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LOCAL TOPOLOGICAL ALGEBRAICITY OF ANALYTIC FUNCTION

GERMS

MARCIN BILSKI, ADAM PARUSIŃSKI, AND GUILLAUME ROND

Abstract. T. Mostowski showed that every (real or complex) germ of an analytic set is
homeomorphic to the germ of an algebraic set. In this paper we show that every (real or com-
plex) analytic function germ, defined on a possibly singular analytic space, is topologically
equivalent to a polynomial function germ defined on an affine algebraic variety.

1. Introduction and statement of results

The problem of approximation of analytic objects (sets or mappings) by algebraic ones has
attracted many mathematicians, see e.g. [2] and the bibliography therein. Nevertheless there
are very few positive results if one requires that the approximation gives a homeomorphism
between the approximated object and the approximating one. In this paper we consider two
cases of this problem: the local algebraicity of analytic sets and the local algebraicity of
analytic functions. The problem can be considered over K = R or C.

The local topological algebraicity of analytic sets has been established by Mostowski in [12].
More precisely, given an analytic set germ (V, 0) ⊂ (Kn, 0), Mostowski shows the existence of

a local homeomorphism h̃ : (K2n+1, 0) → (K2n+1, 0) such that, after the embedding (V, 0) ⊂
(Kn, 0) ⊂ (K2n+1, 0), the image h̃(V ) is algebraic. It is easy to see that Mostowski’s proof
together with Theorem 2 of [2] gives the following result.

Theorem 1.1. Let K = R or C. Let (V, 0) ⊂ (Kn, 0) be an analytic germ. Then there is a
homeomorphism h : (Kn, 0) → (Kn, 0) such that h(V ) is the germ of an algebraic subset of
Kn.

Mostowski’s Theorem seems not to be widely known. Recently Fernández de Bobadilla
showed, by a method different from that of Mostowski, the local topological algebraicity of
complex hypersurfaces with one-dimensional singular locus, see [3]. We remark that in [12]
Mostowski states his results only for K = R but his proof works, word by word, for K = C.

The first purpose of this paper is to present a short proof of Theorem 1.1. We follow
closely Mostowski’s original approach that is based on two ideas, P loski’s version of Artin
approximation, cf. [13], and Varchenko’s theorem stating that the algebraic equisingularity of
Zariski implies topological equisingularity. Our proof is shorter, but less elementary. We use
a corollary of Neron Desingularization, that we call the Nested Artin-P loski Approximation
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Theorem. This result is shown in Section 2 and the proof of Theorem 1.1 is given in Section
4. In Section 3 we recall Varchenko’s results.

The second purpose of this paper is to show the local algebraicity of analytic functions.

Theorem 1.2. Let K = R or C. Let g : (Kn, 0) → (K, 0) be an analytic function germ.
Then there is a homeomorphism σ : (Kn, 0) → (Kn, 0) such that g ◦ σ is the germ of a
polynomial.

The proof of Theorem 1.2, presented in Section 5, is based on the Nested Artin-P loski
Approximation Theorem and a refinement of Varchenko’s method.

We end with the following generalization of Theorems 1.1 and 1.2.

Theorem 1.3. Let K = R or C. Let (Vi, 0) ⊂ (Kn, 0) be a finite family of analytic set germs
and let g : (Kn, 0) → (K, 0) be an analytic function germ. Then there is a homeomorphism
σ : (Kn, 0) → (Kn, 0) such that g ◦ σ is the germ of a polynomial, and for each i, σ−1(Vi) is
the germ of an algebraic subset of Kn.

Corollary 1.4. Let g : (V, p) → (K, 0) be an analytic function germ defined on the germ
(V, p) of an analytic space. Then there exists an algebraic affine variety V1, a point p1 ∈ V1,
the germ of a polynomial function g1 : (V1, p1) → (K, 0) and a homeomorphism σ : (V1, p1) →
(V, p) such that g1 = g ◦ σ.

In Section 6 we present examples showing that Theorems 1.1, 1.2 and 1.3 are false if we
replace ”homeomorphism” by ”diffeomorphism”. We do not know whether these theorems
hold true with ”homeomorphism” replaced by ”bi-lipschitz homeomorphism”.

Remark 1.5. We often identify the germ at the origin of a K-analytic function f : (Kn, 0) → K

with its Taylor series that is with a convergent power series. We say that a (K-)analytic
function or a germ is Nash if its graph is semi-algebraic. Thus f : (Kn, 0) → K is the germ
of a Nash function if and only if its Taylor series is an algebraic power series. A Nash set is
the zero set of a finitely many Nash functions.

2. Nested Artin-P loski Approximation Theorem

We set x = (x1, ..., xn) and y = (y1, ..., ym). The ring of convergent power series in x1,...,
xn is denoted by K{x}. If A is a commutative ring then the ring of algebraic power series
with coefficients in A is denoted by A〈x〉.

The following result is a corollary of Theorem 11.4 [16] which itself is a corollary of Néron-
Popescu desingularization (see [14], [16] or [17] for the proof of this desingularization theorem
in whole generality or [15] for a proof in characteristic zero).

Theorem 2.1. Let f(x, y) ∈ K〈x〉[y]p and let y(x) ∈ K{x}m be a solution of f(x, y) = 0.
Let us assume that yi(x) depends only on (x1, ..., xσ(i)) where i 7−→ σ(i) is an increasing
function. Then there exist a new set of variables z = (z1, ..., zs), an increasing function
τ , convergent power series zi(x) ∈ K{x} vanishing at 0 such that z1(x),..., zτ(i)(x) depend
only on (x1, ..., xσ(i)), and a vector of algebraic power series y(x, z) ∈ K〈x, z〉m solution of
f(x, y) = 0 such that for every i, yi(x, z) ∈ K〈x1, ..., xσ(i), z1, ..., zτ(i)〉, and y(x) = y(x, z(x)).

Remark 2.2. Theorem 2.1 remains valid if we replace ”convergent power series” by ”formal
power series”.
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For any i we set:
Ai = K〈x1, ..., xi〉,

Bi = K{x1, ..., xi}.

We will need at several places the following two lemmas whose proofs are given later (for
the definition and properties of an excellent ring see 7.8 [7] or [11]; a henselian local ring is
a local ring satisfying the Implicit Function Theorem, see 18.5 [8]).

Lemma 2.3. Let B be an excellent henselian local subring of K[[x1, ..., xi−1]] containing
K〈x1, ..., xi−1〉 and whose maximal ideal is generated by x1,..., xi−1. Then the ring Ai⊗Ai−1

B

is noetherian and its henselization is isomorphic to B〈xi〉.

Lemma 2.4. Let B be an excellent henselian local subring of K[[x1, ..., xi−1]] containing
K〈x1, ..., xi−1〉 and whose maximal ideal is generated by x1,..., xi−1. Let I be an ideal of

B[xi]. Then the henselization of
B[xi](x1,...,xi)

I
is isomorphic to B〈xi〉

I
.

Proof of Theorem 2.1. By replacing f(x, y) by f(x, y(0) + y) we may assume that y(0) = 0.
For any i let l(i) be the largest integer such that y1(x),..., yl(i)(x) ∈ K{x1, ..., xi}.

For any i let Ji be the kernel of the morphism

ϕi : K〈x1, ..., xi〉[y1, ..., yl(i)] −→ K{x1, ..., xi} = Bi

defined by ϕi(g(x, y)) = g(x, y(x)). We define:

Ci =
K〈x1, ..., xi〉[y1, ..., yl(i)]

Ji
.

Then Ci is a finite type Ai-algebra and Ci is a sub-Ai-algebra of Ci+1 since Ji ⊂ Ji+1. The
morphism ϕi induces a morphism Ci −→ Bi such that the following diagram is commutative:

A1

��

// A2

��

// · · · //

��

An

��

C1

��

// C2

��

// · · · //

��

Cn

��

B1
// B2

// · · · // Bn

By Theorem 11.4 [16] (see also [18]) this diagram may be extended to a commutative diagram
as follows

A1

��

// A2

��

// · · · //

��

An

��

C1

��

// C2

��

// · · ·

��

// Cn

��

D1

��

// D2

��

// · · ·

��

// Dn

��

B1
// B2

// · · · // Bn
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where D1 is a smooth A1-algebra of finite type and Di is a smooth Di−1 ⊗Ai−1
Ai-algebra of

finite type for all i > 1. We will denote by D′
i−1 the ring Di−1 ⊗Ai−1

Ai for all i > 1 and set
D′

1 = A1.

For any i let us write Di =
D′

i−1[ui,1,...,ui,qi
]

Ii
. We may make a change of coordinates (of

the form ui,j 7−→ ui,j + ci,j for some ci,j ∈ K) in such way that the image of ui,j is in
the maximal ideal of Bi for any i and j. Thus Di −→ Bi factors through the localization
morphism Di −→ (Di)mi

where mi = (x1, ..., xi, ui,1, ..., ui,qi). Let Dh
i be the henselization of

(Di)mi
. Since Bi is a henselian local ring, the morphism Di −→ Bi factors through Dh

i by
the universal property of the henselization. Still by this universal property the composition
of the morphisms Di−1 −→ Di −→ Dh

i factors through Dh
i−1. Thus we have the following

commutative diagram:

A1

��

// A2

��

// · · · //

��

An

��

C1

��

// C2

��

// · · ·

��

// Cn

��

Dh
1

��

// Dh
2

��

// · · ·

��

// Dh
n

��

B1
// B2

// · · · // Bn

We will prove by induction that Dh
i is isomorphic to K〈x1, ..., xi, z1, ..., zλ(i)〉 where i −→ λ(i)

is an increasing function and the zk are new indeterminates.

Since Dh
1 is the henselisation of (D1)m1 =

K〈x1〉[u1,1,...,u1,q1 ]

I (x1,u1,1,...,u1,q1)
, Dh

1 is isomorphic

to
K〈x1,u1,1,...,u1,q1〉

I.K〈x1,u1,1,...,u1,q1〉
by Lemma 2.4 and D1 being smooth over K〈x1〉 means that the matrix

(

∂fj
∂uk

(0, 0)
)

i,j
, where the fj are generators of I.K〈x1, u1,1, ..., u1,q1〉, has maximal rank (by the

jacobian criterion for smoothness, see Proposition 22.6.7 (iii) [6]). Thus by the Implicit Func-
tion Theorem the ring Dh

1 is isomorphic to K〈x1, z1, ..., zλ(1)〉 for some new indeterminates
z1,..., zλ(1). This proves the induction propery for Dh

1 .
Now let us assume that the induction property is true for Dh

i−1. By assumption Di is
smooth over Di−1 ⊗Ai−1

Ai. Thus Dh
i is smooth over the henselization of Di−1 ⊗Ai−1

Ai.
By the universal property of the henselization the morphism from Di−1 to the henselization
of Di−1 ⊗Ai−1

Ai factors through Dh
i−1 thus it factors through Dh

i−1 ⊗Ai−1
Ai. Hence the

henselization of Di−1 ⊗Ai−1
Ai is isomorphic to the henselization of Dh

i−1 ⊗Ai−1
Ai. But

Dh
i−1 ⊗Ai−1

Ai = K〈x1, ..., xi−1, z1, ..., zλ(i−1)〉 ⊗K〈x1,...,xi−1〉 K〈x1, ..., xi〉.

Its henselization is isomorphic to K〈x1, ..., xi, z1, ..., zλ(i−1)〉 by Lemma 2.3. This shows that
Dh

i is smooth over K〈x1, ..., xi, z1, ..., zλ(i−1)〉 hence, by the Implicit Function Theorem as
we did for Dh

1 , Dh
i is isomorphic to K〈x1, ..., xi, z1, ..., zλ(i)〉 for some new indeterminates

zλ(i−1)+1,..., zλ(i).
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Finally the morphisms Ci −→ Dh
i define the yk(x, z) satisfying f(x, y(x, z)) = 0. The

power series zj(x) are defined by the morphisms Dh
i −→ Bi and the fact that Ci −→ Bi

factors through Dh
i yields y(x) = y(x, z(x)). �

Proof of Lemma 2.3. Let ψ : Ai ⊗Ai−1
B −→ B〈xi〉 be the morphism defined by ψ(

∑

j aj ⊗
bj) =

∑

j ajbj with aj ∈ Ai and bj ∈ B for any j. The morphism ψ is well defined since Ai

and B are subrings of the ring B〈xi〉. The image of ψ is the subring of B〈xi〉 generated by
Ai and B.
Let us prove that ψ is injective: Let

∑

j aj ⊗ bj ∈ Ker(ψ) with aj ∈ Ai and bj ∈ B for any j.

This means that
∑

j ajbj = 0. Let us write aj =
∑

l∈N aj,lx
l
i where aj,l ∈ Ai−1 for any j and

l. Thus we have

(2.1)
∑

j

aj,lbj = 0

for any l ∈ N and this system of linear equations is equivalent to a finite system by
noetherianity. The ring extension Ai−1 −→ B is flat since Ai−1 −→ K[[x1, ..., xi−1]] and
B −→ K[[x1, ..., xi−1]] are faithfully flat (they are completions of local noetherian rings, cf.
[11] p. 46 and Theorem 8.14 p. 62). Thus the solution vector (bj)j of (2.1) is a linear
combination with coefficients in B of solution vectors in Ai−1 (cf. [11] Theorem 7.6 p.49).
Thus (bj)j =

∑

k b
′
k(a′j,k)j where b′k ∈ B and, for any k, (a′j,k)j are vectors with entries in

Ai−1 which are solutions of (2.1). This means that
∑

j

aj ⊗ bj =
∑

j,k

aj ⊗ b′ka
′
j,k =

∑

k

∑

j

aja
′
j,k ⊗ b′k =

∑

k

(
∑

l

(
∑

j

aj,la
′
j,k)x

l
i) ⊗ b′k = 0.

Thus Ker(ψ) = (0).
Obviously Im(ψ) contains B[xi] whose henselization is B〈xi〉 by Lemma 2.4, thus ψ induces

a surjective morphism between the henselization of Ai ⊗Ai−1
B and B〈xi〉. This surjective

morphism is also injective since ψ is injective and Ai ⊗Ai−1
B is a domain (Indeed if y 6= 0 is

in the henselization of Ai⊗Ai−1
B, then y is a root of a non zero polynomial with coefficients

in Ai ⊗Ai−1
B. Since Ai ⊗Ai−1

B is a domain and y 6= 0 we may assume that this polynomial
has a non zero constant term denoted by a. If the image of y in B〈xi〉 is zero then ψ(a) = 0
which is a contradiction).
On the other hand B〈xi〉 is the henselization of B[xi] which is noetherian, thus B〈xi〉 is
noetherian (cf. [8] Théorème 18.6.6.). This proves that the henselization of Ai ⊗Ai−1

B is
noetherian. Hence Ai ⊗Ai−1

B is noetherian (cf. [8] Théorème 18.6.6.). �

Proof of Lemma 2.4. The elements of the henselization of a local ring A are algebraic over

A by construction. Thus the henselization of B[xi]
I

is a subring of B〈xi〉
I

.
On the other hand let us prove first that B〈xi〉 is the henselization of B[xi](x1,...,xi). If
y ∈ B〈xi〉, then y is a root of a polynomial P (Y ) with coefficients in B[xi]. By Artin
approximation Theorem (see Theorem 11.3 [16]), y may be approximated by elements which
are in the henselization of B[xi]. Since P (Y ) has only a finite number of roots, this means
that y is in the henselization of B[xi](x1,...,xi). Thus B〈xi〉 is the henselization of B[xi](x1,...,xi).
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Now the morphism B[xi] −→
B[xi]
I

induces a morphism B〈xi〉 −→
(

B[xi]
I (x1,...,xi)

)h

of B[xi]-

algebras by the universal property of the henselization. It is clear that the kernel of this

morphism is generated by I thus we get an injective morphism B〈xi〉
I

−→
(

B[xi]
I (x1,...,xi)

)h

of B[xi]-algebras. Since
(

B[xi]
I (x1,...,xi)

)h

is a subring of B〈xi〉
I

, this shows that the morphism

B〈xi〉
I

−→
(

B[xi]
I (x1,...,xi)

)h

is an isomorphism. �

3. Algebraic Equisingularity of Zariski

Notation: Let x = (x1, . . . , xn) ∈ Cn. Then we denote xi = (x1, . . . , xi) ∈ Ci.

3.1. Assumptions. Let V be an analytic hypersurface of a neighborhood of the origin in
Cl × Cn and let W = V ∩ (Cl × {0}). Suppose there are given complex pseudopolynomials

Fi(t, x
i) = x

pi
i +

pi
∑

j=1

ai−1,j(t, x
i−1)xpi−j

i , i = 0, ..., n,

t ∈ Cl, xi ∈ Ci, with complex analytic coefficients ai−1,j, that satisfy

(1) V = F−1
n (0).

(2) Fi−1(t, x
i−1) = 0 if and only if Fi(t, x

i−1, xi) = 0 considered as an equation on xi with
(t, xi−1) fixed, has fewer roots than for generic (t, xi−1).

(3) F0 ≡ 1.
(4) There are positive reals δk > 0, k = 1, . . . , l, and εj > 0, j = 1, . . . , n, such that Fi

are defined on the polydiscs Ui := {|tk| < δk, |xj| < εj, k = 1, . . . , l, j = 1, . . . , i}.
(5) All roots of Fi(t, x

i−1, xi) = 0, for (t, xi−1) ∈ Ui−1, lie inside the circle of radius εi.
(6) Either Fi(t, 0) ≡ 0 or Fi ≡ 1 (and in the latter case Fk ≡ 1 for all k ≤ i).

We may take as Fi−1 the Weierstrass polynomial associated to the reduced discriminant
of Fi or a generalized discriminant (see the next section).

We shall denote Vi = F−1
i (0) ⊂ Ui. For the parameter t fixed we write Vt := V ∩({t}×Cn),

Vi,t := Vi ∩ ({t} × Ci), and Ui,t = Ui ∩ ({t} × Ci). We identify W and U0.

Theorem 3.1. ([20] Theorem 1, [21] Theorem 1) Under the above assumptions V is topolog-
ically equisingular along W with respect to the family of sections Vt = V ∩ ({t} × Cn). This
means that for all t ∈ W there is a homeomorphism ht : Un,0 → Un,t such that ht(V0) = Vt
and ht(0) = 0.

3.2. Remarks on Varchenko’s proof of Theorem 3.1. As Varchenko states in Remark
1 of [20] a stronger result holds, the family Vt is topologically trivial, in the sense that the
homeomorphisms ht depend continuously on t. The details of the proof of Theorem 3.1 (with
continuous dependence of ht on t) are published in [19].

The homeomorphisms ht are constructed in [19] inductively by lifting step by step the
homeomorphisms

hi,t : Ui,0 → Ui,t,

so that hi,t(x
i−1, xi) = (hi−1,t(x

i−1), hi,t,i(x
i)), hi,t(Vi,0) = Vi,t, hi,t(0) = 0. If hi−1,t depends

continuously on t, then the number of roots of Fi(hi−1,t(x
i−1), xi) = 0 is independent of t.
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Therefore, if Fn = G1 · · ·Gk, then the number of roots of each Gj(hn−1,t(x
n−1), xn) = 0 is

independent of t, see Lemma 2.2 of [19]. In particular ht preserves not only V = F−1
n (0) but

also each of G−1
j (0). Thus [19] implies the following.

Theorem 3.2. The homeomorphisms ht of Theorem 3.1 can be chosen continuous in t. If
Fn = G1 · · ·Gk then for each s = 1, . . . , k, ht(G

−1
s (0) ∩ ({0} × Cn)) = G−1

s (0) ∩ ({t} × Cn).

4. Mostowski’s Theorem.

In this section we show Theorem 1.1

4.1. Generalized discriminants. Let f(T ) = T p +
∑p

j=1 aiT
p−i =

∏p

j=1(T − Ti). Then
the expressions

∑

r1,...rj−1

∏

k<l,k,l 6=r1,...rj−1

(Tk − Tl)
2

are symmetric in T1, . . . , Tp and hence polynomials in a = (a1, . . . , ap). We denote these
polynomials by ∆j(a). Thus ∆1 is the standard discriminant and f has exactly p−j distinct
roots if and only if ∆1 = · · · = ∆j = 0 and ∆j+1 6= 0.

4.2. Construction of a normal system of equations. Let be given a finite set of pseu-
dopolynomials g1, . . . , gk ∈ C{x}:

gs(x) = xrsn +

rs
∑

j=1

an−1,s,j(x
n−1)xrs−j

n .

The coefficients an−1,s,j can be arranged in a row vector an−1 ∈ C{xn−1}pn where pn :=
∑

s rs.
Let fn be the product of the gs’s. The generalized discriminants ∆n,i of fn are polynomials
in an−1. Let jn be a positive integer such that

∆n,i(an−1) ≡ 0 i < jn,(4.1)

and ∆n,jn(an−1) 6≡ 0. Then, after a linear change of coordinates xn−1, we may write

∆n,jn(an−1) = un−1(x
n−1)(x

pn−1

n−1 +

pn−1
∑

j=1

an−2,j(x
n−2)x

pn−1−j
n−1 ).

where un−1(0) 6= 0 and for all j, an−2,j(0) = 0. We denote

fn−1 = x
pn−1

n−1 +

pn−1
∑

j=1

an−2,j(x
n−2)x

pn−1−j
n−1

and the vector of its coefficients an−2,j by an−2 ∈ C{xn−2}pn−1 . Let jn−1 be the positive
integer such that the first jn−1 − 1 generalized discriminants ∆n−1,i of fn−1 are identically
zero and ∆n−1,jn−1 is not. Then again we define fn−2(x

n−2) as the Weierstrass polynomial
associated to ∆n−1,jn−1.
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We continue this construction and define a sequence of pseudopolynomials fi(x
i), i =

1, . . . , n− 1, such that fi = x
pi
i +

∑pi
j=1 ai−1,j(x

i−1)xpi−j
i is the Weierstrass polynomial asso-

ciated to the first non identically zero generalized discriminant ∆i+1,ji+1
(ai) of fi+1, where

we denote in general ai = (ai,1, . . . , ai,pi+1
),

∆i+1,ji+1
(ai) = ui(x

i)(xpii +

pi
∑

j=1

ai−1,j(x
i−1)xpi−j

i ), i = 0, ..., n− 1.(4.2)

Thus the vector of functions ai satisfies

∆i+1,k(ai) ≡ 0 k < ji+1, i = 0, ..., n− 1.(4.3)

This means in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0,

where u0 is a non-zero constant.

4.3. Approximation by Nash functions. Consider (4.2) and (4.3) as a system of polyno-
mial equations on ai(x

i), ui(x
i). By construction, this system admits convergent solutions.

Therefore, by Theorem 2.1, there exist a new set of variables z = (z1, ..., zs), an increasing
function τ , and convergent power series zi(x) ∈ C{x} vanishing at 0 such that z1(x),...,
zτ(i)(x) depend only on (x1, ..., xi), algebraic power series ui(x

i, z) ∈ C〈xi, z1, ..., zτ(i)〉 and

vectors of algebraic power series ai(x
i, z) ∈ C〈x(i), z1, ..., zτ(i)〉

pi, such that ai(x
i, z), ui(x

i, z)
are solutions of (4.2), (4.3) and ai(x

i) = ai(x
i, z(xi)), ui(x

i) = ui(x
i, z(xi)).

For t ∈ C we define

Fn(t, x) =
∏

s

Gs(t, x), Gs(t, x) = xrsn +
rs
∑

j=1

an−1,s,j(x
n−1, tz(xn−1))xrs−j

n

Fi(t, x) = x
pi
i +

pi
∑

j=1

ai−1,j(x
i−1, tz(xi−1)xpi−j

i , i = 0, ..., n− 1.

Finally we set F0 ≡ 1. Because ui(0, 0) = ui(0, z(0)) 6= 0, the family Fi(t, x) satisfies the
assumptions of Theorem 3.1 with |t| < R for any R <∞.

Corollary 4.1. Let (V, 0) ⊂ (Kn, 0) be an analytic germ defined by g1 = ... = gk = 0 with
gs ∈ K{x}. Then there are algebraic power series ĝs ∈ K〈x〉 and a homeomorphism germ
h : (Kn, 0) → (Kn, 0) such that h(g−1

s (0)) = ĝ−1
s (0) for s = 1, ..., k. In particular, h(V ) is the

Nash set germ {ĝ1 = ... = ĝk = 0}.

Proof. For K = C we set ĝi(x) = Gi(0, x) and then the corollary follows from Theorem 3.2.
The real case follows from the complex one because if the pseudopolynomials Fi of subsection
3.1 have real coefficients then the homeomorphisms ht constructed in [19] are conjugation
invariant, cf. §6 of. [19]. �

Now Theorem 1.1 follows from Corollary 4.1 and the following result.

Theorem 4.2. ([2] Theorem 2.) Let (V, 0) ⊂ (Kn, 0) be a Nash set germ. Then there is a
local Nash diffeomorphism σ : (Kn, 0) → (Kn, 0) such that σ(V ) is the germ of an algebraic
subset of Kn.
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5. Topological equivalence between analytic and algebraic function

germs

In this section we show Theorem 1.2 and Theorem 1.3.

5.1. A variant of Varchenko’s method. We replace the assumptions (2) and (3) of Sub-
section 3.1 by

(2’) There are qi ∈ N such that xqi1 Fi−1(t, x
i−1) = 0 if and only if the equation Fi(t, x

i−1, xi) =
0, has fewer roots than for generic (t, xi−1).

(3’) F1 ≡ 1.

Then Varchenko’s method gives the following result.

Theorem 5.1. Under the above assumptions, V is topologically equisingular along W with
respect to the family of sections Vt = V ∩ ({t} × Cn). Moreover all the sections V ∩ {x1 =
const} are also equisingular. This means that for all t ∈ W there is a homeomorphism
ht : Un,0 → Un,t such that ht(V0) = Vt, ht(0) = 0, and ht preserves the levels of x1

ht(x1, ..., xn) = (x1, ĥt(x1, ..., xn)).(5.1)

Indeed, recall that the homeomorphisms ht are constructed inductively by lifting step by
step the homeomorphisms hi,t : Ui,0 → Ui,t, so that hi,t(x

i−1, xi) = (hi−1,t(x
i−1), hi,t,i(x

i)). At
each stage such lifts hi,t exist and preserve the zero set of Fi if hi−1,t depends continuously
on t and preserves the discriminant set of Fi, see [19] sections 2 and 3.

Because F1 ≡ 1, by (2’), the discriminant set of F2 is either empty or given by x1 = 0.
Therefore we may take h1,t(x1) = x1. Then we show by induction on i that each hi,t can be
lifted so that the lift hi+1,t preserves the zero set of Fi+1 and the values of x1. The former
condition follows by inductive assumption, hi,t preserves the discriminant set of Fi+1. The
latter condition is satisfied trivially since hi+1,t is a lift of hi,t.

5.2. Equisingularity of functions. We apply Theorem 5.1 to study the equisingularity
of analytic function germs as follows. Let G(t, y) : (Cl × Cn−1, 0) → (C, 0) be analytic,
y = (y1, ..., yn−1). We associate to G its graph V = {(t, x1, x2, ..., xn); x1 = Gt(x2, ..., xn)},
thus fixing the following notation

x = (x1, x2, ..., xn) = (x1, y)(5.2)

We consider G as an analytic family of analytic function germs Gt : (Cn−1, 0) → (C, 0)
parametrized by t ∈ W , where W is a neighborhood of the origin in Cl.

Theorem 5.2. Suppose that V and W satisfy the assumptions of Theorem 5.1. Then the
family of analytic function germs Gt is topologically equisingular. This means that there is
a family of local homeomorphisms σt : (Cn−1, 0) → Cn−1, 0) such that

G0 = Gt ◦ σt.

Proof. It follows from (5.1) by setting σt(y) = ĥt(G0(y), y). Indeed, since ht preserves V we
have

ht(G0(y), y) = (Gt(ĥt(G0(y), y)), ĥt(G0(y), y)),

and since it preserves the levels of x1

G0(y) = Gt(ĥt(G0(y), y)).
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�

5.3. Construction of a normal system of equations for a finite family of function

germs. Let gm : (Cn−1, 0) → (C, 0), m = 1, ..., p, be a finite family of analytic function
germs that we assume not identically equal to zero. After a linear change of coordinates
(x2, ..., xn),

∏p

m=1(x1 − gm(x2, ..., xn)) is equivalent to a pseudopolynomial, that is we may
write

p
∏

m=1

(x1 − gm(x2, ..., xn)) = un(x)(xpnn +

pn
∑

j=1

an−1,j(x
n−1)xpn−j

n ),

where un(0) 6= 0 and an−1,j(0) = 0. We denote

fn(x) = xpnn +

pn
∑

j=1

an−1,j(x
n−1)xpn−j

n

so that

un(x)fn(x) =

p
∏

m=1

(x1 −
n

∑

k=2

xkbm,k(x2, ..., xn))(5.3)

with gm =
∑n

k=2 xkbm,k. We denote by b ∈ C{x}p(n−1) the vector of the coefficients bm,k and
by an−1 ∈ C{xn−1}pn the one of the coefficients an−1,j.

The generalized discriminants ∆n,i of fn are polynomials in an−1. Let jn be a positive
integer such that

∆n,i(an−1) ≡ 0 i < jn,

and ∆n,jn(an−1) 6≡ 0. After a change of coordinates (x2, ..., xn−1) we may write

∆n,jn(an−1) = un−1(x
n−1)x

qn−1

1 (x
pn−1

n−1 +

pn−1
∑

j=1

an−2,j(x
n−2)x

pn−1−j
n−1 ),

where un−1(0) 6= 0 and an−2,j(0) = 0. We denote fn−1 = x
pn−1

n−1 +
∑pn−1

j=1 an−2,j(x
n−2)x

pn−1−j
n−1

and the vector of its coefficients an−2,j by an−2 ∈ C{xn−2}pn−1 . Let jn−1 be the positive
integer such that the first jn−1 − 1 generalized discriminants ∆n−1,i of fn−1 are identically
zero and ∆n−1,jn−1 is not. Then again we divide ∆n−1,jn−1 by the maximal power of x1 and,
after a change of coordinates (x2, ..., xn−2), denote the associated Weierstrass polynomial by
fn−2(x

n−2).
We continue this construction and define a sequence of pseudopolynomials fi(x

i), i =
1, . . . , n−1, such that fi = x

pi
i +

∑pi
j=1 ai−1,j(x

i−1)xpi−j
i is the Weierstrass polynomial associ-

ated to the first non identically zero generalized discriminant ∆i,ji(ai+1) of fi+1, divided by
the maximal power of x1, where we denote in general ai = (ai,1, . . . , ai,pi),

∆i+1,ji+1
(ai) = ui(x

i)xqi1 (xpii +

pi
∑

j=1

ai−1,j(x
i−1)xpi−j

i ), i = 0, ..., n− 1.(5.4)

Thus the vector of functions ai satisfies

∆i+1,k(ai−1) ≡ 0 k < ji+1, i = 0, ..., n− 1.(5.5)



LOCAL TOPOLOGICAL ALGEBRAICITY OF ANALYTIC FUNCTION GERMS 11

These equations mean in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0x
q0
1 .(5.6)

where u0 is a non-zero constant. Hence f1 ≡ 1.

5.4. Approximation by Nash functions. Consider (5.3), (5.4), (5.5), as a system of
polynomial equations on ai(x

i), ui(x
i), and b(x). By construction, this system admits

convergent solutions. Therefore, by Theorem 2.1, there exist a new set of variables z =
(z1, ..., zs), an increasing function τ , and convergent power series zi(x) ∈ C{x} vanishing at
0 such that z1(x),..., zτ(i)(x) depend only on (x1, ..., xi), algebraic power series ui(x

i, z) ∈
C〈xi, z1, ..., zτ(i)〉, and vectors of algebraic power series ai(x

i, z) ∈ C〈x(i), z1, ..., zτ(i)〉
pi, b(x, z) ∈

C〈x, z〉n−1, such that ai(x
i, z), ui(x

i, z), b(x, z), are solutions of (5.3), (5.4), (5.5) and
ai(x

i) = ai(x
i, z(xi)), ui(x

i) = ui(x
i, z(xi)), b(x) = b(x, z(x)).

For t ∈ C we define

Fi(t, x) = x
pi
i +

pi
∑

j=1

ai−1,j(x
i−1, tz(xi−1))xpi−j

i .

In particular, by (5.6), F1 ≡ 1. Since

un(x, tz(x))Fn(t, x) =

p
∏

m=1

(x1 −
n

∑

k=2

xkbm,k(x, tz(x))),

by the Implicit Function Theorem there are algebraic power series Gm ∈ C〈t, y1...., yn−1〉
such that

F−1
n (0) =

⋃

m

{(t, x); x1 = Gm(t, x2, ..., xn)}

as germs at the origin. Then gm(y) = Gm(1, y) and Gm(0, y) ∈ C〈y〉. We denote ĝm(y) =
Gm(0, y).

Because ui(0, 0) = ui(0, z(0)) 6= 0, the family Fi(t, x) satisfies the assumptions of Theorem
5.1 with |t| < R for arbitrary R < ∞. By Theorem 5.1 there is a continuous family of

homomorphism germs ht : (Cn, 0) → (Cn, 0), ht(x) = (x1, ĥt(x1, x2, ..., xn)), such that

ht(gm(y), y) = (Gm(t, ĥt(gm(y), y)), ĥt(gm(y), y)),

Fix one m, for instance m = 1, and set

σt(y) = ĥt(g1(y), y)

as in the proof of Theorem 5.2 (we use here the notation (5.2)). Then g1(y) = G1(t, σt(y))
and in particular

g1(y) = ĝ1(σ0(y)).(5.7)

It is not true in general that gm(y) = ĝm(σ0(y)) since the homeomorphism σt is defined by
restricting ht to the graph of G1. If we define

σm,t(y) = ĥt(gm(y), y)

then we have
gm(y) = ĝm(σm,0(y))



12 M. BILSKI, A. PARUSIŃSKI, G. ROND

Both homeomorphisms coincide on Xm = {y ∈ (Cn−1, 0); (gm − g1)(y) = 0}. Therefore if we

define X̂m = {y ∈ (Cn−1, 0); (ĝm − ĝ1)(y) = 0} then

σ0(X̂m) = Xm.(5.8)

Therefore we have the following result.

Proposition 5.3. Let (Vi, 0) ⊂ (Kn, 0) be a finite family of analytic set germs and let

g : (Kn, 0) → (K, 0) be an analytic function germ. Then there are Nash set germs (V̂i, 0) ⊂
(Kn, 0), an algebraic power series ĝ ∈ K〈x〉, and a homeomorphism germ σ̂ : (Kn−1, 0) →

(Kn−1, 0) such that σ(V̂i) = Vi and g ◦ σ̂ = ĝ.

Proof. Let K = C. Choose a finite family gm : (Cn−1, 0) → (C, 0), m = 1, ..., p, of analytic
function such that g1 = g and for every i, the ideal of Vi is generated by some of the
differences gm − g1. We apply to the family gm the procedure of subsections 5.3 and 5.4 and
set σ̂ = σ0. The claim now follows from (5.7) and (5.8).

The real case follows from the complex one because if the pseudopolynomials Fi of subsec-
tion 3.1 have real coefficients then the homeomorphisms ht constructed in [19] are conjugation
invariant, cf. §6 of. [19]. �

5.5. Proof of Theorem 1.2 and Theorem 1.3. It suffices to show Theorem 1.3. It will
follow from Proposition 5.3 and the next two results.

Theorem 5.4. Let K = R or C. Let fi : (Kn, 0) → (K, 0), be a finite family of Nash function
germs. Then there is a Nash diffeomorphism h : (Kn, 0) → (Kn, 0) and analytic (even Nash)
units ui : (Kn, 0) → K, ui(0) 6= 0, such that for all i, ui(x)fi(h(x)) are germs of polynomials.

Proof. For K = C Theorem 5.4 follows from Theorem 5 of [2]. Indeed, (i) implies (ii) of this
theorem gives :
If (V, 0) ⊂ (Kn, 0) is a Nash set germ then there is a Nash diffeomorphism h : (Kn, 0) →
(Kn, 0) such that for any analytic irreducible component W of (V, 0) the ideal of functions
vanishing on h(W ) is generated by polynomials.

Now, if K = C, it suffices to apply the above result to (V, 0) defined as the zero set of the
product of fi’s.

If K = R such a set theoretic statement is not sufficent but in this case Theorem 5.4
follows from the proof of Theorem 5 of [2]. We sketch this argument below.

First we consider K = C. Choose representatives fi : U → C of the germs fi, i = 1, ..., m,
and let f = (f1, ..., fm) : U → Cm. By Artin-Mazur Theorem, [1] Theorem 8.4.4, [2]
Proposition 2, there is an algebraic set X ⊂ Cn × CN of dimension n, a polynomial map
Φ : Cn×CN → Cm, and a Nash map s : U → X such that f = Φ◦ s, s : U → s(U) is a Nash
diffeomorphism and s(U) ∩ Sing(X) = ∅. (X is the normalization of the Zariski closure of
the graph of f .) We may assume that p = s(0) is the origin in Cn × CN .

Let π : X → Cn be a generic linear projection. Then the germ h of (π ◦ s)−1 satisfies
the claim. Indeed, denote Xi = X ∩ Φ−1

i (0). Then for each i = 1, ..., m, Zi = π(Xi) is an
algebraic subset of Cn and moreover, π induces a local isomorphism (Xi, 0) → (Zi, 0). We
fix a reduced polynomial Pi that defines Zi. Then fi ◦ h, as a germ at the origin, vanishes
exactly on Zi and hence equals a power of Pi times an analytic unit.
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If K = R then we apply the complex case to the complexifications of the fi’s keeping the
construction conjugation invariant. In particular the linear projection can be chosen real
(that is conjugation invariant). Indeed, this projection is from the Zariski open dense subset
U of the set of linear projections L(Cn × CN ,Cn). Then U ∩ L(Rn × RN ,Rn) is non-empty.
(A complex polynomial of M variables that vanishes on RM is identically equal to zero).
This ends the proof. �

Theorem 5.5. Let K = R or C. Let f : (Kn, 0) → (K, 0) be an analytic function germ and
let u : (Kn, 0) → K be an analytic unit, u(0) 6= 0 (u(0) > 0 if K = R). Let (Vi, 0) ⊂ (Kn, 0)
be a finite family of analytic set germs. Then there is a homeomorphism germ σ : (Kn, 0) →
(Kn, 0) such that (σ(Vi), 0) = (Vi, 0) for each i and uf = f ◦ σ.

Proof. If K = C we suppose additionally that the segment that joins u(0) and 1 does not
contain 0. The general case can be reduced to this one.

Fix a small neighborhood U of the origin in Kn so that the representatives Vi ⊂ U ,
f : U → K, and u : U → K are well-defined. In the proof we often shrink U when necessary.
Let I denote a small neighborhood of [0, 1] in R. We construct a Thom stratification of the
deformation Ψ(x, t) = (F (x, t), t) : U × I → K× I, where

F (x, t) = f(x)(1 − t+ tu(x)) = f(x)(1 + t(u(x) − 1)), (x, t) ∈ U × I,

that connects f(x) = F (x, 0) and u(x)f(x) = F (x, 1). Then we conclude by the second
Thom-Mather Isotopy Lemma. For the Thom stratification we refer the reader to [4], Ch.
1, and for the Thom-Mather Isotopy Lemmas to [4], Ch. 2.

Fix a Thom stratification S ′ = {S ′
j} of f : U → K such that each Vi is a union of strata.

That means that S ′ is a Whitney stratification of U , compatible with f−1(0) and f−1(K\{0}),
that satisfies Thom’s af condition. (It is well-known that such a stratification exists, the
existence of af regular stratifications was first proved in the complex analytic case by H.
Hironaka in [5], using resolution of singularities, under the assumption ”sans éclatement”
which is always satisfied for functions. In the real subanalytic case it was first shown in [9])

First we show that S = {Sj = S ′
j × I} as a stratification of U × I satisfies aF condition

(aF ) for every stratum S ⊂ F−1(K \ {0}) and every sequence of points pi = (xi, ti) ∈ S

that converges to a point p0 = (x0, t0) ∈ S0 ⊂ F−1(0), such that ker dpiF |Tpi
S → T ,

we have T ⊃ Tp0S0.

By the curve selection lemma it suffices to check this condition on every real analytic curve
p(s) = (x(s), t(s)) : [0, ε) → S ∪ S0, p(0) ∈ S0 and p(s) ∈ S for s > 0. Since S ′ satisfies af ,
the condition aF for S follows from the following lemma.

Lemma 5.6. Let S = S ′ × I ⊂ F−1(K \ {0}) and S0 ⊂ F−1(0) be two strata of S and let
p(s) = (x(s), t(s)) : [0, ε) → U × I be a real analytic curve such that p0 = p(0) ∈ S0 and
p(s) ∈ S for s > 0. Then for s > 0 and small, gradx F |S(p(s)) 6= 0 and

lim
s→0

gradF |S(p(s))

‖ gradF |S(p(s))‖
= lim

s→0

(grad f |S′(x(s)), 0)

‖ grad f |S′(x(s))‖
(5.9)

Proof. By assumption f(x(s)) =
∑∞

i=i0
ais

i, with i0 > 0 and ai0 6= 0. By differenting we
obtain

|
df

ds
| = | 〈grad f |S′, x′(s)〉 | ≤ ‖ grad f |S′‖‖x′(s)‖.
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Hence there exists C > 0 such that for small s > 0

|f(x(s))| ≤ sC‖ grad f |S′‖.(5.10)

Moreover

gradF |S(p(s)) =(grad f |S′(x(s)), 0)(1 + t(s)(u(x(s)) − 1)(5.11)

+ f(x(s))(t(s) gradu|S′(x(s)), u(x) − 1).(5.12)

Now (5.9) follows easily from (5.10) and (5.11). �

Finally S as a stratification of U×I together with ((K\{0})×I, {0}×I) as a stratification
of K×I is a Thom stratification of Ψ. Indeed, S is a Whitney stratification as the product of a
Whitney stratification of U times I. Secondly, for any pair of strata S = S ′×I ⊂ F−1(K\{0})
and S0 = S ′

0 × I ⊂ F−1(0) it satisfies aF and hence also aΨ condition. Therefore Theorem
5.5 follows from the second Thom-Mather Isotopy Lemma, [4], Ch. 2 (5.8). �

Now we may conclude the proof of Theorem 1.3. By Proposition 5.3 we may assume that
g is a Nash function germ and the Vi’s are Nash sets germs. Moreover by Theorem 5.4, after
composing with the Nash diffeomorphism h, we may assume that g equals a polynomial times
an analytic unit and that the ideal of analytic function germs defining each Vi is generated
by polynomials. In particular each Vi is algebraic. Finally we apply Theorem 5.5 to show
that, after composing with a homeomorphism preserving each Vi, g becomes a polynomial.

6. Examples

Example 6.1. We give here an example showing that the C1 analog of Theorems 1.1 or
1.2 is false in the real case (this example is well-known, see [2] for example). The germ
(V, 0) ⊂ (R3, 0), defined by the vanishing of

f(t, x, y) = xy(y − x)(y − (3 + t)x)(y − γ(t)x)

where γ(t) ∈ R{t} is transcendental and γ(0) = 4, is not C1-diffeomorphic to the germ of
an algebraic set as follows from the argument of Whitney, cf. Section 14 of [22]. Indeed
V is the union of five smooth surfaces intersecting along the t-axis and its tangent cone
at the point (t, 0, 0) is the union of five planes intersecting along a line. The cross-ratio
of the first four planes is 3 + t and the cross-ratio of the first three and the last plane is
γ(t). Since the cross-ratio is preserved by linear maps, these two cross-ratios are preserved
by C1-diffeomorphisms. But these two cross-ratios are algebraically independent thus the
image of V under a C1-diffeomorphisms cannot be algebraic.

Example 6.2. The previous example also shows that the C1 analogs of Theorems 1.1 or 1.2
are false in the complex case. Define V in a neighborhood of 0 in C3 by the vanishing of the
polynomial of Example 6.1. Modifying Whitney’s argument (cf. [22], pp 240, 241) we will
show that the germ of V at 0 is not C1-equivalent to any Nash germ in C3.

For any (t, 0, 0) ∈ C3 with |t| small, the tangent cone to V at (t, 0, 0) is the union of five
two-dimensional C-linear spaces L1,t, . . . , L5,t, where Lj,t corresponds to the j’th factor of f.
Suppose that there is a C1-diffeomorphism Φ : (C3, 0) → (C3, 0) such that Φ(V ) is a germ of
a Nash set in C3. Then the tangent cone to Φ(V ) at Φ(t, 0, 0) is the union of d(t,0,0)Φ(Lj,t),
for j = 1,..., 5. In particular, every d(t,0,0)Φ(Lj,t) is a C-linear subspace of C3 of dimension 2.
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Let us check that for every t ∈ R with |t| small and for every pairwise distinct k1, . . . , k4 ∈
{1, . . . , 5}, the cross-ratio of Lk1,t,..., Lk4,t is equal to the cross-ratio of d(t,0,0)Φ(Lk1,t),...,
d(t,0,0)Φ(Lk4,t). By a real line in C3 we mean a set of the form {a + tb : t ∈ R} where
a, b ∈ C3. For t ∈ R, Lk1,t, . . . , Lk4,t are defined by real equations so there is a real line
lt ⊂ C3 intersecting Lk1,t ∪ . . . ∪ Lk4,t at exactly four points, say a1,t,..., a4,t. Then the cross-
ratio of Lk1,t, . . . , Lk4,t equals the cross-ratio of a1,t,..., a4,t. Moreover, d(t,0,0)Φ(lt) is also a real
line and it intersects d(t,0,0)Φ(Lk1,t)∪ . . .∪d(t,0,0)Φ(Lk4,t) at d(t,0,0)Φ(a1,t),..., d(t,0,0)Φ(a4,t). The
cross-ratio of the last four points equals that of a1,t,..., a4,t because d(t,0,0)Φ is R-linear and
a1,t, . . . , a4,t ∈ lt. Since the cross-ratio of d(t,0,0)Φ(a1,t),..., d(t,0,0)Φ(a4,t) equals the cross-ratio
of d(t,0,0)Φ(Lk1,t),..., d(t,0,0)Φ(Lk4,t), we obtain our claim.

Now observe that the complex t-axis is the singular locus of V and its image S by Φ is
the singular locus of Φ(V ). Clearly, S is a smooth complex Nash curve. Moreover, the cross-
ratios h1, h2 of d(t,0,0)Φ(L1,t), . . . , d(t,0,0)Φ(L4,t) and d(t,0,0)Φ(L1,t), d(t,0,0)Φ(L2,t), d(t,0,0)Φ(L3,t),
d(t,0,0)Φ(L5,t), respectively, depend algebraically on s = Φ(t, 0, 0) ∈ S (cf. [22], p 241),
i.e. h1, h2 : S → C are complex Nash functions. On the other hand, the cross-ratios of
L1,t, . . . , L4,t and of L1,t, L2,t, L3,t, L5,t equal 3 + t and γ(t), respectively.

The last two paragraphs imply that for t ∈ R with |t| small, we have h1(Φ(t, 0, 0)) = 3 + t

and h2(Φ(t, 0, 0)) = γ(t). Since S is a smooth complex Nash curve, we may assume that
h1, h2 are defined in some neighborhood of 0 ∈ C and that Ψ(t) = Φ(t, 0, 0) is a map into
C. We have Ψ(t) = Ψ1(t) + iΨ2(t) where Ψ1,Ψ2 are real valued continuous functions and
h1(s) = u1(s) + iv1(s), where u1, v1 are real Nash functions, and u1(Ψ1(t),Ψ2(t)) = 3 + t,

and v1(Ψ1(t),Ψ2(t)) = 0 for t ∈ R with |t| small. Since u1, v1 satisfy the Cauchy-Riemann
equations and h1 is not constant, neither of u1, v1 is constant. Consequently, Ψ1|R, Ψ2|R are
semi-algebraic functions, which contradicts the fact that h2(Ψ(t)) = γ(t) for real t.

Example 6.3. Theorem 1.2 cannot be extended to many functions or to maps to Km, m > 1.
For example the one variable analytic germs x and ex − 1 cannot be made polynomial (or
Nash) simultaneously by composing with the same homeomorphism.

Example 6.4. The key point in the previous examples is the fact that two one variable
functions which are algebraically independent remain algebraically independent after com-
position with a homeomorphism. Theorem 1.2 also cannot be extended to many functions,
even if we assume them algebraically depended. For instance, one variable Nash germs x
and y(x) =

√

ϕ(x) − 2, with ϕ(x) = (x − 1)(x + 2)(x − 2), cannot be made polynomial
simultaneously since the cubic y2 = ϕ(x) is not rational.
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