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Abstract

In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type

with the hyperbolic heat conduction arising from Cattaneo’s law. In the absense of any additional

mechanical dissipations, the system is often not even strongly stable unless restricted to the ro-

tationally symmetric case, etc. We present a well-posedness result for the linear problem under

general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped,

thermally isolated plate, we show an exponential energy decay rate under a full damping for all

elastic variables. Restricting the problem to the rotationally symmetric case, we further prove

that a single frictional damping merely for the bending compoment is sufficient for exponential

stability. To this end, we construct a Lyapunov functional incorporating the Bogovskĭi operator

for irrotational vector fields which we discuss in the appendix.

MOS subject classification: 35L55; 35Q74; 74D05; 93D15; 93D20

Keywords: Reissner-Mindlin-Timoshenko plate; hyperbolic thermoelasticity; second sound; exponen-
tial stability; rotational symmetry

1 Introduction

Let Ω ⊂ R
2 be a bounded domain with a boundary Γ := ∂Ω. We consider a thermoelastic Reissner-

Mindlin-Timoshenko plate of a uniform thickness h > 0 such that its midplane occupies the domain Ω
when being in a reference state free of any elastic or thermal stresses. The heat propagation is modeled
by means of the Cattaneo’s law (viz. [5]). With w denoting the vertical displacement of the midplane,
ψ, ϕ the after-bending-angles of vertical filaments being perpendicular to the midplane in the reference
state, θ the thermal moment and q the moment of the heat flux, respectively, the symmetrized form
of Reissner-Mindlin-Timoshenko equations reads as

ρ1wtt −K(wx1 + ψ)x1 −K(wx2 + ϕ)x2 = 0 in (0,∞)× Ω, (1.1)

ρ2ψtt −D(ψx1x1 +
1−µ
2 ψx2x2 +

1+µ
2 ϕx1x2) +K(ψ + wx1) + γθx1 = 0 in (0,∞)× Ω, (1.2)

ρ2ϕtt −D(ϕx2x2 +
1−µ
2 ϕx1x1 +

1+µ
2 ψx1x2) +K(ϕ+ wx2) + γθx2 = 0 in (0,∞)× Ω, (1.3)

ρ3θt + κdiv q + βθ + γ(ψtx1 + ϕtx2) = 0 in (0,∞)× Ω, (1.4)

τ0qt + δq + κ∇θ = 0 in (0,∞)× Ω. (1.5)

A physical deduction of the model can be found in [26, Kapitel 1]. See also [17, Chapter 1] for the
case of purely elastic Reissner-Mindlin-Timoshenko plates or thermoelastic Kirchhoff-Love plates with
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parabolic heat conduction. Note that, in contrast to the heat equation in uniformly thick bodies,
βθ-term naturally arises in the model since θ is the thermal moment and not the temperature.

Structurally viewed, Reissner-Mindlin-Timoshenko Equations (1.1)–(1.5) can be interpreted as a 2D
Lamé system (1.2)–(1.3) for the filament angles (ψ,ϕ)′ coupled to the wave equation (1.1) for the
bending component w and the Cattaneo system (1.4)–(1.5) for the thermal moment θ and the moment
of the heat flux q. Since neither mechanical, no thermal dissipation due to the lack of a direct coupling
to the Cattaneo system is present in Equation (1.1), one expects the decay properties of (1.1)–(1.5)
to be not better than those of classical or hyperbolic 2D thermoelasticity. The latter have been
investigated by numerous authors. Whereas the thermal dissipation arising from the parabolic heat
equation leads (with “few” exceptions) to the strong stability when coupled with a Lamé system in
a bounded domain of Rn – as shown by Dafermos in [6], no uniform decay can usually be expected
(cp. [20]). Reducing the problem to the case of rotationally symmetric solutions, Jiang and Racke [14,
Theorem 4.2] showed an exponential decay of the second-order energy, also in the nonlinear situation
(cf. [14, Theorem 7.3]). A similar result was latter obtained by Racke in [28] for the linear 2D and 3D
hyperbolic thermoelasticity.

As a matter of fact, Reissner-Mindlin-Timoshenko plates and Timoshenko beams have a certain de-
gree of similarity with Kirchhoff-Love plates and Euler-Bernoulli beams. The latter also describe the
bending of an elastic plate or a beam under the assumption that the linear filaments remain perpen-
dicular to mid-plane even after the plate’s deformation. This model can be shown to be a limit (in a
certain sense) of the Timoshenko model as the shear correction factor K → ∞ (cf. [16]). Numerous
mathematical results on Kirchhoff plates are known in the literature. In his monograph [16], Lagnese
studied various boundary feedback stabilizers furnishing uniform or strong stability for the Kirchhoff-
Love plate coupled with a parabolic heat equation in a bounded domain with or without assumptions
on the geometry. Avalos and Lasiecka exploited further in [1] a multiplier technique, interpolation tools
and regularity results to obtain exponential stability of a thermoelastic Kirchhoff-Love plate without
any additional boundary dissipation in the presence or absense of rotational inertia. Another impor-
tant development in this field was made by Lasiecka and Triggiani (see, e.g., [19]) who showed the
analyticity of underlying semigroup for all combinations of natural boundary conditions. Implying the
maximal L2-regularity property, this became an important tool for studying nonlinear plates, e.g., the
von Kármán model, which was done by Avalos et al. in [2]. It should though be pointed out that this
approach is not directly applicable to the case of coupling with the hyperbolic Cattaneo’s heat conduc-
tion system which destroys the analyticity of the semigroup. Nonetheless, in an analogous situation of
a partly hyperbolic systems such as the full von Kármán one, Lasiecka [18] obtained the existence of
weak and regular solutions and showed their uniform stability in the presense of a mechanical damping
only for the solenoidal part for the in-plane displacements. A similar study has then later been carried
out in [3] by Benabdallah and Lasiecka for the full von Kármán model incorporating rotational inertia.

Turning back to Reissner-Mindlin-Timoshenko plates, we once again refer to the monograph [16] of
Lagnese in which he addressed the question of uniform (in particular, exponential) and strong sta-
bilization of purely elastic plates by the means of boundary feedbacks. For the following choice of
stabilizing feedbacks on a portion Γ1 6= ∅ of the boundary

w = ψ = ϕ = 0 in (0,∞)× Γ0,

K(∂w∂ν + ν1ψ + ν2ϕ) = m1 in (0,∞) × Γ1,

D(ν1ψx1 + µν1ϕx2 +
1−µ
2 (ψx2 + ϕx1)ν2) = m2 in (0,∞) × Γ1,

D(ν2ϕx2 + µν2ψx1 +
1−µ
2 (ψx2 + ϕx1)ν1) = m3 in (0,∞) × Γ1,
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the purely elastic Reissner-Mindlin-Timoshenko plate

ρ1wtt −K(wx1 + ψ)x1 −K(wx2 + ϕ)x2 = 0 in (0,∞) × Ω,

ρ2ψtt −D(ψx1x1 +
1−µ
2 ψx2x2 +

1+µ
2 ϕx1x2) +K(ψ + wx1) + γθx1 + d1ψt = 0 in (0,∞) × Ω,

ρ2ϕtt −D(ϕx2x2 +
1−µ
2 ϕx1x1 +

1+µ
2 ψx1x2) +K(ϕ+ wx2) + γθx2 + d2ϕt = 0 in (0,∞) × Ω

was proved to be strongly stable (i.e., the energy was shown to vanish as t → ∞) if Γ0 6= ∅ und
(m1,m2,m3)

′ = −F (wt, ψt, ϕt)
′ where F ∈ L∞(Γ1,R

3×3) is a symmetric positive semidefinite matrix
function which is additionally positive definite on a connected nontrivial portion of Γ1, etc. Under the
geometric condition stating that (Ω,Γ0,Γ1) is “star complemented—star shaped” and some additional
assumptions on F , even uniform stability has been shown.

Similar results were also obtained by Muñoz Rivera and Portillo Oquendo in [23] auch for the boundary
conditions of memory-type

w = ψ = ϕ = 0 in (0,∞) × Γ0,

w +

∫ t

0
g1(t− s)K(∂w∂ν + ν1ψ + ν2ϕ)(s)ds = 0 in (0,∞) × Γ1,

ψ +

∫ t

0
g1(t− s)D(ν1ψx1 + µν1ϕx2 +

1−µ
2 (ψx2 + ϕx1)(s)ds = 0 in (0,∞) × Γ1,

ϕ+

∫ t

0
g1(t− s)D(ν2ϕx2 + µν2ψx1 +

1−µ
2 (ψx2 + ϕx1)ν1)(s)ds = 0 in (0,∞) × Γ1

with exponential kernels g1, g2, g3.

In [7], Fernández Sare studied a linear Reissner-Mindlin-Timoshenko plate with a damping for both
angle components

ρ1wtt −K(wx1 + ψ)x1 −K(wx2 + ϕ)x2 = 0 in (0,∞) × Ω, (1.6)

ρ2ψtt −D(ψx1x1 +
1−µ
2 ψx2x2 +

1+µ
2 ϕx1x2) +K(ψ + wx1) + γθx1 + d1ψt = 0 in (0,∞) × Ω, (1.7)

ρ2ϕtt −D(ϕx2x2 +
1−µ
2 ϕx1x1 +

1+µ
2 ψx1x2) +K(ϕ+ wx2) + γθx2 + d2ϕt = 0 in (0,∞) × Ω. (1.8)

He proved that the system is polynomially stable under Dirichlet boundary conditions on all three
variables. For a particular choice of boundary conditions in a rectangular configuration Ω = (0, L1)×
(0, L2), a resolvent criterion was exploited to show that the system is not exponentially stable.

Muñoz Rivera und Racke considered in [24] an nonlinear Timoshenko-beam coupled to a parabolic
heat equation

ρ1ϕtt − σ(ϕx, ψ)x = 0 in (0,∞) × (0, L),

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0 in (0,∞) × (0, L),

ρ3θt − κθxx + γψtx = 0 in (0,∞) × (0, L)

subject to mixed boundary conditions ϕ = ψ = θx = 0 or ϕ = ψx = θ = 0. Both in the linear case, i.e.,
σ(r, s) = kr + s, and the nonlinear case, i.e., for a smooth stress function σ satisfying ∇σ = (k, k)′,
∇2σ = 0, but in the latter case only for sufficiently small initial data, the energy was shown to decay
exponentially if the condition ρ1

k = ρ2
b holds true. For the linear situation, this condition was even

shown to be necessary for the exponential stability. It should though be pointed out that the latter
proportionality condition, being mathematically fully sound, is physically not possible.

Surprisingly, this result could not be carried over to the case of Cattaneo heat conduction. Namely,
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Fernández Sare and Racke showed in [8] that the purely hyperbolic system

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,∞) × (0, L), (1.9)

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0 in (0,∞) × (0, L), (1.10)

ρ3θt + κqx + γψtx = 0 in (0,∞) × (0, L), (1.11)

τ0qt + δq + κθx = 0 in (0,∞) × (0, L) (1.12)

is not exponentially stable even under the assumption ρ1
k = ρ2

b . This motivated Messaoudi et al. to
introduce a frictional damping for the bending component. In [22], they replaced Equation (1.9) with
the damped equation

ρ1ϕtt − σ(ϕx, ψ)x + µϕt = 0 in (0,∞) × (0, L)

for some µ > 0. Under this additional mechanical dissipation, they proved that both linear and
nonlinear systems are stable under the boundary conditions ϕ = ψ = q = 0 und ϕx = ψ = q = 0
independent of whether the relation ρ1

k = ρ2
b holds or not.

The impact of thermal coupling on the strong stability of a Reissner-Mindlin-Timoshenko plate has
also been studied by Grobbelaar in her papers [10], [11] and [12]. In [10], the author considered a
stuctural 3D acoustic model with a 2D plate interface and proved a strong asymptotic stability for
the radially symmetric case. A similar result was later obtained in [11] for a rotationally symmetric
Reissner-Mindlin-Timoshenko plate with hyperbolic heat conduction due to Cattaneo. To this end,
both articles employed Benchimol’s spectral criterion. The arguments can be directly carried over to
the case of classical Fourier heat conduction being a formal limit Cattaneo’s system as the relaxation
parameter τ → 0. In her recent article [12], Grobbelaar proved a polynimal decay rate of t−1/4 in
the rotationally symmetric case for the Reissner-Mindlin-Timoshenko system coupled to the classical
Fourier heat conduction under Dirichlet boundary conditions on w and θ as well as free boundary
conditions on ψ and ϕ.

In the present article, we consider the linear Reissner-Mindlin-Timosheko plate equations (1.1)–(1.5)
in a bounded domain. The paper is structured as follows. In the first section, we exploit the semigroup
theory to show that the initial-boundary value problem (1.1)–(1.5) subject to corresponding initial
conditions as well as homogeneous Dirichlet and Neumann boundary conditions on both elastic and
thermal variables on different portions of the boundary is well-posed. In the second section, we prove
the lack of strong stability for this problem provided Γ is smooth for a particular set of boundary
conditions. We further show that a mechanical damping for all three variables w, ϕ and ψ leads to
an exponential decay rate under Dirichlet boundary conditions for the elastic and Neumann boundary
conditions for the thermal part of the system. Restricting the domain Ω and the data to the rotationally
symmetric case, we prove that a single mechanical damping on w is enough to exponentially stabilize the
system. This is a generalization of Messaoudi’s et al. stability results from [22] to a multi-dimensional
situation. In the appendix, we finally present a brief discussion on Bogovskĭi operator for irrotational
vector fields and show its continuity.

2 Existence and uniqueness of classical solutions

In the following, unless specified otherwise, we assume the boundary Γ to be Lipschitzian and satisfy
Γ = Γ̄1∪Γ̄2 = Γ̄3∪Γ̄4 with Γ1 6= ∅, Γ1∩Γ2 = ∅, Γ3∩Γ4 = ∅ and Γk, k = 1, . . . , 4, being relatively open.
Let the plate be clamped at Γ1 and hinged at Γ2. Further, let it be held at the reference temperature
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on Γ3 and be thermally insulated on Γ4. Then, the boundary conditions read as

w = ψ = ϕ = 0 on (0,∞) × Γ1, (2.1)

K(∂w∂ν + ν1ψ + ν2ϕ) = 0 on (0,∞) × Γ2, (2.2)

D(ν1ψx1 + µν1ϕx2 +
1−µ
2 (ψx2 + ϕx1)ν2)− γθν1 = 0 on (0,∞) × Γ2, (2.3)

D(ν2ϕx2 + µν2ψx1 +
1−µ
2 (ψx2 + ϕx1)ν1)− γθν2 = 0 on (0,∞) × Γ2, (2.4)

θ = 0 on (0,∞) × Γ3, (2.5)

q · ν = 0 on (0,∞) × Γ4, (2.6)

where ν = (ν1, ν2)
′ denotes the outer unit normal vector to Γ and (·)′ stands for the usial matrix

transposition.

Using the standard notation from the Theory of elasticity (cf. [14, p. 8]), we introduce the generalized
gradient and the corresponding boundary symbol

D :=





∂1 0
0 ∂2
∂2 ∂1



 , N :=





ν1 0
0 ν2
ν2 ν1



 ,

respectively. With this notation, we can easily conclude

D

(

ψx1x1 +
1−µ
2 ψx2x2 +

1+µ
2 ϕx1x2

ϕx2x2 +
1−µ
2 ϕx1x2 +

1+µ
2 ψx1x2

)

= D′SDv,

D

(

ν1ψx1 + µν1ϕx2 +
1−µ
2 (ψx2 + ϕx1)ν2

ν2ϕx2 + µν2ψx1 +
1+µ
2 (ψx2 + ϕx1)ν1

)

= N ′SDv,

where v := (ψ,ϕ)′ and

S := D





1 µ 0
µ 1 0

0 0 1−µ
2



 . (2.7)

With µ satisfying µ ∈ (−1, 1), the symmetric matrix S is positive definite since σ(S) = {D 1−µ
2 ,D(1−

µ),D(1 + µ)} due to the fact

det(S − λI) = (D 1−µ
2 − λ)((D − λ)2 − µ2D2) = (D 1−µ

2 − λ)(D − λ− µD)(D − λ+ µD).

By the virtue of physical condition µ ∈ (0, 12), the latter is not an actual restriction. Throughout this
section, we assume S to be an arbitrary symmetric, positive definite matrix, i.e., S ∈ SPD(R3).

With the notations above, Equations (1.1)–(1.5) can be equivalently written as

ρ1wtt −Kdiv (∇w + v) = 0 in (0,∞)× Ω, (2.8)

ρ2vtt −D′SDv +K(v +∇w) + γ∇θ = 0 in (0,∞)× Ω, (2.9)

ρ3θt + κdiv q + βθ + γdiv vt = 0 in (0,∞)× Ω, (2.10)

τ0qt + δq + κ∇θ = 0 in (0,∞)× Ω (2.11)

with the boundary conditions (2.1)–(2.6) transformed to

w = |v| = 0 on (0,∞)× Γ1, (2.12)

(∇w + v) · ν = 0 on (0,∞)× Γ2, (2.13)

N ′SDv − γθν = 0 on (0,∞)× Γ2, (2.14)

θ = 0 on (0,∞)× Γ3, (2.15)

q · ν = 0 on (0,∞)× Γ4 (2.16)
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and initial conditions

w(0, ·) = w0, wt(0, ·) = w1, v(0, ·) = v0, vt(0, ·) = v1, θ(0, ·) = θ0, q(0, ·) = q0, (2.17)

where v0 = (ψ0, ϕ0)′, v1 = (ψ1, ϕ1)′.

2.1 Well-Posedness

We further exploit the semigroup theory to obtain the classical well-posedness of Reissner-Mindlin-
Timoshenko equations. To this end, we transform Equations (2.8)–(2.17) into the Cauchy problem

d

dt
V (t) = AV (t) für t ∈ (0,∞),

V (0) = V 0

on a Hilbert space H. According to [25, Theorem 1.3], the latter is well-posed if and only if A is an
infinitesimal generator of a strongly continuous semigroup on H.

We set V := (w, v,wt, vt, θ, q)
′ and formally define the differential operator

A := ρ−1

















0 0 1 0 0 0
0 0 0 1 0 0

K△ Kdiv 0 0 0 0
−K∇ D′SD −K 0 0 −γ∇ 0

0 0 0 −γdiv −β −κdiv
0 0 0 0 −κ∇ −δ

















with ρ := diag(1, 1, ρ1, ρ2, ρ3, τ0). To introduce the functional analytic settings, we consider the Hilbert
space

H := (H1
Γ1
(Ω))3 × (L2(Ω))3 × (L2(Ω))3

equipped with the scalar product

〈V,W 〉H := ρ1〈V 3,W 3〉L2(Ω) + ρ2〈V 4,W 4〉(L2(Ω))2 +K〈∇V 1 + V 2,∇W 1 +W 2〉(L2(Ω))2+

〈DV 2, SDW 2〉(L2(Ω))3 + ρ3〈V 5,W 5〉(L2(Ω))2 + τ0〈V 6,W 6〉L2(Ω).

Here, we define for a relatively open set Γ0 ⊂ Γ

H1
Γ0
(Ω) = cl

(

{u ∈ C∞(Ω) | supp(u) ∩ Γ0 = ∅}, ‖ · ‖H1(Ω)

)

.

Note that due to the Lipschitz continuity of Γ, there exists a linear, continuous operator T : H1(Ω)→
H1/2(Γ). Thus, the notation u|Γ0 = 0 is also legitimate.

The following theorem implies that 〈·, ·〉H is equivalent with the standard product topology on H, i.e.,
H is complete. The proof is a direct consequence of an analogous result in [17] (cf. also [21] for the
case of domains with a strict cone property).

Lemma 1. There exist constants CK,1, CK,2, CK > 0 such that

CK,1‖v‖(H1(Ω))2 ≤ ‖
√
SDv‖(L2(Ω))3 ≤ CK,2‖v‖(H1(Ω))2

and
‖
√
SDv‖3(L2(Ω))2 +K‖∇w + v‖2(L2(Ω))2 ≥ CK

(

‖v‖2(H1(Ω))2 + ‖w‖2H1(Ω)

)

holds for any (w, v) ∈ (H1
Γ1
(Ω))3.
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We introduce the operator
A : D(A) ⊂ H −→ H, V 7−→ AV,

where

D(A) = {V ∈ H |AV ∈ H, V satisfies the generalized Neumann boundary conditions (2.18)–(2.20)}
= {V ∈ H |V 1, V 3 ∈ H1

Γ1(Ω), V
2, V 4 ∈ (H1

Γ1(Ω))
2,△V 1 ∈ L2(Ω),DTSDV 2 ∈ (L2(Ω))2,

V 5 ∈ H1
Γ3
(Ω),div V 6 ∈ L2(Ω),

V satisfies the generalized Neumann boundary conditions (2.18)–(2.20)}

with the generalized Neumann boundary conditions given by

〈△V 1 + div V 2, φ〉L2(Ω) + 〈∇V 1 + V 2,∇φ〉(L2(Ω))2 = 0 for all φ ∈ H1
Γ1
(Ω) (2.18)

〈DTSDV 2 − γ∇V 5, φ〉(L2(Ω))2 + 〈SDV 2,Dφ〉(L2(Ω))3

−γ〈V 5,div φ〉L2(Ω) = 0 for all φ ∈ (H1
Γ1
(Ω))2 (2.19)

〈div V 6, φ〉L2(Ω) + 〈V 6,∇φ〉(L2(Ω))2 = 0 for all φ ∈ H1
Γ3
(Ω). (2.20)

Obviously, D(A) is a linear subspace of H.

Thus,
Vt = AV, V (0) = V 0 (2.21)

is a generalization of (2.8)–(2.17) since any classically differentiable solution to (2.8)–(2.17) solves the
abstract Cauchy problem (2.21). Here, V 0 := (w0, v0, w1, v1, θ0, q0)′ is assumed to be an element of
D(A).
The following theorem characterizes A as an infinitesimal generator of a strongly continuous semigroup
of bounded linear operators on H.

Theorem 2. The following statements hold true for A.

1. D(A) is dense in H.

2. A is a closed operator.

3. im(λ−A) = H for any λ > 0.

4. A is dissipative.

Proof. 1. The fact that D(A) is a dense subspace of H is a direct consequence of the inclusion

(C∞(Ω))9 ∩H ⊂ D(A).

Note that the generalized Neumann boundary conditions (2.18)–(2.20) are satisfied per defintion.

2. The proof of the closedness of A is also standard. We select an arbitrary sequence (Vn)n∈N ⊂
D(A) such that Vn → V ∈ H and AVn → F ∈ H as n → ∞ and show that V ∈ D(A) and
AV = F (cf. [26] for the case Γ2 = Γ3 = ∅).
Taking into account ((L2(Ω))9)′ ⊂ H′, the strong convergence in H implies the weak convergence
in (L2(Ω))9, i.e.,

〈AVn,Φ〉(L2(Ω))9 → 〈F,Φ〉(L2(Ω))9 as n→∞
for any Φ ∈ (L2(Ω))9. With a proper selection of Φ, the problem can be projected onto a
corresponding component. The proof will be made by means of a proper selection of Φ.
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There generally holds for V ∈ D(A)

AV = ρ−1

















V 3

V 4

K△V 1 +Kdiv V 2

−K∇V 1 +D′SDV 2 −KV 2 − γ∇V 5

−γdiv V 4 − βV 5 − κdiv V 6

−κ∇V 5 − δV 6

















.

We consider the following cases:

i) First, we select Φ = (φ, 0, 0, 0, 0, 0)′ , φ ∈ H1
Γ1
(Ω) to obtain

〈F 1, φ〉L2(Ω) = 〈F,Φ〉(L2(Ω))9 ← 〈AVn,Φ〉(L2(Ω))9 = 1
ρ1
〈V 3

n , φ〉L2(Ω) → 1
ρ1
〈V 3, φ〉L2(Ω).

Therefore, 1
ρ1
V 3 = F 1, i.e., (AV )1 = F 1. Taking into account F 1 ∈ H1

Γ1
(Ω), we conclude

V 3 ∈ H1
Γ1
(Ω).

ii) Letting Φ = (0, φ, 0, 0, 0, 0), φ ∈ (H1
Γ1
(Ω), we similarly get (AV )2 = F 2 und V 4 ∈

(H1
Γ1
(Ω))2.

iii) Further, we choose Φ = (0, 0, φ, 0, 0, 0)′ , φ ∈ H1
Γ1
(Ω). This yields

〈F 3, φ〉L2(Ω) ← 1
ρ1
〈K△V 1

n +KdivV 2
n , φ〉L2(Ω)

=− K
ρ1
〈∇V 1

n ,∇φ〉(L2(Ω))2 + 〈Kdiv V 2
n , φ〉L2(Ω)

→K
ρ1
〈∇V 1,∇φ〉(L2(Ω))2 + 〈Kdiv V 2, φ〉L2(Ω)

implying △V 1 ∈ L2(Ω) and 1
ρ1
(K△V 1 +Kdiv V 2) = F 3, i.e., (AV )3 = F 3.

iv) For Φ = (0, 0, 0, 0, 0, φ)′ , φ ∈ (H1
Γ3
(Ω))2, we obtain

〈F 6, φ〉(L2(Ω))2 ← 1
τ0
〈−κ∇V 5

n − δV 6
n , φ〉(L2(Ω))2 = κ

τ0
〈V 5

n ,div φ〉L2(Ω) − δ
τ0
〈V 6

n , φ〉(L2(Ω))2

→ κ
τ0
〈V 5,divφ〉L2(Ω) − δ

τ0
〈V 6, φ〉(L2(Ω))2 .

Hence, V 5 ∈ H1
Γ3
(Ω) and 1

τ0
(−κ∇V 5 − δV 6) = F 6, i.e., (AV )6 = F 6.

v) Selecting now Φ = (0, 0, 0, φ, 0, 0)′ , φ ∈ (H1
Γ1
(Ω))2, we find

〈F 4, φ〉(L2(Ω))2 ← 1
ρ2
〈−K∇V 1

n +D′SDV 2
n −KV 2

n − γ∇V 5
n , φ〉(L2(Ω))2

=K
ρ2
〈SDV 2

n ,Dφ〉(L2(Ω))3 +
1
ρ2
〈−K∇V 1

n −KV 2
n − γ∇V 5

n , φ〉(L2(Ω))2

→K
ρ2
〈SDV 2,Dφ〉(L2(Ω))3 +

1
ρ2
〈−K∇V 1 −KV 2 − γ∇V 5, φ〉(L2(Ω))2 .

Thus, D′SDV 2 ∈ (L2(Ω))2 and 1
ρ2
(−K∇V 1+D′SDV 2−KV 2−γ∇V 5) = F 4, i.e., (AV )4 =

F 4.

vi) Finally, we let Φ = (0, 0, 0, 0, φ, 0)′ mit φ ∈ H1
Γ3
(Ω) and deduce

〈F 5, φ〉L2(Ω) ← 1
ρ3
〈−γdiv V 4

n − βV 5
n − κdiv V 6

n , φ〉L2(Ω)

= κ
ρ3
〈V 6

n ,∇φ〉L2(Ω) − 1
ρ3
〈γdiv V 4

n + βV 5
n , φ〉L2(Ω)

→ κ
ρ3
〈V 6

n ,∇φ〉L2(Ω) − 1
ρ3
〈γdiv V 4 + βV 5, φ〉L2(Ω)

implying that div V 6 ∈ L2(Ω) and 1
ρ3
(−γdiv V 4 − βV 5 − κdiv V 6) = F 5 hold true, i.e.,

(AV )5 = F 5.
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There remains to show that V satisfies the generalized Neumann boundary conditions (2.18)–
(2.20). To this end, we proceed as follows.

i) Let φ ∈ H1
Γ1
(Ω). Then

〈△V 1 + div V 2, φ〉L2(Ω) ←〈△V 1
n + div V 2

n , φ〉L2(Ω)

=− 〈∇V 1
n + V 2

n ,∇φ〉(L2(Ω))2 → 〈∇V 1 + V 2,∇φ〉(L2(Ω))2 .

ii) For φ ∈ (H1
Γ1
(Ω))2, we get

〈D′SDV 2 − γ∇V 5, φ〉(L2(Ω))2 ←〈D′SDV 2
n − γ∇V 5

n , φ〉(L2(Ω))2

=− 〈SDV 2
n ,Dφ〉(L2(Ω))2 + γ〈V 5

n ,divφ〉L2(Ω)

→− 〈SDV 2,Dφ〉(L2(Ω))2 + γ〈V 5,divφ〉L2(Ω).

iii) Choosing an arbitrary φ ∈ H1
Γ3
(Ω), we finally obtain

〈div V 6, φ〉L2(Ω) ←〈div V 6
n , φ〉(L2(Ω))2 = 〈V 6

n ,∇φ〉L2(Ω) → −〈V 6,∇φ〉(L2(Ω))2 .

Alltogether, we have shown that A is a closed operator.

3. Next, we show im(λ−A) = H for all λ > 0. To this end, we prove that the equation

(λ−A)V = F (2.22)

is solvable for any F ∈ H. Since D(A) is a dense subset of H and A is closed, we can select
F ∈ D(A). Thus, for F ∈ D(A), we are looking for solutions of

λV 1 − V 3 = F 1,

λV 2 − V 4 = F 2,

λV 3 −K△V 1 −Kdiv V 2 = ρ1F
3,

λV 4 +K∇V 1 −D′SDV 2 +KV 2 + γ∇V 5 = ρ2F
4,

λV 5 + γdiv V 4 + βV 5 + κdiv V 6 = ρ3F
5,

λV 6 + κ∇V 5 + δV 6 = τ0F
6.

To eliminate V 3, V 4, we substitute

V 3 = λV 1 − F 1, V 4 = λV 2 − F 2, V 6 = 1
λ+δ (−κ∇V 5 + τ0F

6)

and obtain

λ(λ+ d)V 1 −K△V 1 −Kdiv V 2 = G1,

λ2V 2 +K∇V 1 −D′SDV 2 +KV 2 + γ∇V 5 = G2,

λV 5 + γλdiv V 2 + βV 5 − κ2

1+δ△V 5 = G3

(2.23)

with

G1 = ρ1F
3 + λF 1, G2 = ρ2F

4 + λF 2, G3 = ρ3F
5 + γdivF 2 + τ0κ

λ+δdivF
6.

To solve the elliptic problem (2.23), we exploit the lemma of Lax & Milgram. We consider the
Hilbert space

V := H1
Γ1
(Ω)× (H1

Γ1
(Ω))2 ×H1

Γ3
(Ω)
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equipped with the standard norm and introduce the bilinear form a : V × V → R via

a(V,W ) :=λ3〈V 1,W 1〉L2(Ω) + λ3〈V 2,W 2〉(L2(Ω))2 + (λ+ β)〈V 5,W 5〉L2(Ω)

Kλ〈∇V 1 + V 2,∇W 1 +W 2〉(L2(Ω))2 + λ〈SDV 2,DW 2〉(L2(Ω))3+

κ2

λ+δ 〈∇V 5,∇W 5〉(L2(Ω))2 + γλ〈∇V 5,W 2〉(L2(Ω))2 + γλ〈div V 2,W 5〉L2(Ω).

(2.24)

After multiplying the equations in (2.23) scalar in L2(Ω), (L2(Ω))2 and L2(Ω) with λV 1, λV 2

and V 3, respectively, summing up the resulting equations and performing a partial integration,
we obtain a weak formulation of Equation (2.23) in the form: Determine V ∈ V such that

a(V,W ) = λ〈G1,W 1〉L2(Ω) + λ〈G2,W 2〉(L2(Ω))2 + 〈G3,W 5〉L2(Ω)

for any W ∈ V.

The bilinear form a is continuous and coercive on V due to the boundary conditions and the
Korn’s inequality from Theorem 1. The functional

V ∋W 7→ λ〈G1,W 1〉L2(Ω) + λ〈G2,W 2〉(L2(Ω))2 + 〈G3,W 5〉L2(Ω)

is linear and continuous on V. Applying now lemma of Lax & Milgram, we deduce the existence
of a weak solution V ∈ V to (2.24) which, in its turn, solves (2.23), too.

Letting

V 3 = λV 1 − F 1, V 4 = λV 2 − F 2, V 6 = 1
λ+δ (−κ∇V 5 + τ0F

6),

we conclude that V = (V 1, . . . , V 6)′ solves Equation (2.22).

Thus, we have shown that D(A) ⊂ im(λ−A). Since D(A) is dense in H and im(A) is closed in
H, we finally obtain im(λ−A) = H.

We can now apply the theorem of Lumer & Phillips to the Cauchy problem (2.21) to obtain the
following existence result.

Theorem 3. Let V0 ∈ D(A). There exists then a unique classical solution to Equation (2.21) satisfying

V ∈ C1([0,∞),H) ∩ C0([0,∞),D(A)).

Moreover, if V0 ∈ D(As) for a certain s ∈ N, then we additionally have

V ∈
s
⋂

k=0

Ck([0,∞),D(As−k)),

where D(A0) := H.

3 Exponential stability

In this section, we study the stability properties of Equations (2.8)–(2.11) subject to Dirichlet boundary
conditions for the elastic part and Neumann boundary conditions for the thermal part in two situations.
First, we look at the case of a frictional damping on all elastic variables. Second, we restrict ourselves to
the rotationally symmetric situation but retain only the frictional damping for the bending component
w.
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For a number d ≥ 0 and a symmetric, positive semidefinite matrix D ∈ R
3×3, we consider thus the

problem

ρ1wtt −Kdiv (v +∇w) + dwt = 0 in (0,∞) × Ω, (3.1)

ρ2vtt −D′SDv +K(v +∇w) + γ∇θ +Dvt = 0 in (0,∞) × Ω, (3.2)

ρ3θt + κdiv q + βθ + γdiv vt = 0 in (0,∞) × Ω, (3.3)

τ0qt + δq + κ∇θ = 0 in (0,∞) × Ω (3.4)

subject to the boundary conditions

w = |v| = 0 on (0,∞) × Γ, (3.5)

q · ν = 0 on (0,∞) × Γ (3.6)

and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1, v(0, ·) = v0, vt(0, ·) = v1, θ(0, ·) = θ0, q(0, ·) = q0, (3.7)

Despite of the notation abuse, the matrix D ∈ SPD(R3) should not be confused with constant D > 0
consituting the matrix S. The natural first order energy associated with (3.1)–(3.4) reads as

E(t) := ρ1
2 ‖wt‖2L2(Ω)+

ρ2
2 ‖vt‖2(L2(Ω))2+

1
2‖
√
SDv‖2(L2(Ω))3+

K
2 ‖v+∇w‖2(L2(Ω))2+

ρ3
2 ‖θ‖2L2(Ω)+

τ0
2 ‖q‖(L2(Ω))2 .

3.1 Full mechanical and thermal damping

First, we address the case of a full mechanical and thermal damping, i.e., d > 0, D ∈ SPD(R2), β > 0.
Analogous results for the equations of thermoelasticity with a mechanical damping were proved by
Racke in [27] for the case of parabolic heat conduction and by Ritter in [29] for the case of hyperbolic
heat conduction due to Cattaneo.

Theorem 4. Let the parameters satisfy ρ1, ρ2, ρ3, τ0,K, κ, δ, γ, d > 0, β > 0, S ∈ SPD(R3), D ∈
SPD(R2). There exist then positive constants C and α such that

E(t) ≤ CE(0)e−2αt

holds true for all t ≥ 0. The latter depend neither on the initial data, nor on t and can be explicitely
estimated based on the parameters and the domain Ω.

Proof. To prove the theorem, we want to construct a Lyapunov functional F . Multiplying Equations
(3.1) and (3.3) in L2(Ω) with wt and θ, respectively, as well as Equations (3.2) and (3.4) in (L2(Ω))2

with vt and q, respectively, and exploiting the boundary conditions (3.5), (3.6), we find after a partial
integration

∂tE(t) ≤ d
∫

Ω
w2
t dx− λ

∫

Ω
|vt|2dx− β

∫

Ω
θ2dx− δ

∫

Ω
|q|2dx (3.8)

with λ := minσ(D) > 0 denoting the smallest eigenvalue of D. The function F has thus to be con-
structed in a way such that ∂tF contains a negative multiple of E , in particular, the terms

∫

Ω |∇w|2dx,
∫

Ω |
√
SDv|2dx and

∫

Ω |θ|2dx. We define

F1(t) := ρ1

∫

Ω
wtwdx, F2(t) := ρ1

∫

Ω
vt · vdx

11



with · denoting the standard dot product on R
2 and exploit Equations (3.1), (3.2) und (3.5) to find

after a partial integration

∂tF1(t) =

∫

Ω
(Kdiv (∇w + v)− dwt)wdx+ ρ1

∫

Ω
w2
t dx

=

∫

Ω
−K(∇w + v) · ∇wdx− dwtw + ρ1w

2
t dx,

∂tF2(t) =

∫

Ω
(D′SDv −K(v +∇w)− γ∇θt −Dvt) · vdx+ ρ2

∫

Ω
|vt|2dx

=

∫

Ω
−|
√
SDv|2 −K(v +∇w) · v + γθtdiv v −Dvt · v + ρ2|vt|2dx.

(3.9)

Using now Young’s inequality, the first Poincaré’s and well as Korn’s inequality, we can estimate for
arbitrary ε, ε′ > 0 the functionals in (3.9) as follows:

∂tF1(t) ≤
∫

Ω
−K|∇w|2 + K

2 |∇w|2 + K
2 |v|2 + dε

2 w
2 +

(

d
2ε + ρ1

)

w2
t dx

≤
∫

Ω
−
(

K
2 −

CPdε
2 )|∇w|2 + K

2 |v|2 +
(

d
2ε + ρ1

)

w2
t dx,

∂tF2(t) ≤
∫

Ω
−|
√
SDv|2 −K|v|2 + K(1+ε′)

2 |v|2 + K
2(1+ε′) |∇w|2 +

γε
2 |div v|2

+ γ
2εθ

2 + ‖D‖ε
2 |v|2 +

(‖D‖
2ε + ρ2

)

|vt|2dx

≤
∫

Ω
−
(

1− Kε′

2CK,1
− (γ+‖D‖)ε

2CK,1

)

|
√
SDv|2 − K

2 |v|2 + K
2(1+ε′) |∇w|2

+ γ
2εθ

2 +
(‖D‖

2ε + ρ2
)

|vt|2dx,

(3.10)

where CP denotes the Poincaré’s constant and CK,1 stands for the Korn’s constant from Lemma 1. We
let

F(t) := F1(t) + F2(t) +NE(t)
and combine Equations (3.8) and (3.10) to obtain

∂tF(t) ≤ Cwt

∫

Ω
wtdx+ Cvt

∫

Ω
|vt|2dx+ Cϑ

∫

Ω
ϑ2tdx+Cq

∫

Ω
|q|2dx+

C∇w

∫

Ω
|∇w|dx+ C√

SDv

∫

Ω
|
√
SDv|2dx,

where

Cwt
= Nd− d

2ε + ρ1, Cvt = Nλ− ‖D‖
2ε + ρ2 − γ

2ε ,

Cϑ = Nβ − γ
2ε + ρ3, Cq = Nδ, (3.11)

C∇w =
[

K
2 − K

2(1+ε′)

]

− CPdε
2 , C√

SDv =
[

1− Kε′

2CK,1

]

− (γ+‖D‖)ε
2CK,1

.

Now, we select ε′ > 0 to be sufficiently small such that the terms in the brackets from Equation (3.11)
become positive. Further, we fix a small ε > 0 to assure for C∇w > 0 and C√

SDv > 0. Finally, we pick
a sufficiently large N > 0 such that all constants in (3.11) become positive. Thus,

Cmin := min{Cwt
, Cvt , Cθ, Cq, C∇w, C√

SDv} > 0.

Using now the Korn’s inequality from Lemma 1, we obtain

∂tF(t) ≤ −2Cmin ·
min

{

1,CK

}

max{1,ρ1,ρ2,ρ3,τ0}E(t) =: −C̃E(t). (3.12)
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Taking into account

|(F1 + F2)(t)| ≤
max

{

1,ρ1,ρ2
}

min{1,CK} E(t) =: ĈE(t)
we conclude

β1E(t) ≤ L(t) ≤ β2E(t) for t ≥ 0

with β1 = N − Ĉ, β2 = N + Ĉ. If neccessary, we increase N to make β1 positive. Gronwall’s inequality
now yields

E(t) ≤ 1
β1
L(t) ≤ 1

β1
E(0)e−

C
β2

t
=: CE(0)e−2αt for all t ≥ 0

with C,α > 0. This means that E decays exponentially.

Remark 5. As a matter of fact, the constant β must be positive in physical settings. Assuming
∫

Ω
θ0dx = 0

and using the functional F4 from the proof of Theorem 7, our arguments can easily be carried over to
the case β = 0. In contrast to Ritter’s approach in [29], no second order energy is required.

3.2 Lack of strong stability in smooth domains

To justify the necessity of a frictional damping for both w and v, we prove next that Equations (3.1)–
(3.7) even lack a strong stability for d > 0 and D = 0 when considered in a bounded domain Ω with a
smooth boundary Γ. In this case, the domain Ω contains a ray of geometrical optics perpendicularly
reflected from Γ and one could theoretically perform constructions similar to those in [6] or [20] to
prove a non-uniform decay rate even for a bigger class of domains. For simplicity, we restrict ourselves
to the case of a smooth boundary allowing for the definition of Helmholz projection. We will namely
show the imposibility of stabilizing the solenoidal part of v.

To avoid a trivial null space, we impose for simplicity the following boundary conditions:

w = |v| = 0 on (0,∞) × Γ, (3.13)

θ = 0 on (0,∞) × Γ. (3.14)

It should though be pointed out that a similar result would also hold under any natural boundary
conditions on w, θ and q provided Dirichlet boundary conditions are imposed on v on the whole of Γ.

Theorem 6. Let the boundary Γ be of class C2 and let D = 0. Problem (3.1)–(3.4), (3.7), (3.13),
(3.14) is not strongly stable, in particular, not uniformly stable.

Proof. Equations (3.1)–(3.4), (3.7), (3.13), (3.14) can be rewritten in the evolution form. Theorem
3 yields then the existence of unique solution V = (w, v,wt, vt, θ, q)

′ given as an application of the
strongly continuous semigroup of linear bounded operators to the initial data.

Now, we want to select the initial data such that the solution component v remains solenoidal, i.e.,
div v = div vt = 0. Since Γ is smooth, there exists the Helmholtz-projection (cf. [30])

P : (L2(Ω))2 → L2
σ(Ω)

into the Hilbert space

L2
σ(Ω) = {u ∈ (L2(Ω))2 | 〈u,∇ϕ〉(L2(Ω))2 = 0 for all ϕ ∈ L1

loc(Ω) such that ∇ϕ ∈ (L2(Ω))2}.

P is an orthogonal operator and L2
σ(Ω) is closed.
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Applying the operator P to Equation (3.2) and exploiting the representation

D′SDv = D 1−µ
2 △v +D 1+µ

2 ∇div v,

we obtain an equation for u := Pv

ρ2utt −D 1−µ
2 P△u+Ku = 0 in (0,∞) × Ω,

u = 0 in (0,∞) × Γ,

u(t, ·) = u0 := Pv0, ut(t, ·) = u1 := Pv1 in Ω.

(3.15)

Equation (3.15) has a strong resemblance to the Klein-Gordon-Equation with an unbounded selfadjoint
Dirichlet-Stokes-Operator DP△. We define the operator

A : D(A) ⊂ L2
σ(Ω)→ L2

σ(Ω), u 7→ D 1−µ
2 P△u+Ku,

where
D(A) = (H2(Ω) ∩H1

0 (Ω))
2 ∩ L2

σ(Ω).

It is known (see, e.g., [15]) that the spectrum σ(D 1+µ
2 P△) of DP△ purely consists of a discrete point

spectrum
σ(D 1+µ

2 P△) = σp(D
1+µ
2 P△) = {λk | k ∈ N}

with the eigenvalues λk, k ∈ N, of finite multiplicity satisfying 0 < λ1 ≤ λk ≤ λk+1 → ∞ as k → ∞.
Hence, σ(A) = σp(A) = {µk | k ∈ N} with µk = λk +K for k ∈ N.

Let ν∗ ∈ σ(A) and let u∗ ∈ D(A) be the eigenfunction corresponding to ν∗ with ‖u∗‖(L2(Ω))2 = 1. We
set u0 := u∗, u1 := 0 and find that

u(t) := cos
(

√

ν∗

ρ2
t
)

v∗, t ∈ R,

is a solution of (3.15). The energy associated with u reads as

E1(t) = ρ2‖vt‖(L2(Ω))2 +D‖∇v‖(L2(Ω))2 = ν∗ cos2
(

√

ν∗

ρ2
t
)

+Dν∗ cos2
(

√

ν∗

ρ2
t
)

= ν∗(1 +D) cos2
(

√

ν∗

ρ2
t
)

9 0 for t→∞.

Thus, (w, v, θ, q)′ = (0, cos
(

√

ν∗

ρ2
t
)

v∗, 0, 0)′ is a solution of the original problem (3.1)–(3.7), (3.13),

(3.14) for the initial conditions

w0 = w1 = 0, v0 = u∗, v1 = 0, θ0 = 0, q0 = 0,

which satisfies

E(t) = ρ2‖vt‖(L2(Ω))2 +D‖∇v1‖2(L2(Ω))2 +D‖∇v2‖2(L2(Ω))2 +D 1+µ
2 ‖div v‖2L2(Ω)

= ρ2‖vt‖(L2(Ω))2 +D‖∇v1‖2(L2(Ω))2 +D‖∇v2‖2(L2(Ω))2 = E1(t) 9 0 for t→∞,

where v = (v1, v2)
′. Hence, E does not decay.
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3.3 Exponential stability for rotationally symmetric plates

As we have seen before, a single frictional damping for w is not sufficiently strong to stabilize a
thermoelastic Reissner-Mindlin-Timoshenko plate (3.1)–(3.4) for general data. Motivated by Racke’s
result in [28], we reduce the problem to the rotationally symmetric case making thus the vector field v
irrotational. Though arguments similar to those of Jiang and Racke in [14, Theorem 4.2] and Racke in
[28] made for the system of classical or hyperbolic thermoelasticity could be adopted in our case, we
decided to propose our own approach incorporating the Bogovskĭi operator and, to some extent, being
a generalization of the method applied by Messaoudi et al. in [22] to a one-dimensional Timoshenko-
beam. In addition to its technical novelty, a direct benefit of our approach lies in the fact that we only
need to consider a first and not a second order energy. We would like to mention that the spectral
approach of Grobbelaar (cf. [11, 12]) seems also to be applicable to our problem. At the same time,
we do not require the assumption of simple connectedness on Ω.

We study Equations (3.1)–(3.4) subject to the boundary conditions

w = |v| = 0 on (0,∞) × Γ, (3.16)

q · ν = 0 on (0,∞) × Γ (3.17)

and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1, v(0, ·) = v0, vt(0, ·) = v1, θ(0, ·) = θ0, q(0, ·) = q0. (3.18)

For the solution given in Theorem 3, we assume the vanishing mean value for θ

∫

Ω
θdx = 0 in (0,∞) (3.19)

as well as the vanishing rotation for v

rotv = ∂2v1 − ∂1v2 = 0 in (0,∞). (3.20)

Theorem 7. Let Ω ⊂ R
2 be a rotationally symmetric bounded domain. Let the parameters satisfy

ρ1, ρ2, ρ3, τ0,K, κ, δ, γ, d > 0, β ≥ 0, D = 0 and the matrix S come from Equation (2.7). Further, let
the data w0, w1, v0, v1, θ0, q0 be radially symmetric in the sense of [14, Definition 4.4] and satisfy

∫

Ω
θ0dx = 0.

There exist then positive constants C and α such that for the energy E

E(t) ≤ CE(0)e−2αt

holds true for all t ≥ 0. The latter depend neither on the initial data, nor on t and can be explicitely
estimated based on the parameters and the domain Ω.

Proof. Theorem 3 applied for the case Γ2 = Γ3 = ∅ yields the existence of a unique classical solution.
After a straighforward modification, [14, Lemma 4.6] implies that the solution remains rotationally
symmetric for all times t ≥ 0.

Without loss of generality, we may assume β = 0. Indeed, denoting with Eβ the natural energy
associated with the system subject to some fixed initial conditions for a given β ≥ 0 and assuming the
existence of constants C and α independent of the initial data such that

E0(t) ≤ CE0(0)e−2αt for t ≥ 0,
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we take into account

∂tEβ(t) ≤ ∂tE0(t)− β
∫

Ω
θ2dx ≤ ∂tE0(t) for t ≥ 0

as well as Eβ(0) = E0(0) to conclude

Eβ(t) ≤ E0(t) ≤ CE0(0)e−2αt for t ≥ 0.

Thus, we let β = 0. As already mentioned, some of the following steps are motivated by the one-
dimensional proof of Messaoudi et al. from [22].

Multiplying (3.1) and (3.3) in L2(Ω) with wt and θ, respectively, as well as (3.2) and (3.4) in (L2(Ω))2

with vt and q, respectively, and employing integration by parts, we find

∂tE(t) = −d
∫

Ω
w2
t dx− δ

∫

Ω
|q|2dx.

With the solution u ∈ H1
0 (Ω) to the Poisson equation

−△u = div v in Ω,

u = 0 auf Γ,

we obtain
∫

Ω
|∇u|2dx = −

∫

Ω
v · ∇udx.

Young’s inequality further yields

∫

Ω
|∇u|2dx ≤ 1

2

∫

Ω
|v|2dx+ 1

2

∫

Ω
|∇u|2dx

and, therefore,
∫

Ω
|∇u|2dx ≤

∫

Ω
|v|2dx. (3.21)

Similarly,
∫

Ω
|∇ut|2dx ≤

∫

Ω
|vt|2dx. (3.22)

We define the functional

F1(t) :=

∫

Ω

(

ρ1wtu+ ρ2vtv − γτ0
κ vq

)

dx.

Taking into account Equation (3.1), we use partial integration to obtain

∂t

∫

Ω
ρ1wtudx = ρ1

∫

Ω
(wttu+ wtut)dx

= K

∫

Ω
div (∇w + v) · udx− d

∫

Ω
wtudx+ ρ1

∫

Ω
wtutdx

= −K
∫

Ω
(∇w + v) · ∇udx− d

∫

Ω
wtudx+ ρ1

∫

Ω
wtutdx

= K

∫

Ω
w△udx−K

∫

Ω
v · ∇udx− d

∫

Ω
wtudx+ ρ1

∫

Ω
wtutdx

= −K
∫

Ω
wdiv vdx+K

∫

Ω
|∇u|2dx− d

∫

Ω
wtudx+ ρ1

∫

Ω
wtutdx.
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By the virtue of Equation (3.2), we similarly get

∂t

∫

Ω
ρ2vt · vdx = ρ2

∫

Ω
vtt · vdx+ ρ2

∫

Ω
|vt|2dx

=

∫

Ω
D′SDv · vdx−K

∫

Ω
(v +∇w) · vdx− γ

∫

Ω
∇θ · vdx+ ρ2

∫

Ω
|vt|2dx

= −
∫

Ω
|
√
SDv|2dx−K

∫

Ω
|v|2dx+K

∫

Ω
wdiv vdx− γ

∫

Ω
∇θ · vdx+ ρ2

∫

Ω
|vt|2dx

as well as

∂t

∫

Ω
−γτ0

κ v · qdx = −γτ0
κ

∫

Ω
vt · qdx+ γδ

κ

∫

Ω
v · qdx+ γ

∫

Ω
v · ∇θdx.

Finally, we conclude

∂tF1(t) =K

∫

Ω
|∇u|2dx−K

∫

Ω
|v|2dx− d

∫

Ω
wtudx+ ρ1

∫

Ω
wtutdx+

ρ2

∫

Ω
|vt|2dx−

∫

Ω
|
√
SDv|2dx− γτ0

κ

∫

Ω
vt · qdx+ γδ

κ

∫

Ω
v · qdx.

Using now the first Poincaré’s inequality, Young’s inequality and Korn’s inequality from Lemma 1 as
well as the estimates from Equations (3.21) and (3.22), we obtain

∂tF1(t) ≤ d
2

∫

Ω

(

ε1u
2 + 1

ε1
w2
t

)

dx+ ρ1
2

∫

Ω

(

ε1u
2
t +

1
ε1
w2
t

)

dx+ ρ2

∫

Ω
|vt|2dx

−
∫

Ω
|
√
SDv|2dx+ γτ0

2κ

∫

Ω

(

ε1|vt|2 + 1
ε1
|q|2

)

dx+ γδ
2κ

∫

Ω

(

ε1|v|2 + 1
ε1
|q|2

)

dx

≤ d
2

∫

Ω

(

ε1
CP

CK,1
|
√
SDv|2 + 1

ε1
w2
t

)

dx+ ρ1
2

∫

Ω

(

CPε1|vt|2 + 1
εw

2
t

)

dx+ ρ2

∫

Ω
|vt|2dx

−
∫

Ω
|
√
SDv|2dx+ γτ0

2κ

∫

Ω

(

ε1|vt|2 + 1
ε1
|q|2

)

dx+ γδ
2κ

∫

Ω

(

ε1
CK,1
|
√
SDv|2 + 1

ε1
|q|2

)

dx

≤ ρ1+d
2ε1

∫

Ω
w2
t dx+

[

ρ2 − ε1
2

(

ρ1CP + γτ0
κ

)]

∫

Ω
|vt|2dx

−
[

1− ε1
2CK,1

(

dCP + γδ
κ

)]

∫

Ω
|
√
SDv|2dx+ γ(τ0+δ)

2κε1

∫

Ω
|q|2dx

(3.23)

with the Poincaré’s constant CP = CP(Ω) > 0 and an arbitrary small number ε1 > 0 to be fixed later.
Here, we estimated

∫

Ω
|u|2dx ≤ CP

∫

Ω
|∇u|2dx ≤ CP

∫

Ω
|v|2dx ≤ CP

CK,1

∫

Ω
|
√
SDv|2dx.

Next, we consider the functional

F2(t) := ρ1

∫

Ω
wtwdx

and use Equation (3.1) to find

∂tF2(t) = ρ1

∫

Ω
w2
t dx+K

∫

Ω
div (v +∇w) · wdx− d

∫

Ω
wtwdx

= ρ1

∫

Ω
w2
t dx−K

∫

Ω
|∇w|2dx−K

∫

Ω
v · ∇wdx− d

∫

Ω
wtwdx.
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The latter can be estimated as

∂tF2(t) ≤ −K
∫

Ω
|∇w|2dx+ K

2

∫

Ω

(

ε2|∇w|2 + 1
ε2
|v|2

)

dx+

d
2

∫

Ω

(

ε2w
2 + 1

ε2
w2
t

)

dx+ ρ1

∫

Ω
w2
t dx

≤ −
(

K − ε2CP

2 (K + d)
)

∫

Ω
|∇w|2dx+ K

ε2CK,1

∫

Ω
|
√
SDv|2dx+

(

d
2ε2

+ ρ1

)

∫

Ω
w2
t dx.

(3.24)

Exploiting the fact

0 = ρ3

∫

Ω
θtdx+ κ

∫

Ω
div qdx+ γ

∫

Ω
div vtdx

= ρ3∂t

∫

Ω
θdx+ κ

∫

Γ
q · νdx+ γ

∫

Γ
vt · νdx = ρ3∂t

∫

Ω
θdx,

we easily see
∫

Ω
θ(t, x)dx ≡

∫

Ω
θ(0, x)dx =

∫

Ω
θ0(x)dx = 0.

This enables us to apply the second Poincaré’s inequality to θ. Using now the definition of Bogowskĭi
operator Brot from Theorem 9, we introduce the following functional

F3(t) := ρ2ρ3

∫

Ω
Brotθ · vtdx.

Exploiting Equations (3.2) and (3.3), we obtain

∂tF3(t) = ρ2ρ3

∫

Ω
Brotθt · vtdx+ ρ2ρ3

∫

Ω
Brotθ · vttdx

= ρ2

∫

Ω
Brot(−κdiv q − γdiv vt) · vtdx+ ρ3

∫

Ω
Brotθ · (D′SDv −K(v +∇w)− γ∇θ)dx

= −ρ2κ
∫

Ω
(Brotdiv q) · vtdx− ρ2γ

∫

Ω
|vt|2dx− ρ3

∫

Ω
(DBrotθ) · (SDv)dx

− ρ3K
∫

Ω
Brotθ · (v +∇w)dx+ ρ3γ

∫

Ω
div Brotθ · θdx

= −ρ2κ
∫

Ω
(Brotdiv q) · vtdx− ρ2γ

∫

Ω
|vt|2dx− ρ3

∫

Ω
(DBrotθ) · (SDv)dx

− ρ3K
∫

Ω
Brotθ · (v +∇w)dx− ρ3γ

∫

Ω
θ2dx.

We would like to stress that the injectivity of Bogowskĭi operator was essential here for us to be able
to reconstruct vt from Brotdiv vt. In general, this is not possible unless the vector field is irrotational
and vanishes on Γ. Using the Young’s inequality and exploiting the continuity of Bogowskĭi operator,
we can estimate

∂tF3(t) ≤ −ρ2γ
∫

Ω
|vt|2dx+ ρ2κ

2

∫

Ω

(

ε3|vt|2 +
C′

Brot
ε3
|q|2

)

dx

+ ρ3‖S‖
2

∫

Ω

(

ε′3|SDv|2 + CB

ε′3
θ2
)

dx+ ρ3K
2

∫

Ω

(

ε′3|v|2 +
CK,2CB

ε′3
θ2
)

dx

+ ρ3K
2

∫

Ω

(

ε′3|∇w|2 + cB
ε′3
θ2
)

dx+ ρ3γ

∫

Ω
θ2dx

≤ −
(

ρ2γ − ρ2κε3
2

)

∫

Ω
|vt|2dx+

(

ρ32‖S‖ε′3
2 +

ρ3KCP ε′3
2CK,1

)

∫

Ω
|
√
SDv|2dx+

ρ3Kε′3
2

∫

Ω
|∇w|2dx

18



(

ρ3γ − ρ3(‖S‖+K)CB

2ε′3
− ρ3KCB

2ε′3
θ2
)

∫

Ω
θ2dx+

ρ2κC′
Brot

2ε3

∫

Ω
|q|2dx (3.25)

for arbitrary positive ε3 and ε′3. The constants CBrot and C ′
Brot

occuring above come from Theorem 9
and Theorem 11.

Finally, we define

F4(t) := −τ0ρ3
∫

Ω
q · Brotθdx

and obtain

∂tF4(t) = −ρ3
∫

Ω
(−δq − κ∇θ) · Brotθdx− τ0

∫

Ω
q · Brot(−κdiv q − γdiv vt)dx

= ρ3δ

∫

Ω
q · Bθdx− ρ3κ

∫

Ω
θ2dx+ τ0κ

∫

Ω
q · Bdiv qdx+ τ0γ

∫

Ω
q · vtdx

since
∫

Ω
∇θ · Brotθdx = −

∫

Ω
θdiv Brotθdx = −

∫

Ω
θ2dx.

This yields the estimate

∂tF4 ≤ −ρ3κ
∫

Ω
θ2dx+ ρ3δ

2

∫

Ω

(

ε4CBrotθ
2 + 1

ε4
|q|2

)

dx

+ τ0κ(1 + C ′
Brot

)

∫

Ω
|q|2dx+ τ0γ

2

∫

Ω

(

ε′4|vt|2 + 1
ε′4
|q|2

)

dx

=
(

−ρ3κ+
ε4ρ3δCBrot

2

)

∫

Ω
θ2dx+

ε′4τ0γ
2

∫

Ω
|vt|2dx

+
(

(1 +C ′
Brot

)τ0κ+ ρ3δ
2ε4

+ τ0γ
2ε′4

)

∫

Ω
|q|2dx.

(3.26)

For positive N,N4, we define the auxiliary functional F by the means of

F(t) := NE(t) + F1(t) + F2(t) + F3(t) +N4F4(t).

Using now the estimates for ∂tF1, ∂tF2, ∂tF3 and ∂tF4 from Equations (3.23)–(3.26), we obtain

∂tL(t) ≤−Cwt

∫

Ω
w2
t dx− C∇w

∫

Ω
|∇w|2dx− Cvt

∫

Ω
|vt|2dx− C√

SDv

∫

Ω
|
√
SD′v|2dx

−Cθ

∫

Ω
θ2dx− Cq

∫

Ω
|q|2dx

with the constants

Cwt
= dN − ρ1+d

2ε1
−

(

d
2ε2

+ ρ1

)

,

C∇w =
[

K − ε2CP

2 (K + d)
]

− ρ3Kε′3
2 ,

Cvt =
[

ρ2 − ε1
2

(

ρ1CP + γτ0
κ

)]

+
[

ρ2γ − ρ2κε3
2

]

−N4
ε′4τ0γ

2 ,

C√
SDv =

[

1− ε1
2CK,1

(

dCP + γδ
κ

)]

−
(

ρ32‖S‖ε′3
2 +

ρ3KCP ε′3
2CK,1

)

,

Cθ =
(

ρ3γ − ρ3(‖S‖+K)CB

2ε′3
− ρ3KCB

2ε′3
θ2
)

+N4

[

ρ3κ− ε4ρ3δCBrot
2

]

,

Cq = τ0N − γ(τ0+δ)
2κε1

− ρ2κC′
Brot

2ε3
−N4

(

(1 + C ′
Brot

)τ0κ+ ρ3δ
2ε4

+ τ0γ
2ε′4

)

.

Now, we select ε1, ε2, ε3, ε4 > 0 sufficiently small for all bracket terms in C√
SDv, C∇w, Cvt and Cθ to

be positive. Next, we choose ε′3 > 0 so small that C∇w and C√
SDv become positive. Then we fix a
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sufficiently large N4 > 0 to assure for Cθ > 0. We further pick a small ε′4 > 0 to make Cvt positive.
Finally, we choose N > 0 to be sufficiently large to guarantee the positivity of Cwt

and Cq. Therefore,
we get

Cmin := min{Cwt
, C∇w, Cvt , C

√
SDv, Cθ, Cq} > 0.

Taking into account Young’s inequality

|∇w + v|2 ≤ 1
2(|∇w|2 + |∇v|2),

Korn’s inequality immediately yields the estimate

|∇w|+ |
√
SDv|2 ≥ |∇w|+ 1

2CK,1|v|2 + 1
2 |
√
SDv|2 ≥ min{2, CK,1}|∇w + v|2 + 1

2 |
√
SDv|2

≥ min{12 , CK,1}(|∇w + v|2 + |
√
SDv|2).

Hence, we get

∂tF(t) ≤ −2
min

{

1,min
{

1
2 ,CK,1

}−1}

max{1,ρ1,ρ2,ρ3,τ0,K} E(t) =: CE(t).
On the other hand, we can estimate

|F1 + F2 + F3+N4F4|(t) ≤ 1
2

∫

Ω

(

ρ1(w
2
t + |u|2) + ρ2(|vt|2 + |v|2) + γτ0

κ (|v|2 + |q|2)+

ρ1(w
2
t + w2) + ρ2ρ3(|Brotθ|2 + |vt|2) + τ0ρ3(|q|2 + |Brotθ|2)

)

dx

≤1
2

(

2ρ1‖wt‖2L2(Ω) + ρ1‖w‖2H1(Ω) + ρ2‖vt‖2(L2(Ω)2) + (ρ2 +
γτ0
κ )‖v‖(H1(Ω))2

+ CBrot(ρ2ρ3 + τ0ρ3)‖θ‖2L2(Ω) + (γτ0κ + τ0ρ3)‖q‖2(L2(Ω))2

)

≤1
2

(

2ρ1‖wt‖2L2(Ω) + ρ2‖vt‖2(L2(Ω)2)+

max{ρ1,(ρ2+
γτ0
κ )}

CK
(K‖∇w + v‖2(L2(Ω))2 + ‖

√
SDv‖2(L2(Ω))2)

+ CBrot(ρ2ρ3 + τ0ρ3)‖θ‖2L2(Ω) + (γτ0κ + τ0ρ3)‖q‖2(L2(Ω))2

)

≤ ĈE(t).

Letting now α1 := N−max{ρ1,ρ2,C−1
K

}
min{ρ1,ρ2,ρ3} and α2 := N+

max{ρ1,ρ2,C−1
K

}
min{ρ1,ρ2,ρ3} , we obtain the following equivalence

between E and F
α1E(t) ≤ F(t) ≤ α2E(t) for t ≥ 0.

If necessary, we increase the constant N to assure for the positivity of α1. Thus, both C, α1 and α2

are positive. Exploiting Gronwall’s inequality, we obtain the following estimate for E

E(t) ≤ 1
α1
F(t) ≤ 1

α1
E(0)e−

C
α2

t
=: CE(0)e−2αt for t ≥ 0

meaning an exponential decay of E .

Appendices

A The divergence problem and the Bogowskĭi operator

In various applications of partial differential equations, e.g., when studying Navier-Stokes equations,
there arises a so-called “divergence problem”: For a given function f , determine a vector field u such that
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its divergence coincides with f . We refer to [9] for a rather general solution of this problem in bounded
domains. It has namely been shown that the solution map B : f 7→ u, called the Bogowskĭi-operator,
is a bounded linear operator between W s,p

0 (Ω) and W s+1,p
0 (Ω) for p ∈ (0,∞), s ∈

(

− 2 + 1
p ,∞

)

.

For our application, we want to additionally guarantee that the solution u is irrotational. To this end,
we exploit the following result from [13].

Theorem 8. Let Ω ⊂ R
n be a domain with a smooth boundary and let ν : Ω → R

n denote the outer
unit normal vector on ∂Ω. There exists then a function u ∈ H1(Ω,Rn) satisfying ν ⊗u = u⊗ ν on ∂Ω
and

‖∇u‖2L2(Ω) = ‖div u‖2L2(Ω) +
1
2‖∇u− (∇u)′‖2L2(Ω) + (n− 1)

∫

∂Ω
|u|2HndS, (A.1)

where Hn : ∂Ω → R, x 7→ Hn(x) denotes the mean curvature of ∂Ω with respect to the outer normal
vector. In n = 2, 3, Equation (A.1) reduces to

‖∇u‖2L2(Ω) = ‖div u‖2L2(Ω) + ‖rotu‖2L2(Ω) + (n − 1)

∫

∂Ω
|u|2HndS, (A.2)

where

rotu =





∂x2u3 − ∂x3u2
∂x3u1 − ∂x1u3
∂x1u2 − ∂x2u1



 for n = 3 and rotu = ∂x1u2 − ∂x2u1 for n = 2.

For u ∈ H1
0 (Ω,R

n), the second term in (A.1) and (A.2) vanishes and no assumptions on ∂Ω are
required:

‖∇u‖2L2(Ω) = ‖div u‖2L2(Ω) + ‖∇u− (∇u)′‖2L2(Ω). (A.3)

In the following, we assume n = 2. We define the space

H1
0,rot(Ω) =

{

u ∈ (H1
0 (Ω))

2 |∇u = (∇u)′
}

=
{

u ∈ (H1
0 (Ω))

2 | rotu = 0
}

equipped with the standard inner product of (H1
0 (Ω))

2. Since H1
0,rot(Ω) is a closed subspace of

(H1
0 (Ω))

2, H1
0,rot(Ω) is a Hilbert space. We prove the following theorem.

Theorem 9. The mapping
div : H1

0,rot(Ω)→ L2(Ω)/{1}
is an isomorphism with an inverse div−1 = Brot

Brot : L2(Ω)/{1} → H1
0,rot(Ω)

in the sense
divBrot = idL2(Ω)/{1} and Brotdiv = idH1

0,rot(Ω).

Furthermore, the exists CB > 0 such that

‖Brotf‖(H1(Ω))2 ≤ CBrot‖f‖L2(Ω)

holds true for all f ∈ L2
∗(Ω).

Proof. The linearity of div is obvious For each u ∈ H1
0,rot(Ω), we have div u ∈ L2(Ω) and thus

∫

Ω
div udx =

∫

Γ
u · νdΓ = 0,
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meaning div u ∈ L2(Ω)/{1}. The continuity is also trivial since

‖div u‖L2(Ω) ≤
√
2‖∇u‖L2(Ω) ≤

√
2‖u‖H1(Ω).

The operator div is injective. Indeed, let u1, u2 ∈ H1
0,rot(Ω). Let div u1 = div u2. Then, using Poincaré

inequality,
0 = ‖div u1 − div u2‖L2(Ω) ≥ ‖∇u1 −∇u2‖L2(Ω) ≥ 1

CP
‖u1 − u2‖L2(Ω),

i.e., u1 = u2.

To explicitely construct the operator Brot, we follow the variational approach. For f, g ∈ L2(Ω)/{1},
we consider a boundary value problem for ϕ,ψ ∈ H1(Ω)/{1}:

−div (∇ϕ+ rot′ψ) = f in Ω,

−rot(∇ϕ+ rot′ψ) = g in Ω,

ν · (∇ϕ+ rot′ψ) = 0 on Γ,

ν⊥ · (∇ϕ+ rot′ψ) = 0 on Γ,

(A.4)

where ν⊥ := (ν2,−ν1)′, rot′ := (∂x2 ,−∂x1)
′. We multiply the equations with ϕ̃, ψ̃ ∈ H1(Ω)/{1}, sum

up the resulting identities, take into account the boundary conditions and apply a partial integration
to find

−
∫

Ω
div (∇ϕ+ rot′ψ)ϕ̃dx−

∫

Ω
rot(∇ϕ+ rot′ψ)ψ̃dx =

∫

Ω
(∇ϕ+ rot′ψ) · (∇ϕ̃+ rotψ̃)dx

This lead to the following operator equation

A(ϕ,ψ)′ = (f, g)′, (A.5)

where

A : D(A) ⊂ H → H, (ϕ,ψ)′ 7→
(

−div (∇ϕ+ rot′ψ)
−rot(∇ϕ+ rot′ψ)

)

and

D(A) =
{

(ϕ,ψ)′ ∈ V
∣

∣∃(f1, f2)′ ∈ H ∀(ϕ̃, ψ̃)′ ∈ V : B(ϕ,ψ; ϕ̃, ψ̃) =

∫

Ω
f1ϕ̃+ f2ψ̃dx

}

with the bilinear form

B : V × V → R, (φ,ψ, φ̃, ψ̃)′ 7→
∫

Ω
(∇ϕ+ rot′ψ) · (∇ϕ̃+ rotψ̃)dx.

Here, we introduced the Hilbert spaces

H := (L2(Ω)/{1}) × (L2(Ω)/{1}), V := (H1(Ω)/{1}) × (H1(Ω)/{1})

equipped with the standard inner products of L2(Ω)×L2(Ω) and H1(Ω)×H1(Ω), respectively. Since
A has a nontrivial kernel, we consider the operator given as its restriction onto the closed subspace

Ṽ = {(ϕ,ψ)′ ∈ V | ∀(ϕ̃, ψ̃)′ ∈ V :

∫

Ω
∇ϕ · rot′ψ̃dx =

∫

Ω
∇ϕ̃ · rot′ψdx = 0}

of V and denote it as
Ã : D(Ã) := D(A) ∩ Ṽ ⊂ H → H.

Equation (A.5) reduces then to
Ã(ϕ,ψ)′ = (f, g)′. (A.6)
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We multiply Equation (A.6) scalar in H with (ϕ̃, ψ̃)′ ∈ Ṽ to find after a partial integration the weak
formulation of (A.6): Determine an element (ϕ,ψ)′ ∈ Ṽ such that

B(ϕ,ψ; ϕ̂, ψ̂) = F (ϕ̂, ψ̂) for all (ϕ̂, ψ̂)′ ∈ Ṽ, (A.7)

where

B : Ṽ × Ṽ → R, (φ,ψ, φ̂, ψ̂)′ 7→
∫

Ω
(∇ϕ+ rot′ψ) · (∇ϕ̂+ rotψ̂)dx,

F : Ṽ → R, (φ̂, ψ̂)′ 7→
∫

Ω
ϕ̂fdx+

∫

Ω
ψ̂gdx.

The bilinear form B and the linear functional F are continuous on Ṽ × Ṽ and Ṽ, respectively. The
bilinear form B is symmetrical. By the virtue of second Poincaré’s inequality, we obtain

B(ϕ,ψ) = ‖∇ϕ‖2L2(Ω) + 2〈∇ϕ, rot′ψ〉+ ‖rot′ψ‖2L2(Ω)

= ‖∇ϕ‖2L2(Ω) + ‖rot′ψ‖2L2(Ω) = ‖∇ϕ‖2L2(Ω) + ‖∇ψ‖2L2(Ω)

≥ 1
2(1 +

1
CP

)(‖ϕ‖2H1(Ω) + ‖ψ‖2H1(Ω)) =
1
2(1 +

1
CP

)‖(ϕ,ψ)′‖2V =: b‖(ϕ,ψ)′‖2Ṽ ,

i.e., B is coercive. The lemma of Lax & Milgram yields the existence of a unique solution (ϕ,ψ)′ ∈ Ṽ
to Equation (A.7). There further holds

b‖(ϕ,ψ)′‖2Ṽ ≤ B(ϕ,ψ) ≤ b
2‖(ϕ,ψ)′‖2H + 1

2b‖(f, g)′‖2H ≤ b
2‖(ϕ,ψ)′‖2Ṽ + 1

2b‖(f, g)′‖2H,

i.e.,
‖(ϕ,ψ)′‖2Ṽ ≤

1
b‖(f, g)′‖2H.

Exploiting the trivial identities

div rot′ϕ = 0, rot∇ϕ = 0, etc., in (C∞0 (Ω))′

and the definition of V, we find

∫

Γ
νϕ · ˆrot

′
ψdx =

∫

Ω
∇ϕ · rot′ψ̂dx = 0,

∫

Γ
ν⊥ψ · ∇ϕ̂dΓ =

∫

Γ
rot′ψ · ∇ϕ̂dx = 0, etc.

for all (ϕ,ψ)′ ∈ Ṽ and (ϕ̂, ψ̂)′ ∈ V. Hence,

−
∫

Ω
div (∇ϕ+rot′ψ)ϕ̂+ rot(∇ϕ+ rot′ψ)ψ̂dx

=B(ϕ,ψ; ϕ̂, ψ̂)−
∫

Γ
ν · (∇ϕ+ rot′ψ)ϕ̂+ ν⊥ · (∇ϕ+ rot′ψ)ϕ̂dΓ

holds true for all (ϕ̂, ψ̂)′ ∈ V and, in particular, the solution (ϕ,ψ)′ ∈ Ṽ of (A.7). Therefore, (ϕ,ψ)′ ∈
D(Ã). Thus, we have shown that Ã is invertible and its inverse Ã−1 : H → D(Ã) is continuous:

‖Ã−1(f, g)′‖V ≤ 1
b‖(f, g)′‖2H

Let f ∈ L2(Ω)/{1}. We define (φ,ψ) := Ã−1(f, 0)′, u := ∇ϕ+ rot′ψ and obtain by construction

div u = △ϕ = f in Ω,

rotu = rot0 = 0 in Ω,

u = ∇ϕ+ rotψ = 0 on Γ,

(A.8)
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i.e., u ∈ H1
rot(Ω) with div u = f . Thus, there exists a continuous inverse

Brot : L2(Ω)/{1} → H1
0,rot(Ω), f 7→ u

of div such that

‖Brotf‖(H1(Ω))2 = ‖Brotf‖2(L2(Ω))2 + ‖∇Brotf‖2(L2(Ω))2×2

= ‖∇ϕ+ rot′ψ‖2(L2(Ω))2 + ‖divBrotf‖2L2(Ω)

≤ 2‖∇ϕ‖2(L2(Ω))2 + 2‖rot′ψ‖2(L2(Ω))2 + ‖f‖2L2(Ω)

≤ (2b + 1)‖f‖2L2(Ω) =: CBrot‖f‖L2(Ω).

This finishes the proof.

Corollary 10. The operator Brot can be extended to a linear continuous operator

Brot : (H1(Ω))′ → (L2(Ω))2.

(Cp. also [4, 9] for the rotational case.)

Proof. Due to the coercivity of the bilinear form B, the operator Ã defined in the proof of Theorem 9
strictly positive. According to [31, Section 3.4], it is possible to define square roots

Ã−1/2 ∈ L(H,H) and Ã1/2 : D(Ã1/2) := im Ã−1/2 →H

of Ã−1 and Ã, respectively. Further, there exists a continuous continuation of Ã−1

Ã−1 ∈ L(D(Ã−1/2),D(Ã1/2)),

where D(Ã−1/2) = D(Ã1/2)′. Hence,

B̃rot : D(Ã−1/2)→ (L2(Ω))2, f 7→ ∇ϕ+ rot′ψ with (ϕ,ψ)′ := Ã−1(f, 0)′ ∈ Ṽ

represents a continuous continuation of Brot onto D(Ã−1/2). Since (H1(Ω))′ ⊂ D(Ã−1/2) and the
norms of (H1(Ω))′ und D(Ã−1/2) are equivalent, the claim follows.

Let us now consider a vector field u ∈ (H1(Ω))2 with u · ν = 0 on Γ. Unfortunately, the identity

Brotdiv u = u

does not hold in general since u is not necessarily an element of H1
0,rot(Ω). Nevertheless, the following

estimate holds true.

Theorem 11. Let u ∈ H1(Ω) satisfy u · ν = 0 on Γ. There exists then a constant C ′
Brot

> 0 such that

‖Brotdiv u‖L2(Ω) ≤ C ′
Brot
‖u‖(L2(Ω))2

for any u ∈ (H1(Ω))2.

Proof. We can estimate

‖Brotdiv u‖(L2(Ω))2 ≤ CBrot‖div u‖H−1(Ω).

Further, we find
∫

Ω
div ufdx = −

∫

Ω
u∇fdx+

∫

∂Ω
u · νfdΓ = −

∫

Ω
u∇fdx (A.9)

24



for all f ∈ H1(Ω) and therefore

‖div u‖H−1(Ω) = sup
‖f‖

H1(Ω)=1

∣

∣

∣

∣

∫

Ω
div ufdx

∣

∣

∣

∣

= sup
‖f‖

H1(Ω)=1

∣

∣

∣

∣

∫

Ω
u∇fdx

∣

∣

∣

∣

≤ sup
‖f‖

H1(Ω)=1
‖u‖(L2(Ω))2‖f‖H1(Ω) = ‖u‖(L2(Ω))2 .

This yields
‖Brotdiv u‖Lp(Ω) ≤ C ′

Brot
‖u‖Lp(Ω) for all u ∈ H1(Ω) (A.10)

with C ′
Brot

= CBrot .
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