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Abstract. Balancing a matrix is a preprocessing step while solving the nonsymmetric eigenvalue problem.
Balancing a matrix reduces the norm of the matrix and hopefully this will improve the accuracy of the

computation. Experiments have shown that balancing can improve the accuracy of the computed eigenval-
ues. However, there exists examples where balancing increases the eigenvalue condition number (potential

loss in accuracy), deteriorates eigenvector accuracy, and deteriorates the backward error of the eigenvalue

decomposition. In this paper we propose a change to the stopping criteria of the LAPACK balancing al-
gorithm, GEBAL. The new stopping criteria is better at determining when a matrix is nearly balanced. Our

experiments show that the new algorithm is able to maintain good backward error, while improving the

eigenvalue accuracy when possible. We present stability analysis, numerical experiments, and a case study
to demonstrate the benefit of the new stopping criteria.

1. Introduction

For a given vector norm ‖ · ‖, an n-by-n (square) matrix A is said to be balanced if and only if, for all i

from 1 to n, the norm of its i-th column and the norm of its i-th row are equal. A and Ã are diagonally

similar means that there exists a diagonal nonsingular matrix D such that Ã = D−1AD. Computing D

(and/or Ã) such that Ã is balanced is called balancing A, and Ã is called the balanced matrix.
Using the 2-norm, given an n-by-n (square) matrix A, Osborne [11] proved that there exists a unique

matrix Ã such that A and Ã are diagonally similar and Ã is balanced. Osborne [11] also provides a practical

iterative algorithm for computing Ã.
Parlett and Reinsch [12] (among other things) proposed to approximate D with D2, a diagonal matrix

containing only powers of two on the diagonal. While D2 is only an approximation of D, Ã2 = D−12 AD2 is
“balanced enough” for all practical matter. The key idea is that there is no floating-point error in computing

Ã2 on a base-two computing machine.
Balancing is a standard preprocessing step while solving the nonsymmetric eigenvalue problem (see for

example the subroutine DGEEV in the LAPACK library). Indeed, since, A and Ã are similar, the eigenvalue

problem on A is similar to the eigenvalue problem on Ã. Balancing is used to hopefully improve the accuracy
of the computation [1, 2, 3, 4]. However, there are examples where the eigenvalue accuracy [13], eigenvector
accuracy [10], and backward error will deteriorate. We will demonstrate these examples throughout the
paper.

What we know balancing does is decrease the norm of the matrix. Currently, the stopping criteria for
the LAPACK balancing routine, GEBAL, is if a step in the algorithm does not provide a significant reduction
in the norm of the matrix (ignoring the diagonal elements). Ignoring the diagonal elements is a reasonable
assumption since they are unchanged by a diagonal similarity transformation. However, it is our observation
that this stopping criteria is not strict enough and allows a matrix to be “over balanced” at times.

We propose a simple fix to the stopping criteria. Including the diagonal elements and balancing with
respect to the 2-norm solves the problem of deteriorating the backward error in our test cases. Using
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the 2-norm also prevents balancing a Hessenberg matrix, which previously was an example of balancing
deteriorating the eigenvalue condition number [13].

Other work on balancing was done by Chen and Demmel [2, 3, 4]. They extended the balancing literature
to sparse matrices. They also looked at using a weighted norm to balance the matrix. For nonnegative
matrices, if the weight vector is taken to be the Perron vector (which is nonnegative), then the largest eigen-
value has perfect conditioning. However, little can be said about the conditioning of the other eigenvalues.
This is the only example in the literature that guarantees balancing improves the condition number of any
of the eigenvalues.

The rest of the paper is organized as follows. In Section 2 we provide background and review the current
literature on balancing. In Section 3 we introduce a simple example to illustrate why balancing can deteriorate
the backward error (and the accuracy of the eigenvectors). In Section 4 we provided backward error analysis.
Finally, in Section 5 we look at a few test cases and conclude that that using the 2-norm in the balancing
algorithm is the best solution.

2. The Balancing Algorithm

Algorithm 1 shows Osborne’s original balancing algorithm, which balances a matrix in the 2-norm [11].
The algorithm assumes that the matrix is irreducible. A matrix is reducible if there exists a permutation
matrix, P , such that,

(1) PAPT =

(
A11 A12

0 A22

)
,

where A11 and A22 are square matrices. A diagonally similarity transformation can make the off-diagonal
block, A12, arbitrarily small with D = diag(αI, I) for arbitrarily large α. For converges of the balancing
algorithm it is necessary for the elements of D to be bounded. For reducible matrices, the diagonal blocks
can be balanced independently.

Algorithm 1: Balancing (Osborne)

Input : An irreducible matrix A ∈ Rn×n.
Notes : A is overwritten by D−1AD, and converges to unique balanced matrix. D also converges to a

unique nonsingular diagonal matrix.

1 D ← I

2 for k ← 0, 1, 2, . . . do
3 for i← 1, . . . , n do

4 c←
√∑

j 6=i
|aj,i|2, r ←

√∑

j 6=i
|ai,j |2

5 f ←
√
r

c
6 dii ← f × dii
7 A(:, i)← f ×A(:, i), A(i, :)← A(i, :)/f

The balancing algorithm operates on columns and rows of A in a cyclic fashion. In line 4, the 2-norm
(ignoring the diagonal element) of the current column and row are calculated. Line 5 calculates the scalar,
f , that will be used to update dii, column i, and row i. The quantity f2c2 + r2/f2 is minimized at f =

√
r
c ,

and has a minimum value of 2rc. It is obvious that for this choice of f , the Frobenius norm is non-increasing
since,

‖A(nk+i)‖2F − ‖A(nk+i+1)‖2F = (c2 + r2)− (2rc) = (c− r)2 ≥ 0.
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Osborne showed that Algorithm 1 converges to a unique balanced matrix and D converges to a unique (up
to a scalar multiple) nonsingular diagonal matrix. The balanced matrix has minimal Frobenius norm among
all diagonal similarity transformations.

Parlett and Reinsch [12] generalized the balancing algorithm to any p-norm. Changing line 4 to

c←
(∑

j 6=i
|aj,i|p

)1/p
, r ←

(∑

j 6=i
|ai,j |p

)1/p
,

the algorithm will converge to a balanced matrix in the p-norm. Parlett and Reinsch however, do not quantify
if the norm of the matrix will be reduced or minimized. The norm will in fact be minimized, only it is a

non-standard matrix norm. Specifically, the balanced matrix, Ã,

‖Ã‖p = min
(
‖vec(D−1AD)‖p | D ∈ D

)
,

where D is the set of all nonsingular diagonal matrices and vec stacks the columns of A into an n2 column
vector. For p = 2, this is the Frobenius norm.

Parlett and Reinsch also restrict the diagonal element of D to be powers of the radix base (typically 2).
This restriction ensures there is no computational error in the balancing algorithm. The algorithm provides
only an approximately balanced matrix. Doing so without computational error is desirable and the exact
balanced matrix is not necessary. Finally, they introduce a stopping criteria for the algorithm. Algorithm 2
shows Parlett and Reinsch’s algorithm for any p-norm. Algorithm 2 (balancing in the 1-norm) is essentially
what is currently implemented by LAPACK’s GEBAL routine.

Algorithm 2: Balancing (Parlett and Reinsch)

Input : A matrix A ∈ Rn×n. We will assume that A is irrreducible.
Output: A diagonal matrix D and A which is overwritten by D−1AD.
Notes : β is the radix base. On output A is nearly balanced in the p-norm.

1 D ← I

2 converged← 0

3 while converged = 0 do
4 converged← 1

5 for i← 1, . . . , n do

6 c←
(∑

j 6=i
|aj,i|p

)1/p
, r ←

(∑

j 6=i
|ai,j |p

)1/p

7 s← cp + rp, f ← 1

8 while c < r/β do
9 c← cβ, r ← r/β, f ← f × β

10 while c ≥ rβ do
11 c← c/β, r ← rβ, f ← f/β

12 if (cp + rp) < 0.95× s then
13 converged← 0, dii ← f × dii
14 A(:, i)← f ×A(:, i), A(i, :)← A(i, :)/f

Again, the algorithm proceeds in a cyclic fashion operating on a single row/column at a time. In each step,

the algorithm seeks to minimize fpcp + rp/fp. The exact minimum is obtained for f =
√
r/c. Lines 8-11
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find the closest approximation to the exact minimizer. At the completion of the second inner while loop, f
satisfies the inequality

β−1
(r
c

)
≤ f2 <

(r
c

)
β.

Line 12 is the stopping criteria. It states that the current step must decrease fpcp + rp/fp to at least 95%
of the previous value. If this is not satisfied then the step is skipped. The algorithm terminates when a
complete cycle does not provide significant decrease.

Our observation is that the stopping criteria is not a good indication of the true decrease in the norm
of the matrix. If the diagonal element of the current row/column is sufficiently larger than the rest of the
entries, then balancing will be unable to reduce the matrix norm by a significant amount (since the diagonal
element is unchanged). Including the diagonal element in the stopping criteria provides a better in indication
of the relative decrease in norm. This could be implemented by changing line 12 in Algorithm 2 to

(cp + rp + |aii|p) < 0.95× (s+ |aii|p).

However, it is easier to absorb the addition of the diagonal element into the calculation of c and r. This is
what we do in our proposed algorithm (Algorithm 3). The only difference in Algorithm 3 and Algorithm 2
is in line 6. In Algorithm 3 we include the diagonal elements in the calculation of c and r.

Algorithm 3: Balancing (Proposed)

Input : A matrix A ∈ Rn×n. We will assume that A is irrreducible.
Output: A diagonal matrix D and A which is overwritten by D−1AD.
Notes : β is the radix base. On output A is nearly balanced in the p-norm.

1 D ← I

2 converged← 0

3 while converged = 0 do
4 converged← 1

5 for i← 1, . . . , n do
6 c← ‖A(:, i)‖p, r ← ‖A(i, :)‖p
7 s← cp + rp, f ← 1

8 while c < r/β do
9 c← cβ, r ← r/β, f ← f × β

10 while c ≥ rβ do
11 c← c/β, r ← rβ, f ← f/β

12 if (cp + rp) < 0.95× s then
13 converged← 0, dii ← f × dii
14 A(:, i)← f ×A(:, i), A(i, :)← A(i, :)/f

The 1-norm is desirable for efficiency and the typical choice of norm in the LAPACK library. However, we
where unable to solve all of our test cases using the 1-norm. The 2-norm is able to balance the matrix while
not destroying the backward error for all our test cases. Therefore, we propose using p = 2 in Algorithm 3.
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3. Case Study

The balancing algorithm requires that the matrix be irreducible. The case study we present in this section
shows the potential danger if a matrix in nearly irreducible. Consider the matrix

A =




1 1 0 0
0 2 1 0
0 0 3 1
ε 0 0 4




where 0 ≤ ε� 1 [10]. As ε→ 0 the eigenvalues tend towards the diagonal elements. Although these are not
the exact eigenvalues (which are computed in Appendix A), we will refer to the eigenvalues as the diagonal
elements. The diagonal matrix

D = α




1 0 0 0
0 ε1/4 0 0
0 0 ε1/2 0
0 0 0 ε3/4


 ,

for any α > 0, balances A exactly for any p-norm. The balanced matrix is

Ã = D−1AD =




1 ε1/4 0 0
0 2 ε1/4 0
0 0 3 ε1/4

ε1/4 0 0 4


 .

If v is an eigenvector of Ã, then Dv is an eigenvector of A. The eigenvector associated with 4 is the
most problematic. The eigenspace of 4 for A is span((1, 3, 6, 6)T ). All of the components have about the

same magnitude and therefore contribute equally towards the backward error. The eigenspace of 4 for Ã
approaches span((0, 0, 0, 1)T ) as ε → 0 and the components begin to differ greatly in magnitude. Error in

the computation of the small elements are fairly irrelevant for backward error of Ã. But, when converting
back to the eigenvectors of A the errors in the small components will be magnified and a poor backward
error is expected. Computing the eigenvalue decomposition via Matlab’s routine eig with ε = 10−32 the
first component is zero. This results in no accuracy in the eigenvector computation and backward error.
Appendix A provides detailed computations of the exact eigenvalues and eigenvectors of the balanced and
unbalanced matrices.

This example can be generalized to more cases where one would expect the backward error to deteriorate.
If a component of the eigenvector that is originally of significance is made to be insignificant in the balanced
matrix, then error in the computation is magnified when converting back to the original matrix.

Moreover, the balanced matrix fails to reduce the norm of the matrix by a significant amount since

‖vec(Ã)‖1
‖vec(A)‖1

→ 10/13

as ε→ 0. If we ignore the diagonal elements, then

‖vec(Ã′)‖1
‖vec(A′)‖1

→ 0,

where A′ denotes the off diagonal entries of A. Excluding the diagonal elements makes it appear as if
balancing is reducing the norm of the matrix greatly. But, when the diagonal elements are included the
original matrix is already nearly balanced.
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4. Backward Error

In this section u is machine precision, c(n) is a low order polynomial dependent only on the size of A, and
Vi is the ith column of the matrix V .

Let Ã = D−1AD, where D is a diagonal matrix and the elements of the diagonal of D are restricted

to being exact powers of the radix base (typically 2). Therefore, there is no error in computing Ã. If a

backward stable algorithm is used to compute the eigenvalue decomposition of Ã, then ÃṼ = Ṽ Λ+E, where

‖Ṽi‖2 = 1 for all i and ‖E‖F ≤ c(n)u‖Ã‖F . The eigenvectors of A are obtained by multiplying Ṽ by D,

again there is no error in the computation V = DṼ . Scaling the columns of V to have 2-norm of 1 gives

AVi = λiiVi +DEi/‖DṼi‖2 and we have the following upper bound on the backward error:

‖AVi − λiiVi‖2 =
‖DEi‖2
‖DṼi‖2

≤ c(n)u
‖D‖2
‖DṼi‖2

‖Ã‖F

≤ c(n)u
‖D‖2‖Ã‖F
σmin(D)

= c(n)uκ(D)‖Ã‖F .
Therefore,

(2)
‖AV − V Λ‖F
‖A‖F

≤ c(n)u
κ(D)‖Ã‖F
‖A‖F

.

If Ṽi is close to the singular vector associated with the minimum singular value then the bound will be

tight. This will be the case when Ã is near a diagonal matrix. On the other hand, if Ã is not near a diagonal

matrix then most likely ‖DṼi‖2 ≈ ‖D‖2 and the upper bound is no longer tight. For this case it would be

better to expect the error to be close to c(n)u‖Ã‖F .
Ensuring that the quantity

(3) u
κ(D)‖Ã‖F
‖A‖F

is small will guarantee that the backward error remains small. The quantity is easy to compute and therefore a
reasonable stopping criteria for the balancing algorithm. However, in many cases the bound is too pessimistic
and will tend to not allow balancing at all (see Section 5).

5. Experiments

We will consider four examples to justify balancing in the 2-norm and including the diagonal elements in
the stopping criteria. The first example is the case study discussed in Section 3 with ε = 10−32.

The second example is a near triangular matrix (a generalization of the case study). Let T be a triangular
matrix with normally distributed nonzero entries. Let N be a dense random matrix with normally distributed
entries. Then A = T + εN , with ε = 10−30. Balancing will tend towards a diagonal matrix and the
eigenvectors will contain entries with little significance. Error in these components will be magnified when
converting back to the eigenvectors of A.

The third example is a Hessenberg matrix, that is, the Hessenberg form of a dense random matrix with
normally distributed entries. It is well known that balancing this matrix (using the LAPACK algorithm)
will increase the eigenvalue condition number [13].

The finally example is a badly scaled matrix. Starting with a dense random matrix with normally
distributed entries. A diagonally similarity transformation with the logarithm of the diagonal entries evenly
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spaced between 0 and 10 gives us the initial matrix. This is an example where we want to balance the matrix.
This example is used to show that the new algorithm will still balance matrices and improve accuracy of the
eigenvalues.

To display our results we will display plot the quantities of interest versus iterations of the balancing
algorithm. The black stars and squares on each line indicate the iteration in which the balancing algorithm
converged. Plotting this way allows use to see how the quantities vary during the balancing algorithm. This
is especially useful to determine if the error bound (3) is a viable stopping criteria.

To check the accuracy of the eigenvalue we will examine the absolute condition number of an eigenvalue
which is given by the formula

(4) κ(λ,A) =
‖x‖2‖y‖2
|yHx| ,

where x and y are the right and left eigenvectors associated with λ [6].
Figure 1 plots the relative backward error,

(5) ‖AV − V D‖2/‖A‖2,
(solid lines) and machine precision times the maximum absolute condition number of the eigenvalues,

u ·max(κ(λii, A) | 1 ≤ i ≤ n),

(dashed lines) versus iterations of the balancing algorithms. The dashed lines are an estimate of the forward
error.

In Figures 1a and 1b the LAPACK algorithm has no accuracy in the backward sense, while both the
1-norm and 2-norm algorithms maintain good backward error. On the other hand the eigenvalue condition
number is reduced much greater by the LAPACK algorithm in the second example. The LAPACK algorithm
has a condition number 7 orders of magnitude less than the 1-norm algorithm and 10 orders of magnitude
less than the 2-norm algorithm. Clearly there is a trade-off to maintain desirable backward error. If only the
eigenvalues are of interest, then the current balancing algorithm may still be desirable. However, the special
case of balancing a random matrix already reduced to Hessenberg form would still be problematic and need
to be avoided.

In Figure 1c both the backward error and the eigenvalue condition number worsen with the LAPACK and
1-norm algorithms. The 2-norm algorithm does not allow for much scaling to occur and as a consequence
maintains a good backward error and small eigenvalue condition number. This is the only example for
which the 1-norm is significantly worse than the 2-norm algorithm ( 5 orders of magnitude difference). This
example is the only reason we choose to use the 2-norm over the 1-norm algorithm.

The final example (Figure 1d) shows all algorithms have similar results: maintain good backward error
and reduce the eigenvalue condition number. This indicates that the new algorithms would not prevent
balancing when appropriate.

Figure 2 plots the relative backward error (5) (solid lines) and the backward error bound (3) (dashed lines).
For the bound to be used as a stopping criteria, the bound should be a fairly good estimate of the true error.
Otherwise, the bound would prevent balancing when balancing could have been used without hurting the
backward error. Figures 2a and 2b show the bound would not be tight for the LAPACK algorithm and
therefore not a good stopping criteria. Figure 2d shows that the bound is not tight for all algorithms. For
this reason we do not consider using the bound as a stopping criteria.

Figure 3 shows the ratio of the norm of the balanced matrix and the norm of the original matrix versus
iterations of the balancing algorithm. In Figures 3a, 3b, 3c the norm is not decreased by much in any of the
algorithms. The maximum decrease is only 70% for the near triangular matrix (Figure 3b). In Figure 3d
all algorithms successfully reduce the norm of the matrix by 9 orders of magnitude. In all three examples
where the LAPACK algorithm deteriorates the backward error, the norm is not successfully reduced by a
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significant quantity. But, in our example where balancing is most beneficial the norm is reduced significantly.

6. Matrix Exponential

Balancing could also be used for the computation of the matrix exponential, since eXAX
−1

= XeAX−1.
If the exponential of the balanced matrix can be computed more accurately, then balancing may be justified.
There are numerous ways to compute the matrix exponential. The methods are discussed in the paper
by Moler and Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix” [8] and later
updated in 2003 [9]. The scaling and squaring method is consider one of the best options. Currently,
MATLAB’s function expm implements this method using a variant by Higham [5]. The scaling and squaring
method relies on the Padé approximation of the matrix exponential, which is more accurate when ‖A‖ is
small. Hence, balancing would be beneficial.

However, the matrix exponential possess the special property: eA = (eA/s)s. Scaling the matrix by s
successfully reduces the norm of A to an acceptable level for an accurate computation of eA/s by the Padé

0 1 2 3 4 5 6 7 8 9 10

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Iterations

Bidiagonal with noise in lower left element

n = 4, noise = 1.0e-32

1-norm: backward error

1-norm: max(condeig(Ã))
2-norm: backward error

2-norm: max(condeig(Ã))
LAPACK: backward error

LAPACK: max(condeig(Ã))

(a) Case study
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10−13
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10−9
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10−5
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Upper triangular with noise in lower triangular part

n = 100, noise = 1.0e-30, diagonal scale = 5

1-norm: backward error

1-norm: max(condeig(Ã))
2-norm: backward error

2-norm: max(condeig(Ã))
LAPACK: backward error

LAPACK: max(condeig(Ã))

(b) Near upper triangular
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Watkins :: n = 500

1-norm: backward error

1-norm: max(condeig(Ã))
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LAPACK: backward error

LAPACK: max(condeig(Ã))

(c) Hessenberg form
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1-norm: backward error

1-norm: max(condeig(Ã))
2-norm: backward error

2-norm: max(condeig(Ã))
LAPACK: backward error

LAPACK: max(condeig(Ã))

(d) Badly scaled

Figure 1. Backward error and absolute eigenvalue condition number versus iterations.
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approximate. When s is a power of 2 then repeat squaring is used to obtain the final result. Since the scaling
of A successfully achieves the same goal as balancing, balancing is not required as a preprocessing step.

7. Conclusion

We proposed a simple change to the LAPACK balancing algorithm GEBAL. Including the diagonal elements
in the balancing algorithm provides a better measure of significant decrease in the matrix norm than the
current version. By including the diagonal elements and switching to the 2-norm we are able to avoid
deteriorating the backward error for our test cases.

The proposed change is to protect the backward error of the computation. In some case the new algorithm
will prevent from decreasing the maximum eigenvalue condition number as much as the current algorithm.
If only the eigenvalues are of interest, then it may be desirable to uses the current version. However, for the
case where A is dense and poorly scaled, the new algorithm will still balance the matrix and improve the
eigenvalue condition number. If accurate eigenvectors are desired, then one should consider not balancing
the matrix.
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(a) Case study
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Figure 2. Backward error bounds.
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Figure 3. Ratio of balanced matrix norm and original matrix norm.

Appendix A. Detailed Case Study

Consider the matrix

A =




1 1 0 0
0 2 1 0
0 0 3 1
ε 0 0 4




where 0 ≤ ε� 1. The eigenvalues of A are

Λ =




1
2

(
5−

√
5 + 4

√
1 + ε

)
0 0 0

0 1
2

(
5−

√
5− 4

√
1 + ε

)
0 0

0 0 1
2

(
5 +

√
5− 4

√
1 + ε

)
0

0 0 0 1
2

(
5 +

√
5 + 4

√
1 + ε

)



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with corresponding eigenvectors

V =




2
1+
√
1+ε

2(
3−
√

5−4√1+ε
) 2(

3+
√

5−4√1+ε
) 2(

3+
√

5+4
√
1+ε

)
3−
√

5+4
√
1+ε

1+
√
1+ε

1 1 1

4+2
√
1+ε−2

√
5+4
√
1+ε

1+
√
1+ε

1
2

(
1−

√
5− 4

√
1 + ε

)
1
2

(
1 +

√
5− 4

√
1 + ε

)
1
2

(
1 +

√
5 + 4

√
1 + ε

)

3−
√

5 + 4
√

1 + ε 1−
√

1 + ε 1−
√

1 + ε 1 +
√

1 + ε



.

Note that as ε→ 0, we have

Λ→




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4




and (with some rescaling)

V →




1 1 1 1
0 1 1 3
0 0 2 6
0 0 0 6


 .

To balance A, we must find an invertible diagonal matrix

D =




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ




such that Ã = D−1AD has equal row and column norms for each diagonal element, where

D−1AD =




1 β/α 0 0
0 2 γ/β 0
0 0 3 δ/γ

εα/δ 0 0 4


 .

If we require that the diagonal elements of D are all positive, the balancing condition can be written as

(6)
δ

γ
=
γ

β
=
β

α
= ε

α

δ
.

The balancing condition (6) can be met by parameterizing D in terms of α where

β = ε1/4α

γ = ε1/2α

δ = ε3/4α

and then the balancing matrix D is

D = α




1 0 0 0
0 ε1/4 0 0
0 0 ε1/2 0
0 0 0 ε3/4


 .
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The balanced matrix Ã then

Ã = D−1AD =




1 ε1/4 0 0
0 2 ε1/4 0
0 0 3 ε1/4

ε1/4 0 0 4


 .

Computing the eigenvectors of Ã directly, we have

Ṽ =




−3−
√

5+4
√
1+ε

2 − ε
1/4

(
3+
√

5−4√1+ε
)

2

ε1/2
(
−3+
√

5−4√1+ε
)

2
2ε3/4

(1+
√
1+ε)

(
3+
√

5+4
√
1+ε

)
ε3/4

1+
√
1+ε

−1−
√

1 + ε −ε1/4
√

1 + ε ε1/2

1+
√
1+ε

− ε1/22
−1+
√

5+4
√
1+ε

1+
√
1+ε

− 2ε3/4

1+
√

5−4√1+ε
−
√
1+ε

(
1+
√

5−4√1+ε
)

2

2ε1/4
(
2+
√
1+ε+
√

5+4
√
1+ε

)
(1+
√
1+ε)

(
3+
√

5+4
√
1+ε

)
ε1/4 ε1/2 ε3/4 1



.

Note that as ε→ 0, the balanced matrix Ã tends towards a diagonal matrix:

Ã→




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4




with the eigenvectors of the balanced matrix approaching the identity matrix.

References

[1] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, editors. Templates for the Solution of

Algebraic Eigenvalue Problems. SIAM, Philadelphia, 2000.

[2] Tzu-Yi Chen. Balancing sparse matrices for computing eigenvalues. Master’s thesis, University of California at Berkeley,
1998.

[3] Tzu-Yi Chen. Preconditioning Sparse Matrices for Computing Eigenvalues and Solving Linear Systems of Equations. PhD

thesis, University of California at Berkeley, 2001.
[4] Tzu-Yi Chen and James W Demmel. Balancing sparse matrices for computing eigenvalues. Linear Algebra and Its Appli-

cations, 309(1):261–287, 2000.

[5] Nicholas J Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix
Analysis and Applications, 26(4):1179–1193, 2005.

[6] D. Kressner. Numerical methods for general and structured eigenvalue problems, volume 46 of Lecture Notes in Computa-
tional Science and Engineering Series. Springer-Verlag Berlin and Heidelberg GmbH & Company KG, 2005.

[7] Frans Lemeire. Equilibration of matrices to optimize backward numerical stability. BIT Numerical Mathematics, 16(2):143–

145, 1976.
[8] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review, 20(4):pp.

801–836, 1978.

[9] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later.
SIAM Review, 45(1):pp. 3–49, 2003.

[10] Ron Morgan. http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=13&t=4270, 2013.

[11] E. E. Osborne. On pre-conditioning of matrices. J. ACM, 7(4):338–345, October 1960.
[12] Beresford N Parlett and Christian Reinsch. Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische

Mathematik, 13(4):293–304, 1969.

[13] David S. Watkins. A case where balancing is harmful. Electron. Trans. Numer. Anal, 23:1–4, 2006.
[14] David S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1 edition, 2007.
[15] J. H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation, Volume II, Linear Algebra. Springer-

Verlag, New York, 1971.



ON MATRIX BALANCING AND EIGENVECTOR COMPUTATION 13

(Rodney James) Colorado College, Colorado Springs, CO, USA
E-mail address: Rodney.James@ColoradoCollege.edu

(Julien Langou) University of Colorado Denver, Denver, CO, USA
E-mail address: Julien.Langou@ucdenver.edu

(Bradley R. Lowery) University of Colorado Denver, Denver, CO, USA

E-mail address: Bradley.Lowery@ucdenver.edu


	1. Introduction
	2. The Balancing Algorithm
	3. Case Study
	4. Backward Error
	5. Experiments
	6. Matrix Exponential
	7. Conclusion
	Appendix A. Detailed Case Study
	References

