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ABSTRACT. We study the accumulation of an elliptic fixed point
of a real analytic Hamiltonian by quasi-periodic invariant tori.

We show that a fixed point with Diophantine frequency vector
wp is always accumulated by invariant complex analytic KAM-tori.
Indeed, the following alternative holds: If the Birkhoff normal form
of the Hamiltonian at the invariant point satisfies a Riissmann
transversality condition, the fixed point is accumulated by real
analytic KAM-tori which cover positive Lebesgue measure in the
phase space (in this part it suffices to assume that wg has rationally
independent coordinates). If the Birkhoff normal form is degener-
ate, there exists an analytic subvariety of complex dimension at
least d 4+ 1 passing through 0 that is foliated by complex analytic
KAM-tori with frequency wy.

This is an extension of previous results obtained in [EFK] to the
case of an elliptic fixed point.
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1. INTRODUCTION

Let wy € R? and let
(+) { H(z,y) = {wo,7) + O%(z,y)

r=(r,...,ra), 15 =75x3+1y3)

be a real analytic function defined in a neighborhood of (0,0). The
Hamiltonian system associated to H is given by the vector field Xy =
(0,H,—0,H), namely

{ T = ayH(:L',y)
Y= _axH(x>y)

The flow of Xy has a fixed point Py = {(0,0)}. We are interested
in the study of whether this Hamiltonian system admits, besides Py,
other invariant sets. More precisely, we shall try to find real analytic
KAM-tori for Xy in a neighborhood of Py, that is, real analytic La-
grangian tori invariant under Xz on each one of which the flow of Xy is
conjugated to a translation flow ¢ — ¢ +tw; it is usually required (and
we shall follow this requirement) that w € T?, the frequency vector, is
in some Diophantine set DC(k,7) (k,7 > 0) defined by the property
K

(L.1) (k)| =

Vk € 7 ~ {0}.
We will say that wy € R? is irrational when its coordinates are rationally
independent.

We call the complexification of a real analytic KAM-torus a complex
analytic KAM-torus for Xpg, that is, a complex analytic Lagrangian
toric manifold invariant under (the complexification of) Xy on which
the flow is conjugated to a translation flow ¢ — ¢ + tw. Note that
there are complex analytic KAM-tori that are not the complexification
of any real KAM-torus. Invariant complex analytic toric manifolds were
studied in different settings related to KAM theory (see for example
[Sto]).

Notice that the problem of finding real or complex analytic KAM-
tori in a neighborhood of the invariant fixed point P, can be given
various more or less strong forms. For example, one can ask for finding
a set of KAM tori whose Lebesgue density in the phase space tend to
one in the neighborhood of Py. We shall call this KAM stability.

In classical KAM theory, an elliptic fixed point P, is shown to be
KAM-stable under the hypothesis that wy is irrational (or just suffi-
ciently non resonant) and that H satisfies a Kolmogorov non degen-
eracy condition of its Hessian matrix at P,. Further development of
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the theory allowed to relax the non degeneracy condition. In this pa-
per we prove KAM stability of Py under the Riissmann transversality
condition on the Birkhoff normal form of H at P,.

We note that for non singular perturbative theory of analytic Hamil-
tonians it is known that the Riissmann condition is necessary and suf-
ficient for KAM stability — survival after perturbation of a positive
measure set of KAM-tori — of analytic integrable Hamiltonian systems
(see [R] and [Sev]). We stress however that the study of the dynamics
in a neighborhood of an elliptic fixed point, or near a given invariant
torus, is a singular perturbation problem and that, therefore, the latter
results do not apply per se.

The problem is more tricky if no nondegeneracy conditions are im-
posed on the Hamiltonian. In the analytic setting, no examples are
known of an elliptic fixed point Py with wy irrational that is not KAM
stable. It was conjectured by M. Herman in his ICM98-lecture [H] that
for analytic Hamiltonians, KAM stability holds in the neighborhood of
a KAM torus 7y or of an elliptic fixed point P, if their frequency is
assumed to be Diophantine. The conjecture is known to be true in two
degrees of freedom d = 2 [R], but remains open in general.

In this paper, we show that a fixed point with Diophantine frequency
vector wy of an analytic Hamiltonian is always accumulated by com-
plex analytic KAM-tori. We previously obtained a similar result in
the neighborhood of an invariant analytic torus with Diophantine fre-
quency vector [EFK]. In the latter setting, the tori obtained were real
analytic, but in the context of elliptic fixed points our method does not
necessarily yield real analytic tori.

The current paper follows the same strategy as in [EFK]and provides
the necessary modifications required by the absence of nice action-angle
coordinates in the neighborhood of the fixed point.

An advantage however of the elliptic fixed point case, compared to
that of an invariant torus, is that the Birkhoff normal form can be
defined and conjugations up to any order can be performed under the
sole condition that wy is irrational. This is why we obtain the KAM
stability of any irrational fixed point under the Riissmann transversal-
ity condition, a result that we could not obtain for an invariant torus
with irrational frequency, except in 2 degrees of freedom (see [EFK],
Sections 2 and 9).

1.1. Statement of the result. Our main theorem is the following.
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Theorem 1.1. Let H : (R*,0) — R be a real analytic function of
the form (%) and assume that wy is Diophantine. Then, the origin is
accumulated by infinitely many complex analytic KAM-tori for Xy.

Let Ny be the Birkhoff Normal Form of H — for the Birkhoff Nor-
mal Form at a Diophantine, and more generally an irrational elliptic
equilibrium, one can consult for example [SM].

We say that Ny is j-degenerate if there exist j orthonormal vectors
Y1, .- .,7; such that for every r ~ 0 € R?

<aT’NH(T)>7i> =0 v 1 S 1 S]a

but no j + 1 orthonormal vectors with this property. Since wy # 0
clearly 5 < d—1. A 0-degenerate Ny is also said to be non-degenerate.

Our Main Theorem is the consequence of Theorems 1.2 and 1.4 be-
low.

Theorem 1.2. Let H : (R* 0) — R be a real analytic function of the
form (x) and assume that wy is Diophantine. If Ny is j-degenerate,
then there exists an analytic subvariety containing O of complex dimen-
sion d+j foliated by invariant complex analytic KAM-tori for Xy with
translation vector wy.

A stronger result is known when Ny is (d — 1)-degenerate. Indeed
Riissmann [R] (in a different setting) proved

Theorem 1.3. Ifwq is Diophantine and Ny is (d—1)-degenerate, then
a full neighborhood of 0 € R is foliated by real analytic KAM-tori for
Xy with translation vector in Rwy.

Our proof of Theorem 1.2 (see Section 5.3) will also yield Riissmann’s
result.
In the nondegenrate case we will prove the following.

Theorem 1.4. Let H : (R* 0) — R be a real analytic function of the
form (x) and assume that wq is irrational. If Ny is non-degenerate,
then in any neighborhood of 0 € R?® the set of real analytic KAM-tori
for Xy is of positive Lebesque measure and density one at 0.

1.2. Strategy of the proof. We adopt a similar strategy to the one
of [EFK] that was inspired by previous works of Herman and Moser.
The basis is a counter term KAM-theorem in which a Hamiltonian as
in (%) is conjugated, for any action value ¢ ~ 0 € R? and any w in
some fixed Diophantine class, to a Hamiltonian that has an invariant
torus at the action equal to ¢ with frequency w up to a correction term
A(e,w). Furthermore, for every value ¢ € R? in the neighborhood of 0
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of the action variable there exists a unique frequency €2(c) that cancels
the counter term : A(c,Q(c)) = 0. We call the map ¢ — Q(c) the
frequency map. If Q(c) is Diophantine this yields an invariant KAM-
torus with frequency §2(c). One can show that the jets of the function
Q(c) are given by those of the gradient of the Birkhoff normal form
when the latter is well defined (which is the case if wy is irrational since
we are dealing with fixed points). The following alternative then holds :
either the BNF is non degenerate and the function 2 takes Diophantine
values on a set of Lebesgue density 1 at Py, which yields KAM stability;
or the BNF is degenerate and we can use the analytic dependance of
the counter term on the action variable to show the existence of a
direction (after a coordinate change in the action variable) that spans
a complex analytic subvariety foliated by complex analytic KAM-tori
with translation vector wy.

Let us briefly explain why we do not necessarily obtain real analytic
tori by our method in this context of elliptic fixed point. In the normal
form expression we look for a change of variable Z defined in a neighbor-
hood of the origin containing the torus 7 := {3 +y; = ¢}, j = 1,...d}
such that

d d
w.
(12) HoZ(z,y) =T+ 7](I§+y§ —)+ Y (@ +yl =) F(z,y)
i=1 j=1
where F' = (Fy,..., F;) is null on 2% + y? — ¢ = 0 (T is a constant

which is unimportant). The torus 7 is then invariant by the flow of
H o Z (hence Z~'T is invariant by H).

Since H is real analytic it has a holomorphic extension to a poly-
disk D2* C C*". Notice that the extension of H to D2? thus sat-

isfies H(z,y) = H(Z,y). It will be convenient to make the follow-
ing change of variables: for z,y € C% define z; = (z; + v/~1y;),
w; = 3(x; —/—1y;) so that r; == (z? +y?) = zjw;, j =1,...,d. One
has dz Adw = —/=1dz Ady. Notice that a function (z,y) — f(z,y) is
real analytic (hence satisfies f(z,y) = f(z,7)) if and only if f(z,w) :=
f(x,y) satisfies the symmetry f(z,w) = f(w, Z). We then say that f is
o-symmetric (where o is the involution o(z,w) = (w, z)). If f depends
real holomorphically on an extra complex parameter ¢ and smoothly
on an extra real parameter w, then f : ]D)g X ]Dcpl x D¢ x B(0,1) — C
satisfies f(z,w,c,w) = f(u_J,Z, ¢,w), i.e. it is symmetric with respect
to the involution o(z,w,c) = (w, z,¢). By a slight abuse of notation
we shall call also this property o-symmetry. One can define a similar
notion of o-symmetry for diffeomorphisms (see Section 1.3).
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Equation (1.2) is then equivalent to finding w € R ¢ ¢ ]@d, an
exact symplectic change of coordinates Z for dz A dw and maps Fj null
on zw — ¢ = 0 such that Z and the Fj are o-symmetric and

d d
I:IOZ(z,w):FjLij ZjWj — +Z zjw; — ) Ej(z,w).
i=1 j=1

The searched for torus 7 then corresponds in the (z, w)-coordinates to
{zjw; =c,j=1,...,d} n{(z,w) € C*: o(z,w) = (z,w)}.

The strategy of the proof is then to find for some values of ¢ € R?
and w € R? such a normal form.

However, in the j-degenerate case (j # 0), it will only be possible to
do so for some ¢ := (c2,...,c2) (but not necessarily c itself) in R? and
consequently it will not be possible to ensure that the searched for tori

T are real. We obtain instead complex analytic KAM-tori for Xg.

1.3. Notations. We denote by D¢ the polydisk in C? with radius 4.
More generally if d = (dy,...,d,) and § = (d1,...,0,), then
Df = D§! x -+ x Djr.

Let f : D§ — C be a holomorphic function. We denote by 0., f the
partial derivate of f with respect to z; and we use the usual multi-index
notation like 02 f. If z = (2, 2") we say that

feol(z)
if and only if 9% f(,0,2") = 0 for all |o/| < j. We shall also use
the same notations for C"-valued functions f = (fi,..., f,) with the

absolute value replaced by |f| = max; | f;| (or some other norm on C™).

o-symmetry. Let o be the involution (z,w,c) — (w,z,¢) on C? x
C?x C?. A holomorphic function f : D¢ x D¢ x D¢ — C is o-symmetric
if, and only if, f o o(z,w,c) = f(z,w,c). This means precisely that
it takes real values on the subspace {(z,w,c) = o(z,w,c)}. A (local)
mapping F' preserves this subspace if and only if

cl'oFog=F

— we say then that F'is o-symmetric.
We let C7 (D¢ x D¢ x DY) denote the space of o-symmetric holomor-
phic functions f : D¢ x D¢ x D¢ — C provided with the norm

[fls = sup [f(2)].

266
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Formal power series. Let z = (21,...,2,). An element

f € C[[+]]
is a formal power series
f=FE) =) a2
aeNn

whose coefficients a, € C (possibly vector valued). The notion of o-
symmetry carries over to this more general framework. We denote by

[f1i(2) =D aa2”,
lal=3

the homogenous component of degre j, and

117 =1

i<y

Parameters. Let B be an open subset of some euclidean space. De-
fine
C>° (D¢ x D¢ x DY, B)
(or for short C;"™) to be the set of C* functions (possibly vector valued)
f:DExDExDE x B3 (z,w) = f(z,w)
such that for all w € B!
fo :DExDE X DI 3 (W) = f(z,w)

is a holomorphic function. If in addition, this map is o-symmetric, we
shall write f € C*%>(D¢ x D¢ x D¢, B). We define

/16,5 = sup |9 fusls-
lo<s

(k,7)-flat functions. A C* function f:D? x B — C, (z,w) — f(z,w)
is (K, 7)-flat if, for any set of indices «, f3,
9200 f(z,w) =0

whenever w € DC(k, 7).

Tensorial notations. When (vy, ..., vy = B(v1, -+ ,vy,) is a m-multilinear
form on a vector space V', we shall often see it as a linear form on the
m-th tensorial product V™ and use the corresponding tensorial no-
tations. Also, we denote by ®s,,, the symmetrized tensor product

1 we apologize for the double use of w
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V1 Q- Q Uy = ZJ Ug(1) @ *++ @ Ug(m) Where the sum is on all the
permutations of {1,...,d}.

2. POWER SERIES EXPANSION

2.1. Expansion with Non Resonant functions. Let

w) = Z fa,ﬁzo‘wﬁ

a,BEN

be some holomorphic function defined on a polydisk of (C? 0) — or
more generally a formal power series. We have

f(z,w) = Zzw Zfagz w?
n=0

af=0

and since in the last sum in the previous expression o« = 0 or § =0 we
can find analytic g, and h,,, n € Z such that
flzow) = (2w)"(gu(2) + ha(w)).
n=0

A similar procedure or a simple induction argument show that if f is
now analytic in some polydisk ]ng of (C?¢,0) then

flzw) =) (zw)™ - (zawa)™ Y faap?w’

neNd (a,B)ENR

where N'R is the set of (o, 8) € (N9)? such that for all i = 1,...,d,
;3 = 0. A power series of the form h(z,w) = 3, senr hepzow?
will be called non-resonant and we denote by NTR the vector space of

all non-resonant functions. Notice that we allow for the existence of
constant terms in this definition. We can also say that

flz,w) = Z (z1wy)™ -« - (zqwq)" Z Tty ooorg?)

neNd e€{0,1}4

where f,, . are holomorphic in ]Dzd and where we have used the notation
ri =z ife=0and r; =w; if e = 1.
The following fact will be useful:

Lemma 2.1. For any («, 3) € ( D2 there is a unique decomposition
of the form (a, B) = (n, n) (o, B') where n € N? and (o/,8') € NR
(this means that for any i =1,...,d, a; = n, + a, and ; = n; + B.).



KAM-TORI NEAR AN ANALYTIC ELLIPTIC FIXED POINT 9

Proof.
To prove the existence of such a decomposition just take n, = min(«, ;),
t=1,...,d. To prove uniqueness we observe that if for some ¢ n; # n,,

for example n; > 7;, then ) > & and B/ > f5; a contradiction with
(o, 8") e NR.
U

The preceding discussion provides the following decomposition

Lemma 2.2. If f(z,w) is holomorphic on some polydisk DI x D¢ there
exists a unique decomposition

(2.3) flzw) = Z (z1wy)™ -+ (Zdwd)ndfﬁ(sz)

neNd

where f, € NTR are holomorphic on D¢ x DY — the series converges
uniformly on compact sub domains of D¢ x D. Furthermore f is o-
symmetric if and only if all the f, are.

Proof.  To prove uniqueness, one just have to prove that if f is null,
the same is true of all the series f,,. This is done by looking at the
coefficients of the right hand side of (2.3) and by using Lemma 2.1.
The o-symmetry of the f,, comes from the uniqueness. O

If now f depends (or not) on a parameter ¢ = (cq, ..., cq), by writing
zjw; = c¢j+(zjw;—c;) in (2.3) we get an expansion uniformly converging
on small compact neighborhoods of 0:

(2.4) f(z,w,c) = Z (zqwy —¢1)™ -+ (zaqwq — cq)" fu(z, w, €).
neNd

We again notice that each f,(-,-,¢) is non-resonant (for any fixed c)
and

(2.5) falz,w,c) =) <f) B f (2w, 0.

k>n

We shall still denote by NTR the set of functions f(z,w,c) which are
non-resonant for each fixed c.

Lemma 2.3. If f is o-symmetric, there exists a unique decomposition
of the form (2.4) where each f, is non-resonant and o-symmetric.

Proof. We have to prove that if in (2.4) f is equal to 0 then all the
foarenull. If f,(z,w,¢) =3, 5 frar g2 w? | the coefficient of
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z2w” in (2.4) is the sum

Z Z <§) (_1)IQ—EICW’H@—E)fﬁ’a,ﬁw,

ko B n>k
(k.k)+(o’,8)=(cv,8)
Since in the last sum (o, §') € N'R, the decomposition («, 8) = (k, k)+
(o, ') is unique by Lemma 2.1, and thus the last sum is just (the
summation is in n)

n n— I 4 (p—
Z (E) (—1)HlerHe E)fﬂva'ﬁ/ﬁ/‘

n>k
,Yl

By assumption, for any k, any (o, ') € N'R, this has to be equal to
zero for any ¢ in a neighborhood of zero. Multiplying the last sum by
(d + ¢)* and making the summation on all k£ > 0 one gets

Z CW/dﬁfﬂva’,ﬁ’m’ =0.
n

!

Y

This being true for all ¢, d in a neighborhood of 0 one has f,, = 0.

The o-symmetry of the f,, comes from the uniqueness.
O

Remark Lemmas 2.2 and 2.3 hold in the case of formal series in
Cllz, w, ]].
If p € N, we shall denote
(2.6) Folzow,0) = > (2w = )" fu(z,w, ¢)
In|=p

We shall use the following notations. We have seen that f(z,w,c)
can be written under the form

2.7) fz,w,e) = fOLz,w, ) + (fO(z,w,¢), (2w — )+
<(Z’LU - C)? f[2](z> w, C)(Z'LU - C))

or
(28) f(z,w,¢) = fO(z,w,0) + (fV(z,w,¢), (20 = €))+

<(Zw - C)? .f(z)(za w, C)(Zw - C)> + f[3](za w, C)(Zw - C)®3

1) . (2)

where f(O)(Zuwv/c\) and fj (Z,w,C) (.] - 17 c '7d)7 fi,j (Z,w,C) (1 S
i,7 < d) are in N'R and where the notations fi(jz)(z, w, ¢) and fi[;}(z, w, )
(1 <i,j < d) denotes respectively the sums »_ _, Yy fa(z,w, c) and
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ZEZ)\i'f‘)\j(Zw — )2 NN f (2w, ¢) with Ay € N (k = 4,5) denoting
the multiindex A\.(I) = &y (Kronecker’s symbol); fI®) is defined sim-
ilarly. We shall call the decompositions (2.7) and (2.8) the canonical
decomposition of f (up to order 2 or 3).

Lemma 2.4. [f

flzw,) = ag(z,w,c) + (ai(z,w,0), (zw — ¢)) + O((zw — ¢)?)
with ag and a, in NR then ag = f© and a; = fO.
Proof.  Let us denote g(z,w, c) the O((zw — ¢)?) of the statement of

the lemma. The function g can be written
g(z,w,c) = Z ho(z,w,c)(zw — ¢)”
aeN? |a|=2
and each h, can be decomposed hq (2, w,¢) = Y ya han(2, w, c) (2w —
c)® where all the h, , are in NR and so g(z,w, CS = D mend jm>2 (20 —

€)™g,,(z, w, ¢) where each g,,(z,w,c) := Zam:mJa‘:Q,ﬂeNd hon(z,w,c)
is non resonant. The uniqueness given by Lemma 2.3 concludes the
proof. O

2.2. The operators M, D and D¥. We now define the operator M
by

(Mf)(z,w) Zfagz w”

(diagonal terms). If Mf = f we say that f is diagonal.

Observe that if f(z,w,c) =3 (2w — )2 fu(2, w, ¢) where all the
fn are in NR then

Mf =" (2w = ¢)"£,(0,0,c).
neNd
Let us introduce the following differential operators
sz: (azl.f)zz_ (awz.f)wza Df: (le7aDd.f)a
and if w € R?
DY = (w,D) =wiDy + -+ 4+ wyDy.

Notice that

Di(z*w”) = (a; = B)(zw”),  DY(z"w’) = (w,a = B)(z"w”).

All these definitions extend to the case when f(z,w,c) depends on ¢;
the derivatives are taken w.r.t. (z,w) and c is then seen as a parameter.
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Since D(zw — ¢)® = 0, we observe that
(2.9)

Df, = Z (zw—c)*D f(z,w,c), D f, = Z (zw—c)*D” f (2, w, ¢).
In|=p In|=p
Let us mention the following, easy to prove, but important proper-
ties:

Lemma 2.5. Let f(z,w,c) be a formal series expansion.

(1) If f is diagonal, so are z0,f, wOy,f, Df and D*f.

(2) If [-]; denotes the homogeneous polynomial part of total degree
J in (z,w, c), the operators z0,, wo,,, D, D commute with [-;.

(3) If g is either z0,f, wO,f, Df or D[ then [g]o = 0.

(4) If f is o-symmetric then Mf, /—1Df and /—1D*f are o-
symmetric.

(5) Assume that w € R? is irrationaland let g € C[[z,w,c]] be a
o-symmetric power series. Then the equation

DYf =+/—1g
has a o-symmetric solution f € C[z,w, c|] if and only if Mg =

0, and the solution f is unique modulo the addition of any di-
agonal series expansion in C[[z, w, c|].

3. FORMAL NORMAL FORMS

3.1. Exact symplectic mappings and generating functions. Let
Z i (z,w) = (2',w) be a holomorphic mapping of (C*?,0) endowed
with the canonical symplectic form dz A dw. Since d(zdw) = dz A dw,
Z is symplectic if and only if the one-form Z*(zdw) — zdw is closed. By
definition, Z is said to be exact, or exact symplectic if and only if the
one-form Z*(zdw) — zdw is exact. (Since we are on a simply connected
domain symplectic implies exact symplectic.) Under general conditions
— Z is C'-close to the identity mapping for example — there exists a

holomorphic function f : (C*,0) — C such that
;o 2 =24 Oy f(z,0')

3.10 =7 —

(3.10) (2, ) (2, w) {w:w'—l-azf(Z,w/)

The construction of f is the following: since Z is exact, there exists a
holomorphic function g : (C*¢,0) — C such that Z*(zdw) — zdw = dg
and we define f by

(3.11) flz,w') = g(z,w) — z(w —w), w =¢(z,w'),
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where w’ = ¢(z,w’) is determined (by the implicit function theorem)
from (2, w') = Z(z,w).

A function f like in (3.10) is called a generating function for Z — it is
unique up to an additive constant. Conversely, any holomorphic func-
tion f : (C*%,0) — C is under general conditions — f is C?-close to zero
for example — the generating function for a unique exact holomorphic
mapping. (This is a straight forward verification which can be found in
most books on symplectic dynamics/geometry, for example in [SM].)

If Z depends holomorphically on some parameters ¢, then its gen-
erating function depends holomorphically on ¢, and conversely. This
correspondence also preserves reality — Z is real holomorphic if, and
only if, it’s generating function is real holomorphic — but o-symmetry
is not preserved.

These properties carry over to the setting of (formal) mappings of
the form

(*) Z(z,w,c*) — (z,w) € C[[z,w, )] N O*(z,w,c).

Lemma 3.1.
(a) The set of mappings of the form (x) is a group under composi-
tion, and the set of (formally) exact mappings of the form (x)
s a subgroup.
(b) A (formally) exact mapping of the form (x) has a unique (for-
mal) generating function of the form

f(z,w', ) € C[[z,w', )| N O* (2,0, ¢).
(¢) Any function
f(z,w', ) € Cllz,w, )] N O*(z,w, ¢)

is the generating function of a unique (formally) exact mapping
of the form (x).

Proof. (a) is a direct computation on formal power series. (b)
follows since a closed (formal) one-form is exact, which gives us a formal
g: notice that “low order” terms (in z,w,c) of g do not depend on
“high order” terms of Z. By truncating g at some order N we can
apply the formula (3.11) which gives an fy: notice that “low order”
terms of fy do not depend on “high order” terms of g. Therefore this
defines a formal generating function by letting N — oo. (c) follows by
truncating f (in z,w,c) at some order N and and then define Zy by
the formula (3.10): notice that “low order” terms of Zxn do not depend
on “high order” terms of f. Therefore this defines a (formally) exact
mapping Z by letting N — oo. U
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3.2. Formal Normal Forms. Assume that H(z,w) is a formal Hamil-
tonian in C[[z, w]] of the form

H(z,w) = {wp, 2w) + O%(z,w)

with a vector wy € R? which is rationally independent. It is a classical
result that there exist a unique N € R[[r]], the Birkhoff Normal Form
of H, and a (formally) exact mapping of the form

(*)  Z(z,w) — (z,w) € C[[z,w]] N O*(z,w)
such that
Ho Z(z,w) = N(zw) = {wy, zw) + O3 (zw).
If ¢ € C? is an extra formal parameter one can write
Ho Z(z,w) = N(zw) = N(¢*) + (VN(c?), 2w — ) + O* (2w — ¢?).

The aim of the following proposition is to prove that such a represen-
tation is unique.

Proposition 3.2. If there exist a formal series
f(z,w', ) € C[[z,w, )| N O* (2,0, ¢?)

and formal series T'(c?),Q(c?) € C|[¢]],

I'(c?) = (wo, %) + O*(c?), Qc*) = wy+ O(c?)
such that

H(z,w) =T(c*) + (Qc?), 2w — )+
(Zw' = ), F(Zw', ) (2w = ?)),

where

Y =24 0uflzw,c?), w=w +0.f(z,w,c?),

then T'(c?) = N(c?) and Q(c?) = VN(c?), i.e. the series ' and Q are
UNLQUE.

Proposition 3.2 will be the consequence of the following two Lem-
mata.

Lemma 3.3. Let H(z,w,c?) be a formal Hamiltonian depending on c?
of the form
H(z,w,c?) =T(c*) + {Qc?), 2w — &) + O (zw — ¢?)

where Q(0) = wy is rationally independent. Then there exists a formal
series

f(z,w', %) € Cllz,w', ]| N O*(zw' — ¢*)
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and formal series Gy(c?) € C|[c]], k > 2, such that
H(z,w,c®) =T(c*) +(Q(?), (Fw — )+
Z Gk(C2) . (z'w/ i C2)®n,
n=2
where
Y =24 0uflzw,c?), w=w +0.f(z,w, c?).

Proof.
Let us write

H(z,w,c®) =T(c*) + (Q(c?), 2w — ) + F(z,w, c?) - (zw — ¢*)*?
and denote A = zw — 2, A = zw’ — ¢ and A’ = 2w’ — 2. We have
A =z + 20.f(z,w', *) — ¢
=A+20.f(z,u,?)
and
A = 2w + w0y f(z,0, %) — ¢
= A+ w'dy flz,w, )
We thus have to construct f = O*(z,w’, ¢*) and the G}, such that

(3.12) (Q(?),Df(z,w',c?))) =
— F(z,w + 0. f(z,w',¢2),) - (A + 20, f(z, 0, ) ¥+

Z Gn(®) - (A + w'dy f(z, w0, )",
n=2

To do this we proceed by induction. If L is a formal function of the
variables (z,w', ¢?) denote by [L]; its homogeneous part of total degree
jin (z,w',c). Taking the [-]; part of equation (3.12) we get

(313) Y ([, [Df (2w, A))]i) =

k+l=j
— [F(z,0 + 0. f (2,0, ), ) - (A + 20, f (2,0, ¢*)) ¥+

[e.e]

D Gu(@) - (A + W'y f (2,0, F))".

n=2
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Since [flo = [f]1 = [f]2 = 0, (3.13) can be written
(3.14) (Q(0),[Df(z,w',));) = Trj + Toy + Ty i+
D [Gn(e)]j-zn - (A)®"

where )
(3.15) Ty =— Z}([Q(CQ)]k, [Df(z,w', )i

(3.16) Ty, = —[F(z,w' + 0.f(z, 0, c?),?) - (A + 20, f(z,w', ¢*))®?;
(3.17)

Z Z [(A4w' Dy f (2,0, 2) Z )j—2n-(A)®"

n=2 k+l=j n=2

Notice that the term T, := [F(z,w' + 0.f(z,w',c?),¢?) - (A +
20, f(z,w', ¢*))®?]; is a linear combination of terms of the form [F(z, w'+
O.f (2,0, ), )]p-AC™ @y [20. f (2,0, D" with k42my+maly =
j and mq + my = 2; hence [, < j — 1. Also since [20, f]o = 0 one has
lo > 1 and thus & < j — 2. The term [F(z,w’ + 0. f(z,w', ), A
depends on f only through its coefficients of total degree < k + 1 and
thus less or equal to j — 1. In conclusion the term 75 ; depends on f
only through its coefficients of total degree k < j — 1.

A similar analysis shows that the same is true for the term 73 ; and
of course, for the term 77 ;. In conclusion, all the terms T} ;,7%;, T3 ;
in equality (3.14), except (Q(0),[Df(z,w’,¢*))];) depend on f only
through its coefficients of total degree less or equal to j — 1.

Moreover, by assumption on f, the derivatives 20, f(z,w’, c?) and
Wy (2,0, %) € OYA) and, hence, Ty; and Ty; € O*(A). Since
Df(z,w', %)) € O*A), also Ty ; € O*(A).

Finally, since [w'0, f]; = 0 for j = 0,1,2 we see that the term 75 ;
depends on the [G},]; only for [ < j — 2n.

We can now construct by induction [f]; and the [G,,(c?)];_2, for all
the n such that 2n < j. For j = 3 it is enough to choose [f]; = O Then
assuming we have constructed [f], and [G,,(c?)]; for all k < j — 2n,
3 <k <j—1, we can find [f]; and [G,];_2, such that (3.14) holds:
indeed, we define

D G A)joan - (D) = —M(T1; + Toy + Ts )
n>2

and we apply item 5 of Lemma 2.5 with w = (0). O
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The second statement is about uniqueness.
Lemma 3.4. Assume that there exist a formal series
f(z,w', ) € C[lz,w, )] N O*(z,w, ¢)
and formal series T'(c?), Q(c?), Fy(c?) € C|[¢]] such that
N(zw) = I(¢®) + (), 2w — &) + Y F () - (Zu — *)®",
n=2
where
Z,:Z+aw/f(z’w/’c2)7 w:w/+azf(z7w,7c2)’
then T'(c*) = N(c?) and Q(c*) = VN(c?) (thus they are unique).

Proof.  Let us denote A = zw' —c? and A’ = 2w’ —c?. By assumption
N(zw' + 20.f (2,0, %)) = T(?) + (Qc?), A) + > Fo(c?) - (A)="
n=2

and using the fact that
2w + 20, f (2,0, ) = 20" + w'Of (2,0, ) + Df (2,0, )
=+ A+Df(z,0,P) + w0y f(z,u0', )
and
(3.18) A=A+ wdyfz,w,c?)
we have

N(@ + A+ Df(z,w', )+ w'dy f(z,0',¢%)) =

D(A)+(QUP), A+w' Dy f (2,0, 02)>+§: Eo()-(A+w' 0y f(z, 0, )%™

n=2
Using Taylor formula
N() + VN(A) - (A+Df(z, 0, ) + wdy f(z, 0, ?))+
D" O"N(P) (A +Df (2w, ) + W f (2,0, 2) "M =

|m|>2

D(A)+(QUP), A+w' Dy f (2,0, 02)>+Z Eo()-(A4w' Oy f(z, 0, )%

n=2
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SO
(3.19)
VN(C2)D.f(Z> ’LU,, 02)+ Z amN(c2)(A—|—Df(z’ ’LU,, 02)+w/aw’f(z> 'LU,, 02))®m =
|m[>2

(T(?) = N(c?)) + (Qc?) = VN(A), A + w0y f (2,0, )+
> Fu(e) - (B + 0 f (2,0, 6) "

We denote by [-]; the homogeneous polynomial part of total degree j
in the (z,w’,c) variables. Using that [f]o = [f]1 = 0, it follows readily
from equation (3.19) that

L(c?) = (w, ) + O0*(c?), Q) =w+0O(A).

We now prove that Df(z,w’,c?) = 0. We shall prove by induction
on j that for any j > 0, D[f]; = 0. By assumption this is true
for j = 0,1. Let us assume this is true for all 1 < k < j — 1. By
taking the [-]; in equation (3.19) and using items 2 and 3 of Lemma
2.5 ([Dflk = D[flk, [w'Ouw flk = w'Ou|[f]k), the fact that [f]; =0 for
0<!<1and [Q(c?) — VN(c?)]o =0 we get

(3.20)
VN(0)-DLf];(z u',?) = [(T() =N ()] +([AA) ~VN ()] -z, A)+
SlJ + 527]' + Sg,j + 547]'

where

(3.21) Sij=— Y [VN()-Dlfli(z ', )
k+1=j
1>2,k>1

(3.22) Soy=—[Y_ O"N()(A+Df(z,w', ) +w'dy f (2,0, )™,

Im|>2

(3.23) Sa5= Y ([AS) = VN w'Ou[fli(z, 0, %))

(3.24) Sig =Y _[Fulc®) - (A +w'dy fz,w',¢*)"");.

n=2
We also observe that the sum Sy ; := [32,,, 5, I"N(A)-(A+Df(z,w', )+
WOy f (2,0, ¢*))™]; is a linear combination of multilinear terms of the
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form [0 N (c2)]p,- AP ™ @0 [Df (2,0, )2 gy [W' Oy f (2,0, )]
with ll + 2m1 + mglg + mgl3 = j and mi+ Mg + M3 =m > 2; hence
max(mgy, mg) < j — 1. But the induction assumption implies that
[f]m is diagonal for m < j — 1, hence the same is true for D[f],, and
W' Oy [ flm- In conclusion, the sum S, ; is diagonal. A similar argument
shows that the sum Sy := S J[F(c?) - (A + w'Ou f(2, 0, ¢)))®"];
is diagonal, as well as all the other terms of the equation (3.20) with
the possible exception of the term (VN(0), D[f];). It then follows that
(VN(0),D[f];) is diagonal. By Lemma 2.5 this forces D[f]; = 0. This
completes the induction and proves that Df = 0. Now equation (3.19)
reads

(3.25) (I(c*) = N(c%)) + (") = VN(c*), &) =

= > O"N(SP) - (A= F () - (A

jm|>2
hence
(3.26) (D(c*) — N(c?)) + (Q(c*) — VN(c?), Ay = O*(A)
and Lemma 2.4 concludes the proof. O

Proof. We can now prove Proposition 3.2. Using Lemma 3.1 we
can assume that H is under Birkhoff Normal Form and we then apply
consecutively Lemmas 3.3 and 3.4.
Indeed, using Lemma 3.1(c) there is, by assumption, a (formally)
exact mapping Z; in () such that
Ho Zi(z,w,c*) = T(c?) + (Qc?), 2w — &)+
+ (2w — &), F(z,w,6) (zw — %)),

Using Lemmas 3.3 and 3.1(c) there is a (formally) exact mapping Z
in (*) such that

HoZy o Zo(z,w, %) = T(c2) + (), (Zw' — )+

By the Birkhoff normal form there is a (formally) exact mapping Z3 in
(%) such that

H o Zs(z,w) = N(zw) = (wo, z2w) + O (zw).
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Hence W = Z; ' o Z; 0 Zy is (formally) exact in (), by Lemma 3.1(a),
and

NoW(z,w,c®) =T(c?) + (Q(?), (Zw — )+

By Lemma 3.1(b), W has a generating function and now the proposi-
tion follows from Lemma 3.4. U

4. A KAM COUNTER TERM THEOREM AND THE FREQUENCY MAP
The proof of Theorem 1.1 relies on the following fundamental result:

Proposition 4.1. Given 0 < k < 1 and 7 > d — 1. Then, for all
s € N, there exist non-negative constants (only depending on s and T)

a(s) > (s—t)+a(t), s>t>0,

such that if

H(z,w) = N (zw) + O (z,w) € C*(C*,0), ¢ > afl)+1,
15 o-symmetric with

NUr) = {wo, ) + O*(7),
then there exist 6 > 0 and for any n < a o-symmetric function
A=Alc,w) € C“’OO(]D)Z X B)
and a symplectic and o-symmetric diffeomorphism
(Zew — id)(z,w) € C>(D2? x DI x B) N O*(z,w,c)
such that
(4.27) (H+ (w+A(c,w),")) 0 Zew(z,w)
= (w, 2w — ¢) + O*(zw — ¢) + g(z,w, ¢, w)

(modulo an additive constant that depends on c¢,w) with g (k,T)-flat
and g € O*(z,w,c).
Moreover,

(i) for any s € N there ezists a constant Cs, only depending on
s, H, 7 such that

< Can(i)a(S)

||A+87’Nq||n,s+ ||Z_1d||77,8 — /{n



KAM-TORI NEAR AN ANALYTIC ELLIPTIC FIXED POINT 21

(ii) there exists a constant C, only depending on H,T, such that
1 e
5> qufam
(iii) if
wo € DC (2K, T)
then the mapping
DL S (e, A) = Ale, (14 Nwp) € C
is holomorphic and o-symmetric for some 0 < §' < §
(iv)
(Ze2 —1d)(2,w) € O*(z,w,¢).
Remark. Notice that this proposition (except part (iii)) does not re-

quire that wy ts Diophantine. Notice also that, a priori, A, Z and g
depend on k and on 7.

Remark. It is also the case that g(z,w, c* w) and A(c?,w) + VNI(c?)
are in O*(z,w,c), but we shall not use this fact.

This proposition follows from the local Normal Form Theorem 6.4 ap-
plied to the Hamiltonian H(z, w,c) = H(z, w)—N9(c)—(VN9(c), zw —
¢) in a similar way as Proposition 4.2 of [EFK]. Let us discuss this a
bit, but for full details we refer to [EFK].

If we write F'(z,w) = H(z,w) — N(zw) = O (z, w), then (with
the notation of Section 2)

H(z,w) = N%(c?) + (VN(c?), 2w — *) + O*(zw — )+
FOz w, ) + (FY(z,w,?), 2w — ) + F(z,w,?) - (zw — ?)®?

where F'O) (2, w, ¢?) = 0% (2, w, c) and FY(z,w, ) = 0%~ (z,w, c).
Hence
(4.28) H(z,w,c) = FO(z,w,c)+

+ (FY(z,w,c), 2w — ) + O*(zw — ¢).
On domains where max(|z, |wl, |c]) < n, HO(z,w,e,w) is of order
nt and HW(z,w,c,w) is of order 7?. Using Lemma 6.1 we obtain
that [H],o is of order 797, where b is a constant only depending on 7

and d. If we take h equal 7, say, then the smallness assumption (6.37)
is fulfilled for any

< L
— K a—a—
"=¢

— this gives the estimate of ¢ in (ii).
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If we callj\(c, w) the counter term A obtained by applying Theo-
rem 6.4 to H(z,w,c), we then get the conjugacy equation (4.27) with
A(e,w) := A(c,w) — VN(c). Since A is small (as quantified (6.38) in
Theorem 6.4) we get also the first half of the inequality given in item(i).
The second half of the inequality in(i) also follows from (6.38).

Item(iii) follows from the last part of Theorem 6.4.

Since H(z,w,c) = O*(z,w,c) mod O*(zw — ¢) we have(iv) by
Theorem 6.4.

Corollary 4.2. Given 0 < Kk < 1 and 7 > d — 1 and non-negative
constants a(s) as in Proposition 4.1, if
H(z,w) = N(zw) + O* " (z,w) € C*({0}), q>a(l)+1,
with
N(r) = (wo, ) + O(r),

then, for any
1 o
n<ro= 6/‘“’““5

there exists a unique C* function Q : {c € R? : |¢|] < 2} — R? such
that

Qc) + Alc,Q2c)) =0, Ve
Moreover,

(i) for any s € N there exists a constant C’, only depending on
s, H, 7 such that

1 als
12 — 0, N* Ce(le|<2) < C;ﬁq(/{—n) )
(i) If wo € DC(1, k), the Taylor series of Q at ¢ = 0 is given by
VNH(C).

The constants C”, only depend on H,T.

We call Q the frequency map. The proof of the corollary is almost
identical to the one of Corollary 4.3 of [EFK]. Let us therefore only
discuss shortly the proof.

The existence of 2 and the estimate (i) follow from (i) of Proposition
4.1 and the implicit function theorem applied to the function A.

Point (ii) is a consequence of the following facts: if (z, w) — Z.(z,w) :=
Zeo(e)(z,w) is the change of variable given in Proposition 4.1, then

(4.29) HoZo(z,w) = (Qc?), 2w—c*)+O*(z2w—c*)+9g(z, w, 2, Q(c?)).

The condition wy € DC(7, k) and the fact that g is (k, 7)-flat show that
g(z,w,c* Q(c?)) = O®(z,w, c*) and hence, one has in C[[z, w, c||

(4.30) Ho Za(z,w) = (Qc?), 2w — ) + O*(zw — ¢?).
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Since (Z,2 — id)(z,w) = O*(z,w,c*), Zz has a formal generating
function f(z,w,c?) € O3(z,w,?). Proposition 3.2 then shows that in
C|[[z, w, c]] one has the identity Q(c?) = VN(c?).

We shall use the preceding results to prove Theorems 1.2-1.4. In
the case the BNF is non degenerate, ¢ is chosen according to the non-
degeneracy condition, and it then will follow from(i) that the function
2(c) — which depends on  — takes values in DC(7, k) on a set of positive
measure which insures KAM stability. This will be proven in Sections
5.1 and 5.2. In the case of a degenerate BNF (ii) of Proposition 4.1 as
well as the analyticity of A(c,w) in the variable ¢ allows to conclude
the proof of Theorem 1.2 and 1.3. This will be carried out in Section
5.3

5. PROOF OF THE MAIN RESULTS

This section is devoted to the derivation of Theorems 1.2-1.4, and
thus of Theorem 1.1, from Proposition 4.1 and Corollary 4.2.

Consider a real analytic Hamiltonian H of the form (x). By a real
symplectic conjugation we can assume, since wy is rationally indepen-
dent, that H is on Birkhoff normal form up to order 2g 4+ 1 for any

q:
H(z,y) = NU(3 (5 +47) + 0% (1)

Performing the linear change of variable in Section 1.2 we obtain a
o-symmetric holomorphic Hamiltonian

H(z,w) = N(zw) + O* (2, w)

of the form treated in Proposition 4.1 and Corollary 4.2.

The linear change of variable is not symplectic and it will change
the canonical symplectic structure dz A dy into v/—1dz A dw. However,
any transformation symplectic with respect to dz A dw will also be
symplectic with respect to v/ —1dz A dw, so we may just as well study
H under a transformation symplectic with respect to dz A dw. Then
the Birkhoff normal forms Ny and Ny are the same and coincide with
N1 up to order q.

5.1. Transversality. Let us state two lemmas the proof of which can
be found in Section 5 of [EFK].

Lemma 5.1. If Ny (r) is non-degenerate, then there exist p,o > 0 such
that for any k € Z% . {0} there exists a unit vector wu;, € (Ry)? such
that the series
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k
fi(r) = (m,&nNH(T»

is (p, o)-transverse in direction uyg, i.e.

' —o| = O.
o2, bl = 0

Consider now these p,o. Let Q € CP({|c| < n}) and assume
19 10, NP e gy < 5
Lemma 5.2. If Ny is (p, o)-transverse (in some direction), then
Leb{lel <+ (7. Q| < <} < Gy )
for any n, k. e.

5.2. Proof of Theorem 1.4. By Lemma 5.1 we are given p and o that
correspond to the transversality of the Birkhoff normal form Ny = Nj.
We can assume without restriction that ¢ < 1, and we fix ¢ = (1 +
2p)a(p) + 1. .

We shall apply (i) of Proposition 4.1 and Corollary 4.2 to H with
this ¢ and with

T=dp+1 and 0<kr<o?<1.

Now let
1 k. 21

(531) n = W(;)Qp‘

Since ¢ > (1+2p)a(1)+1 we have n < ng for all C” > C’, where 7y and
C” are defined in Corollary 4.2. Then Q = Q, * is defined in {|c| < %}
and

(5.32)

1 «
12— [aTNH]pHcp(ﬂch}) < C'ﬁq(K—n) ®) + I[0r Nul? — aT’NI[{IHcp(ﬂch})

— P
which is
<Cn
since ¢ > (1 + 2p)a(p) + 1 — notice that C' is independent of C” > C".

Finally if Q” is sufficiently large (depending on p,7,H, thus on ¢) we
have that Cn < o/2.

2 not to forget that 2 depends on x
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By Lemma 5.2
i k €1 g_
Leb{le| < 3 : |(72 2| < 2} S (5)pn*,
2 kK| o
hence
Leb{le] < 3 : 2e) ¢ DC(r. )} S ()™~
S nleb{lel < 3}

(provided & is sufficiently small). Hence, the set
5, = {|e| < g 1 Q(c) € DC(k, 7)} NRE

is of positive measure when x is sufficiently small and has density 1 at
0 when x — 0. For each ¢ € X,

ZC,Q(C),H({ZUJ = C})

is an invariant set for the Hamiltonian system defined by H with respect
to the the canonical symplectic structure dz A dw, hence also with
respect to the symplectic structure v/—1dz A dw.

Returning to the variables z,y, using the linear transformation de-
fined in Section 1.2, we get for any ¢ € Y, a symplectic transformation
Zew : (R?0) — (R?*?0) ? such that

ch,.@({:vz + 9% =c})

is a KAM-torus for the Hamiltonian system defined by H. By (iv) of
Proposition 4.1 Z.,, has the form

Zew(®,y) = (2,y) + Oz, y, ¢).
Let now W, : (R%,0) x T? — (R? x R%, 0) be the mapping
(¢,0) — Z.,(ccos2mb, csin2m0) = (ccos 270, csin 270) + O(c).
Then
W.({c:ce %}, T

is foliated into KAM-tori. By (5.31) and the estimate (i) of Proposition
4.1 we have that the O%(c) term in W, satisfies the condition (7.51)
of Lemma 7.1 of the appendix A, which hence yields that W, ({c: ¢ €
Y.}, T) has positive measure when & is sufficiently small and that the
union over all x > 0 has density 1 at 0 € R? x R

3 Z. is real because ZQQ(C))H(Z, w) is o-symmetric
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5.3. Proof of Theorems 1.2 and 1.3. We shall apply Proposition
4.1 and (ii) of Corollary 4.2 with ¢ = (1) + 1 and
¢g=a(l)+1, 7=7 and m:%.
Then
Qc) + A, Q) =0
and
Q(c) = 0, Nu(c) + O>(c).
Since Ny is j-degenerate we have
O'Ng(0) =0 Yn >0

for any v € Lin(y = (71,...,7;)), where 0, is the directional derivative
in direction v. From this we derive that

Oy (wo + A(,wo))je=0 =0 Vn >0.

By (iii) of Proposition 4.1 s — A((s,7),wp) is an analytic function in
s € RI, s ~ 0, it must be identically 0, hence Q((s,7)) is identically
wp, 1.e.

Q((s,7)) = wy € DC(kgy,7) C DC(K,T)
for all |s| < s;. Thus we have

(5.33)  H o Zyu(z,w) = (wo, 2w — ¢) + O (2w — ¢) + g(z,w, ¢, wp)

for any
ce A={c={(s,7):|s|] <s.}.
Since everything is analytic in s, (5.33) extends to complex s in some
neighborhood of 0.
Hence, for any ¢ € A the set

Zewo({2w = c})
is an invariant Lagrangian submanifold for the Hamiltonian system
defined by by H with respect to the the canonical symplectic structure
dzAdw, hence also with respect to the symplectic structure v/—1dzAdw.
The set

U{zw=c} x {c} cC* x !

ceA
is an analytic submanifold of (complex) dimension d + j, singular at
the origin. It’s image M under the holomorphic diffeomorphism

(z,w,c) — (chwo(z,w),c)

is therefore an analytic submanifold of (complex) dimension d + j,
singular at the origin. The image of M under the projection on {z, w}
is a subanalytic set.
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Using (iv) of Theorem 4.1, it is easy to find points on (any component
of) M > 0 where this projection, restricted to M, is onto. The image of
M under the projection is therefore an analytic subvariety of (complex)
dimension d + j. This completes the proof of Theorem 1.2.

When Ny is (d — 1)-degenerate, then

0rNi(c) = p({c, wo))wo

where p(t) = 14 O(t) is a formal power series in one variable.
Since

p({e; wo) )wo + Ale, u({c, wo) Jwo) = O(c),
taking ¢ = twy, we have (assuming wy is a unit vector)

(5.34) p(t)wo + Atwo, p(t)wo) = 0

modulo a term in O>(t). Since, by Proposition 4.1 (iii), the lefthand
side is analytic in fwy and g we obtain from (5.34) that u(t) is a con-
vergent power series. Then

t = pu(t)wo + A(two, p(t)wo)
is analytic for ¢t ~ 0, hence identically zero. We derive from this that

Q(c) = p({c, wo) )wo,
B Q(c) € DC(k,T)

for all sufficiently small ¢. Riissmann’s theorem now follows from an
argument similar to that of the end of the proof of of Theorem 1.2.

6. THE (LOCAL) NORMAL FORM THEOREM

6.1. Functional spaces and the operators P and L. We come
back to the setting and notations of Section 2, but we now consider the
general case of functions f(z,w,c,w) depending analytically on z,w, ¢
and smoothly on w. Let ¢ > 0, and denote by C"> the set of functions
f € 0D x D¢ x B) such that f(z,w,c,w) € O*(z,w,c).

Let k,7 be positive numbers and [ : R — R a fixed even, non-
negative C'*° function such that [I|] < 1, and I(z) = 0 if || > 1/2
and [(z) = 1if |z|] < 1/4. We introduce the cut-off operator P: if
fe CW’OO(ng X ]D)g X B>7 f(szv Cv(’U) = Za,ﬁGNd fa,ﬁ(cv w)zawﬁ then

P)ewew)= Y faslew)zuli(fa - 8w 2T

o,BENd

).
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A function f such that Pf = f satisfies 9°92070° f(z,w, c,w) = 0 for
any set of indices «, 5,7,0 when w € DC(k, 7). In particular such a
function is (k, 7)-flat.

Notice that P /aild M commute and that P preserves the space, that
we still denote N'R, of maps f(z,w, ¢,w) which for each fixed value of
w are in N'R.

We now define the linear operator £ : C*>(D? x D¢ x B) —
Co>= (D& x D¢ x B) (§' < d) by: L(f) = u if and only if
(6.35)

Dwu(za w, ¢, (.U) = f(Z, w, €, CU) - P(f)(za w, ¢, (.U) - M(f)(za w, ¢, (.U)
{ M(u) = P(u) = 0.

Here is the analogue of Lemma 8.1 of [EFK] the proof being the same
(the only modification is to replace d by 2d).

Lemma 6.1. One has
1 1
([Pl £ 3,0) < Col)™ (5

for any 0" < 0. The constant Cy only depends, besides s, on T and .

)(T+1)S+T+2d||f ||6,s

Since o-symmetry is an important issue we mention the following
obvious lemma (see items 4 and 5 of Lemma 2.5).

Lemma 6.2. If f € C;7™ then Pf and /—1Lf are o-symmetric.
Let us also mention the following fact:

Lemma 6.3. If f € C>(D2¢ x D¢ x B) then forj =0,1,2,3, § <4,
1

m”f“a,s.

(The notations f9), fUl are defined in (2.7), (2.8)).

Proof.  From (2.5) and the fact that (¢’ < 0)
1

max (|| f9 g, [1F7]l55) < C

il < G Gl i
we get
Hf ” , < e Amlnlo Zﬁe—%(&_y)k d#HfH
o = £ ) (5 — o)z 7 110
>0
O
We define

[fs.s = max(|Lf s [Lf D5 DL |55, IDLF D l5,0)-
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and

My = ./\/l(f(l) _ f(2)7)£f(0))_

Remark. Since we shall need it later, we notice that while £ does not
preserve o-symmetry (if f is o-symmetric, /—1Lf is o-symmetric) as
well as D (if f is o-symmetric, /—1Df is o-symmetric) the composition
DL preserves o-symmetry.

Also, we set

_ ) fl
(b = max(uma 1195, mas 1795, 1.
Notice that from Lemma 6.3,

(6.36) {fYomns < CH| 5

We denote by £ the set of (exact) symplectic (with respect to dz A
dw) o-symmetric diffeomorphisms defined on D3? x D¢ x B

- z—}—R(Z,w,Caw)
zote = (335000 )

with R, T € C*>(Ds x D¢ x D¢, B) and R, T = O*(z,w,c). If Z' is
another mapping in £ then we define

{Z - Z’}&s =max({R — R}s, {T" — T}ss)

and
(Z0Z")ew(z,w) = ZCM(Zé’w(z, w)).

We denote by 7™ the set of elements of £ that are o-symmetric.

6.2. Notations. If h is a positive number we denote by Cs(h) an ex-
pression of the form Oy x (h)=®®) where C is a constant and «f(-) is
an increasing real-valued function defined on N. Also, if (4)s, ((s)s are
sequences of positive real numbers indexed by s € N we use the short
hand notation (g, ()5 (resp. (e,¢,()s) to denote the sum of all possible
products €;(; (resp. €;6,() where ¢, j (resp. i, j, k) take value in {0, s}
and the value s is taken at most once.

6.3. The (local) Normal Form Theorem. Using the preceding no-
tations and the change of coordinates z = x + v/—1y, w = x — /=1y
we are reduced to prove the following result:
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Theorem 6.4. Let k < 1,0 < 1. There exist constants C,a > 0
(depending only on T and d) such that if H(z,w,c) is in C;7™ (o-
symmetric) and independent of w and if one assumes that for some
0<h<d/2

(6.37) (Hso < c(<1 " {H}a,orlm)a

then, there exist an exact symplectic o-symmetric change of coordinates
Z(c,w, z,w) in T and functions g(c,w, z,w), I'(c,w), Ale,w), H" in
C55%, such that

(H+ (w+Alc,w),")) o Z =T(c,w) + (w, 2w —¢) + H'(z,w, c,w)+

g(z? w’ C’ w)

where g is (k,T)-flat and [H'|s_pno = 0. Furthermore, Z,H', g,T', A
satisfy

(6.38) max(||A||5_h,s, 12 = id}s o |9llsne {H' — H}a_h,s)

< Cy((1+ {H}s0)(kh) ™) [H]s0

where Cy and «(s) are constants depending only on s, T and d.
Furthermore, if (H — H?)(z,w,c?) = O%*+(z,w,c), then (Z —
id)(z,w,? w) = O%(z,w,c), g(z,w,cw) = O*F (2w, c) and A(,w) =

02q+1(0).
Also, if
wo € DC(2K,T)

then D2 x D¢ x D}, 2 (2,w,c,\) = Ale, (1 + Nwo), Z(z,w,c, (1 +
Mwo) and H'(z,w, ¢, (1 4+ Nwy) are analytic for some 0 < 6" < 6 and
g(z,w, ¢, (1+ Nwp) =0 on DE x D¢ x D},

6.4. Proof of the local Normal Form Theorem. The proof of
Theorem 6.4 is based on the inductive step described in Lemma 6.7.
This lemma is proved in two steps. In a first time we treat the case
where My := M(HY — HODLH ) is equal to zero and in a second
step we show how to reduce to this case by adding a counter term

<A(va)7 >

6.4.1. The case when My = 0. In the next Lemma we will prove that
if My = 0, then one can apply a conjugacy to H to reduce its affine
part to a quadratically small one.



KAM-TORI NEAR AN ANALYTIC ELLIPTIC FIXED POINT 31

Lemma 6.5. Let H(z,w,c,w) € C{'7%° (hence o-symmetric) and de-

note

(6.39) €55 = [Hlsss G5 ={H}ss+ 1.
If My =0 and if

(6.40) es1 < Ci(kh)(sy

then there exist Z € E25°° (o-symmetric), T, H € C25% and a (k,T)-
flat function, o-symmetric g such that

(H+{(w, )0 Z, (2, w) = T(c,w)+{w, zw—c)+H(z,w, c,w)+§(z, w, ¢, w),

and

[H]5—h,s S Cs(’ih)gé,O <57 g, C)é,s

maX<||§||6—h,s> {H® — {7 — id}é—h,s) < Cs(Kh))G0(e, (s,

Furthermore, if (H — HP)(z,w, w) = O**(z,w,¢), then (H —
)z, w, ) = 0%z w,c), (Z — id) (2w, P110) = ON(zw,c)
and §(z,w, c?, w) = 0% (2, w,c).

Proof.  Assumme Z : (z,w) — (2/,w’) is an exact symplectic change
of variable with generating function k(z,w’,c,w) depending analyti-
cally on z,w,c and smoothly on w: 2/ = z 4+ dyk, w = w' + 9.k and
denote by H’ the hamiltonian defined by H'(2',w') = H(z,w).

With the notations of Subsection 2.2

H(z,w,c,w)=HO(z,w, c,w)+ (zw — ¢, HY (2, w, ¢, w))+

(zw — ¢, HA (2, w, ¢,w)(zw — ¢))

H'(z,w,c,w) = H’(O)(z,w, c,w)+ (zw — ¢, H'(l)(z,w, c,w))+
(2w — ¢, HB (2, w, ¢,w) (2w — ¢))

with HO, HO H'O H'Y in A'R. The equality H'(z',w') = H(z,w)
is equivalent to the fact that

(1) := (w, (z + Owk)w") + HO (2 + Ok, w', ¢, w)+
((z 4 Owk)w' — ¢, HY (2 + Ok, w', ¢, w))+

(2 + Opk)w' — ¢, H (2 + Ok, ', ¢, w)((2 + Owk)w' — c))
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is equal to

(I1) == {(w, 2(w' + 8.k) — &) + T (c,w) + H' O (2,0’ + 0.k, ¢, w)+
(2w + 8.k) — ¢, H'D (2,0’ + 0.k, c,w))+

(2(w'+8.k)—c, HP (2, w'+0.k, ¢, w) (2 (0 +8.k)—c) ) +¢' (2, w'+0.k, ¢, w)
Since (z + Opk)w' = z(w' + 0,k) — Dk we can write

0=(I)—(II) = =Dk + (w,c) = T'(c,w) + HO (2 4 Ok, w', ¢, w)+
(2 + Owk)w' — ¢, HV (2 + Ok, w', c,w))+
(z(w' 4 0.k) — ¢ — Dk, H¥ (2 + Ok, w', c,w) (z(w' + 0.k) — ¢ — Dk))
— H’(O)(z,w' + 0.k, c,w)—
(z(w + 0.k) — ¢, H' (2,0 + 0.k, ¢, w))—

(z(w'+0.k)—c, H'm(z, w40k, c,w)(z(w'+0.k)—c))—g (2, w'+0.k, ¢, w)
and then,

0=(I)—(II) = =Dk + (w,c) — I"(c,w) + HO (2,0, ¢, w)+
(zw' — ¢, HY (2,0, ¢, w)) — 2(Dk, HA (2, w', ¢, w) (2w’ — ¢))
— H' (2w + 0.k, ¢, w) — (z(w + 0.k) — ¢, H'D (2,0’ + 8.k, ¢, w))—
(2(W'+0.k)—c, (H' (2, w'+0.k, ¢, w)— HP (240, k, 0, ¢, w)) (2(w'+8.k)—c))
—J'(z,w' c,w) + Q

where Q is quadratic expression in (H©®, H® ¢/ k) and their first
derivatives and depending on H?; more precisely

Cs
h3d

1QI5-1.s < ((HH(O)II&S + IH s + I1H |55k lls0) | £lls0+

(L ls0 + 1 H D50 + HHM||5,o!|k!|5,o)!|/f!|a,s)
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Finally,
0=(I)— (II) = =Dk + (w,¢c) — I"(c,w) + HY (2,0, ¢, w)+
(zw' — ¢, HY (2,0, ¢, w)) — 2(Dk, H? (2,0, ¢, w) (2w’ — ¢))
— H' O 0w + 0.k, c,w) — (z(w + 0.k) — ¢, H' (2,0 + 0k, ¢, w))—
(2(w'+0.k)—c, (HP (2, w'+0.k, ¢, w)— HE (240 k, ', ¢, w)) (2(w'+0,k)—c))
+ 2Dk, HP¥ (2,0, ¢, w) (20" — ¢)®?) — ¢'(z, 0, c,w) + Q

Let us now define I''(c,w), k(z,w', c,w) = kO (2,0, ¢, w) + {(zw’ —

C)v k(l)(zu wla va)> and g/(sz e w) - g /o )(sz e w)+<zw’—c, g/(l)(z w' 1 Gy w))
according to

[(e,w) = {c,w)+ MHO

(6.41) g = P(H®)

gV = PHY — (DKO, HO)
(6.42) {’f@ = LH )
' KD = £(HD — (DEO, H®))

and Z, H by H'(Z,w'") = H(z,w) and Z(z,w,c,w) = (2,w’) if and
only if 2/ = 2z + Oyk(z,w', c,w) and w = w' + 0,k(z,w', c,w): observe
that

(6.43) maxX (|| klls—n,s: [1'lls-n.s) < Cs(rh) (€, Cas

and hence, if the latter quantity is small enough (see the comment pre-
ceding equation (6.45), by the Inverse Function Theorem (see Propo-
sition 10.3 of [EFK]), the change of variables (z,w) — (2/,w’) and
its inverse are well defined. Since by assumption My = M(HW
(DK H®)) = 0 we have

DEO (¢, w,z,w') = HO(z,w'e,w) — ((w, ¢®) = T'(c,w))

)
(

’Dwk(l) (C, w, 2, w,) = H(l) (Z, U)/, C, (A)) — <Dk(0), H(2) (Z, wla & w)>
(
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We then have
HO (2w + 8.k, ¢,w) + (z(w + 8.k) — ¢, H'V (2,0 + 0k, c,w))+
(2(w'+0.k)—c, (H (2, w'+0.k, ¢, w)— HE (240 k, ', ¢, w)) (2(w'+0,k)—c))

— 2Dk, HP¥ (2,0, ¢, w) (2w — ¢)®?)
+ 2(DEW (2,0, ¢, w) (2w’ — ¢), H? (2,0, ¢, w) (2w — ¢))
=0Q
If we define
O = H' (2,0 +0.k, c,w)+ (z(w +0.k)—c, H' (2,0 + 0.k, ¢, w)) +
(z(w'+0.k)—c, (H'p](z, w40, k, ¢, w)—HZ (240, k, w', ¢, w)) (z(w'+0,k)—c))

— 2(Dk(z,w' + 0.k, c,w), H¥(z,w' + 0.k, ¢, w)(2(w' + 0.k) — ¢)®?)
—2DEW (2, W' 40,k, ¢, w) (z(w'+0.k)—c), H? (2, w'+0.k, ¢, w) (2(w'+0.k)—c))

we see that Q is still quadratic in H®, HO ¢, k and their first
derivatives:

N C,
©040) 19l < i (1O e+ 1H s+ 1l

; ||H[3]||6,s||k||6,0) kllso+

(||H(°) lso + 1V lso + | HZ ls0llklls0 + [ ||570||k||6v°) ||k‘||678)

and thus .

1Qll5-h.s < Co(rh))Cs0(Es €, (oo
Coming back to the variables (z,w) and setting Q'(z, w) = Q(z,w') we
see that

H/(O) (Z, w, C, (A)) —+ <Z’LU — C, Hl(1)<z7 w, C, W>>+

(zw — ¢, (H(z,w, c,w) — HA(z + Ok, 0, c,w)) (2w — ¢))

- 2<Dk‘(2’, w, ¢, CU), H[g}(za w, €, CU)(Z’LU - C)®2>
— <Dk:(1)(z, w, c,w)(zw — ¢), H(z)(z, w,c,w)(zw—c)) =

where @’ is still quadratic in the following sense: from Proposition 10.3
of [EFK] (estimates on composition with the inverse map of the change
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of variables), (6.44), (6.42) and Lemmas 6.1 and 6.3 we get, provided
Ci(kh){(e,()s1 <1 (which is the case if g5; < Cl(ﬂh)cgll)

(6.45) 19 |6=rs < Cs(kh)(s0(e,€,C)ss

By Lemma 2.4, H’ @ and H'Y are uniquely determined by Q' since
they are in AR and hence are quadratically small: by Lemma 6.3

(646) [H/]5—h,s S Cs(’ih)gé,(] <67 &, C>5,S
Then, H'™® — H®2 is of the order of (the derivative of) k:
(6.47) {HP) — HP} 5 ) o < Co(kR))Cs0(E, C)is

Finally, in the case (H — HPZ)(z,w,? w) = O%*(z,w,c), for-
mulas (6.41) and (6.42) show that ¢'(z,w,c* w) and k(z,w,c?) are
0?1 (z,w, ¢). Hence also (Z — id)(z,w,c* w) = O%(z,w, c).

We have so far proved that with the choices (6.41) and (6.42)

(H+(w, ))oZp(z,w) = T"(c, w)+{w, zw—c)+H'(z,w, c,w)+¢'(z,w, ¢, w),

where H' satisfies the estimates (6.46) and (6.47).

We are not completely finished with the proof of our Lemma since
nothing insures us that the change of variables Z; we have performed is
o-symmetric. Let us introduce Z; the time 1-map of the hamiltonian
vector field v/—1JVk. The equations (6.42) show that \/—1k is o-
symmetric (see the remark following Lemma 6.3) and thus Zj, is o-
symmetric (see Lemma 7.1). The assumption (6.40) allows to apply
Proposition 7.2: we have {Z; o Z — I'}s_n.. = Co(R){||K||, | k||)s.s and
thus we can write
(6.48)

(H + (w,)) o Zp = T(c,w) + (w, 2w — ¢) + H(z,w, ¢, w) + ¢' (2, w0, ¢, w).

where the estimates on composition of Proposition 10.2 of [EFK] and
estimates (6.43) show that

(649) [H]5—h,s < CS(Hh)CJ,O <57 g, C)J,s

(6.50) {IZIM — H[z}}é—h,s < Cy(kh))Cs0(e,()s,s-

Equations (6.41), show that ¢’ is o-symmetric.
U

6.4.2. Elimination of the mean value My. Here is a lemma similar to
Lemma 8.4 of [EFK], that allows to eliminate My by adding a term

<Aa >
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Lemma 6.6. Let W € £77™ and denote
Ts = {W — id}57s.

There exists a constant Cy such that if nso < COC(;Ol then there exists
A eCy™, A= A(c,w) such that

Hy=H4+ (A, Yo W
verifies Mg = 0 and such that for all s € N, 0 <h < ¢

||A||5—h,s S CS(K}I’)C&O(&ju gv n + C + €>5,S
and
[Hx — Hpls—ns < Cs(kh)Cs0(e, o+ C + €)ss.

Furthermore, if (H — H?)(z,w, ¢, w) = O**(z,w, ¢) then A(,w) =
02+ (¢) and (Hy — H) (2w, 2, w) = 024 (2w, ¢).

Proof.  Let us denote by W, : (z,w) — (2, w') = (z4+R(z, w, ¢, w), w+
T(z,w,c,w)). Using Hy = H + (A(c,w), (z+ R)(w + T) — ¢)), we now
compute the canonical decomposition of H, in terms of the canonical
decomposition of H and A. We have

(A, (z+ R)(w+T)—c)) = (A, zw — ¢) + Z (A, U9 (2w — ¢)®7)

+ (A UB (2w — ¢)®%)

where Z?:o U9 (zw—¢)® + UPl (2w — ¢)®3 is the canonical decomposi-
tion of 2T +wR + RT. Then, for j =0, 2, ]Z[[(f) = HU) + (A, UY.) and
]:II(\I) = HWY + (A, (I +UW)-). From this it follows that A — My =
/\/l(lf[/(xl) — f[}\z)DﬁfI/(xo)) is a map of the form My +a;-A+as- (A®A)
with

[ Mp[s-n,s < Cs(kh)Cs0(e, C)ss-

max(lay = Ils-n.s, lazlls-n.s) < Ca(kh)Cs0(n + ¢+ €m)ss

Now, the first part of the lemma follows from (6.36), the Inverse Func-
tion Theorem and the estimates of Section 10 of [EFK].

Furthermore, since My(c? w) = O%*!(c), we see that A(c? w) =
O?71(¢) and the last statement of the lemma is proven O
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6.4.3. The inductive step. Putting together Lemmas 6.5 and 6.6 we
get similarly to Proposition 8.2 of [EFK] the following KAM induction
step.

Lemma 6.7. Let H, g,T be in C, 5 where g is (k,T)-flat and W be in

EUJO'OO

There are positive constants C and a such that if ny < C¢;* and

a

e < | kh¢y (1 —|—77571)_1> then there exist Z' € £9°°, I',N', ¢, H' €
C; %™ where g’ is (k, T)-flat such that

(H+T(c,w) + g+ (w, ) + (Ae,w), ) o W) o Z (z,w) =
Me,w) + (w, zw —¢) + H(z,w,c,w) + ¢ (2,w, c,w),

and for any s € N, 0 < h < §/2,
[H'|5-n,s < Cs(kh)Cs0(e,€,C)s,s

max (||A||ova_h,s, 1 = gllsns (' — HEY,

{Z' —id}s_ps, AW 0 Z' — W}é—h,S) < CS(“h)gg,O<5u C+n)ss

Furthermore, if(H—Hm)( W) = (92‘1+1(z w,c) and g(z,w, c*, w)
0%+ (2w, c), then (H' — )( w, W) = 0%z, w,c) and (Z' —
id)(z,w, *,w) = (’)2q(z,w c), N(c, ) Ot (), g(z,w,c2,w) =
O (2, w, c).

6.4.4. Convergence of the KAM scheme. As in Section 8.5 of [EFK] the
preceding Lemma 6.7 applied inductively is enough to prove Theorem
6.4. We refer the reader to Sections 8.4 and 8.5 of [EFK] for a proof of
this fact.

6.4.5. End of the proof. To this point we have proven a theorem, let us
call it (1"), which is Theorem 6.4 except the statement on the analytic-
ity with respect to A when w is replaced by (14 \)wg. This theorem (77)
applied to the analytic function (z,w, (¢, \)) — H(z,w, ¢, (1 + Nwp),
(z,w,c,\) € D2 x DI with s = 0, completes the proof of Theorem
6.4.

7. APPENDIX

7.1. Appendix A. For k > 0 we assume given for some 7, > 0, with
lim, 07, = 0, and a family of maps W,, : R? x T — R? x R? that are
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of the form

Wlc,0) = Wi(c,0) + e,

W(c,0) = (c1sin(276,), c1 cos(2mby), . . ., casin(2mby), cq cos(2mly))
where €, (0,-) = 0 we have for every £ < n,
(7.51) max  (|e(2)] + | Ve (z)]) < £

Z‘Ecd(f)XTd
where Cy(€) := {c € R : |¢;] < &,Vi}, and assume that ¥, C Cy(n,)
are a family of measurable sets such that
mes(X,)
im ———
#=0 mes(Ca (1x))
Denote Bag(0, &) the product {a? +y? <&} x ... x {22+ y2 < &}
Then we have the following

Lemma 7.1. Denote by %, = W, (3. x TY). Then, for any v > 0, if
K 1s sufficiently small we have

(7.52) mes (3, N Baa(0,7,))/mes(Baq(0,7,)) > 1 — v

Proof.  For € > 0, define Cy(ny, €) := Ca(n,) N {|ci| > €|cj|, Vi, 5} We
also define ¥, . = ¥, N Cy(ns, €).

We have that W (Cy(n,) x T%) = Byg(0,7,). Also, it is not hard to
see that if € and then x are sufficiently small then
(7.53) mes(W (2, x T9))/mes(Bag(0,7,)) > 1 — v/?

and from (7.51)

=1

|JacW,, — JacW| < /%|JacW|
on Cy(n,, €) x T4, which gives

(7.54) mes(W, (Xpe x TY) > (1 — v*)mes(W (X, x TY)

Wa also have that W, (Cyq(n,) x T¢) C Bag(0, 1, + 0(n,)). (7.52) hence
follows from (7.53) and (7.54) if v < 1.
U

7.2. Appendix B: Generating functions and time-1 map of
Hamiltonian flows. There are two classical methods to construct
symplectic diffeomorphisms. The first one, which we have been using
throughout the paper, is the generating function method: given f :
(C?10) — C we define the symplectomorphism Z : (C*,0) — (C*,0)
implicitly by the equations

2 =24 O f(z,w')
w=w+0,f(z,w).

(7.55) {Zf(z,w):(z’,w’) <:>{
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A second classical method is to use the so-called “Lie method”.
Given f : (C*,0) — C, we introduce the hamiltonian flow (¢%) de-
fined by the hamiltonian (with respect to the symplectic form dz A dw)

vector field JV f where J = (21 _0[d> and we let Z; be the time-1-

symplectomorphism ¢7.

The first method is well adapted in the formal setting but has the
drawback of not preserving o-symmetry. On the other hand, the Lie
method preserves o-symmetry.

Lemma 7.1. If /—1f is o-symmetric, then Zf 1S o-symmetric.

Proof. Let us use the change of variables (z,w) — (z,y), z = $(z +
V—1y), w = 3(z —+/=1y). It transforms the symplectic form dz A dw
to —v/—1dz A dy and the hamiltonian flow JV f(z,w) is transported
to vV—1JV f(x,y) where f(z,y) = f(z,w). But v—1f(z,y) takes real
values when z and y are real (since v/—1f is o-symmetric). Hence its
time-1-map has the same property. Coming back to the variables (z, w)
shows that Z ¢ is o-symmetric. O

Nevertheless, we notice that, Z; and Z ¢ differ by a quantity which
is quadratic in f (and its derivatives).

Proposition 7.2. There exists & > 0 such that if f € C{°° satisfies
forO<h<d

(7.56) I flls1 < ER?
then 4,
(7.57) {Z; o Zp = I1d}s—ps = Co(B)ILF I I f1D)ss

Furthermore, if f(z,w,c* w) = O (z w,c) then Z;l o Z; —id =
O*(z,w, c).

Proof.  Let us denote by W the local diffeomorphism (C2?,0) — C24,
W(z,w) = (240w f(z,w,c,w),w—0,f(z,w, c,w)). Proposition 7.2 will
follow from the following two lemmas 7.3 and 7.4

Lemma 7.3. There exists a constant & > 0 such that if 0 < h < and

f satisfy

(7.58) I.flls.x < &R

then

(7.59) W —Zs}sns = Ca(WFI N Db

4The notations are those of Section 6.2.
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Proof. If Zy: (z,w) — (2',w') we can write

(7.60)
2 =24 0uf(z,w,c,w) + (O f(z,w, c,w) — Opf(z,w, c,w))
w=w-—0,f(z,w,c,w)+ (0, f(z,w,c,w) — 0, f(z,w, c,w)).

and using Proposition (10.3) of [EFK] we notice that (z, w) — w'(z, w, ¢, w)—
w has a || - ||s—ns norm less or equal than Cs(h)||fl|s.s and by Propo-
sition 10.2 of [EFK] that (z,w) — f(z,v' c,w) — f(z,w,c,w) has a
| - [|6—ns norm less or equal than Cs(h)(||f], ||f|])ss- The conclusion

then follows. O
Lemma 7.4. There exists a constant & > 0 such that if 0 < h < and
f satisfy

(7.61) [ flls0 < €A

then one has

(7.62) {W = ZsYsons = C(R)LFNL LA 1) 6o

Proof.  If uy,cw(-) (we shall denote u for short, u(t) := (2(t), w(t)))
is a solution of the differential equation u/(t) = JV f(u(t), c,w), u(0) =
ug, |u(0)| <6 —h, |c] <6, w € B one has, as long as the solution u(-)
is defined,

(7.63) u(t) = u(0) —I—/O JV f(u(s),c,w)ds,

Let [0, tmar) @ maximal interval of definition of the solution u and,
if it exists, t, := inf{t € [0,t;0z) : |u(t)] > 6 — (h/2)}. One has, for
0 <t < t, and some constant C'

(7.64) u(®)] < u(0)| + Ct| TV flls0
(7.65) < [u(0)] + Ct(h/2)7" fllso-
Assume that ¢, exists and is < 1; then

u(t.)| <6 = h+ Ct(h/2) 7| fllso

<§—(3h/4)

provided C(h/2)7Y|fls0 < h/4, which is the case if the constant £ in
(7.61) is small enough. But, by definition |u(t.)| > § — (h/2) which is
a contradiction; hence t, if it exists is > 1.

The theorem on continuous (and differentiable) dependence of the so-
lution of an O.D.E with respect to the initial condition and parameters
then shows that (z,w) — ¢}(2,w,c,w) is an analytic diffeomorphism
with respect to (z,w) € D2, analytic with respect to ¢ € D?¢ and
depending smoothly on w € B.
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Now, the Linearization Theorem for O.D.E. tells us that the deriva-
tive v(+) = Oulhug,ew(+) Of Uygcw(-) With respect to w satisfies the affine
equation

(7.66) v'(t) = DuJV f(tygcw(t),c,w) - v(t) + Dy V f(tUyg ew(t), ¢, w)

with initial condition v(0) = 0. More generally, 0%y, .., satisfies the
differential equation
(7 67)

E&guuw,w(t) = Dy JV (g cw(t), ¢, w) - OUyy.cw(t) + Galt, ug, ¢, w)

with initial condition Oy, ¢, (0) = 0 and where G, is a finite sum of
terms (the number of which depends only on |«| and d) of the form

(7.68) D™DL IV f(Unyew(t), ¢, w) = (07 Uy cw(t), o 0P Uy c(t))

with [ + -+ |Bm] + 1 = |a|, (m,1) # (1,0). Let us now prove by
induction on || that for any 0 <¢ <1

(7.69) 1050 (0)ll5-n.0 < Clag (AL + [1f10.6) ™I Fllsa-

Assume that there exist a positive valued increasing function s — a(s)
defined for s € N, 0 < s < |a|—1 and C > 0 such that for any || < |a],
any 0 <t <1

(7.70) 1050 (t)lls-no < CH= WD+ £ll50) PV £ll551
We get for |ug] < d—h, || <d,we B, 0<t<1
[(7.68)] < Cad ™ HIDLFlso(CH= DA + (1 £ lls0) 1Pl s 1) - -
(CR™ DL 4| Fll50) VD1 115 5,00
and using the convexity estimates, see Proposition 10.1 of [EFK]
—m— —l/]a I/
(7.68)] < Cad ™™ 155" e
(Ca k=PI + | £ 15.0) D £ (15707l - -
(Conh™ WD (1 7 la0) 11 50 171
and finally since |B1| 4+ -+ + |G| + 1 = |

(7.71) [(7.68)] < Calh™ L+ 1 150)) VIl flls o

provided a(|a|) > m+1+a(|f1)|+ -+ a(|Gn|). Let us come back to
the affine differential equation (7.67) and let R(t, s) be the resolvent of
the associated linear differential equation,

(7.72) V' (t) = Dy V f Uy cw(t), c,w) - v(t).
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By the variation of constant formula we get
t
O Uy e (t) = / R(t, s)Ga(t, ug, c,w)ds.
0

Foruy € D3, ceD? we B,0<s<t<1weseethat |R(t,s)] <eM
where M is the supremum of the norm of D, JV f(u, c,w) on Ds_p o x
D5 x B. We notice that M < const.| f||soh ™2 and that if the constant
¢ in (7.61) is small enough M < 1. Hence, for 0 <t < 1, we get from
(7.71)

(7.73) 105 g ()] < Cae(h™H (L4 1| Flls0) V11 Flls o

This complete the proof of (7.69) by induction.
To finish the proof of the Lemma we write

1
(7.74) Uy ew(l) —up = / (JV (g cw(s), c,w) — IV f(ug, c,w))ds
0

and use Proposition 10.2 (i) of [EFK]:

1
(1) = -lsne < B / T 1(8)) 50t

which is < C(A(L+ | £ll50){ILAI 111 =

The proof of Proposition 7.2 can now be completed using the es-
timates of Proposition 10.2 and 10.3 of [EFK] on compositions and
inverses of functions. The last statement of the Proposition follows
from the validity of a similar statement in Lemma 7.3 and 7.4. U
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