1401.5703v2 [cs.IT] 5 Dec 2014

arXiv

Low-Complexity Polynomial Channel Estimation in
Large-Scale MIMO with Arbitrary Statistics

Nafiseh ShariatiStudent Member, IEEEmIl Bjornson,Member, IEEE Mats BengtssonSenior Member, IEEE,
and Mérouane Debbakenior Member, IEEE

Abstract—This paper considers pilot-based channel estimation
in large-scale multiple-input multiple-output (MIMO) com muni-
cation systems, also known as “massive MIMO”, where there a
hundreds of antennas at one side of the link. Motivated by the
fact that computational complexity is one of the main challeges
in such systems, a set of low-complexity Bayesian channeliesa-
tors, coined Polynomial ExpAnsion CHannel (PEACH) estimators,
are introduced for arbitrary channel and interference statistics.
While the conventional minimum mean square error (MMSE)
estimator has cubic complexity in the dimension of the covaance
matrices, due to an inversion operation, our proposed estiators
significantly reduce this to square complexity by approximang
the inverse by aL-degree matrix polynomial. The coefficients of
the polynomial are optimized to minimize the mean square eror
(MSE) of the estimate.

We show numerically that near-optimal MSEs are achieved
with low polynomial degrees. We also derive the exact com-
putational complexity of the proposed estimators, in termsof
the floating-point operations (FLOPSs), by which we prove tha
the proposed estimators outperform the conventional estimtors
in large-scale MIMO systems of practical dimensions while
providing a reasonable MSEs. Moreover, we show thaf. needs
not scale with the system dimensions to maintain a certain
normalized MSE. By analyzing different interference sceneos,
we observe that the relative MSE loss of using the low-comptéy
PEACH estimators is smaller in realistic scenarios with pibt con-
tamination. On the other hand, PEACH estimators are not well
suited for noise-limited scenarios with high pilot power; therefore,
we also introduce the low-complexity diagonalized estimator
that performs well in this regime. Finally, we also investigte
numerically how the estimation performance is affected by hving
imperfect statistical knowledge. High robustness is achied for
large-dimensional matrices by using a new covariance estiate
which is an affine function of the sample covariance matrix ad
a regularization term.

Index Terms—Channel estimation, large-scale MIMO, polyno-
mial expansion, pilot contamination, spatial correlation

Copyright (c) 2013 IEEE. Personal use of this material isnyed.
However, permission to use this material for any other psepomust be
obtained from the IEEE by sending a request to pubs-peronis@ieee.org.

N. Shariati and M. Bengtsson are with the Department of $iBnacessing,
ACCESS Linnaeus Centre, KTH Royal Institute of Technologtockholm,
Sweden (e-mail{nafiseh, mats.bengtsspg@ee.kth.se).

E. Bjornson was with the Alcatel-Lucent Chair on Flexiblad®, Supélec,
Gif-sur-Yvette, France, and with the Department of Signacessing, KTH
Royal Institute of Technology, Stockholm, Sweden. He igently with the
Department of Electrical Engineering (ISY), Linkoping Mersity, Linkdping,
Sweden (email: emil.bjornson@liu.se).

M. Debbah is with the Alcatel-Lucent Chair on Flexible RadsdJPELEC,
Gif-sur-Yvette, France (e-mail:merouane.debbah@sugele

This work was presented in part at IEEE Symposium on Perstmddor,
Mobile and Radio Communications (PIMRC), London, UK, S&f13. [1]

E. Bjornson is funded by the International Postdoc Grari22828 from
The Swedish Research Council. This research has been seghbgrthe ERC
Starting Grant 305123 MORE (Advanced Mathematical ToolsGomplex
Network Engineering).

|. INTRODUCTION

MIMO techniques can bring huge improvements in spectral
efficiency to wireless systems, by increasing the spatisgeae
through spatial multiplexind [2]. Whil& x 8 MIMO transmis-
sions have found its way into recent communication stargjard
such as LTE-Advanced][3], there is an increasing interesh fr
academy and industry to equip base stations (BSs) with much
larger arrays with several hundreds of antenna elemghts [4]
[9]. Such large-scale MIMO, or “massive MIMQO”, techniques
can give unprecedented spatial resolution and array dais, t
enabling a very dense spatial reuse that potentially cap lpe
with the rapidly increasing demand for wireless connetivi
and need for high energy efficiency.

The antenna elements in large-scale MIMO can be either
collocated in one- or multi-dimensional arrays or disttéal
over a larger area (e.g., on the facade or the windows of
buildings) [8]. Apart from increasing the spectral effiagn
of conventional wireless systems, which operate at carrier
frequencies of one or a few GHz, the use of massive antenna
configurations is also a key enabler for high-rate transoniss
in mm-Wave bands, where there are plenty of unused spectrum
today [9]. In particular, the array gain of large-scale MIMO
mitigates the large propagation losses at such high frequen
cies and 256 antenna elements with half-wavelength minimal
spacing can be packed infox 6 cm at 80 GHz [9].

The majority of previous works on large-scale MIMO (see
[4]-[8] and references therein) considers scenarios where
BSs equipped with many antennas communicate with single-
antenna user terminals (UTs). While this assumption allows
for closed-form characterizations of the asymptotic tigtgaut
(when the number of antennas and UTs grow large), we can
expect practical UTs to be equipped with multiple antennas
as well—this is indeed the case already in LTE-Advanted [3].
However, the limited form factor of terminals typically avs
for fewer antennas than at the BSs, but the number might still
be unconventionally large in mm-Wave communications.

A major limiting factor in large-scale MIMO is the availabil
ity of accurate instantaneous channel state informatic1)(C
This is since high spatial resolution can only be exploited
if the propagation environment is precisely known. CSI is
typically acquired by transmitting predefined pilot signahd
estimating the channel coefficients from the received $igna
[10]—-[15]. The pilot overhead is proportional to the numbér
transmit antennas, thus it is commonly assumed that thespilo
are sent from the array with the smallest number of antennas
and used for transmission in both directions by exploiting
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channel reciprocity in time-division duplex (TDD) mode. technique to approximate the MMSE estimator and thereby
The instantaneous channel matrix is acquired from tldtain a new set of low-complexity channel estimators that w
received pilot signal by applying an appropriate estinraticcoin Polynomial ExpAnsion CHannel (PEACIeI$timat0rEA
scheme. The Bayesian MMSE estimator is optimal if theain contribution of the paper is to optimize the coefficient
channel statistics are knowh [12]=[16], while the minimumef the polynomial to yield low MSE at any fixed polynomial
variance unbiased (MVU) estimator is applied otherwisd.[12degreeL, while keeping the low complexity. The PEACH es-
These channel estimators basically solve a linear systemtiofators are evaluated under different propagationfietence
equations, or equivalently multiply the received pilotreyy conditions and show remarkably good performance at low
with an inverse of the covariance matrices. This is a mathelynomial degrees. An important property is thatneeds
ematical operation with cubic computational complexity imot scale with the number of antennas to maintain a fixed
the matrix dimension, which is the product of the number aformalized MSE loss (as compared to MMSE estimation).
antennas at the receiver (at the order of 100) and the lerigttHowever, L. should increase with the transmit power to keep
the pilot sequence (at the order of 10). Evidently, this apen a fixed loss, while it can actually be decreased as the imterfe
is extremely computationally expensive in large-scale MM ence becomes stronger. The computational complexity of the
systems, thus the MMSE and MVU channel estimates caniREACH estimators and conventional MMSE/MVU estimators
be computed within a reasonable period of time. The higlte compared analytically. This reveals that the proposed
computational complexity can be avoided under propagatiestimators have smaller complexity exponents. The numeri-
conditions where all covariance matrices are diagonal, bedl results confirm that much fewer FLOPs are required to
large-scale MIMO channels typically have a distinct spati@ompute the PEACH estimators in large-scale MIMO systems
channel correlation due to insufficient antenna spacing aofl practical dimensions. Finally, thdiagonalized estimator
richness of the propagation environmeft [7]. The spatidd introduced with even lower complexity and it is shown in
correlation decreases the estimation errior$ [15], but irdp ~ which scenarios it is suitable.
appropriate estimator is applied. Moreover, the necegsitoy
reuse in cellular networks creates spatially correlatést-ioell
interference, known agilot contaminationwhich reduces the A. Outline

estimation performance and spectral efficieridy [5]-[7D][1 L ) ) .
[L1]. The organization of this paper is as follows. In Section

M we describe the system model and formulate the problem
of estimating channel coefficients for a large-scale MIMO
&ommunication system where the computational complegity i
a major issue. Following the Bayesian philosophy, we prepos
4 set of low-complexity estimators in Section Il and pravid

processing for multiuser detection/equalization, wherth bhe an exact complexity analysis. In Sectibnl IV, we numerically

decorrelating detector and the linear MMSE detector imoh;evaluaFe the performance. of the proposed gstlmators in dif-
matrix inversions[[17]]22]. PE-based detectors are viesa fe.rent interference scenarios wh_ere comparison is pea‘drm
since the structure enables simple multistage/pipelirerd-h With respect to conventional estimators. Finally, coricins
ware implementatiori [17] using only additions and multigh &€ drawn in Section V.

tions. The degreé basically describes the accuracy to which

the inversion of each eigenvalue is approximated, thus the )

degree needs not scale with the system dimensions to achigvéVotation

near optimal performancé [20]. Insteald,is simply selected  pgg|dface (lower case) is used for column vectars,and

to balance between computational complexity and detectigjrbloer case) for matriceX. Let X7, X#, andX~! denote
performance. A main problem is to select the coefficienige transpose, the conjugate transpose, and the inveie of
of the polynomial to achieve high performance at small yespectively. The Kronecker product 3 and Y is denoted
the optimal coefficients are expensive to computé [17], byts v, vec(X) is the vector obtained by stacking the columns
alternatives based on appropriate scalings [18], [21]} 8@ of X {r(X) denotes the tracé|X||r is the Frobenius norm,
asymptotic analysis [19], [22] exist. Recently, PE has 8lsen anqg ||X|, is the spectral norm. The notatiof denotes
used to reduce the precoding complexity in large-scale MIM@sfinitions, while the bigd notation O(M*) describes that
systems [[24]£[26], and high performance was achieved kye complexity is bounded bgM* for some0 < C' < oc.
optimizing the matrix polynomials using asymptotic an@ys A circularly symmetric complex Gaussian random veotds

The optimization of the polynomial coefficients is the keyenotedx ~ CN(x,Q), wherex is the mean and is the
to high performance when using PE. Since the system mQgyariance matrix.

els and performance metrics are fundamentally different in
multiuser deteCt'C_)n and pr_ecodlng, the derivation of optim 1After the submission of this paper, we became aware of theurcent
and low-complexity suboptimal coefficients become two vemyork of [27] which also applies PE to reduce the complexity MFSE

different problems in these two applications. In this paper estimation. However, orthogonal frequency division nplixing (OFDM)
systems with a large number of subcarriers are considerd27f; while

cpn5|der a neV\_/ S|gnal processing appllcatlon for PE, nam e-scale single-carrier MIMO systems are our focuss Tikes the system
pilot-based estimation of MIMO channels. We apply the Phodels, analysis, and results non-overlapping.

Polynomial expansion (PEs a well-known technique to
reduce the complexity of large-dimensional matrix invensi
[17]. Similar to classic Taylor series expansions for scal
functions, PE approximates a matrix function by xtegree
matrix polynomial. PE has a long history in the field of sign



Vectorizing the received matrix if](1) yields
y = Ph+n

wherey = vec(Y),P 2 (PT® I),h = vec(H) andn =
vec(N). This transforms the matrix estimation i (1) into the
canonical form of vector estimation in [12] which enables th
use of classical estimation results.

If the channel and disturbance statistics (il,,R, N and
S) are perfectly known at the receiver, the Bayesian MMSE
estimator of the MIMO channel i$ T12]-[1L5]

Y 2

Pilot signal

Transmitter Receiver
(Few antennas) (Very many antennas)

~ ~ _ ~ ~  ~ -1
hMMSE = VGC(HMMSE) =h + RPH (PRPH + S) d
Fig. 1. lllustration of pilot signaling in a large-scaly; x N, MIMO (2)
system, where typicallyV,. > N;. The complexity of conventional channel

estimators is very large in these systems, which calls fardomplexity \yhereh = Vec(ﬁ) o= VeC(N) andd = y — 15}_1 —q
alternatives. ’ . . .
We measure the performance in terms of the estimation MSE.
Using the MMSE estimator, it follows that

Il. PROBLEM FORMULATION MSE = E{||H — Hyusg|/2} = tr ((R‘1 + f’HS‘lf’)‘12 :

We consider a MIMO channel where the receiver and the _ ) S 3)
transmitter are equipped witN,. and N, number of antennas Alternatively, if the channel distribution is unknown toeth
respectively. This can be one of the links in a multi-cell tiul "€C€iver, the classic MVU estimator {s [12, Chapter 4]
user network of arbitrary size. The problem of estimating ~ N e 3
the instantaneous MIMO channel coefficients for a quasi--™MVV = vec(Huvy) = (P 8 P) PES™(y —n).
static flat-fading channel € CN-*Mt is investigated. The (4)
channel matrixH is modeled as Rician fading withec(H) ~  The corresponding performance measure is then the estimati
{nat there might be Ine.af-sight propagation and the cegn1enCeE{IH — Hhvol ) = tr (B5~'P)).

g g propag Note that the mean matrices of the channel and the distur-

covariance matriR € CN¢N-*xNeNw js positive semi-definite. bance have no impact on the performance with MMSE and
Observe thatR is generallynot a scaled identity matrix, Ve o 1Imp P Wi
d\éIVU estimation. Moreover,

but describes the spatial propagation environment. Inror
to estimate the channel coefficients, we expjulot signals tr ((R—l + f)Hs—lf))—l) < tr ((f)Hs—lf))—l) (5)
similar to [I3]-[15]. This means that the transmitter setids
columns of a fixed predefined pilot matrk € CN+*5 over for any R # 0, thus the MMSE estimator achieves a better
B channel uses; see F[d. 1. The intedgis the length of the average estimation performance than the MVU estimatoesinc
pilot sequence and usually satisfiBs> N, A it utilizes the channel statistics.
During the pilot signaling, the received matriy = Remark 1 (Arbitrary Statistics) While having Gaussian
[y(1),---.y(B)] equals channels and disturbance is a well-accepted assumption in
Y = HP + N (1) conventional MIMO systems, the channel modeling for large-
scale MIMO is still in its infancy. By increasing the number
where the disturbanceN € CN*B is assumed to be of antennas we improve the spatial resolution of the array
circularly-symmetric complex Gaussian distributed anddmowhich eventually may invalidate the rich-scattering asptiom
eled asvec(N) ~ CN(vec(N),S). Here, N € CV~*B is that is behind the use of Gaussian channel distributions [7]
the mean disturbance arsi € CN-BxN:B s the positive However, we stress that the results of this paper can be
definite covariance matrix. The additive disturbance teen dapplied and give reasonable performance under any arbjtrar
scribes the receiver noise and the interference from abrothstatistical distributions on the channel and disturbandeis
concurrent transmissions, which might involve the same ® since(?) is also the linear MMSE estimator ar@d) is the
other receivers. The latter is commonly referred topélst best linear unbiased estimator (BLUE) in cases when only the
contaminationin the large-scale MIMO literaturé [4]H[8] andfirst two moments oH and/or N are known [12], [15].
can in general have a non-zero line-of-sight component. The -
analysis herein holds for ay andS, but some typical special - Recall that we assumed that the statistical parameters

cases are described and evaluated numerically in Sdcfion R, N’_ and S. of the channe-lland disturbance are kpown at
the receiver. Since user mobility and large-scale fadingsea

2pilot sequences shorter thav are optimal in highly correlated channels Commuo_us changes in the statistics, this implicitly metirat _
where the pilot matrixP is tailored to the channel and interference statisticthe receiver can keep track of these changes. Such tracking

[15]. The analysis herein permits ai/> 1, but we stress thaB > N is the can, for example, be achieved by exploiting the pi|0t signal
case of main interest. This is due to the fact that pilot maiptimization is

cumbersome in large-scale MIMO systems since the trarenatid receiver F)n multlple. flat-fadlng subcarriers since the Igrge-scaﬂtf
need to acquire the same statistical information to agrethermpilot matrix. ing properties can be transformed between different adjace



subcarriers [[28],[129]. Interestingly, the coherence tiofe f’NRf’NH—i—S is then also diagonal which allows for computing
the long-term statistics is relatively short; the measwets (PRP + S)~! by simply inverting each diagonal element.
in [30] observe coherence times 6§23 seconds, depend-The corresponding complexity is onlyAl — 1 = O(M)

ing on the propagation environment. High user velocity dfLOPs. This special case is, unfortunately, of limited pcat
rapid scheduling decisions in neighboring systems caméurt interest for large-scale MIMO systems which are prone to-non
reduce the coherence time. More importantly, the numbeegligible spatial channel correlation and pilot contaation{]

of channel realizations within each coherence time of thelnspired by this special case, a simple approach to complex-
statistics is around 3-126, according to [[30]. This meansity reduction is to diagonalize the covariance matriesind

that the matrix inversion in the MMSE estimator has to bg by replacing all off-diagonal elements by zero. [Rt;;.,

recomputed frequently. andSgi.s denote the corresponding matrices, assiine N,
and setP = /P.I whereP; is the average pilot power. The
A. Complexity Issues in Large-Scale MIMO Systems MMSE estimator in[(R) is approximated as
The main computational complexity when computing the h—ht \/77thiag (P Ruing + Sdiag)_l d 6)

MMSE and MVU estimators in[{2) and](4) lies in solving

a linear system _of eqqations or, equivalently, in computingnere the MatrixR.giag (Raiag + Saiag) - Can be precom-
the matrix inversions directly. Both approaches have compsyted with a computational complexity proportional 3d.

tational complexities that scale &M*), whereM = BN, From now on, we refer td16) as thiagonalized estimator
is the matrix dimensioll. This complexity is relatively modest It achieves the following MSE.

in conventional MIMO communication systems whére: 2,

4 x 4, or 8 x 8 are typical configurations. Theorem 1. The diagonalized estimator @) with P = /P;1
Recently, there is an increasing interest in large-scaM®1l achieves the MSE

systems where there might be hundreds of antennas at one —1

side of the link [4]-[9]. To excite all channel dimensioniset tr ((Rdi;g + Ptsgi;g) ) : ()

pilot length B should be of the same order 5. Large-scale
MIMO systems are therefore envisioned to operate in TDD |n noise-limited scenarios witls = 21, the MSE of the
mode and exploit channel reciprocity to always hae< N,  diagonalized estimator goes to zero as the pofgr cc.

in the channel estimation phase¥;- can even be orders of . ) ) ) .

magnitude larger tharV, without degrading the estimation ~ Proof: The diagonalized estimator ifll(6) estimates each
performanceper antenna element. channel element separately, thus the MSE is equivalengto th

Observe that in a potential future large-scale MIMO systeRf MMSE estimation withRaiag as channel covariance matrix
with N, = 200 and N, = B = 20, the MMSE and MvU aNdSadi.s as dl_stur_bance covariance mat[15]. Thls gives the
estimators would require inverting matrices of sip80x 4000 MSE expression inl{7). By lettin@, — oc in (7), it follows
(or similarly, solving a linear system of equations withoo ~ directly that the MSE approaches zero asymptotically. m
unknown variables) which has a complexity at the order This theorem shows that the diagonalized estimator per-
of 3.4 - 10! floating-point operations, see Sectibn IlI-E foforms well in noise-limited scenarios with high signal-to-
details. This massive matrix manipulation needs to be redofCise ratio (SNR). Unfortunately, the simulations in Sewti
every few seconds sincR and S change due to mobility. [Vireveals that this is the only operating regime where it is
Motivated by these facts, the purpose of this paper is ggmparable to the MMSE estimator. More precisely, the draw-
develop alternative channel estimators that allow for teiteg back of the diagonalized estimator is that it does not exploi

between computational/hardware complexity and estimatiée statistical dependence neither between the receivet pi

performance. signals nor be_t\_/veen the channel coefficients. We re<_:a|| from

[15] that exploiting such dependence (e.g., spatial catie)

B. A Di lization A hto C lexity Reduci can give great MSE improvements. Therefore, the next sectio
' lagonaiization Approach to Lomplexity Reduction  yeyelops a new sophisticated type of channel estimatots tha
There is a special case when the computational complexigtuces the computational complexity of MMSE estimation

of MMSE estimation can be greatly reduced, namely when thghile retaining the full statistical information. Thesetigs-

matricesR, S, and P are all diagonal matrices. The matrixtors are great complements to the diagonalized estimatoe si
_ , o ~ they perform particularly well at low to medium SNRs and
3Note thatO(M?) refers to the complexity scaling of the classical inversion, \ der interference

algorithms, such as Gaussian elimination and inversioredas Cholesky )

decomposition[[31]. The exponent is reduced0M 2-8074) by Strassen’s

algorithm in [32], which is a divide-an-conquer algorithimat exploits that ~ “The elements of each column df are highly correlated due the

2 x 2 matrices can be multiplied efficiently. Using the complgxékpressions insufficient antenna spacing and limited richness of thetesiiag around

in [32], it is easy to show that the algorithm is only compiataally beneficial the large array at the receiver. The correlation betweercthenns depends

for very large matrices (e.gld = 8000) due to heavy overhead computations.more on the scattering and size of the small array at the riities, thus

It also has other drawbacks, such as lower computationalracg and that the correlation might be weaker but complete independesicgeldom seen

the matrix dimensions must b&/ = 2* for some integerk. The exponent in practice. In the ideal case of exactly independent cokjrtine covariance

can be further reduced ©(M2:373) [33], but at the cost of more overhead matrix PRP¥ + S is block-diagonal which can be exploited for complexity

that pushes the breaking point to even higher values/ofin this paper, we reduction. The complexity scaling of the MMSE estimationhiswever, still

propose new estimators with the complexity scak@g)/2), which both is a cubic in N, and the proposed estimators have a computational advantage
asymptotically better and is proved to be beneficial at ldmgepractical M.  when N, is sufficiently large; see Sectidn IIIIE.



1. L ow-COMPLEXITY BAYESIAN PEACH ESTIMATORS  multiplications, which have a complexity @?(M?) instead

In this section, we propose several low-complexity Bayesi@f the cubic complexity of matrix-matrix multiplication].
channel estimators based on the concept of polynomial expa€ compgtatlonal complexity o (1L0) is therzefq@(LM )
sion. To understand the main idea, we first state the follgwi’here M = BN,. WheneverL < M, O(LM?) is a large

lemma which is easily proved by using standard Taylor seri&@MmPplexity reduction as compared @’(M?’), for the original
MMSE estimator. Furthermore, the recursive structure kesab

Lemma 1. For any Hermitian matrixX e CY*¥, with an efficient multistage hardware implementation similathie
bounded eigenvalugs,, (X)| < 1 for all n, it holds that detection implementation illustrated in 17, Fig. 1].

1-X)" = le' ®) Theorem 2. The PEACH estimator iifId) achieves the MSE
=0

tr (R +RPHYA,(PRP! + S)A/PR — 2Rf’HALf’R)
Observe that the impact oK' in (@) reduces withi, (12)
as \,,(X)! for each eigenvalue. It therefore makes sense where A, = >/ a(I— o(PRPY + S))l.
considerL-degree polynomial expansions of the matrix inverse
using only the termg = 0,..., L. In principle, the inverse

of each eigenvalue is then approximated by BArdegree It s lect th i tort i
Taylor polynomial, thug. needsnot to scale with the matrix remains 1o select Ine scaling parameterto sa isfy
e convergence condition in Propositibh 1. From a pure

dimension to achieve a certain accuracy per element. lshste lexit int of vi lect 10 b |t
L can be selected to balance between low approximation er?&mpfx' y point of view, we can select o be equal to
) [18]. However, the choice of also determines

and low complexity. To verify this independency in the area(PRP# +s . )
of estimation, we investigate the MSE performance of largi!€ convergence speed of the polynomial expansion. Among

scale MIMO systems of different dimensions in Section nihe values that satisfy the condition in Proposifibn 1, theice
We observe an almost identical performance for a fixed 2
when we vary the _number of antennas. Note that a similaf‘ - max, )\n(f’Rf’H +S) + min,, /\n(f’Rf’H +s) (13)
remark was made irf_[20] where the authors show that their L
system performance metric does not depend on the systermimizes the spectral radius ((1[ — o(PRPH + S)) and
dimensions but only the filter rank. therefore provides the fastest asymptotic convergencedspe
In order to apply Lemm&l 1 on matrices with any eigenvaly@1]8 Although the computation of the extreme eigenvalues
structure, we obtain the next result which is similar[tol [21] is generally quite expensive, these eigenvalues can b&eppr
Proposition 1. For any positive-definite Hermitian matriX |maFed \.Nlth lower complexity. For .example, as ’T‘e”t'oned
and any0 < a < 2 it holds that earlier, if the convergence speed is_not the main concern
max, A (X)’ max, A, (PRP# + S) + min, \,(PRP# + S) simply can
L be estimated byr(PRP# + S). Alternatively, the smallest
X '=aI-1I- ozX))71 = aZ(I —aX)!+E (9) eigenvalue can be taken as the noise variance and largest
1=0 eigenvalue can be approximated using some upper bound on
the pilot power and on the average channel attenuation to the
receiver. In general, a low-complexity method to approxana
the extreme eigenvalues of any arbitrary covariance mafix

Proof: This theorem follows from direct computation of
the MSE using the definitioMSE = E{||h —hpgachl/*}. ®

wherea Zf:o (I - aX)! is an L-degree polynomial approxi-
mation and the error ternE is bounded ag/E||; = O(||(I—-

L+1 H
aX)|ly™""). The error vanishes ag — oc. proposed in[[21], based on the Gershgorin circle theorerh [34
This approach exploits the structure of the matrix imposgd b
A. Unweighted PEACH Estimator the system setup to improve the convergence speed. For more

Applying the approximation in Propositi¢h 1 on the MMSEdetails on hovv_ to choose with low-complexity and compute
estimator in[[(R) gives the low-complexify-degreePolynomial the extreme eigenvalues we refer fo[21].
ExpAnsion CHannel (PEACH)stimator which we denote by

hpgacn = vec(Hpgacn) and define as B. Weighted PEACH Estimator
N _ L o . Although the PEACH estimator{ (1L0) converges to the
A H H . oo
hppacn 2 h+ RP?D " a(I- a(PRPY +8))'d. (10) MMSE estimator ag. — oo, it is generally not the best-
=0 degree polynomial estimator at any finite More specifically,

Note that [[ID) does not involve any inversions. Furthermori@stead of multiplying each term in the sum with we can
the polynomial structuerlL:0 X!d lends itself to a recursive assign different weights and optimize these for the specific
computation degreeL. In this way, we obtain theveighted PEACH es-
timator which we denote atw.pracu = vec(Hw-pracH)

L
Il _
Z Xd=d+X (d + X(d + X(d +X(.. )))> (11) SThe error term in Propositidd 1 is bounded 8(||(I — aX)||5 ). The

=0 spectral norm is minimized by making the largest and snta#éegenvalues

~ = . symmetric around the origin [21naxy, Ap (I — aX) = —ming, A (I —
whereX = I — o(PRP” + S) for the PEACH estimator. aX). By solving for o we obtaina = 2/(maxy, An (X) 4 ming, An (X))

The key property off(11) is that it only involves matrix-vect which becomes(13) for the problem at hand.



and define as These areAw = b with A, b as in [1T); note that we made

L a change of variables=1; +1 andj = I; + 1 for A and
hw.ppacy 2 h + RPH Zwlafjl(f’Rf’H + S)ld (14) i =1+ 1 for b, because the sums ii{21) begin at O while
1=0 the indices of matrices/vectors usually begin at 1. The MSE
wherew = [wy, ...,w]T are scalar weighting coefficierfis. minimizing weights are now computed as In(16).

i f Finally, we note that, using\, b in (I17), the MSE expres-
Observe that the:-parameter, now denotesl,, is redundant on in [I9) can be expressed asR) + w Aw — bfw —

. Lo .1 Si
and can be set to one. For numerical reasons, it might still %Vq{b' For optimal weightsv,,; — A~ b, the minimum MSE
good to select

becomes[(18). [ |
Qo < ~1 _ (15) Observe that the MSE expressions of PEACH and W-
Y~ max, An(PRPH + 8) PEACH in [I2) and[{1I8), respectively, are independent of the

] . ) LaoSh , mean matrices of the channel and the disturbance. Therefore
since this makes all the eigenvaluesdf! (PRP™ + S)"  the performance is the same as in our conference paber [1],
smaller than one and thus prevent them from growing Ufhere we assumed zero-mean channel and disturbance.

boundedly ag becomes large. This simplifies the implemen- From [19) in the proof of Theorefd 3, we also obtain the
tation of the following theorem, which finds the weightingysg expression

coefficients that minimize the MSE.

™~ . MSE =tr(R) + wZAw — bZw — wb 22
Theorem 3. The MSEE{||h — hw.pgacu||?} is minimized (w) = tr(R) + W™ Aw w—w (22)

by for the W-PEACH estimator with any choice of the weighting
Wopt = [wg" ... wP'T = A7'b (16) coefficients.

where theijth element ofA € CEt1xL+1 and theith element Remark 2 (Weights of the PEACH estimator)rlhe PEACH

of b e CL+! are estimator can also be expressed as a W-PEACH estimator

" ( o~ N ) using certain weights. To find these weights, we observe that
[A];; = it tr (RPH(PRPH + S)"T7~ PR,
' (7) L o

> a(I- o(PRPY +8))

[b]; = ad tr (Rf’H(f’Rf’H n S)Hf'R) . 2

The resulting MSE of the W-PEACH estimator is L Lo/ S z
= o —a)"(PRP” +8)"T'"™"
MSE = tr(R) — b” A~ 'b. (18) l; HZ:;) (n)( A )
Proof: The W-PEACH estimator achieves an MSE of _ XL: zl: (l) (_1)nan+1(f,Rf,H +8)n.
MSE = E{||vec(H) — vec(Hw.pgacn)||%} 1=0 n=0 \"
_ L _ By gathering all terms that belong to a certain exponent
=tr[ R - RP? Z(wz +w ) Z'PR we see that

+ 3> wywj, ol TP PPRPHZETRHIPR I=n
l]:Ol2:O

- (19) L
L L - ) Wn = (—1)nz (i) (23)

Plugging these weights int@2) yields an alternative way of

whereZ — PRPY + S. For a given pilot matrixP and C¢omputing the MSE of the PEACH estimator.

polynomial degreeL, the coefficientswy,...,w, can be  Although Theorerfll3 provides the optimal weights, the com-
selected to minimize the MSE as putational complexity i€D(M?) since it involves pure matrix
minimize MSE. (20) multiplications of the formZ*. This means that computing

wo .., WL the optimal weights for the W-PEACH estimator has the same

The solution to this unconstrained optimization problem RSYmptotic complexity scaling as computing the convertion
achieved by computing the partial derivatives with resgect MMSE estimator. To benefit from the weight optimization we

each coefficient and looking for stationary points: thus need to find an approximate low-complexity approach to
compute the weights, which is done in the next subsection.
8iMSE = —altr (RﬁHzlﬁR) Note that the weights cannot be optimized by random matrix

wy

theory (as was done for multiuser detection[in][18],] [22] and
precoding in [[24]-4[26]) due to lack of randomness in the
MMSE estimation expression ifil(2).

L (21)
+ Z wy, tr (Rf’Hall+l2+2Zl1+l2+lf’R)

2 w :
12=0
Remark 3 (Low-Complexity Classical PEACH Estimators)
Following the same approach as used to derive low-complexit
PEACH estimators for the Bayesian case, we form the corre-

6W-PEACH is obtained by expanding eath— a(PRPH + S))! as a sponding Iow-cqmplexity estimaftors to app_roximate thegita
binomial series, collecting terms, and replacing constaetors with weights. MVU estimator in(@). Note that if the quality of the channel

By equating to zero for each= 0, ..., L, we achievel + 1
linear equations that involve the + 1 unknown coefficients.



covariance matrix estimate is very poor, then the MVU estiAlgorithm 1: Low-complexity weights for W-PEACH
mator performs better than the MMSE estimator.

First, we define a regularization factar> 0 which in the
form of eI is added to(P”S—'P). Then, we use the matrix
inversion lemma which results in

Input: Polynomial degred. and time windowT’;

Input: Current timet;

Input: New and old received signais, y;_T;

Input: ApproximationsA't,l,Bt,l at previous time —1;

Birvy = (1+P7S7'P) 'Plg(y - n) L Set[Adi; = [Ar-1lyy
~ ~ ~ —1 ~ aiJrj ~ ~ ~ o~ S
=P (PP +¢8) (v~ 1) = havu o - + Syl (PR?PH(PRPY +8) %)y,
(24) it

The approximation in Propositidd 1 can now be applied. The — —=—vi’ 7 (f’RQf’H(f’Rf’H + S)iﬂ”) Yior Vi, ]
set of low-complexity PEACH estimators obtained by this

approach are 2 Set[b,]; = [by_1]s
L ay, H (pp2pH pppH i—2
h 5 55 — PR“P” (PRP S
By —PY o (T-aBPF +8)) (y-m) (25) TV (PR?P!(PRP' +5)"2) y,
1=0 _ O‘_wylliT (f)RQf)H(f)Rf,H i S)Fz) Ve Vi>2
and T
L s 3 Set[by]; = Se Zle vAPR?PHv, for v;~CN(0,1);
h%\—/PL]IEACH =P Z wlo‘i;rl(PPH + Es)l(y - ﬁ)' (26) 4 CompUteWapprox,t - A;lbtu
1=0 Output: Approximate weightsw,pprox+ at timet;

Observe that the last equality {&4) equals to2) if R = 11,
therefore all the results presented in Theoréins 2[and 3 can be
derived forh}Y{;; and hi{\ohAcy in @ similar way. Since the elements oA and b in (@7) are of the form

. . in (28), we can approximate each element usingd l(3B
Remark 4 (Other PEACH estimators)The PE technique can in @8), w pproxI N Iz3 ¥

. . ) computing/updating these approximations over a slidingeti
b_e a}pplle(_j to any type of channel est_lmators that |nvollve M@ dow of lengthT', we obtain AlgorithmL. At any time
trix inversions. For example[[35] derives a robust estiotat instantt, this algorithm computes approximationsAfb, de-

the minimax regret estimatomunder certain uncertainty and noted byit,f)t, by using the received Signays, . . ., yr_111.

statistical assumptions. This estimator has a similar egpion ; ;
. ) . These are used to compute approximate weigh; .
as the MMSE estimator, but involves other matrices. HencF P P nate Weighispros.

the PE technique is straightforward to apply and the weigh 0 reduce the amount- of computations,, b, are obtained
L e . ' . fom A, 1, b, ; by adding one term per element based on the
can be optimized similar to what is described herein.

current received signat, and removing the impact of the old
received signay;_ (which is now outside the time window).
C. Low-Complexity Weights The algorithm can be initialized in any way; for example, by
gccumulatingf received signals to fill the time window.
~ The asymptotic complexity of computing the elements in
A, andb; is O(LM?) FLOPs per time instantFor each
o 1 & element, we need to compute a series of multiplications
(PRPY +8) = E{vec(Y)vec(Y)"} = Tlim T Z}’tytH between vectors and matrices of complexi®()/?). This
= 27) is explained in _detail in Sect_ioEl]]]E where we der!ve the
wherey; = vec(Y) denotes the received signal at estimatioﬁXaCt cc_)mputatlonal conjplexny. NeXapproxt IS obtalneq
y solving an L-dimensional system of equations, which

. . . = ~H .
time m;tar;t(tj. bTThS meanls that(P.RP + S.) '3 cIose}LIIy has complexityO(L?). Finally, the W-PEACH estimate is
?Fiﬁmx'mabe ¥ € S?r;p.e Icovanz;r:;:a maéﬂgt:l Yt I computed in the recursive manner described in Se€fion]lll-A
! g ;um %r]\c]) ?ampte IS a_rgte. i oug _on;a_ generalyy it a complexity ofO(LM?). To summarize, the W-PEACH
needsl > DV, 10 get a consistent approximation, We Caflq;, o4 along with Algorithnill has a computational com-
get away with much smalléf’ since we only use it to computeplexity of O(LM? + L)
tralges_thli ISdVTeT?d ngminlc aly in Sect}; V. that One additional feature of Algorithfd 1 is that it can easily be
orany fixedl = 1 andz = 1, We now observe tha extended to practical scenarios where only imperfect esém
tr (RPH(PRPH + S if’R) 28 of the_ covariance matn_cel?. andS are avgllqble. _Apart from
g ( ( +5) (28) enabling adaptive tracking of the slow variations in theroted

Next, we propose a low-complexity algorithm to comput
weights for the W-PEACH estimator. We exploit that

T
= tr RPH(PRPH +8)i~! l Z ytytH PR | (29) "Note thatby = tr(PR2P*!) needs to be treated differently since there is
T~ no (PRP# + S) term. In the case wheRP# P is a scaled identity matrix,
T V\ée (()jply nepid Ito Con:pl(JItteg(RQ) \?’hifh cein SSh don_e efficiently sinlce tonIy t
~ o~~~ - the diagonal elements are of interest. Otherwise, one can select a se
Z yi' (PRQPH(PRPH +8) 1) Yt- (30) of 1 VegCtOI‘SV}'VN CN(0,1) and apply the approximationr(PR*P)
t=1 S ST vEPR?PMv,. This is the approach included in AlgoritHih 1.

1

S|



and disturbance statistics, this practical scenario sveglt to E. Asymptotic and Exact Computational Complexity
understand how sensitive Bayesian channel estimatorsoare t

mismatches in the statistical knowledge. We perform a numerr] Tr:f asymlpto(tjlc colmplexrgl of t.rt;edcpnvsentll le;tw;a:;ors,
ical study in Sectiofi 1V, based on the statistical estinmatid"¢ ¢l2gonalized estimator described in Sectionlll-B, t

described in the next subsection proposed PEACH estimators are summarized as follows:

D. Imperfect Covariance Matrix Estimation Channel Estimatory Computatlorlal ?():omplexny
S btai . i MMSE and MVU O(B*N?)
uppose we want to obtain some covariance m rNP?m Diagonalized O(BN,)
N observationgy, ..., cy, whereC might beR or PRP* + PEACH O(LEZN?
S. The sample covariance mat@ampic 2 + SN c;cf is ( r)
) SUNDe T N Lui=1 Tt W-PEACH O(LB?N? + L3)

conventionally used to estima®. However, this approach
is unsuitable for large-scale systems where it can be hard t
accumulate more samples than the dimensiorCofwhich
is N;N, for the channel covariance matriR. In fact, the

Crhese asymptotic complexity numbers are supported by an
exact complexity analysis below. We note that the cubic com-

. L : o lexity scaling inBN,. for the conventional MMSE and MVU
sample covariance matrix is not even invertible if the numbe _. . . oo . .
: L . éstimators is reduced to linear complexity in the diagaeai

of samples is smaller than the matrix dimension. Instead O

using the pure sample covariance matrix, we suggest to’\fo”g\pproach and squared complexity for the proposed PEACH

a similar approach as in [36] and use a new estim@taevhich elstlma_ltors. The dﬁgreb of lthe_ poéynom|alllexhpan_3|on hc?s a
is an affine function of the sample covariance ma@ix, clear impact on the complexity, but recall that it needs not
mple:  scale with BN, [20]. This property is illustrated in the next

In [36], the authors have shown that this estimator is a betie_ . .
) . ! . ! section, where we also show that small values/olyields
fit for large-dimensional covariance matrices.

Here, different from the diagonal loading approach(in [36%003 pﬁrf(;]rmanC(le. itv of th ional esti .
where they consider an affine combination of the identit The high complexity of the conventional estimators is not

matrix and the sample covariance matrix, we assuine- n issue if the channel and disturbance statistics are fixed o

kCa+ (1 — K)Caamplo WhereCy is the diagonal matrix com- a very long time horizon; _the system can therj simply cor_nputg
prising the diagonal elements @,mple and « is chosen to tShe |tpverse a?r? th(tent.uts_,e It c;]verand O\ffr aga||n._As des;m(tj)em

minimize the squared differen@{ || C—C||%}. The advantage ec lorLII-A, the statistics ¢ ange continuously in pra=an

of C is that the diagonal elements converge quickly wih it is thus necessary to redp the INVersion every few secﬁnds.

to their true values, while the reliance on the off—diagonTI0 make a precise and fair comparison, we need to consider

elements is controlled by the parameterThe optimalx is ﬁ:et_ret_latlonshlpdbtitweﬁn thel cor;erence ttl_me 0:; thetlodrrcg-ter
given by the following theorem. statistics,7s, and the channel coherence time, denoted- by

The analysis below reveals how the computational complexit
Theorem 4. The solutionx* to the optimization problem in terms of the number of FLOPs, depends on the system
min E{||C — C||?}, whereC = kCy + (1 — £)Cqample, IS dimensions, polynomial degrde and the coherence times

" and 7.. For the sake of brevity, we consider complex-valued

- ®(Cample) — 5%(Ca, Campte) (31) FLOPs and neglect the computational small complexity of
®(Csample) + 2(Ca) — ¥(Cy, Csample) scalar multiplications and additions of matrices and vexto

where ®(Cgample) = E{||Csample — C||%}, ®(Cq) = The ratio @ = Z= describes how stationary the channel

E{|Cs — C|%} and ¥(Cg4 Ceample) = E{tr((Cq — statistics are[[30], ‘in terms of how many channel realiza-

C)(Csample — C))}. tions that fit into the coherence time of the statistics. The

propagation environment has significant impact on thirati

Proof: The objective function can be rewritten as .
) for example, in [[3D] the authors have shown tigatequals

E{[|xCa + (1 = #)Csample — C — KC + £C||7:} 13, 108 and 126 for indoor, rural and urban environments,
= E{||k(Caq — C)||%} + E{||(1 — £)(Csampte — C)||%} respectively, under their measurement setup. Smaller eumb
+26(1 — K)E{tr((C4 — C)(Csampte — C)) }. are expected when the transmitter/receiver travel with kigr

locity. Similarly, the disturbance statistics can changpgialy

if it contains interference from other systems (particiylafr
adaptive scheduling is performed) [38]. For a given totalti
2k®(Cyq)—2(1—k)P(Csample)+(1—2k)¥(Cq, Csample) = 0,  Tior, the computational complexity for each of the estimators
consists of two parts: one part which can be precomputed
once per coherence time of the statistics (ilg., = Lot

TS. .
optimal «* will be smaller which implies that we put Iargert'mes) and one part that is computed at channel realization

trust in the sample covariance matrix. In Secfioh IV, we ypp"'e" ke = chc)_ Note thatk. = Qk.
this theory to the channel covariance matrix and compare the
estimation performance when usif® to performance with  8The MMSE estimator can be implemented recursivély] [37], civhis

the true covariance matriR. Interestingly we observe thatsuitable for tracking variations in the covariance masic&he complexity
' of each recursion i€ (12), but we need more thah/ recursions (per long-

.the proposed.V\(-PEACH estimator adapts itself very well 1'tgrm statistics coherence time) to obtain a stable cowegiastimate[[37].
imperfect statistics. Hence, the recursive implementation also has a cubic cotibple

Considering ®(Cgsample), ®(Cq), and ¥(Cgy, Csample), the
first-order optimality condition is

which yields the optimal solutior* in (31).
Note that as the number of sampl&s grows large, the



We use the notatiom/ = N,.B and N = N,N;. For ytHf’RQPH. Note that this term can be considered as the
given vectorsx,y € CV*! and matricesA € CM*N and multiplication of y.”’ PR and RP#, where the first term
B € CN*P, there are MP(2N — 1), M(2N — 1) and y,””PR has already been computed. This results in two
2N — 1 FLOPs required for the matrix-matrix produdtB, matrix-vector products (i.ely (2N —1)+ M (2N —1) FLOPS).
matrix-vector productAx, and vector-vector product”y, Finally, for each element, we have the vector-vector miitip
respectively. In the special case 8 = P and C = AB cation (y,”PR>*P¥)(Z*y,) resulting in (2L + 1)(2M — 1)
being symmetric, only; M (M + 1)(2N — 1) FLOPs are FLOPs. To summarize, for the W-PEACH estimator, we have
required to obtainC. Moreover, the Cholesky factorizationyw _pracu = ke [4LM2 + (8L +4)MN + (4L + 4)N? +
of a positive definite matrixA € CM*M is computed using M — (4L + 3)N + 1 L? + 3L? + 3L + 3] + ks [M(2N — 1)]
%M3 FLOPs. To solve a linear system of equatiocxis = b, FLOPs.
whereb € CM*1 py exploiting Cholesky factorization and In the following table we summarize the exact total compu-
back-substitution, a total 0§M3 + 2M? FLOPs is needed tational complexity of the different estimators whé&n= N,

[37]. which makesM = N.
We denote the total computational complexity in FLOPs
by x. For the MMSE1 estimator, the two parlSysg = Estimators ELOPs
RPH (f’Rf’H+S) andv = P¥h + i are computed | MMSE ke[2M?—M |+ ks [ 2 M?+2M*—3M
once perr, and the partsd =y —v and h + Ud once MVU ke 2M2_]\/2[ tks %M3+%M2_%2M
per .. It results in a total computational complexity of PEACH | k.[(8L+4)M —(4L+§)M]+ks [2M°—M]
Xvuvse = ke [N(2M — 1)] + ks [SM® + (3N — 0.5)M? + | W-PEACH 1 kc[(lﬁz{l+8)M4 —(4L+2)M
(2N?+2N — 3)M] in FLOPs. 5L +3L7 3L+ 5] ks [2M*— M|
For the MVU estimator, there isUuvy = Now, recallingk. = Qk, and comparing the dominating

PHS-1p PHS ! which is computed once per,, terms of the MMSE and PEACH estimators, we can obtain a

and the party — i (neglected) andJypyvy (y — ) Computed condition (the relation between the valués @ and M) for
once perr,, yielding to xarvu = ke [N (2M —1)] +k, [ M3+ whenthe PEACH estimators are less complex than the MMSE
2NM? + (3N? + N)M + IN3 — 0.5N2 — 0.5N]. estimator. This condition is

For the proposed PEACH and W-PEACH estimators, only 16 3 3
v is computed once per,. The rest of the computations ?M 2 8QL+2Q0 = M=Q <§L * §> (32)
take place once per.. As described in[(11), the polynomial¢,, the PEACH estimator, and
S, X!d, whereX = I — o(PRPH + 8), is computed
recursively. The first terma is readily available. The second EM >16QL+6Q =M > Q (3L + 2) (33)
term Xd is computed as a series of matrix-vector products. 3 8
First, we computeSd and P*d. Next, we multiplyR with for the W-PEACH estimator. This implies that only under
the resulting vector ofP¥d), and thenP is multiplied with certain numbers of the channel stationarity, polynomigkéde,
the vector(RP¥d). The vectord — aPRP#d — oSd is and the number of antennas, PEACH estimators are less
then computed. We repeat this procediirémes and exploit complex than the MMSE estimator and will provide reasonable
X'd to computeX‘t'd. For the PEACH estimator, the totalperformance. For the practical values@f= 50 and L = 2,
computational complexity ispeacu = kc[2LM? + (4L + (B2) and[3B) show that the PEACH and W-PEACH estimators
2)N —2L)M +2(L+1)N?—2(L+1)N] + k,[M(2N —1)]  outperform the MMSE estimator in terms of complexity for
FLOPs. M = N{N, > 167 and M > 357, respectively. Hence,

The polynomial structure of W-PEACH estimator requirethe PEACH estimator is practically useful for setup such as
the same number of FLOPs as the PEACH estimator, but thé¥e = 2 and N,, = 100 or N; = 1 and N,. = 200, similarly
are two additional sources of computations: solving thedin the W-PEACH estimator foiV; = 4 andN,, = 100 or N; = 1
system of equationd b to compute the weight vectev,,. and N, = 400.
(which requires$(L + 1)® + 2(L + 1)? FLOPs) and using As demonstrated by the complexity analysis, the PEACH
Algorithm [ to find the approximated elements Afandb. estimators are computed using only matrix-vector mukipli
The computational complexity of Algorithfd 1 is counted byations. This is a standard operation that can easily be par-
considering the following: Firstly, we only need to obtairet allelized and implemented using efficient integrated dtscu
elements mAt, since all the elements df, can be extracted On the contrary, the matrix inversions in the MMSE/MVU
out from A,. In particular, all the elements contain similaestimators are known to be complicated to implement in
terms Z*F with Z = PRPH + S, where0 < k < 2L in hardware[[3B]. Consequently, whenever the PEACH estiraator
A, and0 < k < L —1 in b,. Secondly, we exploit the and MMSE/MVU estimators are similar in terms of FLOPs,
fact thatZ*Fy, for 0 < k < L has been already computedhe computational delays and energy consumption are plpbab
in the estimator expressmEl 0 Z'y¢. Thirdly, to determine lower when implementing the proposed PEACH estimators.
all the elements inA,, we first need to comput&®y, for
L +1 < k < 2L which results in doing a recursive matrix- IV. PERFORMANCEEVALUATION
vector multiplicationZ times (i.e.,L[M (2M — 1)+ N(2M — In this section, we analyze and illustrate the performance
1)+ N(2N — 1) + M(2N — 1)] FLOPs) and then computeof the proposed diagonalized, PEACH, and W-PEACH esti-
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mators. The analysis so far has been generic with respectatal

the disturbance covariance mati$ Here, we consider two 1, e~ P
scenarios: noise-limited and cellular networks with pion- [Db]; = antr (RP (PRP™ +5) PR)
tamination. We describe the latter scenario in more detaikes k 9
it is one of the main challenges in the development of large- =altr (R(R + U—I)i‘lR) (38)
scale MIMO systems[[7]. This section provides asymptotic , . P
analysis and numerical results for both scenarios. — agtr ((R)ZH) )

under the condition thad,, is fixed (recall that for the W-
A. Noise-Limited Scenario PEACH estimatory,, can be selected arbitrarily). By denoting

A commonly studied scenario is when there is only urfh€ limits of DAD andDb asA andb, respectively, the MSE
correlated receiver noise; thus = oI where o2 is the ©€xpressionl(18) converges to the non-zero floor
noise variance. As the pilot power grows large, the MSE of tr (R B BHA‘lf))
the MMSE estimator is known to go asymptotically to zero '
[12]-[15]. We proved in Theorerl1 that the diagonalizegthis MSE floor is independent dP, and is only a function
estimator has the same asymptotically optimal behavior ¢ channel covariance matrix and its moments. However, by
the high-power regime. Here, in the following propositiare  similar justification as that of used for the PEACH estimator
derive the asymptotic behavior of the PEACH and W-PEACHi.e., havinga x P; ') we observe that the MSE expression
estimators in the noise-limited scenario. (@38) converges to a non-zero error floor independeri,ofm
Proposition 2. As the pilot powerP, — oo with the pilot This proposition .shows that. t.he MSEs of the PEACH
matrix P = /7,1, the MSEs of the PEACH and W—PEACI—?‘nd W-PEACH estimators exhibit non-zero error floors as

estimators converge to the non-zero MSE floors the power !n_creases. T_his reveals thgt, in order to. reduce
. complexity, it is better to ignore the spatial channel clatien
tr (R + RB,RB/R — 2RB_R) (34) (as with the diagonalized estimator) than approximatirgy th
and full matrix inversion (as with the PEACH estimators) in the
tr (R _ BHA—IB) (35) high-power regime of noise-limited scenarios.
resp(ictively, Where, = maxy, An(R) + miny, A(R), BL = B_ Pilot Contamination Scenario
%}Zl:O (I — %R) y [A]’Lj = afjjtr ((R)l+]+1), and [b]z =

i i1 A scenario that has received much attention in the large-
O‘Wtr((R) ) scale MIMO literature is when there is disturbance from
Proof: First, we focus on the PEACH estimator wkh=  simultaneous reuse of pilot signals in neighboring célls- [4
VP.1, where the MSE expression in{12) can be rewritten §8], [10], [11]. Such reuse is often necessary due to theefinit
1 channel coherence time (i.e., the time that a channel egtima
tr <R+R(PtAL)(R+ 58)(PtAf)R—2R(PtAL)R . can be deemed accurate), but leads to a special form of
¢ (36) interference called pilot contamination. It can be model@d

Observe thaP; A, = ZlL:o ’Pta(I —Pia(R+ 7D%S))l =By N — Z H,P + N (39)

2
as P, — oo, becausep%s = %I — 0 and Pa = i€l
2 S 2 H . . . .
max, A, (R 8) rmin, A, (R¥LS) A Using the expres- where 7 is the set of interfering cellsH; is the channel

sion of « in (]Ia)ﬁ By taking the limit ?, — oo in the from the transmitter in théth interfering cell to the receiver
MSE expressior(36) and exploiting the aforementioneddimiin the cell under study, angtec(N) ~ CAN(0,0%I) is the
P:A;, — B andp%s — 0 we obtain the non-zero MSE flooruncorrelated receiver noise. H; is Rayleigh fading with
(34) which is independent @P;. vec(H;) ~ CN(0,%;), then

Next, for the W-PEACH estimator, the minimum MSE is

_ Dy pH 2
b” A~'b where A andb are given in Theorerfl 3. For nor- S = ZP&P +o7l. (40)
malization reasons we defil® = diag(1, 7)%,%,...77)%) et

and note thab” A~'b = (Db)# (DAD)~!(Db). The limit, Note that only the sum covariance matfix, ., %; need_s to
asP, — oo, of each element dDAD andDb are be known when computing the proposed PEACH estimators.
1 L B Moreover, only the diagonal elements of the sum covariance
[DAD];; = —=aytr (RPH(PRPH + S)“L-?‘lPR) matrix are used by the diagonalized estimator.
; P
" o2 i1 10Cell 5 can use an arbitrary pilot matriR;, but only pilot matrices with
=a7tr [ R(R+ =I)"7 'R overlapping span (i.eP;P¥ # 0) cause interference to the desired pilot
P signaling. Therefore, the case of a common reused pilotxnBy = P Vi €
ottty ((R)i+j+1) 7 is the canonical example, while extensions to partiallyriapping pilots are
w 37 achieved by removing the non-overlapping parts (e.g., msicering YP#
( ) as the effective received signal). Moreover, it is assunreq3B) that the
interfering pilots are synchronized with the desired pdod that the delays
9Similar MSE floors for the PEACH estimator are obtained foy may of  between cells are negligible. These are, essentially, tveae assumptions
selectinga, as a function ofP, to satisfy the condition in Propositidd 1.  and alternative unsynchronized scenarios have recengly aealyzed in[40].
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When [40) is substituted into the PEACH and W-PEACHProposition 4. As the pilot powerP, — oo with the pilot
estimator expressions i (10) ar[d](14) we get contaminatedtrix P = /P,I, the MSE of PEACH and W-PEACH
disturbance terms of the forRP”PX;P¥. These terms are estimators converge to the non-zero MSE floors
small if R and X; have very different span, or ifr(%;) is

weak altogether—this is easily observedRf/P is a scaled tr(R+RB(R+ ) %)B.R - 2RB.R) (43)
identity matrix. Similar observations were recently mauléhe ez

capacity analysis of [6] and when developing a pilot allmrat and

algorithm in [10]. Under certain conditions, the subspaces tr (R — BHA—lf,) (44)

of the useful channel and pilot contamination can be made

orthogonal by coordinated allocation of pilot resourcemss respectively, wherd = max,, A, (R4 ;7 ;) +min, A, (Rt

cells [10] or by exploiting both received pilot and data sitgn YierZi), Br = %Zfzo I- 2R+ X, zi))l,

for channel estimation as ih [11]. [Al;; = oifitr (R2R+Y,c, %)) and b, =
Similar to the noise-limited scenario, we want to under(sttarggl‘ijv‘Dr (RQ(R +Yier Ei)i‘l).

how the MSE with different estimators behave as the pilot o - )

powerP; — co. We begin with the MMSE estimator and the Proof: The prpof is similar to Propos_mdﬂ 2._ In this case,

proposed diagonalized estimator, for which the MSEs starat® MSE expression i (12) for PEACH is rewritten as

in the asymptotic regime under pilot contamination. o2 i
- . _  tr(RAR(PAL)(R+Y Bt —I)(P, A )R-2R(P:AL)R)

Proposition 3. As the pilot powerP; — oo with the pilot Py Py

matrix P = /P.I, the MSEs with the MMSE estimator and 545)

diagonalized estimator converge to the MSE floors whereP, A = ZZL:O Pra(I-Pa(R+>, o7 Ei—i-%—il)) —

B;. This is due to the fact tha;il — 0 and Py — % as
tr <R —R*R+ Z 21-)1> (41) P — oo, whereA=max, \, (R—i—iiez 3,;) + min, A\, (R+
el > ez i) .- By considering all these limits, the MSE in_{45)

converges to the non-zero MSE flobr43).

and NN, NN, 2 Also, for W-PEACH, we follow the similar approach where
Z rj— Z S N— (42) the limits of each element dAD andDb asP; — oo are
=1 =TT Xiez iy given by
respectively, where; ando; ; are thejth elements oR gjag [DAD],;; — o4 7tr(R*(R + Z Ei)iﬂq) (46)
andX . i, respectively. Note th&gi., = Py ZieI Ydiag,it+ ' icT
0?1
and
Proof: We start by noting that the MSE of the MMSE [Db]; - altr(R* R+ %)), (47)
estimator behaves as ieT
MSE = tr (R— RP# (PRPY S)flf)R) As in Proposition[R, it is concluded thdDAD and Db
. converge toA andb in the limit which results ib” A~'b =
) o2 b?A~'b. Then, it is easily shown that the MSE expression
=tr |[R-R*|(R+) %)+ EI (@38) converges to the non-zero flobr44), which is a function
i€z of the covariance matrices of the desired and interfering
) o channels, but not the pilot power or noise power. |
—tr[ R—R*(R+ Z 3) as Py — oo, We conclude that the performance of all of the estimators
i€T

(i.e., the conventional MMSE and the proposed diagonalized

The first expression above is obtained by applying the WooBEACH and W-PEACH estimators) saturate as the pilot power

bury matrix identity to [(B). Equivalently, for the diagoimdd grows large under pilot contamination. This is an expected

estimator we only need to considBri.es and Sqiae instead result for the PEACH estimators, for which the MSEs satufate

of R andS in the above equations which results nl(42) aslso in the noise-limited case, while the saturation for the

the MSE floor. m MMSE and diagonalized estimators is completely due to pilot
This proposition shows that the MMSE estimator and trgontamination.

diagonalized estimator exhibit non-zero error floors in the

high-powgr regime. The error floors .ilﬂ41) arld1(42) arg  \umerical Examples

characterized by the covariance matrix of the own channel )

and the interfering channels. Clearly, the pilot contamiara 10 €valuate the performance of our proposed estimators,

is the cause of the error floor, which explains the fundament¥e consider a large-scale MIMO system with. = 100 and

difference from the noise-limited case where the MSEs ap+ = 10 antennas and the pilot leng# = 10. Without loss

proached zero asymptotically. o_f generality, we assume zero-mean channe_zl and disturbance
The next proposition shows that the PEACH and W-PEACE|NCe the non-zero mean ass_umptlon has no impact on the MSE

estimators also exhibit MSE floors under pilot contamimatioPerformance as shown earlier in Sectfoq Ill. We follow the

Kronecker model[[41] to describe correlation among antenna
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of the desired and disturbance MIMO channels. In the simula-fixed L = 10 and vary the SNRy. As expected, the
tion, the covariance matrix of a MIMO channel is modeled &dSEs of MMSE, diagonalized and MVU estimators decay
R = R; ® R;, whereR; € CN+*Mt andR, € CN-*N- are steeply to zero when the increases in the noise-limited
the spatial covariance matrices at the transmitter andverce scenario. However, as proved in Propositldn 2, the MSEs
sides, respectively. Following the same modeling, we haweé PEACH and W-PEACH saturate to non-zero error floors.
3 = VBiZt, ® VBiEy, for i € T where the covariance Under pilot contamination (i.e3 # 0) the performance of
matrices are weakened by the factey > 0. This factor all these estimators converge to non-zero error floors. This
represents how severe the pilot contamination parsjis= 0 observation comply with the results stated in Proposit@ns
represents the noise-limited case, while= 1 represents the and[4. This behavior can be interpreted from another view
case when the useful channel and itte interfering channel point. The MSE values are affected by another feature of
are equally strong. the system:signal-to-interference-and-noise ratio (SINE)

To generate covariance matrices, we use the exponentialder pilot contamination, the SINR converges to a constant
correlation model from [42]. All the covariance matricevda as~ increases. More specifically, note that the SINR (when

diagonal elements equal to one which resultstifR) = B = N,) is defined as

NN, and tr(X%;) = B;N:N,. We assume that there are ~

two dominating interfering cells; = 1,2. The correlation g - ZUPBITY 7 __ " (48)
coefficients for the spatial covariance matridgs, R,, 3¢, E{||n|?} o2+ PKB 1+~Kp

and 3, wherei = 1,2 are as follows, respectively: where K is the number of interferers. As increases, the

re =040, rp=0.9- e 7092897 SINR in (48) approachegi; > 0, thus making the MSEs
011 = 0.35 - ¢ 9085377 Gt = 0.9 ¢~ 07464 ahpprqlach some non-zero limits and become independent of
—j0.4583m the pilot powerpP;.
' ’ We observe from Fid.]3 that pilot contamination only has

Note that the phases for the correlation coefficients can BeSmall impact on the PEACH and W-PEACH estimators;

chosen randomly, but describe certain channel directivig " fact, pilot contamination is beneficial in the sense that i
define the normalized pilot SNR as — % where P, — reduces the gap to the optimal MMSE estimator; for example,

%tr(PHP) is the average pilot power. whengs = 1the performanc_e of W—PEAC_ZH estimator is identi-
We use the normalized MSE, defined E cal to that of the MMSE estimator. This important result seow

#S— as the
) WR)" ; _anfi ; et g
performance measure. In all the figures, we compare tﬂ@t PEACH estimators are near-optimal in realistic sdesar

performance of the proposed estimators with the convealltithe result is explained as follows. For any fixé_d PEACH
MMSE and MVU estimators. The pilot matrix B = /7;1. and W-PEACH converge to a non-zero MSE wheincreases,

In [16], it has been shown that this choice of pilot matrik‘,jue to the bias generated by the approximation error. Siise t

i.e., the scaled identity, performs (in the MSE sense) aﬂlm(ﬂso happens for the MMSE and MVU estimators under pilot

identical to the optimally robust designed pilot when thgontalrmr_lanon,. the relative Iﬁss COf using thel proposed l(;)W'
channel covariance matrix is uncertain and this uncestairff®MP!exity estimators is smaller. Consequently, we cance
is bounded by using some norm constraints. L as 3 increases and still achieve near-optimal performance.

In Fig. 2, the MSE has been plotted as a function of the !N t€rms of computational complexity, we note that the
polynomial degreeL. The noise-limited scenario is givenMVU estimator has the same low complexity as the proposed
by 3 = 0, while 3 = 0.1 and 3 = 1 (we assume that diagonalized estimator in the noise-limited scenario aod f

%e scaled identity pilot matrix. However, Figl 2 and Hig. 3

51 = B2 = ) represent the scenarios when the two interferirk ! ] )
cells have interfering channels which afedB weaker than or SOW that the diagonalized estimator always outperform the

equally strong as the desired channel, respectively. THe sivU _estimator. This is because_ the diagonalized estimator
is v — 5 dB. As can be seen from Fifll 2, the MSEs of botfXPIOits parts of the channel statistics. _ _
PEACH and W-PEACH estimators decrease when increasing\nother interesting observation from Fid. 3 is how differ-
L. Interestingly, W-PEACH approaches the MSE-values of tgatly the diago_nalized estimator performs in differenernt
MMSE estimator very quickly, while PEACH needs a higheférence scenarios and SNR ranges. The MSE tends to zero
L than W-PEACH to get close to the MMSE curves. Thd the n0|§e-llmlteq scenario. Th|_s |mpI|e_s that ther(_a faeli
W-PEACH estimator outperforms the MVU, diagonalized anl®SS Of using the simple diagonalized estimator at high SNRs
PEACH estimators in all interference scenarios for any wal§ince the estimator does not need the spatial correlation to
of L. Whereas the PEACH estimator outperforms the Mv@chieve low MSEs in this SNR regime. Hence, the PEACH

and the diagonalized estimators under pilot contaminatigestimators are only useful at low and medium SNRs in the
ie., B # 0, and outperforms them fof > 2 and L > 4 noise-limited case. However, in the pilot contaminatec¢hs

respectively, in the noise-limited case. It is concludeat #- PEACH estimators have a performance advantage throughout

PEACH is near-optimal at quite smdll and that PEACH and the whole SNR range.
W-PEACH estimators achieve a better performance than the
diagonalized estimator even for small 11The SINR is intimately connected to the MSE. For example, \aeeh

. . ) . . MSE > -MtNe_in the special case & = 71, R =1, andX; = 8;L
= 1+SINR ’ ’ v v
In F'Q-B’ we compare different estimators with or W'thoultiquality is then achieved by the MMSE estimator. In genehal, SINR needs

additional interference from pilot contamination. We ddes to grow asymptomatically to infinity if the MSE should appchazero.

)

—3j0.26497

0t,2 =04-¢ Or,2 =09-e
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lized MSE (dB)
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(a) B = 0: Noise-limited scenario. (b) B = 0.1: Pilot contaminated scenario.  (c) 8 = 1: Pilot contaminated scenario.

Fig. 2. MSE comparison of different estimators as a functbrthe polynomial degred. for different interference scenarios.

Normalized MSE (dB)

Normalized MSE (dB)
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(a) B8 = 0: Noise-limited scenario. (b) B = 0.1: Pilot contaminated scenario.  (c) 8 = 1: Pilot contaminated scenario.

Fig. 3. MSE comparison of different estimators as a functdériSNR ~ for different interference scenarios.

In order to illustrate that the estimation performance @ tiNext, in Fig.[6, we study how imperfect statistical inforiat
proposed PEACH estimators does not scale with the numiadfects the performance of the MMSE and W-PEACH estima-
of antennas for fixed., we plot in Fig[4 the MSE of PEACH tors. For this numerical example, we consider a noise-ichit
and W-PEACH for different number of receive antenigs scenario withN, = 4, N, = 100, L = 8, and~v = 5 dB.
while N, is fixed to10. From Fig.[4, we conclude that for aNote that in large-scale noise-limited cases, the noisewee
given L, there is a certain level of approximation accuracy far? can be easily obtained. However, it is important to evaluate
the matrix inversion and it determines the MSE performant@w sensitive the estimators are to imperfect channebsti
while there is no clear dependence on the channel dimensidnsthis figure, we compare the different estimators. The esirv
This result complies with the reasoning in Secfioh Ill rethto marked by—est at the end of their names are based on the
Lemmal, as well as the corresponding results in the detectiestimated covariance matriR described in Sectiof 1II=D,
literature [20]. This property is indeed one of the main bigee where the optimal parameter* is obtained using Theorem
of the PEACH estimators. [. The other curves are based on the true covariance matrix

Next, we focus on the low-complexity approach in AlgoR. Fig.[8 shows that even for number of sampléssmaller
rithm [ for finding the weights. First, in Fif]l 5 we illustratethan the matrix dimensiofV; N,., we can achieve a reasonably
how the approximate weights compared to the optimal weighgsod performance usin® (recall that it is an affine function
perform when the perfect covariance matrices are availabt# the sample covariance matrix). Moreover, it is shown that
Then, in Fig[® we investigate what happens if we only have #me proposed W-PEACH estimator, either using its optimal
imperfect estimatd® of the channel covariance matrix usingveights from Theoreriil3 (Exact W-PEACH) or approximate
some finite number of samplé$ < N, N,.. Fig.[3 considers a weights from Algorithni L (Approximate W-PEACH), is robust
noise-limited scenario and a time window of length= 100. to the statistical uncertainty and performs close to the N\EMS
Although T < BN,.,, we observe that the approximate Westimator. As expected, it is also observed that using Attgor
PEACH estimator which exploits the approximate weighfE, we are able to track the channel’s variations better wieeh
from Algorithm[d gives almost identical performance as the Wults in a superior performance as compared to MMSE-est and
PEACH estimator with optimal weights computed accordingxact W-PEACH-est. Observe that the W-PEACH estimator
to TheoreniB. This confirms that the W-PEACH estimator @&learly outperforms the diagonalized estimator, implyihgt
indeed a low-complexity channel estimator suitable fogéar we gain from exploiting some of the spatial correlation even
scale MIMO systems. when the channel covariance matrix is not perfectly known.

All the simulations so far are done under the assumption thatFinally, in the Figs[]7 andl8 we compare the exact computa-
the covariance matrices are perfectly known at the receivéonal complexities of four estimators: MMSE, MVU, PEACH



14

Diagonalized estimator

- © - Exact W-PEACH-est

— B = MMSE-est

— & — PEACH, L=5 0 Qppro)i;{lﬁ'l;cA\g;f’EACH—cst
—&— PEACH, L=10 —O— Bxact W-PE

-Sr . b -Tr —8— MMSE

- © - W-PEACH, L=5

—— W-PEACH, L=10

-6

5 g
@ o -T.5G
= = PR
3 ] TR
H 3 B~
E E RIsa
ERRIS ER SITse
g g S5~
Z. Z o~ :‘G--__
e S
-8 1 -85 0.0 TP e O mmmng
O 0 ©- ©-0-6 -0 -0 O RSB
o__o__o_o—e-e-e—e-
b~
e 56 i ol
-10 Il Il Il Il Il Il Il Il -95 Il Il Il Il Il
20 40 60 80 100 120 140 160 180 200 100 150 200 250 300 350 400

Array size (Nr) Number of samples

Fig. 4. Normalized performance of PEACH and W-PEACH estorafor Fig. 6. Performance comparison of different estimatorsgishe true and

different number of receive antennas. sample covariance matrices.
-4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ estimator in terms of complexity whe® = 100, while it is
= B WEACH less complex forV,. > 65 when@ = 50. Note that from Figl P2
— = = Approximate W-PEAC

it can be concluded that even with= 2 and 4, we achieve

a reasonably good performance. Also, recall that all thetexa
complexity analysis is done under the assumption ghat I,

i.e., pilot contaminated scenario, for which the given ealof

L provide even better performance compared to the optimal
MMSE estimator.

Normalized MSE (dB)

V. CONCLUSIONS

Large-scale MIMO techniques provide high spatial reso-
lution and array gains, which can be exploited for greatly
improved spectral and/or energy efficiency in wireless com-
munication systems. However, achieving these potential im
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ provements in practice rely on acquiring CSI as precisely as

PR R ey ° possible. On the other hand, enlarging the array size makes t

computational complexity of the signal processing schemes
Fig. 5. Comparison of W-PEACH estimator and Approximate BARH g key challenge. The conventional pilot-based MMSE and
estimator in a noise-limited scenarig & 0) for different SNR~ values. MVU channel estimators have a computational complexity

unsuitable for such real-time systems. In order to addifess t

and W-PEACH. In these figures, we plot the number of FLOR®mplexity issue, we have proposed a set of low-complexity
per second versus the number of antennas at the rece®EIACH estimators which are based on approximating the
side NV, for different vales of@ (i.e., different stationarity inversion of covariance matrices in the MMSE estimator by
conditions) and different polynomial degreés We assume an L-degree matrix polynomial.
Tiot = 7s = 5 sec. As mentioned in Sectidn III-E, these The proposed PEACH estimators converge to the MMSE es-
factors affect the exact computational complexity. Obeéimat timator asL grows large. By deriving the optimal coefficients
the presumed value of, (or 7.) change the number of FLOPsin the polynomial for anyL,, we can obtain near-optimal MSE
but it has no effect on the relative computational compiesgit performance at small values &f It is shown thatZ does not
of these different estimators. From both figures, we coreludcale with the system dimensions, but, in practice, theesegr
that the PEACH estimator has the lowest computational comb-can be selected to balance between complexity and MSE
plexity, which was also proved analytically. performance. By performing an exact complexity analysis,

As can be seen in Fifl 7 fdr = 2, the W-PEACH estimator we have investigated how the proposed estimator perform
has lower complexity than the MMSE estimator wh&h > compared to the MMSE and MVU estimators from complexity
35 for @ = 50 and N,, > 73 for Q = 100. However, by point of view under different assumptions of channel statio
increasing the polynomial degree fo = 4 (i.e., achieving arity, the polynomial degreé and number of antennas. The
near-optimal MSEs) a higher number of antennas is needmthlysis proves that the proposed estimators are beneficial
for W-PEACH estimatorN,. > 135 to outperform the MMSE for practically large systems. Numerical results are gif@n
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noise-limited scenarios as well as under pilot contamomati
from pilot reuse in adjacent systems. Although pilot coritam
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