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YONEDA LEMMA FOR COMPLETE SEGAL SPACES

DAVID KAZHDAN AND YAKOV VARSHAVSKY

ABSTRACT. In this note we formulate and give a self-contained proof of the
Yoneda lemma for co-categories in the language of complete Segal spaces.
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INTRODUCTION

In recent years co-categories or, more formally, (oo, 1)-categories appear in vari-
ous areas of mathematics. For example, they became a necessary ingredient in the
geometric Langlands problem. In his books [Lull, [Lu2] Lurie developed a theory of
oo-categories in the language of quasi-categories and extended many results of the
ordinary category theory to this setting.

In his work [Rel] Rezk introduced another model of co-categories, which he
called complete Segal spaces. This model has certain advantages. For example, it
has a generalization to (oo, n)-categories (see [Re2]).

It is natural to extend results of the ordinary category theory to the setting of
complete Segal spaces. In this note we do this for the Yoneda lemma.

D.K. was partially supported by the ERC grant No. 247049-GLC, Y.V. was partially supported
by the ISF grant No. 1017/13.
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To formulate it, we need to construct a convenient model of the ” co-category of
spaces”, which an oo-analog of the category of sets. Motivated by Lurie’s results,
we define this oo-category to be the simplicial space ”classifying left fibrations”.
After this is done, the construction of the Yoneda embedding and the proof of the
Yoneda lemma goes almost like in the case of ordinary categories.

In our next works [KVI, [KV2] we study adjoint functors, limits and colimits,
show a stronger version of the Yoneda lemma, and generalize results of this paper
to the setting of (0o, n)-categories.

We thank Emmanuel Farjoun, Vladimir Hinich and Nick Rozenblyum for stim-
ulating conversations and valuable remarks.

This paper is organized as follows. To make the work self-contained, in the first
section we introduce basic definitions and discuss properties of model categories,
simplicial sets, simplicial spaces and Segal spaces, assuming only basic category
theory. In the second section we introduce left fibrations, construct the co-category
of spaces G, and formulate and prove the Yoneda lemma. Next, in the third section,
we study quasifibrations of simplicial spaces, which are needed for our argument and
are also very interesting objects for their own. Finally, the last section is devoted
to the proof of the properties of &, formulated in the second section.

1. PRELIMINARIES
1.1. Model categories.

1.1.1. Notation. Let C be a category. (a) For an element Z € C, we denote by
C/Z the overcategory over Z.

(b) For a pair of morphisms i : A — B and p: X — Y in C, we denote by
Home (4, p) the set of commutative diagrams in C

A—2 5 X

(1.1) l pl

B ——v.
We say that i is a retract of p, if there exist o € Home(i,p) and 8 € Home(p, 7)
such that § oo =1d;.

(c) We say that p has the right lifting property (RLP) with respect to 7 (and that
¢ has the left lifting property (LLP) with respect to p), if for every commutative
diagram (1)) there exists a morphism ¢ : B — X such that poc=band coi = a.

Equivalently, this happens if and only if the natural map of sets

(", p«) : Hom(B, X)) — Hom(A, X) Xgom(a,y) Hom(B,Y)

is surjective.

(d) Assume that C has fiber products. Then for every morphism f: X — Y in
C/Z and morphism ¢ : Z' — Z in C, we write ¢*(f) : ¢*(X) — ¢*(Y) instead of
fxz72 X xz72" =Y xzZ and call it the pullback of f.

(e) We say that a category C is Cartesian, if C has finite products, and for
every X,Y € C there exists an element XY € C, representing a functor Z
Hom(Z x Y, X), which is called the internal hom of X and Y.

1.1.2. Example. Let C be the category of functors C = Fun(I'°?, Set), where T is
a small category, and Set is the category of sets.
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(a) Since category Set has all limits and colimits, category C also has these
properties. Explicitly, every functor « : I — C defines a functor «(y) : I — Set
for each v € T', and we have lim;(a) () = lim;((7)) and similarly for colimits. In
particular, category C has products.

(b) For every v € T', denote by F, € C the representable functor Homp(-, 7).
Then for every X,Y € C there exists their internal hom XY € C, defined by the
rule XY (y) = Hom(Y x F,, X) with obvious transition maps. In other words,
category C is Cartesian.

The following lemma is straightforward.

Lemma 1.1.3. Let C be a Cartesian category, and let i : A — B, j: A’ — B’ and
p: X — Y be morphisms in C. Then j has the LLP with respect to (i*,p.) : XB —
XA xya YB if and only if (is,j.) : (A x B') Uiaxan (B x A') = B x B’ has the
LLP with respect to p.

Definition 1.1.4. (compare [GJ, I1,1]). A model category is a category C, equipped
with three collections of morphisms, called cofibrations, fibrations and weak equiv-
alences, which satisfy the following axioms:

CM1: The category C has all finite limits and colimits.

CM2 (2-out-of-3): In a diagram X Ly & 75 any two of the morphisms f, g
and g o f are weak equivalences, then so is the third.

CM3 (retract): If f is aretract of g, and g is a weak equivalence/fibration/cofibration
then so is f.

CM4 (lifting property): Let 7 be a cofibration and p be a fibration. Then p has
the RLP with respect to i, if either 7 or p is a weak equivalence.

CM5 (decomposition property): any morphism f has a decomposition

(a) f = poi, where p is fibration, and i is a cofibration and weak equivalence;

(b) f = qoj, where ¢ is fibration and weak equivalence, and j is a cofibration.

1.1.5. Notation. (a) A map in a model category C is called a trivial cofibration
(resp. trivial fibration) if it is cofibration (resp. fibration) and a weak equivalence.
(b) By CM5, every morphism f : X — Y can be written as a composition

X 5 X' %Y, where i is a trivial cofibration, and p a fibration. In such a case, we
say that p is a fibrant replacement of f.

(c) An element X € C is called fibrant (resp. cofibrant), if the canonical map
X — pt (resp. § — X), where pt (resp 0)) is the final (resp. initial) object of C, is
a fibration (resp. cofibration).

For the following basic fact see, for example, [GJ, II, Lem. 1.1].

Lemma 1.1.6. A map f : X — Y in a model category C is a cofibration (resp.
trivial cofibration) if and only if it has the LLP with respect to all trivial fibrations
(resp. fibrations).

(b) A map f: X = Y in a model category C is a fibration (resp. trivial fi-
bration) if and only if it has the RLP with respect to all trivial cofibrations (resp.
cofibrations).

1.1.7. Remarks. (a) Lemma [[.T.0 implies in particular that (trivial) cofibrations
and (trivial) fibrations are closed under compositions, and that all isomorphisms
are trivial cofibrations and trivial fibrations.
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(b) It also follows immediately from Lemma[[TT.0l that (trivial) fibrations are pre-
served by all pullbacks, and that (trivial) cofibrations are preserved by all pushouts.

(c) Tt follows from CM5 (a) and CM2 that every weak equivalence f has a
decomposition f = p o, where p is trivial fibration, and ¢ is a trivial cofibration.

Definition 1.1.8. We call a model category C Cartesian, if C is a Cartesian cat-
egory, the final object of C is cofibrant, and for every cofibration ¢ : A — B and
fibration p : X — Y, the induced map ¢ : X% — X4 xya Y is a fibration and,
additionally, ¢ is a weak equivalence if either 4 or p is.

1.1.9. Remark. Taking A = ) or Y = pt in the definition of Cartesian model
category, we get the following particular cases.

(a) If B is cofibrant, then for every (trivial) fibration X — Y, the induced map
XB — YB is a (trivial) fibration.

(b) If X is fibrant, then for every (trivial) cofibration A — B, the induced map
XB 5 X4 is a (trivial) fibration.

Lemma 1.1.10. Let C be a model category, which is Cartesian as a category, and
such that the final object of C is cofibrant. Then C is a Cartesian model category
if and only if for every two cofibrations i : A — B and i’ : A’ — B’, the induced
morphism j : (Ax B")Uaxary (BxA") — B x B’ is a cofibration and, additionally,
j is a weak equivalence, if either i or i’ is.

Proof. This follows from a combination of Lemma and Lemma [[LT.3 O

Definition 1.1.11. A model category C is called:
(a) right proper, if weak equivalences are preserved by pullbacks along fibrations;
(b) left proper, if weak equivalence are preserved by pushouts along cofibrations;
(c) proper, if it is both left and right proper.

1.2. Simplicial sets.

1.2.1. Category A. (a) For n > 0, we denote by [n] the category, corresponding
to a partially ordered set {0 < 1 < ... <n}. Let A be the full subcategory of the
category of small categories Cat, consisting of objects [n],n > 0.

(b) For each (m + 1)-tuple of integers 0 < kg < k1 < ... < k;, < n, we denote
by 6%orkm the map d : [m] — [n] such that 6(i) = k; for all i.

(c) For 0 < i < n we define an inclusion d’ : [n — 1] < [n] such that i ¢ Imd’;
for 0 < i < j < n, we define an inclusion d* : [n — 2] < [n] such that i, j ¢ Imd"/;
for 0 <i < n —m we define an inclusion e’ : [m] — [n] defined by e’(k) := k + 1.

1.2.2. Spaces. (a) By the category of spaces or, what is the same, the category
simplicial sets we mean the category of functors Sp := Fun(A°P, Set).

(b) For X € Sp, we set X,, := X ([n]). For every 7 : [n] = [m] in A, we denote
by 7 : X,, — X, the induced map of sets. For every morphism f: X — Y in Sp
we denote by f, the corresponding map X,, — Y,,.

(c) By [LIZ category Sp is Cartesian and has all limits and colimits.

1.2.3. The standard n-simplex. (a) For every n > 0, we denote by Aln] € Sp
the functor Homa (-, [n]) : A°? — Set. Then pt := A[0] is a final object of Sp.

(b) The Yoneda lemma defines identifications Homg,(A[n], X) = X,, and
Homg, (A[n], A[m]) = Homa ([n], [m]) for all X € Sp and all n,m > 0.

(c) We denote by Af[n] the image of the inclusion d* : A[n — 1] — A[n], and set
OA[n] := Ul yAf[n] C Aln] and A*[n] := U,z AF[n] C Aln] for all k =0,...,n.
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1.2.4. Fibers. (a) For X € Sp, we say z € X instead of z € Xy. By 23] (b),
each z € X corresponds to a map z : pt - X.

(b) For every morphism f : Y — X, we denote by f~!(x) or Y, the fiber product
{z} xx Y :=pt x, xY and call it the fiber of f at x.

(c) For every Z € Sp and X,Y € Sp/Z, we denote by Map,(X,Y) the fiber of
Y — ZX over the projection (X — Z) € Z¥.

Definition 1.2.5. (a) Amap f: X — Y in Sp is called a (Kan) fibration, if it has
the RLP with respect to inclusions A*[n] < A[n] for all n > 0,k =0,...,n.

(b) Amap f: X = Y in Sp is called a weak equivalence, if it induces a weak
equivalence |f| : | X| — |Y| between geometric realisations (see [GJl p. 60]).

(¢) Amap f: X — Y in Spis called a cofibration, if f,, : X,, — Y}, is an inclusion
for all n.

Theorem 1.2.6. Category Sp has a structure of a proper Cartesian model category
such that cofibrations, fibrations and weak equivalences are defined in Definition
[LZ3 In particular, all X € Sp are cofibrant, and trivial fibrations are precisely
the maps which have the RLP with respect to inclusions OA[n] — Aln],n > 0.

Proof. See [GJ, I, Thm 11.3, Prop 11.5 and II, Cor 8.6] and note that in the case
of model category Sp, ” Cartesian” means the same as ”simplicial”. O

Definition 1.2.7. We say that X € Sp is a (contractible) Kan complez, if the
projection X — pt is a (trivial) fibration.

1.2.8. Connected components. (a) We say that X € Sp is connected, if it can
not be written as X = X’ 10 X", where X', X" # (). We say that Y C X is a
connected component of X, if it is a maximal connected subspace of X. Notice that
X is a disjoint union of its connected components.

(b) We denote the set of connected components of X by mo(X). Then every map
f:X =Y in Sp induces a map mo(f) : mo(X) — m(Y). Note that X is connected
if and only if its geometric realization |X| is connected. In particular, we have an
equality mo(X) = mo(|X|). Therefore for every weak equivalence f: X — Y in Sp,
the map 7o (f) is a bijection.

(¢c) For z,y € X, we say that z ~ y, if  and y belong to the same connected
component of X. If X is a Kan complex, then x ~ y if and only if there exists a
map « : A[l] = X such that «(0) = 2 and «(1) =y (see [GJ, Lem 6.1]).

Lemma 1.2.9. (a) Let f : X — Y be a trivial fibration. Then the space of sections
Mapy- (Y, X) of f is non-empty and connected.

(b) Let f : X =Y be a fibration in Sp. Then f is trivial if and only if the Kan
complex f~1(y) is contractible for every y € Y.

(c) Let f : X = Y is a map of fibrations over Z in Sp. Then f is a weak
equivalence if and only if the map of fibers f, : X, — Y, is a weak equivalence for
every z € 4.

Proof. (a) Since Y is cofibrant, the projection XY — Y'Y is a trivial fibration (by
[T (a)). Hence its fiber Mapy (Y, X) is a contractible Kan complex (by [LT.7 (b)),
therefore it is non-empty and connected by (b).

(b) By the last assertion of Theorem [[.2.6] the fibration f is trivial if and only if
its pullback 7*(f) is a trivial fibration for all 7 : A[n] — Y. Thus we may assume
that Y = A[n]. Then for each y € A[n], the inclusion y : A[0] — A[n] is a weak
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equivalence. Thus X, — X is a weak equivalence, because Sp is right proper.
Hence, by 2-out-of-3, f is a weak equivalence if and only if X, — A[0] is.
(c) will be proven in [L3T3l O

1.3. Simplicial Spaces.

1.3.1. Notation. (a) By the category of simplicial spaces, we mean the category
of functors sSp = Fun(A°, Sp) = Fun(A° x AP, Set).

(b) For X € sSp and n,m > 0, we set X,, := X([n]) € Sp and X,, ;m := (Xp)m €
Set. For every morphism f : X — Y in sSp, we denote by f, : X,, — Y, the
corresponding morphism in Sp.

(c) For every 7 : [n] — [m] in A, we denote by 7* : X,,, — X, the induced map of
spaces. We also set O, , = (6Fo-km) o X — X, di o= (dV)* : X,, = X1,
and e; := ()* : X, — Xy

(d) By [LI2] category sSp is Cartesian and has all limits and colimits. For
X,Y € sSp, we define the mapping space Map(Y, X) := (X)) € Sp.

1.3.2. Two embeddings Sp < sSp. (a) Denote by diag : Sp — sSp (resp.
diag : Set — Sp) the map which associates to each X the constant simplicial space
(resp. set) [n] — X, 7 +— Idx. For each X € Sp, we denote the constant simplicial
space diag(X) € sSp simply by X.

(b) The embedding diag : Set — Sp gives rise to an embedding disc : Sp =
Fun(A°P, Set) — sSp = Fun(A°P, Sp). Then the image of disc, consists of discrete
simplicial spaces, that is, X € sSp such that X,, € Sp is discrete (that is, each map
A[l] = X, is constant) for all n.

(c) We set F[n] := disc(A[n]), OF[n] := disc(0A[n]) and Fi[n] := disc(A*[n]).

1.3.3. Standard bisimplex. (a) For n,m > 0, we set [n,m] := ([n],[m]) € A?
and O[n, m] := F[n] x A[m] € sSp. In particular, we have equalities F[n] = O[n, 0],
A[m] =3[0, m] and pt = F[0] = A[0].

(b) Note that O[n,m] is the functor Homaxa (-, [7,m]). Then, by the Yoneda
lemma, we get identifications Hom(O[n, m], O[n/, m']) = Hom([n, m], [n’,m’]) and
Hom(O[n,m|, X) = X, m. In particular, we have identifications
Map(F[n], X) = X,, and Hom(F[n], F[m|) = Hom([n], [m]).

(c) We also set 90[n, m] := (OF [n] x Alm]) Uarmxoapm)) (F[n] x 0A[m]) and
Xon := Map(0F[n], X).

1.3.4. Fibers. (a) For X € sSp, we say x € X instead of v € Xg o, and z ~y € X
instead of x ~ y € Xy. By[[33](b), each z € X corresponds to a map z : pt — X.
(b) As in .24 for every morphism f : Y — X in sSp, we denote by f~!(z) or
Y, the fiber product {z} xx Y := pt X, xY and call it the fiber of f at x.
(c) For every Z € sSp and X,Y € sSp/Z we denote by Mapz(X,Y) € sSp the
fiber of YX — ZX over the projection (X — Z) € Z*. We also set
Map,(X,Y) := Mapz(X,Y)o € Sp.

Definition 1.3.5. We say that a map f: X — Y in sSp is a (Reedy) fibration if
for every n > 0 the induced map f, : X,, = Y, Xy,, Xon is a Kan fibration in Sp.

Theorem 1.3.6. Category sSp has Cartesian proper model category such that cofi-
brations and weak equivalences are degree-wise and fibrations are Reedy fibrations.

Proof. All the assertions, except that the model category is Cartesian, are proven
in [GJ, IV, Thm 3.9]. For the remaining assertion, we use Lemma [[LT.T0 Now
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the assertion follows from the fact that pushouts, products, cofibrations and weak
equivalences are defined degree-wise, and the model category Sp is Cartesian. [

1.3.7. Remarks. (a) It follows from Lemma [[LT3] that a map f: X — Y in sSp
is a fibration if and only if it has the RLP with respect to all inclusions
(OF[n] x Alm]) Uapin)xaipmy) (F[n] x A'[m]) < Dln, m].

(b) If f: X — Y is a Reedy fibration, then the map f, : X,, = Y, is a fibration
for all n. Indeed, fo = fo is a fibration by definition, f¥I" . XFll 5 Y FIl i5 a
fibration by [LLA (a), hence f, = (f¥")g is a fibration.

(c) Let X — Y be a fibration in sSp, and let ¢ : A — B be a cofibration
over Y. Then the map X2 — Y xya X4 is fibration by Theorem [[.3.6l Hence
taking fibers at (B — Y) € Y and passing to zero spaces, we get that the map
i* : Mapy (B, X) — Mapy (A, X) is a fibration, thus Mapy (B, X) is a Kan complex.

1.3.8. Homotopy equivalence. Let Z € sSp (resp. Z € Sp).

(a) We say that maps f: X - Y and g: X — Y in sSp/Z (resp. Sp/Z) are
homotopic over Z and write f ~z g, if f ~ g as elements of Map,(X,Y).

Notice that if Y — Z is a fibration, then Map,(X,Y’) € Sp is a Kan complex (by
L3 (c)), thus by 28 (c) f ~z g means that there exists amap h: X x A[l] = Y
over Z such that hlo = f and h|; = f.

(b) We say that amap f : X — Y is a homotopy equivalence over Z, if there exists
amap g:Y — X over Z, called a homotopy inverse of f, such that fog ~z Idy
and go f ~z Idx.

1.3.9. Remarks. (a) Let f : X — Y be a homotopy equivalence over Z with
homotopy inverse g. Then for every 7 : Z' — Z, the pullback 7*(f) is a homotopy
equivalence over Z' with homotopy inverse 7*(g). Similarly, for every K € sSp, the
map f& : XX — YK is a homotopy equivalence with homotopy inverse g : Y& —
X%, Also, a composition of homotopy equivalences is a homotopy equivalence.

(b) Any homotopy equivalence is a weak equivalence. Indeed, the assertion for
Sp follows from the fact that if f ~z g, then the geometric realizations satisfy
|f| ~ 1z |g], and the assertion for sSp follows from that for Sp.

1.3.10. Strong deformation retract. Let Z € sSp (resp. Z € Sp).

(a) We say that an inclusion ¢ : Y — X over Z is a strong deformation retract
over Z, if there exists a map h : X x A[l] = X over Z such that h|p = Idx, and
hi(X) CY, hlyxap is Y x A[l] 23 Y < X.

(b) If i : Y — X is a strong deformation retract over Z, then i is a homotopy
equivalence over Z, and h|; : X — Y is its homotopy inverse. Also in this case,
Y — Z is a retract of X — Z. In particular, if X — Z is a fibration, then Y — Z
is a fibration as well (by CM3).

(c) Conversely, a trivial cofibration ¢ : ¥ — X between fibrations over Z is a
strong deformation retract over Z.

Proof. Since © : Y — X is trivial cofibration, while Y — Z is a fibration, there
exists a map p : X — Y over Y such that p oi = Idy. Next, the induced map
(OA[1] x X) Ugapnixy) (A[1] x V) = A[l] x X is a trivial cofibration (see Lemma
[LII0). Since X — Z is a fibration, there exists a map h : A[l] x X — X over Z
such that hlo = Idx, hl1 = p and h|apjxy = pry. O
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Lemma 1.3.11. (a) A morphism f : X — Y over Z is a homotopy equiva-
lence over Z if and only if for every map o : K — Z in sSp, the induced map
mo(Map, (K, X)) — mo(Map,(K,Y)) is a bijection.

(b) Every weak equivalence between fibrations is a homotopy equivalence. In
particular, a pullback of a weak equivalence between fibrations is a weak equivalence.

(¢) For each fibration X — Y x A[1], there exists a weak equivalence X|o — X|1
of fibrations over Y.

(d) Let f : Yy — A be a fibration and let A — B be trivial cofibration. Then
there exists a fibration g : Yp — B, whose restriction to A is f.

Proof. (a) If f is a homotopy equivalence, then the induced map Map, (K, X) —
Map,(K,Y) is a homotopy equivalence (by [L3.9l (a)), thus the assertion follows
from[[3.9](b) and [L28] (b). Conversely, applying the assumption for the projection
Y — Z, we find a morphism g : Y — X over Z such that fog ~z Idy. Next
applying it to the projection X — Z, we find that go f ~z Idx.

(b) By[LTM (c) and (a), it is enough to consider separately cases of a trivial
cofibration and a trivial fibration. When f is a trivial cofibration, the assertion
follows from (c) and (b). When f is a trivial fibration, the assertion follows
from (a). Indeed, each map Map (K, X) — Map,(K,Y) is a trivial fibration, thus
the map on 7 is a bijection by (b). The last assertion follows from (a).

(c) Since each map ¢° : A[0] < A[l] is a trivial cofibration, the induced map
(6% : XA = X xapxy (Y x A[1])2 is a trivial fibration. Taking the pullback
with respect to the inclusion Y < (Y x A[1])2[, corresponding to Idy xap), we
get a trivial fibration X := XA X(ap)xyyam Y — X|; over Y. Thus both X|o

and X|; are homotopy equivalent to X over Y (by (b)), hence they are homotopy
equivalent.
(d) will be proven in [3.23] O

1.3.12. Remark. It follows from Lemma [[3TIT] (b) and 2§ (b) that a Kan
complex X € Sp is contractible if and only if the projection X — pt is a homotopy
equivalence. Thus by definition this happens if and only if X is non-empty and Idx
is homotopic to a constant map X — {z} C X.

1.3.13. Proof of Lemmal[l.Z4 (c). If f is a weak equivalence, then each f, : X, —
Y, is a weak equivalence by Lemma [[33TT] (b).

Conversely, write f as p o, where i : X — X' is a trivial cofibration, and
p: X' =Y is fibration. By the "only if” assertion, each i, is a weak equivalence.
Since each f, is a trivial fibration by assumption, each p, is a weak equivalence
by 2-out-of-3. Since p, : X, — Y, is a fibration, it is a trivial fibration. Hence all
fibers of each p, are contractible. Thus all fibers of p are contractible, hence p is a
trivial fibration by Lemma [[22.9] (b). Therefore f is a weak equivalence. O

1.4. Segal spaces. We follow closely [Rell.
1.4.1. Notation. (a) We say that X € sSp is a Segal space, if X is fibrant, and
©n = 501 Xy oo Xpq 5,1,17" : Xn — X1 XX -+ XX X1

is a weak equivalence for each n > 2.

(b) Notice that since Reedy model category is Cartesian, when X is fibrant, the
map ¢, is a fibration. Thus a fibrant object X € sSp is a Segal space if and only
if each map ¢, is a trivial fibration.
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1.4.2. ”Objects” and ”Mapping spaces”. Let X be a Segal space.

(a) By a space of objects of X we mean space Xg. We set Ob X := X ¢ and call
it the set of objects of X. As in[[.34] we say z € X instead of z € Ob X.

(b) For each z,y € X, we denote by map(z,y) = mapy(z,y) € Sp the fiber of
(b0,01) : X1 — X x Xg over (x,y). Notice that since X is fibrant, the map (dg, d1)
is a fibration, thus each space map(z,y) is a Kan complex. For each z,y,z € X,
we denote by map(z,y, z) the fiber of (dg,d1,d2) : X3 — (Xo)3 over (z,y, 2).

(c) For each x € X, we set id, := o o(z) € mapy (z, z).

(d) We call a map between Segal spaces f : X — Y is fully faithful, if for every
z,y € X the induced map mapy (z,y) — mapy (f(z), f(y)) is a weak equivalence.

1.4.3. The homotopy category. (a) Let X be a Segal space, and z,y,z €
X. Then the trivial fibration ¢ : Xo — X3 xx, X1 induces a trivial fibration
map(z,y, z) — map(x,y) x map(y, z) (by [LI7 (b)), which by Lemma [[29] (a) has
a section s, unique up to homotopy. Thus we have a well-defined map

[s] :== mo(s) : mo(map(x,y)) X mo(map(y, z)) = mo(map(z,y, z)).

(b) The map dp2 : X2 — X induces a map dp2 : map(z,y,z) — map(z, z).
Therefore for every [a] € mo(map(z,y)) and [8] € mo(map(y, z)) we can define

(1.2) [6] o [a] := mo(do2)([s]([a], [8])) € mo(map(z, 2)).

It is not difficult to prove (see [Rell Prop. 5.4]) that this composition is associative
and satisfies [@] o [id;] = [a] = [idy] o [o] for all & € map(z, y).

(c) Using (b), one can associate to X its homotopy category Ho X, whose objects
are Ob X, morphisms defined by Homy, x (2, y) := mo(mapy (z,y)), the composi-
tion is defined by ([2)), and the identity map is [id;] € Homp, x (2, ).

1.4.4. Complete Segal spaces. Let X be a Segal space.

(a) We say that o € mapy(z,y) C X3 is a homotopy equivalence, if the corre-
sponding morphism [a] € Mor Ho X is an isomorphism. Explicitly, this means that
there exist 8 € map(y, z) such that [3] o [a] = [id,] and [ o [8] = [id,].

(b) Let Xpeq C X1 be the maximal subspace such that each a € Xjeq is a
homotopy equivalence. It is not difficult to prove (see [Rell Lem. 5.8]) that Xpeq C
X is a union of connected components.

(c) Notice that since each [id,] is an isomorphism, we have id, € Xj, for every
x € X. Therefore the map sg := dp,0 : Xo = X1 factors through Xj.,. We say that
X is called a complete Segal space, if the map sg : Xo = Xpeq is a weak equivalence.

Lemma 1.4.5. Let X € Sp be a Segal space.

(a) Let X1 C X1 be the union of connected components, intersecting so(Xo), and
set X4 =00, (X1) N5 (X7) € X3. Then X C Xpeq and 612(X3) = Xheq-

(b) X is complete if and only if 0o : Xpneq — X1 — Xo is a trivial fibration.

Proof. (a) Since Xpeq C X7 is a union of connected components, inclusion so(Xo) C
Xheq implies that X{ C Xpeq. Next, for each a € X4 we have dp2(a), d13(a) €
X] C Xheg, hence [doz(av)] = [d12(a)] © [d01 ()] and [013(r)] = [623(ax)] 0 [612(ar)] are
isomorphisms in Ho X. Therefore [012(c)] is isomorphism, thus d12(c) € Xpeq-

Conversely, let o € map(x,y) C Xpeq and let 8 € map(y, x) such that [B] o [a] =
[id;] and [a] o [5] = [id,]. Since 3 is a trivial fibration, it is surjective. Thus there
exists v € X3 such that dg1(y) = da23(7) = 8 and d12(7) = «. Then, by assumption,
502(’}/) ~ ldy and 513(’}/) ~ ldz7 thus S Xé
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(c) By LZA4 (b), the composition Xpeq — X1 — Xo X X is a fibration, thus a
projection &g : Xpeq — Xo is a fibration. Since g o 59 = Idx,, we conclude that
50 : Xo = Xheq is a weak equivalence if and only if dp : Xpeq = Xo is a trivial
fibration. O

1.4.6. Cartesian structure. Rezk showed (see [Rell Cor 7.3]) that if X is a
(complete) Segal space, then X ¥ is a (complete) Segal space for every K € sSp.

2. THE YONEDA LEMMA
2.1. Left fibrations.

Definition 2.1.1. We call a fibration f : X — Y in sSp a left fibration, if the map
(fe, (69)%) : XFI — X xy YFI induced by 6° : F[0] < F[1], is a trivial fibration.

Lemma 2.1.2. (a) A pullback of a left fibration is a left fibration.
(b) If f + X — Y is a left fibration, then fZ : X% — YZ is a left fibration for
every Z € sSp.

Proof. (a) follows from the fact that a pullback of a (trivial) fibration is a (trivial)
fibration (see [[LI.7 (b)).

(b) By definition, the map XFM — X xy YFU is a trivial fibration. Since
Reedy model structure is Cartesian, we conclude that fZ is a fibration, while the
map (X2)F = (XFINZ o (X xy YFIZ = XZ xy, (V)P is a trivial fibration
(use [LTA). Thus fZ : X% — YZ is a left fibration. O

Lemma 2.1.3. Let f : X — Y be a fibration in sSp. The following conditions are
equivalent:

(a) f is a left fibration.

(b) For every n > 1, the map (fs,(6°)*) : XFI"l = X xy YFI induced by
8% 1 [0] = [n], is a trivial fibration.

(c) For every n > 1, the map py, : Xn — Xo Xy, Ya, induced by §° : [0] < [n], is
a trivial fibration.

Proof. (a) = (b) By (a) and [LT.9 (a), the map
p: XFUXFIl — (X FONFI] (o YFI)FI) = xFinl oy PP

is a trivial fibration. Since trivial fibrations are stable under retracts (axiom CM3),
it remains to show that the map XFI"t1 — X xy YFI"H1 is a retract of p. It is
enough to show that §° : [0] < [n+1] is aretract of 6° : [n]x[0] < [n]x[1]. Consider
maps [n+ 1] -2 [n] x [1] 2, [n+ 1], where a(0) = (0,0), a(i) = (i—1,1) fori > 1
and B(i,7) = (i+1)j. Then foa =1d, a(0) € [n] x {0} and B([n] x {0}) = 0, thus
a and f3 realize 6° : [0] < [n + 1] as a retract of §° : [n] x [0] < [n] x [1].

(b) = (c) Pass to the zero spaces.

(c) = (a) First we assume that Y is fibrant. Since f is a fibration, X is fibrant,
and the induced map XFI — X xy YFM is a fibration. It remains to show
that each map (XF), — X,, xy, (YF), is a weak equivalence. Since the map
X, — Xo Xy, Yn is a trivial fibration, its pullback

X, xy, (YFOY, = (X xy, V) xy, (YFI), = Xq xy, (YFI),

is a trivial fibration. It remains to show that the map (X¥11),, — X¢ xy, (YF),
or, equivalently, g, : (XFI>XF) 5 X4 xy, (YFIXFI) ) is a weak equivalence.
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We follow the argument of [Rell Lem 10.3]. Let 4% : [n + 1] — [n] x [1] (resp.
€' : [n] — [n] x [1]) be the map with sends j to (j,0), if j <i and to (j —1,1) (resp.
(4,1)) otherwise. Then maps 7% and €' induce decomposition of F[n] x F[1] as
Fln+1]Upp - .. Upp) Fn + 1], where all maps F[n] — F[n + 1] are cofibrations.

Therefore we get decompositions of (X FM*FI), and Xo xy, (YFIXFI) g as

(XF[n-l-l])O X (X Flnl)g - -+ X (XFlnl)g (XF[n+1])o and

(X() XYy, (YF[nJrl])O) X(XOXYO(YF["])()) . X(XOXYO(YF["])O) (XO Xy, (YF[nJrl])O)

Since X and Y are fibrant, all maps in both fiber products are fibrations.

Thus ¢, can be written as a fiber products of X, 11 — Xo Xy, Ynt+1's over
Xn — Xo Xy, Y,'s. Since these maps are weak equivalences by (c), we conclude
that p is a weak equivalence by Corollary B. 1.5

For a general Y, we choose a fibrant replacement ¥ — Y’. Then by Lemma
[C3TT1(d) there exists a fibration f' : X’ — Y, whose restriction to Y is f. We claim
that f’ satisfies assumption (c). Since f’ is a fibration, each p;, : X;, — X§ xyy Y,
is a fibration. Thus it remains to show that p/, is a weak equivalence.

Consider Cartesian diagram

X, 2" Xgxy, Y, —— Y,

S

X, " X<y Yy —— Y
and note that all horizontal maps are fibrations. Since ¢ is a weak equivalence and
Sp is right proper, we conclude that i’ and " are weak equivalences. Since p,, is a
weak equivalence by assumption, p), is a weak equivalence by 2-out-of-3.
By the application (¢) = (a) for fibrant Y, the map ¢’ : X'FI1l — X’ xy, Y"1l
is a trivial fibration. Hence ¢, being the restriction of ¢’ to X xy YF I is a trivial
fibration as well. (|

2.1.4. Remarks. (a) By Lemma (¢), a morphism f : X — Y is a left
fibration if and only if it satisfies the RLP with respect to cofibrations

(F[n] x A'[m]) U pim)xaipm)) (OF [n] x Alm]) < O[n,m]

(F[n] x OA[m]) Ucrojxaafm)) (F[0] x Alm]) — O[n, m|.

In particular, a morphism f : X — Y is a left fibration if and only if for every
morphism 7 : O[n, m| — Y, the pullback 7*(f) : 7*(X) — O[n, m] is a left fibration.

(b) Tt also can be deduced from Lemma T3 (c) that if f : X — Y is a left
fibration and Y is a (complete) Segal space, then X is a (complete) Segal space as
well. We will not use this fact.

Lemma 2.1.5. A morphism f: X — Y of left fibrations over Z is a weak equiva-
lence if and only if the map of fibers f, : (X.)o — (Y2)o is a weak equivalence for
each z € Z.

Proof. Notice that fy : Xo — Yy is a morphism between fibrations over fy. Thus
fo is a weak equivalence if and only if the induced map f, : (X,)o — (Y2)o between
fibers is a weak equivalence for all z € Zy (by Lemma [[.2.9] (¢)). Thus it remains
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to show that if fy is a weak equivalence, then f, is a weak equivalence for each n.
We have a commutative diagram

x, s vy,

l l

Xo X 20 Zn —2 Yo X 20 Zn,

whose vertical maps are trivial fibrations by Lemma [ZT3] (¢). Since fy is a weak
equivalence, while Xg — Zy and Yy — Z; are fibrations, the map fy is a weak
equivalence by Corollary B.1.5l Hence f, is a weak equivalence by 2-out-of-3. [J

2.1.6. Undercategory. (a) For X € sSp and = € X, we set 2\X = {2} xx
XFI - X where X — X[ is induced by s° : F[1] — F[0], and put id, :=
SQ(LL‘) € {,T} X X, X = (,T\X)O

(b) We claim that the projection pr, : id, \(z\X) — 2\ X has a section r such
that r(id,) = idjq, . Indeed, set A := (F[1]x {0})U({0} x F[1]) C F[1] x F[1]. Then
id, \(z\X) ¢ XFIXFO can be written as {x} x xya X FUXFII Therefore the map
m : [1] x [1] = [1] defined by m(i,j) := ij induces a map m : F[1] x F[1] = F[1]
such that m(A4) = 0. Hence m induces a map r : 2\ X — id, \(2\X), which satisfies
r(idy) = idiq, and pryor = Id.

The following result is one of the main steps in the proof of the Yoneda lemma.

Proposition 2.1.7. For every left fibration 7 : E — X and x € X, the evaluation
map eviq, : Mapx (2\X, E) — Mapx ({ids}, E) = (E3)o, induced by the inclusion
{idz} — 2\ X, is a trivial fibration.

Proof. Since {id,} — z\X is a cofibration, while E — X is a fibration, the map
eviq, is a fibration (see[[37(c)). Therefore it remains to show that for each o € F,
the Kan complex Map x (z\ X, E), := eV;di (o) is contractible (by Lemma[[.2.9](b)).
Using remark [[L3.T2] it suffices to show that the identity map of Map y (z\ X, E)
factors through a contractible Kan complex.

Since E — X is a left fibration, the projection EF[ll — E x x X ¥ is a trivial
fibration. Thus o\F — z\X, being its fiber over a € E, is a trivial fibration.
Therefore the evaluation map eviy : Mapy (2\X,a\E) = ((a\E)iq, )o is a fibra-
tion between contractible Kan complexes. Hence evi; is a weak equivalence, thus
a trivial fibration. Therefore its fiber evggml (ida) = Map,\ x (#\ X, a\E)iq, is a
contractible Kan complex.

Note that the projection pry : «\E — E induces a projection

P Mapm\X (‘T\Xv a\E)ida — Ma'pX (JJ\X, E)a-

Thus it remains to show that p has a section.

The natural morphism Map(z\X, E) — Map((z\X)¥ [, EFM) induces a mor-
phism s" : Map x (#\ X, E)a — Map,, x (id; \(z\X), o\ E). By 2.0, the projection
pry : id, \(2\X) — 2\ X has a section r such that r(id,) = idjq,. Then

r*os’ i Mapy (2\X, E)o — Map,, x (id; \(2\X), a\E) — Map,, x (2\ X, 2\ E)

has an image in Map,, x (z\X, a\E)iq,, and is a section of p. O
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Corollary 2.1.8. Let 7 : E — X be a left fibration, x € X, and let f and g
be maps x\X — E over X such that f(id;) ~ g¢(id;) € E,. Then f ~x g. In
particular, [ is a weak equivalence if and only if g is a weak equivalence.

Proof. Since eviq, is a trivial fibration (by Proposition 2Z1.7), the induced map
mo(evia, ) is a bijection by [L2.8 (b). O

2.1.9. Remarks. Let X be a Segal space. (a) Then (dp1,012) : Xo — X1 Xx, X3
and its pullback 612 : Xo Xs0,x,,60, X2 — X1 are trivial fibrations.

(b) The map do2 : Xo Xso,X1.60 X2 — X1 is a fibration. Indeed, d12 is a
pullback of the map (do1,d02) : X2 — X3 xx, X1, induced by the inclusion
SULF[1) U2 F[1] — F[2]. Thus it is a fibration, because X is fibrant.

(c) The map dg2 from (b) is a weak equivalence. Indeed, the map r = (do, dpo1) :
X1 — X0 Xso,X1,001 X2 satisfy d12 07 = §pa 0or = Id. Since d12 is a weak equivalence
(by (a)), we deduce that r and dgo are weak equivalences by 2-out-of-3.

Lemma 2.1.10. Let X be a Segal space and x € X. Then 2\X — X is a left
fibration.

Proof. Since X is fibrant, the projection X1 — XOF[ = X x X is fibration,
hence its pullback £\X — X is a fibration. It remains to show that the map
(\X)F — (2\X) xx XF is a weak equivalence, or, equivalently, that the map
(x\ X)), — (2\X), xx, (XTI, is a weak equivalence for all n.

Using identifications (X*I™]), = Map(F[m] x F[n], X) = (XF),,, we can
rewrite the last map in the form (z\X¥MM); — (2\XF"), X (X Finl), (X ;.
Since X ¥l is also a Segal space (see[4.6), we can replace X by X ("], Tt remains
to show that the map (z\X)1 — (2\X)o X x, X1 is a trivial fibration.

Using decomposition F[1] x F[1] = F[2] Upp F[2], we get a decomposition
(XFOD) = Xy X50,.%1 .60 X2 Hence we get a decomposition

(21) (w\X)l = ({‘T} X X1,801 X2) X (2\X)o ({‘T} X Xo,00 XQ)?
which identifies the map (z\X)1 — (2\X)o X x, X1 with a composition

(LL'\X)l L> {JJ} X X0,80 X2 i> (,T\X)O X Xo Xl.

We claim that f and g are trivial fibrations. Since g is a pullback of (do1,012) :
X2 — X1 xx, X1, while f is a pullback of dp2 : {} X x;,60, X2 = (2\X)o, hence a
pullback of do2 : Xo Xs0.x,,60; X2 — X1, both assertions follow from 2Z.T.91 O

2.2. The oco-category of spaces.

2.2.1. Overcategories. (a) For each K € sSp we denote by [K]| the category of
"bisimplexes of K”. Explicitly, the set objects of [K] is the disjoint union Uy, Ky m
and for every a € K, and b € K, 5, the set of morphisms Mor ) (a, b) is the set
of 7 € Moraxa([n/,m'], [n,m]) such that 7*(a) = b.

(b) Note that we have a natural isomorphism of categories sSp/K — Fun([K], Set).
Namely, each map f : X — K defines a functor [K]| — Set, which sends a € K, ,
to f (@) C Xnm. Conversely, every ¢ : [K] — Set gives rise to Xy € sSp/K,
where (X¢)n,m = Uack, ,,¢(a) with obvious transition maps.

(c¢) Every map ¢ : L — K in sSp induces a functor [¢] : [L] — [K]. Then
the bijection of (b) identifies ¢* : sSp/K — sSp/L with the pullback functor
[¢]* : Fun([K], Set) — Fun([L], Set).
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2.2.2. Universes. From now on we fix an infinite set U, which we call a universe.

(a) Let Setyy C Set be the category of subsets of U, and let Set| the category of
sets of cardinality < |U|. Then category Sety, is small, and the natural embedding
Sety — Setpy) is an equivalences of categories.

(b) We set Spy := Fun(A°P, Sety;) C Sp and sSpy := Fun(A°P, Spy) C sSp.

(c) More generally, for every K € sSp, we denote by (sSp/K )y C sSp/K (resp.
(sSp/K)jy C sSp/K) the full subcategory of morphisms f : X — K such that
fibers of all f, ;m @ Xpm — Kpnm belong to Sety (vesp. Setyy)).

(d) Bijection of 22211 (b) induces a bijection between (sSp/K )y (resp. (sSp/K)ju)
and functors [K] — Sety (resp. [K] — Setj). In particular, category (sSp/K )y
is small, and the inclusion (sSp/K)y — (sSp/K ) is an equivalence of categories.

(e) We denote by (LFib/K)y the set of left fibrations X — K, belonging to
(sSp/K)y. By (d), 22211 (¢) and Lemma T2 (a), for every map ¢ : L — K, the
pullback functor ¢* : sSp/K — sSp/L maps (LFib/K)y to (LFib/L)y.

2.2.3. Main construction. (a) Let &;; € sSp be the simplicial space such that
® (Sy)n,m is the set of left fibrations (LFib/O[n, m])y;
o for every a € (Sy)n,m with the corresponding left fibration F, — O[n,m] and
every v : [n/,m'] = [n,m], we have E,.) = v*(E,) (use remark Z.2.7 (e)).

(b) Consider the ”universal left fibration” py : & — Gy, where (Ey)nm is
defined to be the disjoint union Uge(e,,),,. . (Fa)n,m, and py is the map, which
maps each (Eg)n,m to a € (Sy)n.m.

Lemma 2.2.4. The map py : Eu — Sy is a left fibration. For each K € sSp, the
map ¢ — ¢*(py) defines a bijection between Homsgy (K, Sy) and (LFib/K)y.

Proof. By construction, for every a € (Sy)n,m = Hom(O[n, m], &), the pullback
a*(py) equals E, — O[n,m]. In particular, each a*(py) is a left fibration. Thus p
is a left fibration by remark 217 (a).

Next notice that for every ¢ : K — &y, the pullback ¢*(py) : ¢*(Ey) — K is
a left fibration, satisfying a*(¢*(pu)) = (¢ 0 a)*(pu) € (LFib/O[n, m])y for each
a:0On,m] — K. Thus ¢*(pu) € (LFib/K)y.

Conversely, every E € (LFib/K )y defines a map ¢g : K — &y, which sends a €
K, m = Hom(O[n, m], K) to the left fibration ¢*(E) — O[n, m] in (LFib/0[n, m|)y.
Then the map E — ¢g is inverse to ¢ — ¢* (py). O

2.2.5. Remarks. (a) The main result of this subsection (Theorem [Z2.TT]) asserts
that &y is a complete Segal space. It is our model for the oco-category of spaces,
or, more formally, the (0o, 1)-category of (oo, 0)-categories.

(b) It can be shown that every inclusion ¢ : U — V of infinite sets induces a fully
faithful map i : Gy — Sy of complete Segal spaces.

(c) One can show (see [KV2]) that &y is equivalent to the fibrant replacement
N7 (Spy, W) of the simplicial space N (Spy, W), associated by Rezk ([Rell 3.3]) to
the pair (Spy, W), where W denotes weak equivalences.

(d) One can also consider the "large” (0o, 1)-category of (oo, 0)-categories & such
that @n_’m is the class of all left fibrations E — O[n,m].

(e) In [KV2| we generalize 223 and construct the (oo, n+ 1)-category of (co,n)-
categories.
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2.2.6. Notation. (a) For every n > 1 denote by 61(1") € sSp the simplicial space
such that (&), » is the set of diagrams ¢ : E(©) 2y 2 B over O[m, k],
where each E() — O[m, k] belongs to (LFib/0[m, k])y.

(b) To every map p : [m] — [n] we associate morphism p* : 61(/{") — GZ(;”), which
sends diagram ¢ : E(©) DO B0 o a diagram p*(¢) : E®O) —
E®(m))  whose morphisms are compositions of the ¢;’s.

(c) Let &4¢ C 62(11) be a simplicial subspace such that (&), . c (&™), ,
consists of diagrams consists of diagrams E(©) N EW | where ¢ is a weak equiva-
lence (use Lemma [[311] (b)).

(d) We have a natural projection 61(1") — (&)™, which maps a diagram ¢ as
in (a) to the (n + 1)-tuple E© ... E®™),

2.2.7. Remarks. (a) Note that for every X,Y € sSp/K, to give a map ¢ €
Hompg (X,Y) is the same as to give maps 7*(¢) € Homgy, ) (7*(X), 7*(Y)) for
all ¢ : O[n,m] — K, compatible with compositions. Using this observation and
Lemma 224 we conclude that for every K € sSp we have a natural bijection

between Homgg, (K, (‘52(/,”)) and set of diagrams ¢ : E(®) 2 B of Teft
fibrations from (sSp/K)y.

(b) By definition, a map ¢ € Homgg,(K, 65{1)) belongs to Hom,g, (K, 65}“6)) if
and only if ¢(a) € (Géwe))nym for every a € K, . Moreover, by Lemma 215
it happens if and only if ¢(a) € (65}”8))0,0 for every a € Kpo. Using Lemma
again, we see that under the bijection of (a) elements of Hom,g, (X, G&we)) C
Homyg, (K, 61(/{1)) correspond to weak equivalences ¢ : F(0) — E(1)

The following two propositions and a corollary will be shown in Section [l
Proposition 2.2.8. (a) The simplicial space Sy € sSp is Ready fibrant.

(b) The projections GZ(/IR) — (&y)" 1 and GZ(/[we) — (6y)? are fibrations.

(c¢) Both compositions GZ(;UG) — (6y)? 25 &y are trivial fibrations.

(d) (6}5)0 C ((‘52(11))0 is a union of a connected components.

Proposition 2.2.9. (a) There exists a homotopy equivalence (Gy )2 — GZ(/[we)
over (&y)*.

(b) For every n € N there exists a "natural” homotopy equivalence 1/12(/[") : GZ(/IR) —

(&)1 over (&)™, defined uniquely up to a homotopy.
(c) Moreover, for every map u : [m] — [n] the diagram

. )
61(4) s (&)

(2:2) w l I l
(m)
S S (e

is homotopy commutative, that is, p* o (™ ~ (™) o y*.

Corollary 2.2.10. Let K € sSp, let o, € Hom(K, &y), and let E, — K and
Eg — K be the corresponding left fibrations. Then o ~ B in (Sy)¥ if and only if
the left fibrations E, and Eg are homotopy equivalent over K.
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Now we are ready to prove one of the main results of this work.
Theorem 2.2.11. Sy is a complete Segal space.

Proof. We denote &y, simply by &. Then & is fibrant by Proposition 228 (a).
To show that & is Segal, we have to prove that for every n > 2 the morphism

on:6p = 61 Xe, ... Xe,S1 is a weak equivalence. Applying Proposition[Z29l (c)

to (691, ..., 6" bm) : [n] — [1] x ... x [1], we get a homotopy commutative diagram

&) v SFlnl

! !

60 xg .. xe &M LV arpy oGP,

We want to show that the right vertical arrow is a weak equivalence, which implies
the Segal conditions by passing to the zero spaces. The top horizontal arrow is
a weak equivalence by Proposition (b). The bottom horizontal arrow is a
equivalence by Proposition (b) together with the observation that &) — &
and Gl — & are fibrations (use Proposition Z.2.8 and Corollary B.IH). Next,
since the left vertical arrow is a bijection, while diagram is homotopy commutative,
the right vertical arrow is a weak equivalence, by 2-out-of-3.

To show that & is complete, we have to show that dg : Gpeq = S is a trivial
fibration (by Lemma (b)). Since py : ) — & is a trivial fibration by
Proposition 2228 (c), it is enough to show that the map 1 := (p())g : (615 —
(&6F1)y = &, from Proposition Z22.9] (b) induces an equivalence (&(**))y — Gpy.

Both (6"®), ¢ (6W)y and G, C &, are unions of connected components
(by Proposition [Z2.8] (d) and [L44 (b)). Since ¢ is a weak equivalence, it remains
to show that m(1)) induces a bijection mo((&(“¢))g) — o (Sheq)-

By Proposition[2.2.9] (c), we have the following homotopy commutative diagram

(6M) «22— (63))y 222% (61 x 6(1); X2 &) x &,

(2.3) ¢<1)l ¢<3)l ¢<1>X¢<1)l H

S, 012 Ss 002,613 S, X &, 80 X 80 So x So.

Recall that in Lemma (a) we introduced unions of connected components
G} C 6, and 65 C 63 and showed that 012(6%) = Gpeq-

Similarly, we define (6™1))! c (&), to be the union of connected components,
intersecting s0(So), and set (&™) := 5,' (EMW))) N o5 (D)h) € (&),

We claim that 012((6®))f) = (&), Indeed, since s0(Sg) C &), it follows
from PropositionZ28(d) that for every ¢ € (6®))} we have doa (), d13(4) € &),
In other words, if qNS corresponds to a diagram E(®) 2 p) 2, ge) %, E®),
then ¢2 o ¢1 and ¢3 o ¢ are weak equivalences. Therefore ¢ have left and right
homotopy inverses. Hence ¢5 is a weak equivalence, thus ¢o = d12(¢) € Gwe),

Conversely, every ¢ € &€ corresponds to a homotopy equivalence ¢ : E(©) —
E® (by Lemma [L3.11 (b)), thus there exists a diagram ¢ : E() RN S ORN

EM #4 BO) such that ¢ 0 ¢ ~ Idge and ¢ o ¢ ~ Idgw. By definition, ¢
corresponds to an element of (&)} and §15(¢) = ¢.
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Now we are ready to show the assertion. Since () is a weak equivalence, the
induced map 7o (&®))g) — 7o(S3) is a bijection. Next, using definitions of (&)
and &% and the homotopy commutativity of the interior and right inner squares of
@3), v® induces a bijection m((&®))}) — 7o (&4). Finally, since Gpeq = d12(S%),
(6))y = §15((63))h), and the left inner square of (Z.3)) is homotopy commutative,
¥ induces a bijection (&) = m(Gpeq)- O

2.3. The Yoneda embedding.

2.3.1. The opposite simplicial space. (a) For every map 7 : [n] — [m] in A,
we denote by «(7) : [n] — [m] the map ¢(7)(n — i) := m — 7(i). Then ¢ defines a
functor A — A, hence a functor ¢* : $Sp = Hom(A°P, Sp) — Hom (AP, Sp) = sSp.

(b) For every X € sSp, we set X := 1*(X) € sSp. Explicitly, we have (X°P),, =
X, for all n, and for every 7 : [n] — [m] the map 7* : (X°P),, — (X°P),, is the map
W) X = X

(c) Note that if X is a (complete) Segal space, then X°P is also such, and we
have equality of homotopy categories Ho(X°P) = (Ho X)°P. Therefore we call X°P
the opposite simplicial space.

2.3.2. The twisted arrow category. (a) Consider the functor x4 : A — A such
that p([n]) = [2n + 1], and for every 7 : [n] — [m] in A the map u(7) : [2n + 1] —
[2m + 1] is defined by formulas p(7)(n — i) := m — 7(i) and p(r)(n + 14+ j5) =
(m+1+7(j)) fori,j=0,...,n.

(b) For every X € sSp, we define simplicial space M(X) := p*(X) € sSp.
Explicitly, we have M(X),, = Xo,41 for all n, and for every 7 : [n] — [m] the map
7 M(X)p = M(X)y, is the map p(7)* : Xomy1 — Xont1-

(¢) We have natural morphisms ¢ — p and Id — p of functors Hom(A, A) which
correspond to maps € : [n] — [2n + 1] and e"*! : [n] — [2n + 1], respectively.
These maps corresponds to a morphism 7x : M(X) — X° x X in sSp.

2.3.3. Remarks. (a) Note that A is equivalent to the category A’ of finite totally
ordered sets, and functors ¢, 0 : A — A correspond to functors ¢, : A’ — A’
defined by ¢(P) = P°? and p(P) = P x P, the ”join” of P°P and P.

(b) It can be shown (using Lemma 2334 and 2-T24] (b)) that if X is a (complete)
Segal space, then M(X) is a (complete) Segal space as well. In this case, the space
of objects M(X)o equals the space of morphisms X7, and for every a :  — y and
o 11" =y in M(X)o = X1, the mapping space map o x)(c, @) can be intuitively
thought as the space of triples (8, 3’,7), where §: 2’ — x and 8’ : y — ¢’ belong
to X1, and v is a path between 3’ oo 8 and «o’.

From now on in this subsection we always assume that X is a Segal space.
Lemma 2.3.4. The map mx : M(X) — X°P x X is a left fibration.

Proof. To show that wx is a fibration, we have to check that the induced map
(2.4) M(X)n = M(X)on X (xorxx)s, (X7P X X)),

is a fibration for every n > 0. Recall that M(X),, = Xan41 = Map(F[2n + 1], X).
Since F[n] = U ,d'F[n — 1] we get that M(X)a,, = Map(F[2n + 1]’, X), where
F[2n + 1) C F[2n + 1] is the union U?_,d**"*1={(F[2n — 1]) C F[2n + 1]. Thus
morphism (24) can be identified with the morphism

Map(F[2n + 1], X) = Map(F[2n + 1) Uoappmuen+1or)) (€ Fn] Ue" T Fn]), X).
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Since F[2n + 1) N (e°F[n] U e F[n]) = "0F[n] U e"TOF[n] C F[2n + 1], the
natural map F[2n + 1)' Uoppmjuentior)) (€°F[n] U et F(n]) — F[2n 4 1] is a
cofibration. Since X is fibrant, the map (24) is a fibration.

It remains to show that the fibration M(X), — M(X)o X (xorxx), (X x X),
or, equivalently, Xon4+1 — X, Xx, X1 Xx, Xn is a weak equivalence. Since X is a
Segal space, thus both the composition

X2n+1 — XnXXoXl XXoXn — (Xl XXg--- xXoXl)XXOXl X Xo (Xl X Xg-- -XXoXl)
and the second morphism are trivial fibrations, this follows from 2-out-of-3. O

2.3.5. Remark. It follows from Lemma 234 and Lemma 212 (a) that left fibra-
tion mx induces a left fibration {z} X xor M(X) — X for every z € X. Notice that

({LL‘} X Xxop M(X))Q = {,T} X Xo Xl = (LL'\X)Q
Lemma 2.3.6. Let X be a Segal space and x € X. There exists a weak equivalence
¢ 2\ X — {z} Xxor M(X) of left fibrations over X such that ¢(idy) ~ id,.

Proof. Tt will suffice to construct a homotopy equivalence 1 : {z} X xo» M(X) —
2\X over X such that v(id,) ~ id, and to take (;NS to be its homotopy inverse.

To construct v, we will construct a simplicial space 2\ X over X and maps ¢’ :
2\X — 2\X and " : 2\ X — {z} X xor M(X) over X such that (z\X)o = (x\X)o,
Py = ¥, = Id and ¢’ is a trivial cofibration. Since z\X — X is a fibration, the
map " extends to a map ¥ : {z} X xor M(X) = 2\ X over X.

In this case, ¥y = Id would be a weak equivalence, so ¥ would be a weak
equivalence by Lemma [ZT] hence a homotopy equivalence by Lemma 31T (b).

For every map 7 : [n] — [m], we denote by 7/ the map [n + 1] — [m + 1] defined

by 7(0) =0and 7/(i+1) = 7(i) + 1 for all i = 0,...,n. Consider 2\ X € sSp such
that (2\X)n := {2} X x,.50 Xn+1, and for every 7 the map 7* : (2\X)n, — (2\X)p
is induced by 7* : X;01 — X1,

Note that projections e; : X, +1 — X, induce a projection z\X — X. Next,
map [n] X [1] = [n+1] : (i,7) — (i + j)j induces maps F[n] x F[1] — F[n+ 1] and

Pat Xns1 = Map(F[n + 1], X) — Map(F[n] x F[1], X) = (X11),,

Then p,,’s give rise to a map ¢’ : 2\ X — 2\ X over X.

Finally, maps r : [2n 4+ 1] — [n + 1], where 7(i) =0 and (i + n+ 1) =i+ 1 for
allt =0,...,n induce maps X, 11 — Xo,41 and give rise to a map
P 2\ X — {2} Xxo» M(X) over X, which we claim is a trivial cofibration.

We have to show that ¢! : {2} X x, Xn11 = {z} X x, Xant1 s a trivial cofibration
for all n. Since X is Segal, the natural map Xop+1 — X, Xx, Xn41 is a trivial
fibration, whose pullback 7, : {} X x, Xont+1 — {2} X x, Xn41 is a trivial fibration,
satisfying 7, o ¢!/ = Id. Therefore 9! : {z} X x, Xn+1 — {2} X x,, Xonyt1 is a trivial
cofibration by 2-out-of-3, and the proof is complete. O

2.3.7. The Yoneda embedding. We fix an infinite set I/, and set & := Gy,.

(a) For every X € sSpy, we set P(X) := &%, Since & is a complete Segal
space, P(X) is also a complete Segal space (by [L4.8]), and we call it the co-category
of simplicial presheaves on X.

(b) By definition of &, for every Segal space X, the left fibration 7x : M(X) —
X x X corresponds to the morphism X°? x X — &, hence to the morphism
jx : X = P(X). We call jx the Yoneda embedding of X.
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(c) For every z € X and a € B(X), we form a(z) € & and denote by E, ;) — pt
the corresponding left fibration.

2.3.8. Example. By definition, for every 2 € X element jx(z) € P(X) = X7
corresponds to the left fibration M(X) x x {2} = {2z} xx M(X°P) — X°P.

Theorem 2.3.9. Let X be a Segal space, v € X and o € P(X).

(a) We have a "natural” weak equivalence mapy x(jx (), @) = (Ea(z))o, canon-
ical up to homotopy.

(b) The Yoneda embedding jx : X — P(X) is fully faithful (see[1.7.2 (d)).

First we have to introduce certain notation.

2.3.10. The universal left fibration over X°7. (a) Let E — X7 x PB(X) be
the left fibration, corresponding to the evaluation map evxor : XP X P(X) — &.
Then for every o € B(X), the pullback E, := E Xp(e) 10} is the left fibration over
X°P corresponding to a. In particular, for every x € X, its fiber (Ea)x is the left
fibration E,(,) — pt, corresponding to a(x) € & (see 2.3.7 (c)).

(b) For every & € X°P, we set E, := {2} X xor E. Then E, — P(X) is a left
fibration such that (E,)q = o(z) for every a € P(X) (by (a)). For every y € X

we have an equality (Ez);y(y) = Ejx(y)(x), thus ((Ej)jx(y))O = mapy(z,y). In
particular, we have an element id, € mapy (z, ) of (Ez);y (2)-

(c¢) By definition, left fibration 7x : M(X) — X° x X corresponds to the
composition of Id xjx : X°? x X — X xP(X) and evyoer. Therefore we have an
equality M(X) = E Xq(x) X, hence E, Xpx) X = {2} X xor M(X).

2.3.11. Remarks. The homotopy equivalence (") : &7 — &) over G2 (see
Proposition 223l (b)) induces a homotopy equivalence from (X )F1 = (GF1H)X*"
to P(X)D = (W)X over P(X)2. Hence for every a € P(X) it induces a
homotopy equivalence ¥, : a\BP(X) — (\P(X))" = {a} xqpx) P(X)D over
PB(X). Then, by Proposition 2229 (c), we have 1), (idg) ~ idg.

Lemma 2.3.12. For everyx € X, there exists a weak equivalence ¢ : jx (x)\P(X) —
E, of left fibrations over P(X) such that ¢(id;, () ~ ide € (Er)jx (2)-

Proof. We construct ¢ as a composition of weak equivalences over J(X)

ix @\BX) £ (x @\PEO) S (@ XP\BX)) 2 B

By definition, if a : K — (X)) corresponds to the left fibration G — X°P x K|
then maps K — ((z\X°P)\P(X))’ over « are in bijection with maps v : (x\X°P) x
K — G over X°P x K, and maps K — (jx (x)\P(X)) over a are in bijection with
maps ' : ({2} xx M(X°P)) x K — G over X°P x K (use[2.3.9).

Let ¢ : 2\ X — {x} x x Mor(X°P) be the weak equivalence from Lemma 3.6,
and we define ¢ to be the map, which sends /' to v/ o ¢. Then ¢” is a homotopy
equivalence, because 5 is such.

Next we observe that maps K — E, over a: K — PB(X) are in bijection with
sections s of the left fibration G,, := {a} x xo»r G — K. We define ¢’ to be the map,
which sends v : (2\X°P) x K — G to s := vliq, : K = G5.

Since ¢’ is a map between left fibrations, to show that ¢’ is a weak equivalence,
it remans to show that for every a € P(X) the induced map (¢,)o is a weak
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equivalence of simplicial sets (by Lemma 2TH). Let G — X°P be the left fibration
corresponding to a. Then (¢, )o is the trivial fibration eviq, : Map xop (£\X?, G) —
(Gy)o from Proposition [ZT.7

Finally, we define ¢ : jx (2)\P(X) — (Jx(2)\P(X))" to be the weak equiva-
lence from 2.3.TT] and set ¢ := ¢'0¢” 0¢™'. By construction, we have ¢"’ (id;  (z)) ~

idjy (2 ¢ (idj () = &, and ¢ (¢) = (idy) ~ id,. Thus G(id;y () ~ ida- O
Now we are ready to prove the Yoneda lemma.

Proof of Theorem[2.3.9. (a) By Lemma[2.3.12] there exists a homotopy equivalence
¢ : jx(2)\B(X) — E, of left fibrations over PB(X) such that P(idjy (2)) ~ ide.
Since for every a € P(X) the fiber of E, at a is Eq(z) (see 2310 (b)), ¢ induces
an equivalence @o : mapyx)(Jx (2), @) = (Ea())o-

(b) The morphism jx : X — P(X) induces a morphism z\X — jx(z)\P(X)
over jx. Hence jy induces a morphism ¢ : 2\X — jx(2)\'B(X) xgp(x) X of left
fibrations over X. We claim that 1 is a weak equivalence, hence it induces a weak
equivalence of fibers ¢, : mapy (a,b) — mapgx)(jx(a),jx (b)) for all b € X.

Consider the composition ¢ o 9 : 2\X — Em Xqp(x) X, where ¢ is as in the
proof of (a). Since E, Xp(x) X = {2} Xxo0 M(X) (see 2310 (c)), o9 is a map
z\X — {z} X xo» M(X) over X, which by construction satisfy ¢ o ¥ (id,) ~ id,.
Therefore ¢ o 1) is a weak equivalence by Corollary and Lemma 2.3.6] hence
1) is a weak equivalence by 2-out-of-3. ([l

3. QUASIFIBRATIONS OF SIMPLICIAL SPACES
3.1. Definitions and basic properties.

Definition 3.1.1. Let C be a right proper model category. We say that a morphism
p: X — Bin C is a quasifibration, if for every weak equivalence g : Y — Z over B,
its pullback p*(g) : p*(Y) — p*(Z) (see Il (d)) is a weak equivalence over X.

3.1.2. Remarks. (a) By definition, any pullback of a quasifibration is a quasifi-
bration, and a composition of quasifibrations is a quasifibration.

(b) When C is a model category of topological spaces, our notion of a quasifibra-
tion is stronger than the classical notion. However we will only use this notion for
model categories of spaces and simplicial spaces, where no classical notion exists.

(c) After this work was essentially completed, we found that quasifibrations
were also studied in a unpublished preprint of Rezk [Re3] under a name of sharp
morphisms. But we think that our terminology is more suggestive.

Lemma 3.1.3. (a) Every fibration in C is a quasifibration.

(b) Let f : X — X' be a weak equivalence between quasifibrations p : X — B
and p' : X' — B over B. Then for every morphism 7 : A — B the pullback
T*(f): X xg A — X' xpg A is a weak equivalence.

(¢) Conversely, assume that f : X — X' is a weak equivalence over B such that
each pullback 7*(f) is a weak equivalence. Then p : X — B is a quasifibration if
and only if p' : X' — B is a quasifibration.

Proof. (a) follows from the fact that C is right proper.
(b) If 7 : A — B is fibration, then 7%(g) is a weak equivalence by (a). If 7 is
a weak equivalence, then 7%(X) — X and 7*(X’) — X’ are weak equivalences,
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because X — B and X’ — B are quasifibrations. Therefore 7*(f) : 7(X) —
7*(X’) is a weak equivalence by 2-out-of-3. Since every morphism decomposes as
a composition of a trivial cofibration and a fibration, the general case follows.

(c) Let g : Y — Z be a weak equivalence over B. Then X xpV — X' xpY
and X xg Z — X' x g Z are weak equivalences by the assumption on f. Hence, by
2-out-of-3, p*(g) : X' xpY — X' xp Z is a weak equivalence if and only if p*(g) is
a weak equivalence. Thus, by definition, p : X — B is a quasifibration if and only
if p’ : X’ — B is a quasifibration. O

Corollary 3.1.4. Assume that model category C has the property that a pullback
of a cofibration is a cofibration, and let p' : X' — B be a fibrant replacement of
p: X — B. Then p is a quasifibration if and only if 7*(p’) is a fibrant replacement
of 7(p) for every T: A — B.

Proof. By MC5, p decomposes as X — X’ - B, where i is a trivial cofibration,
and p is a fibration. Then for every map 7 : A — B, 7*(p’) is a fibration, while
7*() is a cofibration. Thus we have to show that X — B is a quasifibration if and
only if each 7*(i) is a weak equivalence. Since p’ : X’ — B is a quasifibration by
Lemma (a), the assertion follows from Lemma (b) and (c). O

Corollary 3.1.5. Suppose we are given a commutative diagram

’

X/ 7! g9 Y’
X Z 2y,

where g and g’ are quasifibrations and all vertical morphisms are weak equivalences.
Then the induced map X' Xz Y' — X Xy Z is a weak equivalence.

Proof. Weak equivalence Y’ — Y decomposes as composition Y’ — Z' xzY — Y,
the second on which is a weak equivalence, because it is a pullback of a weak
equivalence Z’ — Z along a quasifibration Y — Z. Therefore by 2-out-of-3 Y' —
7' x 7 Y is a weak equivalence between quasifibrations over Z'.

Now map X' Xz Y' — X Xy Z decomposes as composition

X' XZ/YI—>XI Xz (Z/ Xzy) =X’ xXzY =5 X X2Y,
the first of which is a weak equivalence, being a pullback of a weak equivalence

between quasifibrations (use Lemma B3] (b)), while the second one is a weak
equivalence, since Y — Z is a quasifibration, and X’ — X is a weak equivalence. [

From now on we assume that C is ether category Sp with Kan model structure
(Theorem [[L20) or category sSp with Reedy model structure (Theorem [[L3.0]).

Lemma 3.1.6. Let Xp — B be a quasifibration in sSp, A — B a cofibration, and
i1:X4:=XpxpA— Yy aweak equivalence of quasifibrations over A. Then the
pushout Yp := Xp Ux, Y4 is a quasifibration over Blla A = B, and the natural
map j: Xp — Yp is a weak equivalence.

Proof. By Lemma B.13 (¢), it is enough to show that for every map 7 : B’ — B,
the pullback 7*(j) is a weak equivalence.

Note that 7*(j) is a pushout of 7*(i) : 7*(X4) — 7%(Y4) along 7*(Xa) —
7*(Xp). Since A — B a cofibration, the induced maps X4 — Xp and 7*(X4) —
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7*(Xp) are cofibrations. Since i is a weak equivalence between quasifibrations,
7*(i) is a weak equivalence by LemmaB.T.3] (b). Hence the pushout 7*(j) is a weak
equivalence, because sSp is left proper. O

Lemma 3.1.7. A morphism p : X — B is a quasifibration in sSp if and only if
P Xn — By, is a quasifibration in Sp for every n.

Proof. Note that if p,, is a quasifibration for all n, then for every weak equivalence
g :Y — Z over B, the corresponding maps g, : Y, — Z, are weak equivalences
over B, for all n. Therefore each p*(g), = pk(gn) is a weak equivalence, since p,,
is a quasifibration. Hence p*(g) is a weak equivalence, thus p is a quasifibration.
Conversely, assume that p is a quasifibration. Every weak equivalence g: Y > Z
over B, defines a weak equivalence g := g x Idpp,) : Y x F[n] = Z x F[n] over
B x F[n] such that g is the restriction of g, to Idpp,) € F[n],. Since p is a
quasifibration, the pullback p*(g) is a weak equivalence over F[n]. Thus p%(g) =
(P*(9)n)1dpy, is a weak equivalence, implying that p, is a quasifibration. O

Definition 3.1.8. A map f : X — B in sSp is called a left quasifibration, if it
is quasifibration and the morphism X,, — Xy xp, By, induced by the inclusion
89 : [0] = [n], is a weak equivalence for all n.

3.1.9. Remark. It follows from Lemma ZT3] (¢) that a fibration f : X — B in
sSp is a left fibration if and only if it is a left quasifibration.

Lemma 3.1.10. Suppose we have a commutative diagram
X 2 X

(3.1) 3l 7|
B — B

m sSp, where g and h are weak equivalences, while f and [’ are quasifibrations.
Then f is a left if and only if f' is left.

Proof. Consider commutative diagram induced by (B))

g
b'el LN X,
p;l J{ Pn l
9o X hghn
/ ’ 0
X4 % Bl Xo % 5, Bn.

We have to show that p,, is a weak equivalence if and only if p/, is. Since g is a weak
equivalence, by 2-out-of-3, it suffices to show that gy xp, hy, is a weak equivalence.

By Lemma B.I7 maps Xo — By and X — B|, are quasifibrations. Therefore
9o Xho hn is a weak equivalence by assumption and Corollary ]

Corollary 3.1.11. A fibrant replacement of a left quasifibration is a left fibration.

Proof. Apply Lemma B.I.10] and remark B.1.9 to the case when B’ = B and f is a
fibrant replacement of f. O
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3.2. Extension of fibrations, and fibrant replacements.

Lemma 3.2.1. Suppose we are given a commutative diagram

Yy —— X

! l

A —— B

in sSp such that vertical arrows are fibrations, horizontal arrows are cofibration,
and the induced map Ya — X4 := Xp X A is a trivial cofibration.

Then there exists the largest simplicial subspace Yg C Xp such that Yg xgp A =
Y4. Moreover, Yg C Xp is a strong deformation retract over B. In particular,
Yp — B is a fibration, and the inclusion i : Yp — Xp is a trivial cofibration.

Proof. Consider simplicial subspace Yp C Xp such that (Yp)n.m is the set of all
7 € (XB)n,m = Hom(O[n,m], Xp) such that 7(r71(X4)) C Ya. Then Yp C Xp
is the largest subspace such that Yz xgp A = Ya. By construction, for every
morphism C — B, the set Homp(C,Yp) can be identified with the set of maps
f € Homp(C, Xp) such that f(C xp A) C Ya.

Since Y4 C X4 is a trivial cofibration between fibrations over A, it is a strong
deformation retract (see (c)). Thus there exists a map g : Xa x A[l] = X4
over A such that (i) g|x,x{o} = Idx,; (ii) g(Xa x {1}) C Y and (iii) gly,xapn =
prq : Y4 x A[l] —YsC Xa.

Since Yp N X4 = Yy, property (iii) of g implies that g extends to a map ¢’ :
(Xa Uy, Yp) x A[l] = Xp over B such that g'|y, xaj) = pry. Next property (i) of
g implies that ¢’ extends to a morphism

9"+ (Xa Uy, YB) x All]) Uix iy, vi)xfoy (X x {0}) = Xp

over B such that ¢"|x, x {0y = Idx,.
Since {0} < A[1] is a trivial cofibration, while model category sSp is Cartesian,
we conclude that

((Xa Uy, Yp) X A[l]) Uixauy, va) <o} (XB X {0}) = Xp x A[l]

is a trivial cofibration, thus g” extends to a map h: Xp x A[l] = Xp over B.
Then h satisfies h|x,xq01 = 9" |x5x10y = ldxy, hlysxan = ¢'lvexap = pry
and h(X4 x {1}) = g(Xa x {1}) C Ya. Thus, by the construction of Yz, we get
that h(Xp x {1}) C Yp. In other words, h realizes Yp as a strong deformation
retract of Xp over B. The last assertion follows from (b). O

Corollary 3.2.2. Let X — B be an quasifibration, and let A — B be a cofibration
such that X xgp A — A is a fibration. Then there exists a fibrant replacement
Y - B of X — B such that X xp A=Y xp A.

Proof. Let X —— Y’ 25 B be any decomposition of X — B, where i is a trivial
cofibration, and p is a fibration. Since X — B is quasifibration, ¢ induces a trivial
cofibration X xp A =Y’ xp A over A (by Lemma (b)).

Let Y C Y’ be the largest simplicial subspace such that Y xg A = X xpg A.
Then Y — B is a fibration, and Y < Y” is a trivial cofibration (see Lemma B271]).
Since trivial cofibration ¢ factors as a composition X < Y < Y’ the map X — Y
is a trivial cofibration by 2-out-of-3. O



24 DAVID KAZHDAN AND YAKOV VARSHAVSKY

3.2.3. Proof of Lemma 2311 (d). Composition Y4 — A — B decomposes as a
composition of a trivial cofibration Y4 — Xp and a fibration Xp — B. Now
let Yg C Xp be the largest simplicial subspace such that Yz x5 A = Y4. Then
Yp — B is a fibration by Lemma [3.2.1] O

3.2.4. Notation. (a) For X € sSp and n > 0, we define the n-skeleton sk, X to be
the smallest simplicial subspace Y C X such that Yy, , = X, ; for all m+ &k < n.
Then 0 =sk_1X CskgX C...C sk, X C...C X and X = colim,, sk, X.

(b) For every m,k > 0, we denote by Xﬁﬁk = Xk N (Skmtk—1X)m, i the
set of "non-degenerate bisimplices”. Then X&% = Xo,0, and for each n > 0
the n-th skeleton sk, X is naturally isomorphic to the pushout of sk,_1X and
|—|m+k:n,aGX::f’l,c D[mv k] over |—|m+k:n,a€X;‘f’lk8D[m5 k]

Lemma 3.2.5. Let f : X — K be a morphism in (sSp/K)y such that either
(a) K € sSpy or (b) f is a quasifibration. Then f has a fibrant replacement
ff X" —= K in (sSp/K)u.

Proof. (a) Since (sSp/K)y — (sSp/K)jy| is an equivalence of categories, it is
enough to show the existence of a fibrant replacement f’ in (sSp/K)jy,. Since
K € sSpyy and |[U| x [U| = U], we conclude that X & sSpj|. Moreover, using
U] x [U| = |U| again, we get that fibrant replacement f’: X’ — K, constructed in
the proof of Theorem [[L3.6] satisfies X’ € sSpy,|, thus f' € (sSp/K ).

(b) By induction on i, we are going to construct a fibrant replacement f’[i] :
X'li] = skiK of flsk,; i @ X|sk;x — skiK such that f'[i] belongs to (sSp/sk;K )y
and £/l + 1|k, = /'l

Assuming this is done, we set f’ := colim; f'[i] : X’ — K. Then f’ satisfies
sk = f'[i], thus f’ is a fibration and f’ € (sSp/K)u. Moreover, since X |sk, k <
X'[4] is a weak equivalence for all i, we get that X < X’ is a weak equivalence as
well, thus f’ is a fibrant replacement of f.

Assume that f'[i] was already constructed. Set X[i] := X Ux/,, , X'[i]. Then
it follows from Lemma that f[i] : X[{] — K is a quasifibration and that
X — X]i] is a weak equivalence. By construction, f[i]|sk;x @ X[i]|sk;x — skiK is
a fibration f'[i], and we want to show that f[i]|s,.,x has a fibrant replacement
f'[i + 1], all of whose fibers are in Sety, such that f'[i + 1]|sk, 5 = f[i]]sk; 5 -

Recall that ski1 K = sk K Uypapn,m UD[n, m]. Thus it remains to show that
for every quasifibration f : X — O[n,m] from (sSp/O[n, m|)y, whose restriction to
00[n,m] is a fibration, there exists a fibrant replacement f’ : X’ — O[n,m] from
(SSP/D[TL5 m])u such that f/|8\][n,m] = f|8D[n,m]'

Since O[n, m] € sSpy|, it follows from (a) that there exists a fibrant replacement
f" X" — 0O[n,m] of f in (sSp/0O[n, m])y. Moreover, since f is a quasifibration,
there exists X’ C X" such that X'|sapn,m) = X|oopm,m), and ' := f”|x/ is a fibrant
replacement of f (see the proof of Corollary B.2:2). Then f’ € (sSp/0O[n, m])y and
f/|8D[n,m] = f|8\][n,m]- 0

Corollary 3.2.6. In the situation Corollary[3.2.2, assume that the quasifibration
X — Bisin (sSp/B)y. Then' Y — B can also chosen to be in (sSp/B)y.

Proof. It X — Bisin (sSp/B)y, then Y’ — B from the proof of Corollary B:2.2 can
be chosen to be in (sSp/B)y by LemmaB.2H thus Y — B is alsoin (sSp/B)y. O
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4. COMPLEMENTS
4.1. Discrete iterated cylinder.

4.1.1. Observations. (a) Every map p: X — B x F[m] in sSp induces a map
pn X = By x Flm], for all n. Since F[m],, decomposes as [, Pt; each
X, decomposes as a disjoint union X,, =[] X, and p,, decomposes as a
disjoint union of p; : X, — B,.

(b) By definition, all fibers of p belong to Sety, if and only of all fibers of each
pr belong to Sety,.

(c) Notice that p, is a quasifibration if and only if each p, : X, — B, is a
quasifibration. Using Lemma [B.I.7 we conclude that p is a quasifibration if and
only if each p; is a quasifibration.

(d) Recall that a quasifibration p : X — B x F[m] is left if and only if each
morphism g, : X, = Xo X(BxFm)), (B X F[m]), is a weak equivalence. Note that
gn decomposes as a disjoint union of morphisms g, : X, — X, X, B,. Thus f
is left if and only if each g, is a weak equivalence.

(e) A morphism f: X — Y between left quasifibrations over B x F[m] is a weak
equivalence if and only if f|; : X|; — Y|; is a weak equivalence over B for each
t=1...,m.

T:[n]—[m]

Proof. By definition, f is a weak equivalence if and only if f, : X,, — Y, is a weak
equivalence for all n, which by (a) is equivalent to the assertion that f, : X, — Y,
is a weak equivalence for all 7 : [n] — [m]. Similarly, f|; is a weak equivalence if
and only if f; : X, — Y, is a weak equivalence for all 7 : [n] — {i} C [m]. This
implies "the only if” assertion.

To show the converse, notice that by (d) and 2-out-of-3, f. is a weak equivalence
if and only if f;|, : X7, xB, Bn — Y7|, XB, By is a weak equivalence. Since by (b)
the maps X, — Bo and Y|, — By are quasifibrations, if follows from Corollary
that f is a weak equivalence if each f;, : X7, — Y7, is a weak equivalence
or, equivalently, if f; : X; — Y, is a weak equivalence for all 7: [0] — [m]. O

4.1.2. Discrete iterated cylinder. For B € sSp and a sequence of morphisms

f:K© B I gem) i sSp/ B, we define recursively a discrete iterated cylinder
Cyl?e(f) — B x F[m] and morphisms ¢; : KW x e F[m — j] — Cyl®=¢(f) over
B x F[m] for all j =0,...,m as follows.

If m = 0, we set Cyl®*¢(f) := KO and put 1o = Id. If m > 1, we denote

by f(1) the sequence f(1) : KM LS K and assume by induction that
we have defined an iterated cone Cyl?s¢(f(1)) — B x F|[m — 1] and a morphism
tj: KW x e Flm — j] — e'Cyl¥se(f(1)) for all j = 1,...,m.

We define Cyl%*¢(f) — B x F[m] to be the pushout

(4.1) Cyl™**(f) := (K9 x F[m]) Ui xer ppm—1y) € Cyl?*(£(1)),
where the map K(©) xe! Flm—1] — e*Cyl¥s¢(f(1)) is defined to be the composition
KO x ' Flm — 1] 2% KO x 2 Flm — 1] - el Oyl®=e(£(1)).
Finally, we define 1o : K(©) x F[m] < Cyl®*¢(f) be the natural embedding.

Lemma 4.1.3. If each K — B is a (left) quasifibration in (sSp/B)y, then
Cyl¥=e(f) — B x F[m] is a (left) quasifibration in (sSp/B x F[m])y.
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Proof. We are going to apply E.I.1] to the projection p : Cyl#s¢(f) — B x F[m].

We claim that for each 7 : [n] — [m], we have Cyl@is°(f), = K. The proof
goes by induction. The assertion is obvious, if m = 0. Next, if m > 1, then (41)
implies that Cyl9*¢(f), equals KO it 7(0) = 0, and equals Cyl?s¢(f(1)),,, where
7' i [n] = [m —1] is given by 7/(i) = 7(¢) — 1, if 7(0) > 1. By induction hypothesis,
in the second case Cyl?=¢(f), equals K,(f,(l)) = K,(ZT(O)).

By the proven above and Tl (a), each fiber of p is a fiber of some K,(f(o)) — B,.
Thus it belongs to Sety, because K(7(°) — B is in (sSp/B)y.

Moreover, since each K(7(9) — B is a quasifibration, each K,(f(o)) — B, is
a quasifibration (by Lemma BI7). Therefore p is a quasifibration by BT (c).
Similarly, each projection Cyl®s¢(f), — Cyl™*(f),|, X B, By is simply KO
K(()T(O)) x B, Brn. Therefore it is a weak equivalence, because K (7(9) = B is left.
The assertion now follows from .T.T] (d). O

Lemma 4.1.4. Let f: X =Y be a map, and E =Y X F[n] be a left fibration.
(a) The map p : Mapy « pn) (X % Fln], E) = Mapy x pi) (X, E), induced by the
inclusion e : F[0] — F[n], is a trivial fibration.
(b) The map
q : Mapy x pin)(X x Fln], E) = Mapy x pn) (X x (e"F[1] Uet o] e'Fln—1]), E),
induced by the inclusion e*F[1] Ugi poy e' F[n — 1] < F[n], is a trivial fibration.

Proof. (a) Since E — Y x F[n] is a left fibration, the map EX — (Y x F[n])X is a
left fibration by Lemma 2.1.2] (b). Then by Lemma [2ZT3] (b), the map

EXXF[H] — EX X(Y x Fn])X (Y X F[TL])XXF[n]

is a trivial fibration. Taking fiber over f x Idg(,; € (Y x F[n])**FI" we get the
assertion.

(b) Since e* F[1]Ue1 poje! F[n—1] < F[n] is a cofibration, the map g is a fibration.
Thus it remains to show that ¢ is a weak equivalence. Consider map

T MaprF[n] (X x (eOF[l] e Fio] elF[” -1]),E) — MCLPYXF[n] (X, E),

0
induced by the inclusion F[0] < e®F[1] < e*F[1]Ue1 pjge' F[n—1]. Since rog = p,
it is a weak equivalence by (a). Thus it remains to show that r is a weak equivalence.
But r can be written as a composition of

Mapy y pn) (X % (e"F[1] Ui ppoy €' Fn — 1)), E) = Mapy  pn) (X x "F[1], E)

and (e%)* : Mapy y pn) (X x e F[1],E) — Mapy  pin) (X, E), so it remains to show
that both maps are trivial fibrations. Since the first map is the pullback of the
morphism Mapy « g (X X e Fln — 1], E) — Mapy x pn) (X % €' F[0], E), both
maps are trivial fibrations by (a). O

4.2. Proofs. In this subsection we prove Propositions 2.2.8, 2.2.9] and Corollary
2210 The most difficult part is Proposition Z2Z.0] (b), whose proof is carried out
in 1.2.7H4.2.9 and B.21THA.2.13l We denote &4 simply by &.

4.2.1. Proof of Proposition 2.2.8 (a). By [[31 (a), we have to show that
for every trivial cofibration i : A — B in sSp with B = O[n,m| the morphism
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i* : Hom(B, &) — Hom(A, &) is surjective. By Lemma 224 this means that every
left fibration Y4 — A in (sSp/A)y extends to a left fibration Yz — B in (sSp/B)y.

Note that composition j : Y4 — A — B belongs to (sSp/B)y, and B € sSpy.
Then j decomposes as a composition of a trivial cofibration Y4 — Xp and a
fibration Xp — B in (sSp/B)y (by Lemma B2 (a)). Now let Y C Xp be the
largest simplicial subspace such that Yg xg A = Y4 (see Lemma B21). Then
Yp — B belongs to (sSp/B)u, and we claim that Yp — B is a left fibration.

Let X4 := Xp x4 B. Since A — B is a weak equivalence and the Reedy
model structure is proper, the inclusion X4 — Xp is a weak equivalence. Since
Y4 — X4 — Xp is also a weak equivalence, we conclude that Y4 — X 4 is a weak
equivalence. Then by Lemma [32.1] the projection Yg — B is a fibration, while
Y4 < Yp is a weak equivalence. Since Y4 — A is a left fibration, Yz — B is a left
fibration by Lemma

4.2.2. Proof of Proposition Z.2.8] (b). To show that &) — &"*! is a fibration
we have to show that for every trivial cofibration A < B, the map (&™) —
(6" E X (gn+1ya (6(M)4 is surjective. Using the observation of 2227, we have to
show that for every (n + 1)-tuple of left fibrations E(), ... E™) of over B, every
diagram E©)|4 — ... = E™|, over A extends to a diagram E©|p — ... —
E™)|p over B. For this enough to show that each restriction map

Homp(E®, EGH)) 5 Homp(EW| 4, ECTY) = Homa (EW | 4, ECHY | 4)

is surjective. Since F() — B is a fibration, A — B is a trivial cofibration, and the
Reedy model structure is proper, we get that E(i)| 4 — EW is a trivial cofibration.
Thus the assertion follows from the fact E(t1) — B is a fibration.

To show that &(*¢) — &2 is a fibration, we argue as above word-by-word, and
note that since E®|, — E® are trivial cofibrations, it follows from 2-out-of-3
that the morphism E(® — E() is a weak equivalence if and only if its restriction
E©|, — EW|, is a weak equivalence.

4.2.3. Proof of Proposition [2.2.8] (c¢). We have to show that for every cofibra-
tion A < B, the map (6(“9))F & &8 xga (6w9)4 is surjective. Let B — B
belong to (LFib/B)y, Egl) — A belong to (LFib/A)y, and ¢' : EO)|4 — Eg) be
a weak equivalence over A. We have to show that ¢’ extends to a weak equivalence
¢: E® — EM over B such that EY) — B belongs to (LFib/B)y.

By Lemma 31,6, the pushout E(©) Ugo), EI(:) is a quasifibration over B, whose
restriction to A is a fibration Egl) — A. Therefore, by Corollary [3.2.6] there exists
a fibrant replacement E(Y) — B in (sSp/B)y such that V|4 = EI(:).

By construction, ¢ extends to a morphism ¢ : E(®) o EO U5 |AE1(41) 22, p)
of fibrations over B. Moreover, since ¢ is a weak equivalence, its pushout ¢; is a

weak equivalence, hence ¢ is a weak equivalence as well. Since E(©) — B is a left
fibration, E(") — B is a left fibration by Lemma B.1.10

4.2.4. Proof of Proposition [2.2.8] (d). Using observations of [Z27 (b), it re-
mains to show that for every a € ™€) b e &M such that a ~ b in &) we have
be &), Since 5(¥¢) — & x & is a fibration, while &) is fibrant (by Proposition
228 (a),(b)), we may assume that a ~ b in some fiber of &) — & x &.
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Then a corresponds to a weak equivalence ¢, : E®© — E() b corresponds to a
morphism ¢ : E(© — E(1) assumption a ~ b means that the maps ¢, and ¢ are
homotopic. Then b is a weak equivalence, hence b € &(®e),

4.2.5. Proof of Proposition [2.2.9] (a). By Lemma 227 for every K € sSp the
set Hom (K, 821) = Hom(K x A[1], &) is in bijection with the set of left fibrations
E — K x A[1] in (sSp/K x A[l1])y, while the set Hom(K, &?) is in bijection with
the set of pairs of left fibrations E(®) — K, EF") — K in (sSp/K)y. Moreover,
the projection &(*¢) — &2 sends E — K x A[l] to a pair E|y = E|gx {0y and
E|1 := E|gx{1}, and the set Hom(K, &™) is in bijection with the set of weak
equivalences ¢ : E®©) — E() of left fibrations over K (by E2.7).

By Lemma [[33TT] (c) for every left fibration E — K x A[l] there exists a weak
equivalence ¢ : E|g — El|; of left fibrations over K. We take K := G2l and
E be the left fibration, corresponding to Idg, then ¢ gives rise to the morphism
P GAN & W) gyer G2

Moreover, py : &*¢) — & is a trivial fibration by Proposition (c), while
o : G2 — & is a trivial fibration, because & is fibrant (see Proposition
(a)), and A[0] — A[1] is a trivial cofibration. Then 1 is a weak equivalence by
2-out-of-3, hence a homotopy equivalence by Lemma [[Z3.17] (b).

4.2.6. Proof of Corollary [2.2.10. The homotopy equivalence &(*¢) — G4
over &2 from Proposition 229 (a) induces a homotopy equivalence

Map(K, &) — Map(K, &*") = Map(A[1], 6%)

over Map(K,&?), hence a homotopy equivalence between fibers over («,f) €
Map(K,&?). Since fiber Map(K, &), 5 # () means that E, and Eg are ho-
motopy equivalent over K (by Z2Z7(b)), while Map(K, &2, 5 # () means that
a~ B in 6%, we get the assertion.

4.2.7. Construction of (. By 227 the identity map Idgm) corresponds to
a diagram ¢ : E(©) 22 B of left fibrations over G in (sSp/&™)y.
To define a morphism (™ : 6™ — &FI" gver !, we have to construct a left
fibration F — &™) x F[n] in (sSp/&™ x F[n])y such that E|; := Elgm xgiy = EW,

Consider iterated discrete cylinder p : Cyl4(¢) — &) x F[n] (see EELZ). Then
p is a left quasifibration in (sSp/&™ x F[n])y (see Lemma EL3) such that the
restriction Cyl%(¢)|; = E@ is a fibration over &™), Thus, by Corollary B2Z6] there
exists a fibrant replacement p’ : E — &™) x F[n] of p in (sSp/&™ x F[n])y such
that E|; = Cyl?(¢)|; for all i. Then p’ is a left fibration by Corollary B.IL.TIl

4.2.8. Uniqueness of (™. Notice that if F’ is another fibrant replacement of
Cyl(¢) — &™) x F[n] such that E'|; = Cyl%(¢)|; for all i, then there exists a
weak equivalence E — E’ over 8™ x F[n], which is identity over each {i} € F|[n).
Now it follows from Corollary that the morphism /'™ : ¢ — &Fl,
corresponding to E’, is homotopic to 1) over GF"!,

4.2.9. Modular interpretation of (). Note that a morphism ¢ : K — &%)
corresponds to the diagram ¢*(¢) of left fibrations over K, while the composition
YPpMop : K — &I corresponds to the left fibration ¢* (E). Recall that Cyld(¢) —
K x F[n] is a quasifibration and that E is a fibrant replacement of Cyl?(¢) such
that E|; = E® for all i. Hence it follows from Corollary B4l that ©*(E) is a
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fibrant replacement of ¢*(Cyl%(¢)) = Cyl?(p*(4)) such that p*(E)|; = ¢*(E®)
for all i.

4.2.10. Proof of Proposition (c). By B2 the composition u* o (™ :
6™ — &P corresponds to the left fibration p*(E) — & x F[m], which
is as in is a fibrant replacement of p*(Cyl?(¢)) = Cyld(u*(4)). Similarly,
Moy & — &Fm also corresponds to a fibrant replacement of Cyl?(u*(¢)).
Since all fibrant replacement are weakly equivalent, two compositions are homotopic
by Corollary 222,100

It remains to show that ¢ = ¢ is a homotopy equivalence over G"*1,

4.2.11. Reduction. By Lemmal[l.3.11] (a), we have to show that for every map 7 :
M — &™+1 | the map 7o(v/n) : mo(Mapgns1 (M, E™)) = mo(Mapgn+: (M, &FM)Y),
induced by 1, is a bijection.

Let 71 corresponds to an (n + 1)-tuple H® ... H(™ of left fibrations over M.
Then ¢ € Homgn+1 (M, 6(")) corresponds to diagrams ¢ : H(©) 22 HO
over M, and 7 € Homgn+1 (M, &) corresponds to left fibrations H — M x F[n]
such that H|; = H® for all i.

Using Corollary 2210 (a) and EZZ0, we see that 1op ~ 7 in Mapgn+: (M, &)
if and only if there exists a weak equivalence v : Cyl%(y) — H over M x F[n] such
that v|; : H®) — H|; = H® is the identity. Moreover, by EI.1l (e), this happens
if and only if there exists a morphism v : Cyl?(p) — H over M x F[n] such that

v HD — H|; = H is Id g for all i.
4.2.12. Proof of surjectivity of my(¢/n). We have to show that for every left
fibration H — M x F[n] such that H|; = H® for all i there exists a diagram ¢ and
a morphism v : Cyl¢(p) — H over M x F[ ] such that each v|; : H®) — H|; = H®

is the identity. We construct ¢ and v by induction on n. If n = 0, then ¢ is empty,
Cyld(p) = H® = H, so v = Idg does the job.

Assume that n > 0. By induction hypothesis, there exists a diagram
e g 22 2% g™ over M and a morphism e!Cyl?(p(1)) — H|ei pln—1) C
H over M x F[n] such that v|; : H® — H|; = H® is the identity for all i > 0. In
particular, we have a morphism v[1] : HY) x e’ F[n — 1] — e'Cyl*(¢(1)) — H over
M x F[n] such that v[1]|y = Idgq).

Since Cyl?(p) = (H® x Fln]) U © xet pln—1)) € Cyl?(p(1)), it remains to con-
struct a morphism ¢y : H® — H® over M and a morphism v[0] : HO) x F[n] — H
over M x F[n] such that v[0]lo = Idg ), and restriction v[0][c1 p,—1) decomposes
as a composition H®) x e!Fln — 1] 25 HD x ' Fn *L H.

Since H — M x F[n] is a left fibration, the inclusion H(O = H|o — H extends to
a morphism ¢/[0] : H®) x e"F[1] — H|eopp) C H over M x F[n] (see Lemma A1.4
(a)). Denote v/[0]]; : H® — H by ¢, and define v”'[0] : H®) x e'F[n — 1] —
H|ecippn—1) € H to be the composition v[1] o ¢1. Then »/[0] and v"[0] define a
morphism H(®) x (e°F[1] Ui pjo) €' Fn — 1]) — H over M x F[n], which by Lemma
14 (b) can be extended to all of H® x F[n).

4.2.13. Proof of injectivity of my(¢)/n). Fix a left fibration H — M X F[n], and

consider all diagrams ¢ : H© £ 2% [ over M for which there exists a
morphism v : Cyl(p) — H over M x F[n] such that each v|; is the identity. We
have to show that each mo(p;) € mo(Map,, (HY, HU*Y)) only depends on H.
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Consider canonical embedding ¢; : H) x e F[n—j] — Cyl?(p) (see@I.2). Then
the composition vov; : HY) x e Fln— j] — H is such that (vou)|; : H) — HU) is
Id ), while (vod)|jy1 : HO — HU+D is ;. Thus it remains to show that each
mo(v o tj) € mo(Map sy ) (HY) x eI F[n — j], H)) only depends on H. Since the
restriction map Mapyy, i (HY) x € Fln — j], H) — Mapysy pry (HY x {5}, H)
is a trivial fibration (by Lemma [L.1.4] (b)), while (v 0 ¢;)|; = Idge), the assertion
follows from (b).
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