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Abstract

We prove that the basic intersection cohomologyH
∗

p
(M/F ), whereF is the singular foliation deter-

mined by an isometric action of a Lie groupG on the compact manifoldM, verifies the Poincaré Duality
Property.

Cohomology theories are one of the basic tools in the study ofinvariants of topological and geometrical
objects. They provide a good environment for the development of obstruction theories. In the case of regular
Riemannian foliations basic cohomology theory proved to beof great importance. In particular, for foliations
of compact manifolds, it was possible to define a 1-basic cohomology classκ , the lvarez class, whose vanishing
is responsible for tautness. Moreover, the Poincaré duality property holds only in basic twisted cohomology
associated to this 1-cohomology class, (see [2] and [3] for the precise statement).

In the singular case the situation is even more complicated,for isometric actions the top dimensional basic
cohomology can vanish and the Poincaré duality does not hold, [7]. Moreover, the standard procedure for the
definition of the tautnes class seems not to work. Perhaps oneshould approach the problem from a different
angle, and consider some other cohomology theory.

We introduced the intersection basic cohomology in [10] andthe examples and results obtained indicate
that this cohomology theory is suitable for the study of topology and geometry of singular Riemannian folia-
tions, [8, 9, 11, 12]. In the present paper we demonstrate that under suitable orientation assumptions the basic
intersection cohomology of a Killing foliation satisfies the Poincaré duality property.

In the sequelM is a connected, second countable, Haussdorff, without boundary and smooth (of classC∞)
manifold. We also writeG for a Lie group.
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1. Killing Foliations.

A smooth actionΦ : G×M → M of the Lie groupG is anisometric actionwhen there exists a riemannian
metricµ on M preserved byG. Moreover, the isometric actionΦ is tamewhen the closure ofG in Iso(M,µ)
is compact. This is always the case when the manifoldM is compact (cf. [4]).

The connected components of the orbits of a tame action determine a partitionF on M. In fact, this
partition is a singular riemannian foliation that we shall call Killing foliation (cf. [5]).

Notice thatF is also a conical foliation in the sense of [10]. So, basic intersection cohomology can be
used for the study ofF . In this work, we prove the Poincaré Duality Property of this cohomology.

The actionΦ is tame when it is the restriction of a smooth actionΦ : K ×M → M whereK is a compact
Lie group containingG. The groupK is not unique. We always can chooseK in such a way thatG is dense in
K. We shall say thatK is atamer group.

Since the aim of this work is the study ofF and not the actionΦ itself, we can consider without loss of
generality that the Lie groupG is connected and the action is effective. In this case,G is normal on the tamer
groupK and the quotient groupK/G is commutative (see [6]). This is a key fact for this work.

2. Stratification.

Classifying the points ofM following the dimension of the leaves ofF one gets thestratificationS
F

. It is
determined by the equivalence relationx∼ y⇔ dimGx = dimGy. The elements ofS

F
are calledstrata. The

open stratumRF is theregular stratumand the other strata are thesingular strata.
We fix a basis pointp∈ RF and we put(Gp)0 = L, whereE0 stands for the identity component of the Lie

groupE (the one containing the unity element). This group is generic in the following way.

Proposition 2.1 For each x∈ RF there exists k∈ K with (Gx)0 = kLk−1. Moreover, the choice x7→ k can be
done locally in a smooth way.

Proof. We consider a pointx ∈ RF and we find an open neighborhoodV ⊂ RF of x and a smooth map
f : V → RF with (Gy)0 = f (y)(Gx)0 f (y)−1, for eachy∈V.

Since the Lie groupK is compact we can suppose thatRF = K×HR
m, whereH is a closed subgroup of

O(m), andx=< e,0>. We consider a neighborhoodW⊂K of e. This neighborhood is chosen small enough in
order to ensures us the existence of a smooth sectionσ : γ(W)→W of the canonical projectionγ : K → K/H.
We write Γ : M = K×HR

m → K/H the canonical projection. So,V = Γ−1(W) is a neighborhood ofx on
RF . Put f : V → K the smooth map defined byf (y) = σ(Γ(y)). A straightforward calculation gives, for
eachy=< k,v>=< f (y),v′ >, the equality:Gy = f (y)(G∩H)v′ f (y)

−1. On the other handGx = G∩H and
dimGx = dimGy give dim(G∩H) = dim(G∩H)v′ and therefore:

(Gy)0 = f (y)((G∩H)v′)0 f (y)−1 = f (y)(G∩H)0 f (y)−1 = f (y)(Gx)0 f (y)−1.

This ends the proof. ♣

We fix for the rest of the work a Killing foliationF given by an effective tame actionΦ : G×M → M with
G connected. We also fix a tamer groupK. We writeb= dimG andm= dimM. The induced foliation on the
regular stratumRF is regular, its dimension will be denoted byw= dimF .

3. Presentation of the Poincaŕe Duality Property.
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The basic intersection cohomologyH
∗

p
(M/F ), relatively to the perversityp, was introduced in [10] for

the study of conical foliations1.
We define thesupportof a perverse formω ∈ Π∗

F
(M) as suppω = {x∈ M\ΣF / ω(x) 6= 0}, where the

closure is taken inM. We denote byΩ∗

q,c
(M/F ) =

{
ω ∈ Ω∗

q
(M/F )

/
suppω is compact

}
the complex of

intersection basic differential forms with compact support relatively to the perversityq. The cohomology
H

∗

q,c
(M/F ) of this complex is thebasic intersection cohomology with compact supportof (M,F ), relatively

to the perversityq2.
The goal of this work is to prove that the usual pairing gives the isomorphism

H
∗

p
(M/F )∼=H

m−w−∗

q,c
(M/F ),

wherep andq are complementary perversities, that is,p+q= t, with t(S)= codimM F−codimSFS−2 where
S is a singular stratum andFS the restriction ofF to S.

4. Twisted product.

The elementary pieces onM are the twisted products. We find in [12, Proposition 5] the computation of their
basic intersection cohomology. We present here the compactsupport version of this result.

Proposition 4.1 H
∗

q,c
(K×H N/W ) =

(
H

∗
(K/K )⊗H

∗

q,c
(N/N )

)H/H0
.

Proof. It suffices to follow [12, Proposition 5] taking into the account that, given a differential formω on
K×H RW , we have:

Π∗ω ∈ Ω
∗

q,c
(K ×N/E ×N )⇐⇒ ω ∈ Ω

∗

q,c
(K×H N/W ).

This comes from the fact thatΠ is an onto map and that the Lie groupsK andH are compact. ♣

5. Tangent volume form.

In order to construct the pairing giving the Poincaré Duality we need to introduce a particular tangent
volume form of the orbits ofΦ.

We fix a K-invariant metricν on k, the Lie algebra ofK which exists sinceK is compact. Consider
{u1, . . . ,uf} an orthonormal basis ofk where{u1, · · · ,ub} is a basis ofg and{u1, · · · ,uw} is a basis ofl⊥.
Here,g (resp.l) denotes the Lie algebra ofG (resp.L). We putτ = u∗1∧ · · ·∧u∗w the associated volume form
of l⊥.

We writeVu the fundamental vector field onM associated tou ∈ g. A tangent volume formof Φ is a
G-invariant differential formη ∈ Πw

F
(M) verifying:

(1) η(Vu1(x), . . . ,Vuw(x)) = τ
(
Ad(ℓ−1) ·v1, . . . ,Ad(ℓ−1) ·vw

)
,

where{v1, . . . ,vw} ⊂ g, x∈ RF andGx = ℓLℓ−1.
We prove the existence of a tangent volume form under a suitable orientation conditions on the manifold

and on the foliation. The tame actionΦ is orientableif

(i) the manifoldM is orientable, and

(ii) the adjoint action Ad :NK(L)× l→ l is orientation preserving.

1We refer the reader to [12] for notation and main properties of this notion.
2We refer the reader to [11] for notation and main properties of this notion.
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5.1 Remarks.

(a) Condition (ii) does not depend on the choice ofL.

(b) Since the groupK preserves the orientation ofg then condition (ii) is equivalent to

(ii’) the adjoint action Ad :NK(L)× l⊥ → l⊥ is orientation preserving.

(c) Condition (ii) is verified whenG is abelian or whenl= 0, that is, when dimF = dimG.

Proposition 5.2 If the actionΦ is orientable, then there exists a K-invariant tangent volume formη of Φ
verifying:

(a) For eachω ∈ Ωm−w−1

t
(M/F ) the productω ∧dη is 0.

(b) For eachω ∈ Ωm−w

t,c
(M/F ) the integral

∫

RF

ω ∧η is finite.

(c) For eachω ∈ Ωm−w−1

t,c
(M/F ) the integral

∫

RF

d(ω ∧η) is 0.

Proof. Firstly, we prove the following statement by induction on depthS
F

:

“There exists aK-invariant differential formη ∈ Πw

F×I
(M× [0,1[p) verifying

(2) η((Vv1(x),0), . . . ,(Vvw(x),0)) = τ(Ad(ℓ−1) ·v1, . . . ,Ad(ℓ−1) ·vw),

where{v1, . . . ,vw} ⊂ g, x∈ RF and(Gx)0 = ℓLℓ−1 with ℓ ∈ K.”

Here,I denotes the pointwise foliation of[0,1[p. The existence ofη is proven by takingp= 0.

First case:depthS
F
= 0.

We haveΠ∗

F
(M× [0,1[p) = Ω∗

((M× [0,1[p)/(F ×I )). Since the foliationF is K-invariant then it
suffices to defineη on T(F ×I ). In fact, this restriction is given by (2). It remains to prove thatη is
well-defined, smooth onT(F ×I ) andK-invariant. Let us see that.

• The definition (2) does not depend onℓ. Let us considerℓ′ ∈K with (Gx)0= ℓ′Lℓ′−1. Thenℓ′−1ℓ∈NK(L).
This gives

τ(Ad(ℓ′−1) ·v1, . . . ,Ad(ℓ′−1) ·vw) = τ(Ad(ℓ′−1ℓ)Ad(ℓ−1) ·v1), . . . ,Ad(ℓ′−1ℓ)Ad(ℓ−1)) ·vw).

Since the element Ad(ℓ′ℓ−1) preserves the metricν and the orientation ofl⊥ (see (ii’)) then we get

τ(Ad(ℓ′−1) ·v1, . . . ,Ad(ℓ′−1) ·vw) = τ(Ad(ℓ−1) ·v1, . . . ,Ad(ℓ−1) ·vw).

• The definition (2) is smooth. Considerx∈ M. From Proposition 2.1 we know that there exists a neigh-
borhoodV ⊂ M and a smooth mapf : V → K such that(Gy)0 = f (y)L f (y)−1 for eachy∈ V. In this
neighborhood we haveη((Vv1(y),0) . . . ,(Vvw(y),0)) = τ(Ad( f (y)−1) ·v1), . . . ,Ad( f (y))−1) ·vw), which
is smooth.
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• The formη is K-invariant. If k∈ K we get(Gk·x)0 = kℓLℓ−1k−1 and

(k∗η)((Vv1(x),0), . . . ,(Vvw(x),0)) = η(k∗(Vv1(x),0), . . . ,k∗(Vvw(x),0)) =

η((VAd(k)·v1
(k ·x),0) . . . ,(VAd(k)·vw

(k ·x),0)) = τ(Ad((kℓ)−1)Ad(k) ·v1, . . . ,Ad((kℓ)−1)Ad(k) ·vw) =

τ(Ad(ℓ−1) ·v1, . . . ,Ad(ℓ−1) ·vw) = η((Vv1(x),0) . . . ,(Vvw(x),0)).

Second case:depthS
F
> 0.

By induction hypothesis there exists aK-invariant differential formη0 ∈ Πw

F̂

(
M̂× [0,1[p

)
verifying (2).

Associated to the Molino’s blow up (cf. [12, 5.2]) we have theK-equivariant imbeddingσ : M\Smin →
L −1(M\Smin), defined byσ(z) = (z,1). The differential formη = (σ × identity[0,1[p)

∗η0 belongs to the com-

plex Ωw
(RF × [0,1[p), is K-invariant and verifies (2). It remains to prove thatη ∈ Πℓ

F×I
(M× [0,1[p), which

is a local property.
So, we can consider thatM is a tubular neighborhoodT of a singular stratum ofS

F
and prove(∇×

identity[0,1[p+1)∗η ∈ Πw

F×I

(
D× [0,1[p+1

)
(cf. [11, 3.1.1 (e)]). This is the case sinceσ◦∇ : D×]0,1[→ D×]−

1,1[ is just the inclusion andη0 ∈ Πw

F×I
(D×]−1,1[×[0,1[p).

We prove now the (a)-(c) items.

(a) It suffices to prove this property on the regular stratumRF . In other words, we can suppose that
depthS

F
= 0. Since the question is a local one, it is enough to proveω ∧dη = 0 on the open subsetV ⊂ M

(cf. proof of Proposition 2.1).
For eachy∈V we have(Gy)0 = f (y)L f (y)−1. Then,{Vf (y)·u1

(x), . . . ,Vf (y)·uw
(x)} is a basis ofTyG(y). For

degree reasons it suffices to prove that we haveiVf (y)·u1
(x) · · · iVf (y)·uw(x)

(ω ∧dη) = 0. Sinceω is a basic form
andη is aK-invariant form, we can write

iVf (y)·u1
(y) · · · iVf (y)·uw(y)

(ω ∧dη) = (−1)wω ∧ iVf (y)·u1
(y) · · · iVf (y)·uw(y)

dη = ω ∧d
(

iVf (y)·u1
(y) · · · iVf (y)·uw(y)

η
)

= ω ∧d
(
η
(
Vf (y)·u1

(y), . . . ,Vf (y)·uw
(y)
))

= ω ∧d(τ (u1, . . . ,uw))

= ω ∧d1= 0.

(b) and (c) . Notice that the integrals make sense sinceM is an oriented manifold andRF is an open subset

of it. Now, the proof is the same as in in [11, Lemma 4.3.2]. ♣

6. The pairing.

In Section 9 we prove the Poincaré Duality Property:H
∗

p
(M/F )∼=H

m−w−∗

q,c
(M/F ), whenΦ is orientable and

the two perversitiesp andq are complementary. This isomorphism comes from the pairingPM constructed
from the above tangent volume formη in the following way:

PM : Ω∗

p
(M/F )×Ωm−w−∗

q,c
(M/F )−→R ∴ (α,β ) 

∫

RF

α ∧β ∧η.

Proposition 5.2 implies that this operator is well defined and that it induces thepairing

PM : H
∗

p
(M/F )×H

m−w−∗

q,c
(M/F )−→ R,
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defined byPM([α], [β ]) =PM(α,β ). The Poincaré Duality Property asserts thatPM is a non degenerate pairing,
that is, the operator

PM : H
∗

p
(M/F )−→ Hom

(
H

m−w−∗

q,c
(M/F ),R

)

defined byPM([α])([β ]) =
∫

RF

α ∧β ∧η is an isomorphism.

7. Twisted product and Poincaŕe Duality.

We first get the Poincaré Duality Property in the framework of twisted products.

Proposition 7.1 Consider a twisted product K×H N, where N is an orientable manifold and the actionΘ : H×
N → N is effective. Let us suppose that the associated actionΦ : G× (K ×H N) → (K ×H N) is orientable.
Then:

(a) The actionΘ : (G∩H)0×N → N is orientable.

(b) Si (N,N ) verifies the Poincaŕe Duality Property then(K ×H N,W ) verifies the Poincaŕe Duality
Property.

Proof. Recall that the actionΘ : (G∩H)0×N → N is a tame action relatively to the closureH ′ of (G∩H)0 on
H.

For each< k,v>∈ K×H N we haveG<k,v> = k (G∩H)v k−1. Then((G∩H)v)0 = ℓLℓ−1 and(G<k,v>)0 =
kℓLℓ−1k−1 for someℓ∈ H ′. In particular, we can take the sameL for both actionsΦ andΘ. Property (a) comes
now from the inclusionNH ′(L)⊂ NK(L). We prove (b) in several steps.

1. Tangent volume forms ofΦ andΘ. We follow the notations of [12, 4.1]. In particular, we consider

B=
{

u1, . . .ua,ua+1, . . . ,uw,uw+1, . . . ,ub,ub+1, . . . ,uc,uc+1, . . . ,uf
}

an orthonormal basis ofk with {u1, . . .ub} basis ofg, {ua+1, . . .uc} basis of the Lie algebrah of H and
{uw+1, . . .ub} basis ofl.

Consider a tangent volume formη of Φ : G×M → M (resp.η0 of Θ : (G∩H)0×N → N) associated to
the metricν (resp. ofν|g∩h). Recall thatτ = u∗1∧· · ·∧u∗w andτ0 = u∗a+1∧· · ·∧u∗w. We prove that

(3) (−1)a(b−a)γa+1∧· · ·∧ γb∧Π∗η = γ1∧· · ·∧ γb∧η0 onK ×N .

The leaf ofK ×N at the point(k,v) ∈ K ×N is generated by

B=
{
(Xu1(k),0), . . . ,(Xub(k),0),(0,WAd(ℓ)(ua+1)(v)), . . . ,(0,WAd(ℓ)(uw)(v))

}

(cf. [12, Proposition 5〈v〉]).The RHT of (3) applied toB gives,

η0(WAd(ℓ)(ua+1)(v)), . . . ,WAd(ℓ)(uw)(v) = τ0(ua+1, . . . ,uw) = (u∗a+1∧· · ·∧u∗w)(ua+1, . . . ,uw) = 1.

The LHT of (3) applied toB gives, using the fact thatΠ∗(Xu(k),−Wu(v)) = 0 if u∈ g∩h:

Π∗η
(
(Xu1(k),0), . . . ,Xua(k),0),(0,WAd(ℓ)(ua+1)(v)), . . . ,(0,WAd(ℓ)(uw)(v))

)
=

η
(
Π∗(Xu1(k),0), . . . ,Π∗(Xua(k),0),Π∗(XAd(ℓ)(ua+1)(k),0), . . . ,Π∗(XAd(ℓ)(uw)(k),0)

)
=

η
(

Π∗(X
Ad(k)(u1)(k),0), . . . ,Π∗(X

Ad(k)(ua)(k),0),Π∗(X
Ad(kℓ)(ua+1)(k),0), . . . ,Π∗(X

Ad(kℓ)(uw)(k),0)
)

=

η
(
VAd(k)(u1)(< k,v>) . . . ,VAd(k)(ua)(< k,v>),VAd(kℓ)(ua+1)(< k,v>), . . . ,VAd(kℓ)(uw)(< k,v>)

)
=

τ
(
Ad(ℓ−1)(u1), . . . ,Ad(ℓ−1)(ua),ua+1, . . . ,uw

)
= (u∗1∧· · ·∧u∗a)

(
Ad(ℓ−1)(u1) . . . ,Ad(ℓ−1)(ua)

)
.
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Here,Vu denotes the fundamental vector field of the actionΦ associated tou∈ g . Sinceℓ ∈ H ′, the closure of
(G∩H)0 onH, then Ad(ℓ) preservesg andh. Connectedness ofH ′ gives that the operator Ad(ℓ) : (g∩h)⊥g →
(g∩h)⊥g is an orthogonal map preserving orientation. So

(u∗1∧· · ·∧u∗a)
(
Ad(ℓ−1)(u1) . . . ,Ad(ℓ−1)(ua)

)
= det(Ad(ℓ−1))(u∗1∧· · ·∧u∗a)(u1, . . . ,ua) = 1,

We obtain (3).
2. Some maps. Consider now two complementary perversitiesp andq onN. We have dimN=m+c−a− f

and dimN = w−a, wherew = dimW andm= dimK×H N. By hypothesis, the pairingPN : H
∗

p
(N/N )×

H
m+c−w− f−∗

q,c
(N/N ) → R is non degenerate. On the other hand, it is clear that the pairing P: H

∗
(K/E )×

H
f−c−∗

(K/E ) −→ R, defined byP([ξ ], [χ ]) =
∫

K
ξ ∧χ ∧ γ1∧· · ·∧ γc is non degenerate (cf. [12, 4.1]. So, the

first row of the below diagram 3. is non degenerate.
Write alsop andq the associated perversities onK ×H N, which also are two complementary perversities.

Recall that the isomorphisms

∇ :
(

H
∗
(K/E )⊗H

∗

p
(N/N )

)H/H0
−→H

∗

p
(K×H N),

∇ :
(

H
∗
(K/E )⊗H

∗

q,c
(N/N )

)H/H0
−→H

∗

q,c
(K×H N)

are characterized by

(4) Π∗∇([ξ ]⊗ [α]) =

[
ξ ∧

(
α + ∑

b<i1<···<i l≤c

(−1)ℓγi1 ∧· · ·∧ γi l ∧ (iWil
· · · iWi1

α)

)]

(cf. [12, Proposition 5] and Proposition 4.1).

3. A diagram. Let us consider the following diagram
(

H
∗
(K/E )⊗H

∗

p
(N/W )

)H/H0
×
(

H
f−c−∗

(K/E )⊗H
m+c−w− f−∗

q,c
(N/N )

)H/H0 P⊗PN−−−→ R

∇×∇
y Identity

y

H
∗

p
(K ×H N)×H

m−w−∗

q,c
(K ×H N)

PK×HN
−−−−→ R.

We end the proof if we show that this diagram commutates up to aconstant. Write∇([ξ ]⊗ [α]) = [α •β ]. We
have,

PK×HN(∇×∇)([ξ ]⊗ [α], [χ ]⊗ [β ]) =
∫

K×H RN

ξ •α ∧χ •β ∧η.

Recall that we have denoted by{Wa+1, . . . ,Wc} the fundamental vector fields of the actionΘ : H ×N → N
associated to the basis{ua+1, . . . ,uc}. We write{ζa+1, . . . ,ζc} the associated dual forms relatively to anH-
invariant riemannian metric onRN /N . So, 1

2c−a (γa+1+ζa+1)∧· · ·∧ (γc+ζc) is a differential form ofK ×N
giving a volume form on each fiber ofΠ. Thus

PK×HN(∇×∇)([ξ ]⊗ [α], [χ ]⊗ [β ]) =
1

2c−a

∫

K×RN

Π∗(ξ •α ∧χ •β ∧η)∧ (γa+1+ζa+1)∧· · ·∧ (γc+ζc)

(4)
=

1
2c−a

∫

K×RN

ξ ∧α ∧χ ∧β ∧Π∗η ∧ (γa+1+ζa+1)∧· · ·∧ (γc+ζc)
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for degree reasons. By reordering

PK×HN(∇×∇)([ξ ]⊗ [α], [χ ]⊗ [β ]) =
±1

2c−a

∫

K×RN

α ∧β ∧ γa+1∧· · ·∧ γ f ∧Π∗η
(3)
=

±1
2c−a

∫

K×RN

α ∧β ∧ γ1∧· · ·∧ γ f ∧η0 =
±1
2c−a

∫

K
γ1∧· · ·∧ γ f ·

∫

RN

α ∧β ∧η0 =

±1
2c−aP([ξ ], [χ ]) ·PN([α], [β ]) =

±1
2c−a(P⊗PN)([ξ ]⊗ [α], [χ ]⊗ [β ]).

we obtain the commutativity. ♣

8. Tubular neighborhoods and Poincaŕe Duality.

Consider(T,τ,S,Rn) a K-invariant tubular neighborhood of a singular stratumS. The restriction of the
actionΦ : G×M → M to T is orientable. Put(Rn,FRn) the slice of the tubular neighborhood. That is,R

n is
identified with a fiberτ−1(x),x∈ Sand the foliationFRn is defined by a tame actionΘ : Gx×R

n → R
n. It is

also an orientable action since(Gy)x = Gy for eachy∈ τ−1(x).

Proposition 8.1 If the slice verifies the Poincaré Duality Property then the tube also verifies the Poincaré
Duality Property.

Proof. The proof is the same of that of [12, Propositon 6] by considering the following statement

A(M,F ) =

{
“The pairingPT : H

∗

p
(T/F )−→H

m−w−∗

q
(T/F ) is non degenerate,

for any two complementary perversitiesp andq.”

and replacing 4.3 (b) by Proposition 7.1. ♣

9. Poincaŕe Duality.

The main result of this work is the following

Theorem 9.1 The basic intersection cohomology associated to there Killing foliation F determined by an
orientable action of a Lie group verifies the Poincaré Duality Property.

Proof. The proof of the Theorem is the same of that of [12, Theorem 1] by considering the statement

A(M,F ) =

{
“The pairingPM : H

∗

p
(M/F )×H

m−w−∗

q,c
(M/F )−→ R, is non degenerate

for any two complementary perversitiesp andq,”

and the following remarks:

• The result for the regular foliation comes form[1].

• The Mayer-Vietors sequence used are those of [11, 3.6, 3.7].
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• The reference [12, Proposition 6] is replaced by Proposition 8.1.

So, we reduce the problem to proveA(Rm2,FR
m2), that is, to prove that the pairing

PRm2 : H
∗

p
(Rm2/FR

m2)×H
m2−w2−∗

q,c
(Rm2/FR

m2)−→ R,

is non degenerate. Here,FR
m2 is the foliation given by an orientable orthogonal (and therefore tame) action

Λx : Gx×R
m2 →R

m2 having the origin as the unique fixed point. We putw2 = dimFR
m2 . We writeG induced

foliation onSm2−1. By the induction on the depth ofS
F

, we haveA(Sm2−1,G ).
From [12, Proposition 4] we have

H
i

p
(Rm2/FR

m2) =

{
H

i

p

(
S

m2−1/G
)

if i ≤ p(ϑ)

0 if i ≥ p(ϑ)+1.
(5)

From [11, Proposition 3.7.2] and the fact thatp andq are complementary perversities onRm2; id set,p({ϑ})+
q({ϑ}) = t({ϑ}) = m2−w2−2, we have

H
m2−w2−i

q,c
(Rm2/FR

m2) =

{
H

m2−w2−i−1

q

(
S

m2−1/G
)

if i ≤ p({ϑ})

0 if i ≥ p({ϑ})+1.
(6)

Now,A(Rm2,FR
m2) comes fromA(Sm2−1,G ) and these two facts

(i) The pairingPRm2 becomes the pairingP
S

m2−1 through the isomorphism induced by (5) and (6).

Notice first that a tangent volume formη of G is also a tangent volume form forFR
m2 . The

operatorℵ : H
∗

p

(
S

m2−1/GS
)
→ H

∗

p

(
cSm2−1/cGS

)
defining (5) isℵ([α]) = [α]; the operator

ℵ′ : H
∗

q

(
S

m2−1/GS
)
→ H

∗

q,c

(
cSm2−1/GS

)
defining (6) isℵ′([β ]) = [gdt∧β ]. Now, for [α] ∈

H
i

p

(
S

m2−1/GS
)

and[β ] ∈H
m2−1−w2−i

q,c

(
S

m2−1/GS
)

we have

PRm2(ℵ23[α],ℵ′[β ]) =
∫

RG ×]0,1[
α∧g∧dt∧β ∧η =

(∫

RG

α ∧β ∧η
)(∫ 1

0
gdt

)
=P

S
m2−1([α], [β ]).

(iii) The perversitiesp andq are complementary onSm2−1.

We have, for any stratumS∈ SG the equalitiesp(S)+q(S) = p(S×]0,1[)+ q(S×]0,1[) =
t(S×]0,1[)= codimR

m2 FR
m2 −codimS×]0,1[(GS×I )−2= codim

S
m2−1 G −codimSGS−2=

t(S).

Hau amaiera da. ♣
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