E(1) is a weak equivalence if and only if its restriction
E(0)|A → E(1)|A is a weak equivalence.

4.2.3. Proof of Proposition 2.2.8 (c). We have to show that for every cofibra-
tion A →֒ B, the map (S(we))B → SB ×SA (S(we))A is surjective. Let E(0) → B

belong to (LFib/B)U , E
(1)
A → A belong to (LFib/A)U , and φ

′ : E(0)|A → E
(1)
A be

a weak equivalence over A. We have to show that φ′ extends to a weak equivalence
φ : E(0) → E(1) over B such that E(1) → B belongs to (LFib/B)U .

By Lemma 3.1.6, the pushout E(0) ⊔E(0)|A E
(1)
A is a quasifibration over B, whose

restriction to A is a fibration E
(1)
A → A. Therefore, by Corollary 3.2.6, there exists

a fibrant replacement E(1) → B in (sSp/B)U such that E(1)|A = E
(1)
A .

By construction, φ′ extends to a morphism φ : E(0) φ1
−→ E(0)⊔E(0)|AE

(1)
A

φ2
−→ E(1)

of fibrations over B. Moreover, since φ′ is a weak equivalence, its pushout φ1 is a
weak equivalence, hence φ is a weak equivalence as well. Since E(0) → B is a left
fibration, E(1) → B is a left fibration by Lemma 3.1.10.

4.2.4. Proof of Proposition 2.2.8 (d). Using observations of 2.2.7 (b), it re-
mains to show that for every a ∈ S(we), b ∈ S(1) such that a ∼ b in S(1), we have
b ∈ S(we). Since S(we) → S×S is a fibration, while S(1) is fibrant (by Proposition
2.2.8 (a),(b)), we may assume that a ∼ b in some fiber of S(1) → S×S.
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Then a corresponds to a weak equivalence φa : E(0) → E(1), b corresponds to a
morphism φb : E

(0) → E(1), assumption a ∼ b means that the maps φa and φb are
homotopic. Then b is a weak equivalence, hence b ∈ S(we).

4.2.5. Proof of Proposition 2.2.9 (a). By Lemma 2.2.4, for every K ∈ sSp the
set Hom(K,S∆[1]) = Hom(K×∆[1],S) is in bijection with the set of left fibrations
E → K ×∆[1] in (sSp/K ×∆[1])U , while the set Hom(K,S2) is in bijection with
the set of pairs of left fibrations E(0) → K,E(1) → K in (sSp/K)U . Moreover,
the projection S(we) → S2 sends E → K × ∆[1] to a pair E|0 := E|K×{0} and

E|1 := E|K×{1}, and the set Hom(K,S(we)) is in bijection with the set of weak

equivalences φ : E(0) → E(1) of left fibrations over K (by 2.2.7).
By Lemma 1.3.11 (c) for every left fibration E → K ×∆[1] there exists a weak

equivalence φ : E|0 → E|1 of left fibrations over K. We take K := S∆[1] and
E be the left fibration, corresponding to IdK , then φ gives rise to the morphism
ψ : S∆[1] → S(we) over S2.

Moreover, p0 : S(we) → S is a trivial fibration by Proposition 2.2.8 (c), while
δ0 : S∆[1] → S is a trivial fibration, because S is fibrant (see Proposition 2.2.8
(a)), and ∆[0] → ∆[1] is a trivial cofibration. Then ψ is a weak equivalence by
2-out-of-3, hence a homotopy equivalence by Lemma 1.3.11 (b).

4.2.6. Proof of Corollary 2.2.10. The homotopy equivalence S(we) → S∆[1]

over S2 from Proposition 2.2.9 (a) induces a homotopy equivalence

Map(K,S(we))→ Map(K,S∆[1]) = Map(∆[1],SK)

over Map(K,S2), hence a homotopy equivalence between fibers over (α, β) ∈
Map(K,S2). Since fiber Map(K,S(we))α,β 6= ∅ means that Eα and Eβ are ho-

motopy equivalent over K (by 2.2.7(b)), while Map(K,S∆[1])α,β 6= ∅ means that
α ∼ β in SK , we get the assertion.

4.2.7. Construction of ψ(n). By 2.2.7, the identity map IdS(n) corresponds to

a diagram φ : E(0) φ1
−→ . . .

φn
−→ E(n) of left fibrations over S(n) in (sSp/S(n))U .

To define a morphism ψ(n) : S(n) → SF [n] over Sn+1, we have to construct a left
fibrationE → S(n)×F [n] in (sSp/S(n)×F [n])U such that E|i := E|S(n)×{i} = E(i).

Consider iterated discrete cylinder p : Cyld(φ)→ S(n) × F [n] (see 4.1.2). Then
p is a left quasifibration in (sSp/S(n) × F [n])U (see Lemma 4.1.3) such that the
restriction Cyld(φ)|i = E(i) is a fibration over S(n). Thus, by Corollary 3.2.6, there
exists a fibrant replacement p′ : E → S(n) × F [n] of p in (sSp/S(n) × F [n])U such
that E|i = Cyld(φ)|i for all i. Then p′ is a left fibration by Corollary 3.1.11.

4.2.8. Uniqueness of ψ(n). Notice that if E′ is another fibrant replacement of
Cyld(φ) → S(n) × F [n] such that E′|i = Cyld(φ)|i for all i, then there exists a
weak equivalence E → E′ over S(n) × F [n], which is identity over each {i} ∈ F [n].
Now it follows from Corollary 2.2.10 that the morphism ψ′(n) : S(n) → SF [n],
corresponding to E′, is homotopic to ψ(n) over SF [n].

4.2.9. Modular interpretation of ψ(n). Note that a morphism ϕ : K → S(n)

corresponds to the diagram ϕ∗(φ) of left fibrations over K, while the composition
ψ(n)◦ϕ : K → SF [n] corresponds to the left fibration ϕ∗(E). Recall that Cyld(φ)→
K × F [n] is a quasifibration and that E is a fibrant replacement of Cyld(φ) such
that E|i = E(i) for all i. Hence it follows from Corollary 3.1.4 that ϕ∗(E) is a
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fibrant replacement of ϕ∗(Cyld(φ)) = Cyld(ϕ∗(φ)) such that ϕ∗(E)|i = ϕ∗(E(i))
for all i.

4.2.10. Proof of Proposition 2.2.9 (c). By 2.2.7, the composition µ∗ ◦ ψ(n) :
S(n) → SF [m] corresponds to the left fibration µ∗(E) → S(n) × F [m], which
is as in 4.2.9 is a fibrant replacement of µ∗(Cyld(φ)) = Cyld(µ∗(φ)). Similarly,
ψ(m) ◦µ∗ : S(n) → SF [m] also corresponds to a fibrant replacement of Cyld(µ∗(φ)).
Since all fibrant replacement are weakly equivalent, two compositions are homotopic
by Corollary 2.2.10.

It remains to show that ψ = ψ(n) is a homotopy equivalence over Sn+1.

4.2.11. Reduction. By Lemma 1.3.11 (a), we have to show that for every map η :
M → Sn+1, the map π0(ψ/η) : π0(MapSn+1(M,S(n)))→ π0(MapSn+1(M,SF [n])),
induced by ψ, is a bijection.

Let η corresponds to an (n + 1)-tuple H(0), . . . , H(n) of left fibrations over M .

Then ϕ ∈ HomSn+1(M,S(n)) corresponds to diagrams ϕ : H(0) ϕ1
−→ . . .

ϕn
−→ H(n)

overM , and τ ∈ HomSn+1(M,SF [n]) corresponds to left fibrations H →M ×F [n]
such that H |i = H(i) for all i.

Using Corollary 2.2.10 (a) and 4.2.9, we see that ψ◦ϕ ∼ τ in MapSn+1(M,SF [n])
if and only if there exists a weak equivalence ν : Cyld(ϕ)→ H over M × F [n] such
that ν|i : H(i) → H |i = H(i) is the identity. Moreover, by 4.1.1 (e), this happens
if and only if there exists a morphism ν : Cyld(ϕ) → H over M × F [n] such that
ν|i : H(i) → H |i = H(i) is IdH(n) for all i.

4.2.12. Proof of surjectivity of π0(ψ/η). We have to show that for every left
fibration H →M ×F [n] such that H |i = H(i) for all i there exists a diagram ϕ and
a morphism ν : Cyld(ϕ)→ H overM×F [n] such that each ν|i : H(i) → H |i = H(i)

is the identity. We construct ϕ and ν by induction on n. If n = 0, then ϕ is empty,
Cyld(ϕ) = H(0) = H , so ν = IdH does the job.

Assume that n > 0. By induction hypothesis, there exists a diagram

ϕ(1) : H(1) ϕ2
−→ . . .

ϕn
−→ H(n) overM and a morphism e1Cyld(ϕ(1))→ H |e1F [n−1] ⊂

H over M × F [n] such that ν|i : H
(i) → H |i = H(i) is the identity for all i > 0. In

particular, we have a morphism ν[1] : H(1)× e1F [n− 1]→ e1Cyld(ϕ(1))→ H over
M × F [n] such that ν[1]|1 = IdH(1) .

Since Cyld(ϕ) = (H(0) × F [n]) ⊔(H(0)×e1F [n−1]) e
1Cyld(ϕ(1)), it remains to con-

struct a morphism ϕ1 : H(0) → H(1) overM and a morphism ν[0] : H(0)×F [n]→ H
over M × F [n] such that ν[0]|0 = IdH(0) , and restriction ν[0]|e1F [n−1] decomposes

as a composition H(0) × e1F [n− 1]
ϕ1
−→ H(1) × e1F [n− 1]

ν[1]
−→ H .

Since H →M×F [n] is a left fibration, the inclusion H(0) = H |0 →֒ H extends to
a morphism ν′[0] : H(0) × e0F [1]→ H |e0F [1] ⊂ H over M × F [n] (see Lemma 4.1.4

(a)). Denote ν′[0]|1 : H(0) → H(1) by ϕ1, and define ν′′[0] : H(0) × e1F [n − 1] →
H |e1F [n−1] ⊂ H to be the composition ν[1] ◦ ϕ1. Then ν′[0] and ν′′[0] define a

morphism H(0)× (e0F [1]⊔e1F [0] e
1F [n− 1])→ H overM ×F [n], which by Lemma

4.1.4 (b) can be extended to all of H(0) × F [n].

4.2.13. Proof of injectivity of π0(ψ/η). Fix a left fibration H →M ×F [n], and

consider all diagrams ϕ : H(0) ϕ1
−→ . . .

ϕn
−→ H(n) over M for which there exists a

morphism ν : Cyld(ϕ) → H over M × F [n] such that each ν|j is the identity. We

have to show that each π0(ϕj) ∈ π0(MapM (H(j), H(j+1))) only depends on H .
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Consider canonical embedding ιj : H
(j)×ejF [n−j]→ Cyld(ϕ) (see 4.1.2). Then

the composition ν ◦ ιj : H(j)×ejF [n− j]→ H is such that (ν ◦ ι)|j : H(j) → H(j) is

IdH(j) , while (ν ◦ ι)|j+1 : H(j) → H(j+1) is ϕj . Thus it remains to show that each

π0(ν ◦ ιj) ∈ π0(MapM×F [n](H
(j) × ejF [n − j], H)) only depends on H . Since the

restriction map MapM×F [n](H
(j) × ejF [n − j], H) → MapM×F [n](H

(j) × {j}, H)

is a trivial fibration (by Lemma 4.1.4 (b)), while (ν ◦ ιj)|j = IdH(j) , the assertion
follows from 1.2.8 (b).
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