
Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

1

Twofold fast arithmetic
Evgeny Latkin
2014 Jul 8

Abstract: Can we assure math computations by automatic verifying floating-point accuracy? We define

fast arithmetic (based on Dekker [1]) over twofold approximations 𝑧 ≈ 𝑧0 + 𝑧1, such that 𝑧0 is standard

result and 𝑧1 assesses inaccuracy ∆𝑧0 = 𝑧 − 𝑧0. We propose on-fly tracking 𝑧1, detecting if ∆𝑧0 appears

too high. We believe permanent tracking is worth its cost. C++ test code for Intel AVX available via web.

Contents

 Motivation

 Background

 Algorithms

 C++ test code

 Performance

 Applications

 Discussion

 Gratitude

 References

History of this document

 22-29 Jun 2014: complete reworking of earlier text by excluding stricter variants of arithmetic

 8 Jul 2014: fixed a few misprints

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

2

Motivation
Amazing progress of computers is only beginning yet. Mathematic computers should evolve to smarter,

automatically identifying and addressing rounding problems, allow humans privilege be unaware of too

much details. Let humans concentrate on their areas of interest, construction, science, education, etc.

Assuring mathematic software statically is best approach that works perfectly in rare special cases, like

elementary functions, sine/cosine, etc. However generally, result’s accuracy depends on specific input

and is hard to predict statically. So we compute in hope: increase precision and pray this be enough.

But shall we try sort of “daemon” who would automatically check all floating-point operations with 2x

higher precision, and signal if standard and 2x-precise results deviate too much? This cannot catch all

problems; but if catches majority, this would anyway make us surer about results.

Our daemon should not overestimate deviations to avoid irrelevant panic. And we want it work in on-fly

manner: assess deviation in parallel with main computations. Balancing cost versus reliability, we would

like majority of programmers find our daemon affordable for typical applications.

We construct our “twofold daemon” basing on Dekker [1] technique of 1971 for 2x-precise arithmetic.

We adapt it to modern Intel/AMD processors, and shift accents from increasing precision to estimating

inaccuracy of original calculations. Following new factors enable Dekker arithmetic meet our goals:

 Unlike 1970th, modern processors are much faster than memory. Typically, we can afford up to

10 extra operations while CPU is fetching data, with minimal damage for overall performance.

 Fast fused-multiply-add (FMA) operation critical for performance of Dekker arithmetic is widely

available nowadays with Intel and AMD inexpensive processors targeted for mass market.

Twofold is approximation of a real value 𝑧 with unevaluated sum of floating-point numbers 𝑧 ≈ 𝑧0 + 𝑧1.

Given 𝑥 = 𝑥0 + 𝑥1 and 𝑦 = 𝑦0 + 𝑦1 and 𝑧 = 𝑥 ∘ 𝑦, twofold 𝑧0 + 𝑧1 keeps 𝑧0 = 𝑥0 ∘ 𝑦0 bitwise identical

to standard result, and 𝑧1 measures inaccuracy of 𝑧0 by approximating ∆𝑧0 = 𝑧 − 𝑧0.

Given chain of such calculations, resulting 𝑧1 would assess rounding errors accumulated by 𝑧0. If 𝑧1 itself

were accurate enough, 𝑧1 must keep small comparing 𝑧0 if the main 1x-precise computation converges.

We want such test be very fast for checking in on-fly manner. Our performance criteria:

 2x slower than standard, if large data fit in computer memory but not in CPU cache

 10x slower than standard calculations, if small data pre-fetched in processor cache

Each twofold takes 2x memory, so slowdown cannot be less than 2x if data not in cache. Fitting under 2x

implies very efficiently utilizing CPU idle time, doing all additional calculations while fetching data. About

10x criterion, note that modern implementations of quad type are typically 100x slower than double.

Twofold fast arithmetic assesses ∆𝑧0 with minimum operations, and meets these 2x and 10x criteria.

Unlike intervals, twofolds do not tend overestimating ∆𝑧0, so risk of irrelevant panic is low. Twofolds

may miss problems: assess ∆𝑧0 as fine while actually it is not. We accept this risk, as twofolds would

catch majority of problems, so verifying would anyway assure results.

Below, Background section references the techniques we use. Algorithms defines arithmetic formulas.

C++ test code explains experimental implementation. Performance discusses test results. Applications

shows twofolds in work. Discussion summarizes our observations and proposes CPU improvements.

C++ experimental implementation available via web, free for academic and non-commercial use:

https://sites.google.com/site/yevgenylatkin/

https://sites.google.com/site/yevgenylatkin/

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

3

Background
 Exact transforms

 Dekker arithmetic

Exact transforms
Hereon we base on floating-point “exact transforms” developed and used by many authors (see [1-6]).

The transforms are decomposing a floating-point sum or product into result and tail, 𝑎 + 𝑏 → 𝑠 + 𝑡 or

𝑎 × 𝑏 → 𝑝 + 𝑒. Here 𝑠 and 𝑝 are the correctly rounded floating-point results, 𝑡 and 𝑟 are exactly the

rounding errors (unless 𝑒 suffers underflow and is additionally rounded or flushed to zero).

Transforming 𝑎 𝑏⁄ → 𝑞, 𝑟 such that 𝑎 = 𝑞𝑏 + 𝑟 is also exact (unless the remainder 𝑟 underflows), and

one can easily compute 𝑟 with fused-multiply-add (FMA) function available with modern processors.

Correctly rounded sqrt(𝑎) and FMA functions enable easily computing exact residual for square root,

√𝑎 → 𝑐, 𝑑 where 𝑎 = 𝑐2 + 𝑑 (unless 𝑑 underflows).

Let 𝑎 ⊕ 𝑏, 𝑎 ⊖ 𝑏, 𝑎 ⊗ 𝑏, 𝑎 ⊘ 𝑏, sqrt(𝑎) be floating-point variants of basic arithmetic operations. We

assume rounding correctly to nearest-even which is the usual standard mode. Let fl(𝑎 + 𝑏) be correctly

rounded of 𝑎 + 𝑏, and err(𝑎 + 𝑏) be its rounding error. With this notation we have 𝑎 ⊕ 𝑏 = fl(𝑎 + 𝑏)

and err(𝑎 + 𝑏) = 𝑎 + 𝑏 − 𝑎 ⊕ 𝑏, and similarly for other operations.

Simple algorithms we use here proven for IEEE-754-2008 binary types and may be not valid for decimal

or non-standard floating-point formats. Primarily we target the standard binary32 and binary64 formats,

which correspond to the float and double types for majority of C/C++ implementations.

Let us take the following algorithms from Shewchuk [3]. Note that there is no if-then-else branching in

these algorithms. This allows efficient vectoring for SIMD with modern processors, like Intel AVX.

Algorithm 1.1 (Fast Two-Sum): 𝑎 + 𝑏 → 𝑠 + 𝑡 provided |𝑎| ≥ |𝑏|
(1) 𝑠 = 𝑎 ⊕ 𝑏

(2) 𝑏′ = 𝑠 ⊖ 𝑎

(3) 𝑡 = 𝑏 ⊖ 𝑏′

Algorithm 1.2 (Two-Sum): 𝑎 + 𝑏 → 𝑠 + 𝑡 for arbitrary 𝑎 and 𝑏
(1) 𝑠 = 𝑎 ⊕ 𝑏

(2) 𝑏′ = 𝑠 ⊖ 𝑎

(3) 𝑎′ = 𝑠 ⊖ 𝑏′

(4) 𝑏# = 𝑏 ⊖ 𝑏′

(5) 𝑎# = 𝑎 ⊖ 𝑎′

(6) 𝑡 = 𝑎# ⊕ 𝑏#

For subtracting 𝑎 − 𝑏 → 𝑑 + 𝑡 one could add +(−𝑏) , but we prefer decomposing directly so saving one

floating-point operation, Shewchuk [3]:

Algorithm 2.1: 𝑎 − 𝑏 → 𝑑 + 𝑡 provided |𝑎| ≥ |𝑏|
(1) 𝑑 = 𝑎 ⊖ 𝑏

(2) 𝑏′ = 𝑎 ⊖ 𝑑
(3) 𝑡 = 𝑏′ ⊖ 𝑏

Algorithm 2.2: 𝑎 − 𝑏 → 𝑑 + 𝑡 for arbitrary 𝑎 and 𝑏
(1) 𝑑 = 𝑎 ⊖ 𝑏

(2) 𝑏′ = 𝑎 ⊖ 𝑑

(3) 𝑎′ = 𝑏′ ⊕ 𝑑

(4) 𝑏# = 𝑏 ⊖ 𝑏′

(5) 𝑎# = 𝑎′ ⊖ 𝑎

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

4

(6) 𝑡 = 𝑎# ⊕ 𝑏#

We take the following obvious algorithm from Bailey and others [4]:

Algorithm 3 (Two-Product-FMA): 𝑎 × 𝑏 → 𝑝 + 𝑒
(1) 𝑝 = 𝑎 ⊗ 𝑏
(2) 𝑒 = fl(𝑎𝑏 − 𝑝)

This algorithm uses the fused multiply-add (FMA) operation fma(𝑎, 𝑏, −𝑝) = fl(𝑎𝑏 − 𝑝). Supporting fast

FMA with latest widely available processors makes other (slower and complicated) algorithms obsolete.

Floating-point dividing with exact remainder using FMA (see e.g.: Muller [6]):

Algorithm 4: 𝑎 𝑏⁄ → 𝑞, 𝑟
(1) 𝑞 = 𝑎 ⊘ 𝑏
(2) 𝑟 = fl(𝑎 − 𝑞𝑏)

Floating-point square root with exact residual via FMA (Muller [6]):

Algorithm 5: √𝑎 → 𝑐, 𝑑
(1) 𝑐 = sqrt(𝑎)

(2) 𝑑 = fl(𝑎 − 𝑐2)

These floating-point exact transforms largely base on the following Sterbenz lemma, see Muller et al [6]:

Lemma 1 (Sterbenz): If floating-point 𝑎 and 𝑏 are close, so that
1

2
≤ 𝑎 𝑏 ≤ 2⁄ , then their floating-

point difference is exact, that is 𝑎 ⊖ 𝑏 = 𝑎 − 𝑏 exactly and err(𝑎 − 𝑏) is zero.

Dekker arithmetic
Dekker [1] proposed simple and fast arithmetic on two-terms approximations like 𝑧0 + 𝑧1, which ideally

can be up to 2x-precise. Dekker’s arithmetic “renormalizes” results to ensure 𝑧0 and 𝑧1 do not overlap.

We call renormalized pairs “coupled” numbers to distinguish from general-case twofolds.

Renormalizing means exact transform 𝑧0 + 𝑧1 → 𝑠 + 𝑡 with Algorithm 1.1 or 1.2 and replacing 𝑧0 and 𝑧1

with 𝑠 and 𝑡, so that renormalized 𝑧1 would never exceed ulp(𝑧0) 2⁄ by magnitude. -- Hereon, ulp(𝑢) is

the “unit in last place” of a floating-point number 𝑢.

Dekker summation/subtraction and multiplication look like following. Assuming the basic floating-point

operators ⊕ and ⊖ associate to left:

Algorithm 6: (𝑥0 + 𝑥1) ⊕ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊕ 𝑦0

(2) 𝑧1 = 𝑥1 ⊕ 𝑦1 ⊕ err(𝑥0 + 𝑦0)
(3) Renormalize 𝑧0 + 𝑧1

Algorithm 7: (𝑥0 + 𝑥1) ⊖ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊖ 𝑦0

(2) 𝑧1 = 𝑥1 ⊖ 𝑦1 ⊕ err(𝑥0 − 𝑦0)

(3) Renormalize 𝑧0 + 𝑧1

Algorithm 8: (𝑥0 + 𝑥1) ⊗ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = fl(𝑥0𝑦0)

(2) 𝑧1 = fl(𝑥0𝑦1) ⊕ fl(𝑥1𝑦0) ⊕ err(𝑥0𝑦0)
(3) Renormalize 𝑧0 + 𝑧1

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

5

With appropriate modifications, we reuse these algorithms for “fast” twofold arithmetic. Particularly we

omit the renormalization step, which is irrelevant for our goals as it purges the useful information about

inaccuracy of 𝑧0. In turn, we cannot assume that input twofolds are non-overlapping.

We do not directly use Dekker’s dividing and square root, instead propose better formulas leveraging

fast FMA. Unlike early 1970th when original paper by Dekker [1] was published, very fast FMA is widely

available nowadays with modern processors, so looks worth utilizing it.

This approach mainly targets extending C++ standard double type, as checking float by recalculating

with double looks easier approach. In turn, twofold technique must work fine over quad-precision as

basic type, so providing somewhat octal.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

6

Algorithms
 Methodic

 Add/subtract

 Multiply

 Divide

 Root

 2x

Methodic
We want twofolds assess inaccuracy accumulated by floating-point computations. Main part 𝑧0 should

remain bitwise same as for standard calculations, and 𝑧1 should estimate accumulation of the rounding

errors. If 𝑧1 gets large comparing 𝑧0, this should signal that precision of 𝑧0 appears not enough. But let

us allow misbalanced twofolds with 𝑧1 large comparing 𝑧0, let user’s program react on such situations.

Given twofold 𝑥 = 𝑥0 + 𝑥1 and 𝑦 = 𝑦0 + 𝑦1 and operation 𝑧 = 𝑥 ∘ 𝑦, define resulting 𝑧0 + 𝑧1 ≈ 𝑧 like

correctly rounded main part 𝑧0 = fl(𝑥0 ∘ 𝑦0) and estimate 𝑧1 ≈ fl(∆𝑧0) for its deviation ∆𝑧0 = 𝑧 − 𝑧0.

Deviation of such estimate is ∆𝑧1 = ∆𝑧0 − 𝑧1 = 𝑧 − (𝑧0 + 𝑧1). Ideally, 𝑧1 = fl(∆𝑧0) should be correctly

rounded, so 𝑧0 + 𝑧1 is best possible twofold approximation, and |∆𝑧1| ≤ ulp(𝑧1) 2⁄ .

Unfortunately, such strict arithmetic would be slow. For monitoring 𝑧1 in on-fly manner, we construct

“fast” algorithms with minimal extra operations. For example, if we let 𝑒0 = err(𝑥0 + 𝑦0) for twofold

summation, then ∆𝑧0 = 𝑥1 + 𝑦1 + 𝑒0. We “naïvely” let 𝑧1 = 𝑥1 ⊕ 𝑦1 ⊕ 𝑒0 to assess ∆𝑧0 quickly. Such

naïve arithmetic cannot guarantee ∆𝑧1 small versus ulp(𝑧1), but looks good enough for our goal.

We define separate simplified faster algorithms for special case if 𝑦1 = 0. Additionally we define faster

algorithms for special case if input twofolds are non-overlapping “coupled” numbers. If necessary, one

can renormalize results for “coupled” input so simulate 2x-precise arithmetic similar to Dekker [1].

Our algorithms do not require any special care for processing corner cases like NaN, infinity, and out of

range. If such case happens, we rely on basic operations, which grant 0/0 result in NaN, etc.

Algorithms defined below in sub-sections Add/subtract, Multiply, Divide, and square Root. Enumerated

like for example, Algorithm RTF1 “square Root Fast algorithm #1 for general-case Twofold arguments”.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

7

Add/subtract
Given twofold 𝑥 = 𝑥0 + 𝑥1 and 𝑦 = 𝑦0 + 𝑦1, let us compute a reasonable twofold approximation like

𝑧0 + 𝑧1 ≈ 𝑧 for the exact sum 𝑧 = 𝑥 + 𝑦. By definition, 𝑧0 behaves exactly like the original 1x-precision

summation. Following is “fast” algorithm, same as by Dekker [1] except we do not renormalize result.

Except renormalization, this is literally the Algorithm 6 from Background.

Here 𝑥 ⊕ 𝑦 would be floating-point summation:

Algorithm ATF1: (𝑥0 + 𝑥1) ⊕ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊕ 𝑦0

(2) 𝑧1 = 𝑥1 ⊕ 𝑦1 ⊕ err(𝑥0 + 𝑦0)

Important particular case is 𝑦1 = 0, adding a single-length value 𝑦0 to a twofold accumulator:

Algorithm ATF1.1: (𝑥0 + 𝑥1) ⊕ 𝑦0 → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊕ 𝑦0

(2) 𝑧1 = 𝑥1 ⊕ err(𝑥0 + 𝑦0)

And similarly for 𝑧 = 𝑥 − 𝑦. Here 𝑥 ⊖ 𝑦 is floating-point subtraction:

Algorithm STF1: (𝑥0 + 𝑥1) ⊖ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊖ 𝑦0
(2) 𝑧1 = 𝑥1 ⊖ 𝑦1 ⊕ err(𝑥0 − 𝑦0)

And subtraction, if 𝑦1 = 0:

Algorithm STF1.1: (𝑥0 + 𝑥1) ⊖ 𝑦0 → 𝑧0 + 𝑧1
(1) 𝑧0 = 𝑥0 ⊖ 𝑦0

(2) 𝑧1 = 𝑥1 ⊕ err(𝑥0 − 𝑦0)

For general-case Algorithms ATF1 and STF1 we cannot guarantee if ∆𝑧1 would be small comparing 𝑧1.

For example, if 𝜀 = 1

2
ulp(1), let 𝑥0 + 𝑥1 = 1 − 𝜀 and 𝑦0 + 𝑦1 = 𝜀 − 𝜀2. For twofold fast summation,

𝑧0 = 1 ⊕ 𝜀 = fl(1 + 𝜀) = 1 and 𝑧1 = (−𝜀) ⊕ (−𝜀2) ⊕ 𝜀 = (−𝜀) ⊕ 𝜀 = 0, while exact ∆𝑧0 = −𝜀2.

Stricter algorithm might resolve this inaccuracy, but this is out of our scope for now.

Partial-case Algorithms ATF/STF 1.1 are strict and output the correctly rounded 𝑧1 = fl(∆𝑧0).

There is no special algorithms for non-overlapping “coupled” input. The “fast” algorithms ATF/STF 1 and

1.1 are the best for this case. Because 𝑧0 and 𝑧1 are almost non-overlapping here, 𝑧0 + 𝑧1 provide nearly

2x-precise approximation of 𝑧. If you need non-overlapping output like Dekker summation, renormalize

𝑧0 + 𝑧1 with fast Algorithm 1.1. Fast renormalization requires 3 add/subtract operations.

Now let us assess performance of these algorithms by counting basic floating-point operations assuming

exact transform 𝑎 + 𝑏 → 𝑠 + 𝑡 takes 6 operations:

 ATF/STF 1.1 ATF/STF 1

Exact transforms 1 1

More operations 1 2

Overall: 7 8

Fast add/subtract algorithms meet the “slower by not more than 10x” performance criterion, as require

less than 10 basic operations. They also meet the “2x slower if data not in CPU cache” criterion, see our

testing results in the Performance section below.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

8

Multiply
Now let us compute a twofold approximation 𝑧 ≈ 𝑧0 + 𝑧1 for product 𝑧 = 𝑥𝑦 of twofold arguments

𝑥 = 𝑥0 + 𝑥1 and 𝑦 = 𝑦0 + 𝑦1. By definition 𝑧0 = 𝑥0 ⊗ 𝑦0 is exactly the single-length product of the

main parts, so we have to compute 𝑧1 for approximating ∆𝑧0 = 𝑧 − 𝑧0.

Similarly to Dekker [1], our algorithms would base on the exact transforms 𝑥𝑖 × 𝑦𝑗 → 𝑝𝑖𝑗 + 𝑒𝑖𝑗. If 𝑒00

does not underflow, ∆𝑧0 exactly equals 𝑒00 + 𝑥0𝑦1 + 𝑥1𝑦0 + 𝑥1𝑦1. Approximating ∆𝑧0 naïvely, “fast”

algorithm computes 𝑧1 like floating-point sum of 𝑒00 and corresponding 𝑝𝑖𝑗.

Ordering of summation is not obvious however. To identify best formula, let us define “𝜀-order” of all

involved terms, as measured by power of 𝜀, where 𝜀 = 1

2
ulp(1) for the floating-point format we base.

Let us classify relations of 𝑥1 and 𝑦1 versus 𝑥0 and 𝑦0 roughly like following:

(A) 𝑥0 + 𝑥1 and 𝑦0 + 𝑦1 are 2x-precise (“coupled”), so that |𝑥1| ≤ 𝜀|𝑥0|, and similarly for 𝑦

(B) 𝑥0 + 𝑥1 and 𝑦0 + 𝑦1 are more-or-less precise, like |𝑥1| ≤ √𝜀|𝑥0| or so, and similar for 𝑦

(C) 𝑥0 and 𝑥1 comparable so differ by less than by √𝜀 (e.g.: 𝑥0 = 1000, 𝑥1 = −1), and for 𝑦

(D) 𝑥0 + 𝑥1 form more-or-less precise inverse pair, so |𝑥1| ≥ 1 √𝜀⁄ |𝑥0|, and similarly for 𝑦

(E) 𝑥0 + 𝑥1 form 2x-precise inverse “coupled”, so that |𝑥1| ≥ 1 𝜀⁄ |𝑥0|, and similarly for 𝑦

If we ignore possible cancellation of 𝑒01 + 𝑒10 and 𝑝01 + 𝑝10, following table summarizes the 𝜀-orders

comparing 𝑧0 = 𝑝00. For example, by design |𝑒00| ≤ 𝜀|𝑝00|, thus 𝜀-order of 𝑒00 comparing 𝑝00 is 𝜀:

 𝑒11 𝑒01 + 𝑒10 𝑒00 𝑝11 𝑝01 + 𝑝10
A 𝜀3 𝜀2 𝜀 𝜀2 𝜀

B 𝜀2 𝜀√𝜀 𝜀 𝜀 √𝜀
C 𝜀 𝜀 𝜀 1 1

D 1 √𝜀 𝜀 1 𝜀⁄ 1 √𝜀⁄
E 1 𝜀⁄ 1 𝜀 1 𝜀2⁄ 1 𝜀⁄

According to this table, the terms 𝑒01, 𝑒10, 𝑒11 are anyway minor. If we ignore them, the table hints

ordering from lower to higher magnitude summands like following:

(A) 𝑒00 + (𝑝01 + 𝑝10)

(B) 𝑒00 + 𝑝11 + (𝑝01 + 𝑝10)

(C) 𝑝11 + (𝑝01 + 𝑝10)

(D) 𝑝11 + (𝑝01 + 𝑝10)

(E) 𝑝11

Formula 𝑧1 = 𝑒00 ⊕ 𝑝11 ⊕ (𝑝01 ⊕ 𝑝10) covers all these cases without too much of extra computations.

Basing on this formula, “fast” algorithm for general-case twofolds would look as follows. In the step (1),

we implicitly omit those computations that do not contribute to the result:

Algorithm MTF1: (𝑥0 + 𝑥1) ⊗ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑥𝑖 × 𝑦𝑗 → 𝑝𝑖𝑗 + 𝑒𝑖𝑗

(2) 𝑧0 = 𝑝00

(3) 𝑧1 = 𝑒00 ⊕ 𝑝11 ⊕ (𝑝01 ⊕ 𝑝10)

For important partial case 𝑦1 = 0, we can omit 𝑝11 and 𝑝01 which are zero:

Algorithm MTF1.1: (𝑥0 + 𝑥1) ⊗ 𝑦0 → 𝑧0 + 𝑧1
(1) 𝑥𝑖 × 𝑦𝑗 → 𝑝𝑖𝑗 + 𝑒𝑖𝑗

(2) 𝑧0 = 𝑝00
(3) 𝑧1 = 𝑒00 ⊕ 𝑝10

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

9

Special case if input 𝑥 and 𝑦 are non-overlapping “coupled” twofolds allows omitting 𝑝11, which in this

case is minor comparing other terms of the summation. Following is special fast algorithm for “coupled”

inputs. This algorithm is same as Dekker’s except we omit renormalizing the result:

Algorithm MPF1: (𝑥0 + 𝑥1) ⊗ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑥𝑖 × 𝑦𝑗 → 𝑝𝑖𝑗 + 𝑒𝑖𝑗

(2) 𝑧0 = 𝑝00
(3) 𝑧1 = 𝑒00 ⊕ (𝑝01 ⊕ 𝑝10)

For partial case if 𝑦1 = 0, “coupled” algorithm MPF 1.1 would be literally same as MTF 1.1

Now let us assess performance of these algorithms by counting required basic operations. We count

add/subtract, multiply, and FMA operations separately. Recall that each exact transform 𝑎 + 𝑏 → 𝑠 + 𝑡

takes 6 add/subtract operations, 𝑎 × 𝑏 → 𝑝 + 𝑒 takes 1 multiply plus 1 of FMA (plus maybe 1 negation

which we ignore). We count all operations, explicit and hidden in nested 𝑛-fold summations.

 Twofold Coupled

Full 1.1 Full 1.1

𝑎 + 𝑏 3 1 2 1

𝑎 × 𝑏 3 1 2 1

𝑎 × 𝑏 → 𝑝 + 𝑒 1 1 1 1

Overall: 8 4 6 4

Add/sub: 3 1 2 1

Multiply: 4 2 3 2

FMA: 1 1 1 1

Fast algorithms ATF/APF 1 and 1.1 must meet the “10x” criterion as takes less than 10 basic operations.

See also Performance section below.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

10

Divide
Consider dividing twofold numbers 𝑥 = 𝑥0 + 𝑥1 and 𝑦 = 𝑦0 + 𝑦1. We a reasonably good approximation

𝑧 ≈ 𝑧0 + 𝑧1 for quotient 𝑧 = 𝑥/𝑦. By definition, 𝑧0 equals correctly rounded fl(𝑥0 𝑦0⁄), and 𝑧1 should

approximate deviation ∆𝑧0 = 𝑧 − 𝑧0.

Let us start with standard single-length division. Given floating-point 𝑎 and 𝑏 such that 𝑏 ≠ 0, consider

iterative process for decomposing 𝑎 𝑏⁄ into: partial quotient 𝑄𝑁 = 𝑞0 + ⋯ + 𝑞𝑁 and remainder 𝑟𝑁+1

that approximates 𝑎 − 𝑄𝑁𝑏. Here we leverage of fast fused-multiply-add (FMA) operation:

Process 1: Decompose 𝑎 𝑏⁄ into 𝑄𝑁 = 𝑞0 + ⋯ + 𝑞𝑁 and 𝑟𝑁+1
(1) 𝑟0 = 𝑎

(2) 𝑞𝑛 = fl(𝑟𝑛 𝑏⁄)

(3) 𝑟𝑛+1 = fma(𝑟𝑛 − 𝑞𝑛𝑏)

Steps (2) and (3) is the dividing with exact remainder Algorithm 4 from Background. Provided 𝑟𝑛+1 is not

additionally rounded due to underflow of 𝑞𝑛𝑏, well-known fact is that 𝑟𝑛+1 equals 𝑟𝑛 − 𝑞𝑛𝑏 exactly, see

Muller [6]. So, if we ignore possible underflow, 𝑟𝑁+1 is exact remainder and 𝑄𝑁 converges to exact 𝑎 𝑏⁄ .

Additionally please note, that 𝑞𝑛 do not overlap each other, namely |𝑞𝑛+1| ≤ ulp(𝑞𝑛) 2⁄ . Indeed, as 𝑟𝑛

is remainder of 𝑟𝑛−1 𝑏⁄ , then |𝑟𝑛 𝑏⁄ | ≤ ulp(𝑞𝑛) 2⁄ as otherwise dividing 𝑟𝑛−1 𝑏⁄ would result differently.

Rounding 𝑟𝑛 𝑏⁄ cannot make magnitude of 𝑞𝑛+1 = fl(𝑟𝑛 𝑏⁄) higher than ulp(𝑞𝑛) 2⁄ , provided ulp(𝑞𝑛) 2⁄

is representable as floating-point number.

Therefore, 𝑄1 = 𝑞0 + 𝑞1 is best 2x-precise approximation for 𝑎 𝑏⁄ with correctly rounded 𝑞0 and 𝑞1.

This gives us following algorithm of twofold dividing 𝑥0 + 𝑥1 by 𝑦0 + 𝑦1 in special case if 𝑥1 = 𝑦1 = 0.

Here we do not actually compute 𝑟2 which do not contribute to result:

Algorithm DTF 1.1.1: 𝑥0 ⊘ 𝑦0 → 𝑧0 + 𝑧1
(1) 𝑧0 = fl(𝑥0 𝑦0⁄)

(2) 𝑟1 = fma(𝑥0 − 𝑧0𝑦0)

(3) 𝑧1 = fl(𝑟1 𝑦0⁄)

Note how this algorithm processes corner cases. If occasionally 𝑦0 = 0, then automatically 𝑧0 is infinite

or NaN depending on 𝑥0, thus so is 𝑧1. If 𝑥0 is occasionally NaN, this NaN propagates to z, etc. Thus, we

do not need explicitly processing special arguments.

Now consider dividing a twofold 𝑎 = 𝑎0 + 𝑎1 by 1x-precision 𝑏. Again, consider iterative decomposing

into partial quotient and exact remainder. In this case, remainder would be twofold 𝑟𝑛 = 𝑟𝑛0 + 𝑟𝑛1:

Process 2: Decompose (𝑎0 + 𝑎1) 𝑏⁄ into 𝑄𝑁 = 𝑞0 + ⋯ + 𝑞𝑁 and 𝑟𝑁+1
(1) 𝑟0 = 𝑎

(2) 𝑞𝑛 = fl(𝑟𝑛0 𝑏⁄)
(3) 𝑟𝑛+1,0 = fma(𝑟𝑛0 − 𝑞𝑛𝑏)

(4) 𝑟𝑛+1,1 = 𝑟𝑛,1

(5) Renormalize 𝑟𝑛+1

Similar to Process 1 above, here 𝑟𝑛+1 is exact remainder, and 𝑄𝑁 converges to exact 𝑎 𝑏⁄ .

We cannot claim if 𝑞0 + 𝑞1 is non-overlapping 2x-precise. However, 𝑞2 is anyway small comparing 𝑞1, so

𝑞0 + 𝑞1 is still good approximation. For example, if 𝑎0 = 𝑎1 = 1 and 𝑏 = 1, then 𝑞0 = 𝑞1 = 1 with exact

reminder 𝑟2 = 0.

This implies following algorithm of twofold dividing in special case if 𝑦1 = 0, while 𝑥1 may be non-zero.

Here we explicitly unroll the Process 2 for this specific case and omit needless 𝑟2 and 𝑟11. Note, that this

algorithm degrades to DFT 1.1.1 in case if 𝑥1 = 0:

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

11

Algorithm DTF 1.1: (𝑥0 + 𝑥1) ⊘ 𝑦0 → 𝑧0 + 𝑧1
(1) 𝑧0 = fl(𝑥0 𝑦0⁄)

(2) 𝑟 = fma(𝑥0 − 𝑧0𝑦0)

(3) 𝑐 = 𝑟 ⊕ 𝑥1
(4) 𝑧1 = fl(𝑐 𝑦0⁄)

Finally, let us consider dividing twofolds 𝑎 = 𝑎0 + 𝑎1 and 𝑏 = 𝑏0 + 𝑏1. We consider two steps defining

𝑞0 + 𝑞1 and remainder. Twofold remainder is inexact, so we cannot recommend this process for 𝑞2 etc.

 Let 𝑞0 = fl(𝑎0 𝑏0⁄)

 Let 𝑟0 = 𝑎0 − 𝑞0𝑏0 (note: 𝑟0 is exact)

 Let 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 𝑟0 + 𝑎1 − 𝑞0𝑏1

 Let 𝑑0 + 𝑑1 be renormalized 𝑏0 + 𝑏1

 Let 𝑞1 = fl(𝑐0 𝑑0⁄)

With 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 we refer to known expand-and-distill technique used by many authors for multi-

precision calculations, see [2-6]. With this techniques we could expand 𝑞0𝑏1 → 𝑝 + 𝑒 and compute sum

of 𝑟0 + 𝑎1 − (𝑝 + 𝑒) exactly resulting in 𝑛-fold 𝑐 = 𝑐0 + ⋯ with not more than four non-overlapping 𝑐𝑖.

Additionally we assume 𝑐0 ≠ 0, if 𝑐 is not zero.

By design, 𝑐 is exact remainder of 𝑞0, so that 𝑎 = 𝑞0𝑏 + 𝑐 exactly. Thus best for 𝑞1 would be rounded of

𝑞 = 𝑐 𝑑⁄ if we could compute it. Instead we approximate with 𝑞1 ≈ 𝑐0 𝑑0⁄ , quotient of the main parts of

𝑐 and 𝑑. Such approximation is accurate modulo approximately 3𝜀|𝑞1| where 𝜀 = ulp(1) 2⁄ . Indeed:

Suppose 𝑑 = 𝑑0(1 + 𝛿) and 𝑐 = 𝑐0(1 + 𝛾) with some 𝛿 and 𝛾 smaller than 𝜀 = ulp(1) 2⁄ . Then

𝑐 𝑑⁄ = 𝑐0 𝑑0⁄ ∙ (1 + 𝛾) (1 + 𝛿)⁄ , so deviation 𝑞 − 𝑐0 𝑑0⁄ = 𝑐0 𝑑0⁄ ∙ ((1 + 𝛾) (1 + 𝛿)⁄ − 1). This

coefficient magnitude (1 + 𝛾) (1 + 𝛿)⁄ − 1 = (𝛾 − 𝛿) (1 + 𝛿)⁄ does not exceed 2𝜀 (1 − 𝜀)⁄ or

approximately 2𝜀. Rounding 𝑞1 = fl(𝑐0 𝑑0⁄) may add up to 𝜀|𝑐0 𝑑0⁄ | of inaccuracy. Thus overall

distance |𝑞 − 𝑞1| does not exceed 3𝜀|𝑐0 𝑑0⁄ | ≈ 3𝜀|𝑞1|.

For our “fast” algorithm, we use this 𝑞1, but simplify calculations like follows. If remainder 𝑟0 + 𝑟1 were

exact, 𝑐0 + 𝑐1 would be best non-overlapping approximation for 𝑐. In practice, this is very good and fast

formula for 𝑐0 if we skip computing 𝑐1 which we actually do not need:

 𝑟0 = fma(𝑎0 − 𝑞0𝑏0)

 𝑟1 = fma(𝑎1 − 𝑞0𝑏1)

 𝑟0 + 𝑟1 → 𝑐0 + 𝑐1

In overall, we come to the following “fast” algorithm for twofold dividing. Note that algorithm DTF 1.1 is

degenerate variant of this algorithm for the case if 𝑦1 = 0:

Algorithm DTF 1: (𝑥0 + 𝑥1) ⊘ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = fl(𝑥0 𝑦0⁄)

(2) 𝑟0 = fma(𝑥0 − 𝑧0𝑦0)

(3) 𝑟1 = fma(𝑥1 − 𝑧0𝑦1)

(4) 𝑐0 = 𝑟0 ⊕ 𝑟1

(5) 𝑑0 = 𝑦0 ⊕ 𝑦1
(6) 𝑧1 = fl(𝑐0 𝑑0⁄)

Simplified special case if input is non-overlapping “coupled”. Here we can omit renormalizing 𝑦0 + 𝑦1:

Algorithm DPF 1: (𝑥0 + 𝑥1) ⊘ (𝑦0 + 𝑦1) → 𝑧0 + 𝑧1
(1) 𝑧0 = fl(𝑥0 𝑦0⁄)

(2) 𝑟0 = fma(𝑥0 − 𝑧0𝑦0)

(3) 𝑟1 = fma(𝑥1 − 𝑧0𝑦1)

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

12

(4) 𝑐0 = 𝑟0 ⊕ 𝑟1

(5) 𝑧1 = fl(𝑐0 𝑦0⁄)

“Coupled” variants for cases if 𝑦1 = 0 and if 𝑥1 = 𝑦1 = 0 would literally repeat DTF 1.1 and 1.1.1

Because DPF1 saves just one basic summation of 𝑦0 ⊕ 𝑦1, this must not make it much faster than DTF1.

However, the point of DPF1 is that output 𝑧0 + 𝑧1 is easy to renormalize for simulating Dekker dividing.

Here resulting |𝑧1| is small comparing |𝑧0| so fast renormalization algorithm 1.1 works fine.

Let us demonstrate how twofold dividing works:

Example: Given a floating-point format, let 𝜀 = ulp(1) 2⁄ . Then let 𝑥0 = 1 and 𝑥1 = 0, and 𝑦0 = 1 − 𝜀

and 𝑦1 = 𝜀. This way, 𝑥 𝑦⁄ is dividing 1/1, though with slight inaccuracy in 𝑦0. With these data, we have

𝑧0 = fl(1 (1 − ε)⁄) = fl(1 + ε + ε2 + ⋯) = 1 + 2ε, thus 𝑟0 = fma(1 − (1 − 𝜀)(1 + 2ε)) = −𝜀 + 2𝜀2

and 𝑟1 = fma(0 − 𝜀(1 + 2ε)) = −𝜀 − 2𝜀2. Thus 𝑧1 = 𝑐0 = −2𝜀, exactly ∆𝑧0 = 𝑧 − 𝑧0.

Performance of twofold dividing is determined by two dividing operations, which are slow. This way,

twofold “fast” dividing must be nearly 2x slower than standard, and so meet our 2x and 10x criteria.

Testing shows this projection is right for Intel AVX processor, see Performance section below.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

13

Root
Let us compute square root of twofold argument. We assume approximate sqrt(𝑥) function is available

for a floating-point argument. Given 𝑥 = 𝑥0 + 𝑥1, we let 𝑧0 = sqrt(𝑥0), and we need 𝑧1 approximating

∆𝑧0 = 𝑧 − 𝑧0, where 𝑧 = √𝑥.

Let us start with simple case if 𝑥0 + 𝑥1 is non-overlapping “coupled”. Here we can do Newton iterations.

Because a Newton iteration nearly duplicates accuracy, one iteration is enough, assuming 𝑧0 = sqrt(𝑥0)

is accurate, maybe correctly rounded like IEEE-754-2008 standard requires.

If we utilize FMA for appropriate 𝑥 − 𝑧2, formula is:

𝑧1 ≈ (𝑥0 + 𝑥1 − 𝑧0
2) 2𝑧0⁄ ≈ (𝑥1 + fma(𝑥0 − 𝑧0

2)) 2𝑧0⁄

Let us write this algorithm explicitly:

Algorithm RPF 1. sqrt(𝑥0 + 𝑥1) → 𝑧0 + 𝑧1
(1) 𝑧0 = sqrt(𝑥0)

(2) 𝑧1 = (𝑥1 + fma(𝑥0 − 𝑧0
2)) 2𝑧0⁄

Note how this algorithm processes input below zero. Because 𝑥0 + 𝑥1 is non-overlapping, 𝑥 < 0 implies

𝑥0 < 0, and therefore sqrt(𝑥0) raises the domain error, which you can process later if necessary.

Simplifying for special case if 𝑥1 = 0:

Algorithm RPF 1.1. sqrt(𝑥0) → 𝑧0 + 𝑧1
(1) 𝑧0 = sqrt(𝑥0)

(2) 𝑧1 = fma(𝑥0 − 𝑧0
2) 2𝑧0⁄

Provided sqrt(𝑥0) is correctly rounded, RPF 1.1 must return non-overlapping “coupled” 𝑧0 + 𝑧1. Indeed,

by design 𝑧1 ≈ ∆𝑧0, while |∆𝑧0| ≤ ulp(𝑧0) 2⁄ if library function’s result is rounded correctly.

Now consider more complicated case if 𝑥0 + 𝑥1 is not “coupled”. Here we cannot use Newton iterations

that easily, because we cannot claim if 𝑥1 is small comparing 𝑥0. Our trick is reducing problem to known

case of “coupled”, renormalizing the input:

 𝑥0 + 𝑥1 → 𝑢0 + 𝑢1

 sqrt(𝑢0 + 𝑢1) → 𝑣0 + 𝑣1

 𝑧1 = (𝑣0 + 𝑣1) − 𝑧0

For computing the difference (𝑣0 + 𝑣1) − 𝑧0 we can use twofold fast subtraction algorithm STF 1.1 and

distil its result, which supplies very accurate result of subtraction. Explicitly, this algorithm is:

 Algorithm RTF 1. sqrt(𝑥0 + 𝑥1) → 𝑧0 + 𝑧1
(1) 𝑧0 = sqrt(𝑥0)

(2) 𝑥0 + 𝑥1 → 𝑢0 + 𝑢1

(3) sqrt(𝑢0 + 𝑢1) → 𝑣0 + 𝑣1

(4) (𝑣0 + 𝑣1) ⊖ 𝑧0 → 𝑤0 + 𝑤1

(5) 𝑧1 = 𝑤0 ⊕ 𝑤1

Special case if 𝑥1 = 0 obviously reduces to RPF 1.1

Let us demonstrate how RTF 1 works if twofold 𝑥0 + 𝑥1 is not “coupled”:

Example: Let 𝑥0 = 𝑥1 = 1. Here 𝑧0 = sqrt(1) = 1. Then 𝑢0 = 2 and 𝑢1 = 0, thus 𝑣0 + 𝑣1 ≈ √2. Thus

𝑧1 ≈ 𝑤0 + 𝑤1 ≈ √2 − 1. Such 𝑧0 + 𝑧1 is not 2x-precise but still approximates √2 as expected.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

14

Performance is determined by additional dividing and twofold add/subtract operations. If sqrt(𝑥) itself

is at least 10x slower than basic add/subtract, RPF/RTF must be 2-3 times slower than square root, thus

must meet the “slower not more than 10x times if data in cache” performance criterion.

Concerning “2x slower for data in RAM” criterion, see our testing results in Performance section below.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

15

2x
We cannot recommend twofold arithmetic for simulating 2x-precise calculations, it is not strict enough.

Exception is using 2x-precise twofold accumulator for summing a series of 1x-precise (regular) numbers.

Adding a number to a twofold is strict, see comments to Algorithms ATS/STS 1.1

Anyway, if standard quad-precision type not available, or works too slowly, you may use twofolds over

standard double as surrogate for quad. Worth using special function variants for “coupled” input, and

renormalize output immediately. This would literally repeat the approach by Dekker [1].

For renormalizing immediately, you may use Fast-Two-Sum that costs only 3 add/subtract operations.

Renormalizing does not look to improve accuracy. However, consider sample long chain of calculations:

adding unity to twofold accumulator, 248 times basing on binary24 format:

 W/o renormalizing: result would saturate at 𝑧0 = 𝑧1 = 224, very far from correct

 With renormalizing: result would equal 𝑧0 = 248 and 𝑧1 = 0, exactly as expected

Note that you do not need to renormalize result in case if input 𝑥1 = 𝑦1 = 0, because output would be

already non-overlapping “coupled”. For add/subtract and multiply, this would be the exact transforms.

For dividing and square root, see comments to these functions above.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

16

C++ test code
 Code archive

 Architecture

Code archive
The performance test code, build/test scripts, and testing results are available free at our Web site [7].

There you can download and unpack code archive as zip-file: Twofold fast arithmetic, code.zip

This archive includes the folder named “code” with following sub-folders, each containing C++ sources,
corresponding make file, and testing logs:

 applications

 perftest

 twofold

The folder “twofold” contains our experimental implementation of twofold “fast” arithmetic, and sanity

test for it. Make file designed for Microsoft and GNU compilers; you can run it from command-line with

make or nmake utility:

make gcc
nmake cl

The folder “perftest” contains the performance test, the universal make file for MS/GNU compiler, and

testing results discussed in the next section named Performance.

Folder “applications” contains examples of using twofolds, discussed in section Applications below.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

17

Architecture
Here we briefly explain the coding style for better understanding the performance testing results. Main

part is implementation of twofold algorithms, which directly encodes algorithms from Background and

Algorithms sections above.

For best of SIMD performance, code utilizes AVX intrinsic provided with Intel, GNU, and Microsoft C++

compilers. To leverage C++ templates, we use very thin unified interface for basic arithmetic operations

add, subtract, multiply, etc. for standard float or double and for AVX intrinsic types __m256 or __m256d.

This allows the same C++ code to target both vector (SIMD) and scalar data types.

Fragment 1: Uniform vector/scalar abstraction for fused-multiply-add

 #include <cmath> // scalar fma(x,y,z)
 inline __m256d fma(__m256d x, __m256d y, __m256d z) { return _mm256_fmadd_pd(x,y,z); }
 inline __m256 fma(__m256 x, __m256 y, __m256 z) { return _mm256_fmadd_ps(x,y,z); }

The following code fragment shows the twofold and “coupled” data types. Types are generic, assuming

C/C++ standard float or double or AVX intrinsic type __m256 or __m256d as a “number”. Note the types

hierarchy; we can assign a coupled<T> value to twofold<T> variable but not conversely:

Fragment 2: Twofold and couple-length “numbers”

// Assume number is scalar single or double by IEEE-754,
// or vectored __m256 or __m256d of Intel AVX intrinsic:
template<typename number> struct twofold { number value, error; };
template<typename number> struct coupled: public twofold<number> {};

The arithmetic algorithms implemented as inline functions for best of compiler optimization. Note that

strict-math compilation mode is required, as fast-math optimizations may eliminate the rounding tricks

on which exact transforms base. The following fragment displays the two-product algorithm. Note, that

we significantly use fused-multiply-add (FMA) here, so need a processor that supports fast FMA.

Fragment 3: Two-product algorithm (see Algorithm 3 from Background)

// Use fmadd(), so additional operation for negating:
template<typename T> inline coupled<T> pmul(T x, T y) {
 coupled<T> z;
 z.value = mul(x,y);
 z.error = fma(x,y,neg(z.value));
 return z;
}

The following code fragment implements twofold division if arguments are “dotted” numbers (not

shaped as twofold or “coupled”). Note that the output is non-overlapped “coupled”:

Fragment 4: Twofold division (Algorithms DTF/DPF 1.1.1)

// Twofold divide, both x and y are dotted, so z is coupled:
template<typename T> inline coupled<T> tdiv(T x, T y) {
 T q0, q1, r1;
 q0 = div(x,y); // q0 = x / y
 r1 = fma(neg(q0),y,x); // r1 = x - q0*y
 q1 = div(r1,y); // q1 = r1 / y
 coupled<T> z;
 z.value = q0;
 z.error = q1;
 return z;
}

// Coupled divide, x and y dotted:

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

18

template<typename T> coupled<T> pdiv(T x, T y) {
 return tdiv(x,y);
}

The function names tdiv/pdiv overloaded for dotted and “shaped” arguments. Following is full list of

functions for dividing. Lists for other functions look similarly:

Fragment 5: Twofold/coupled dividing interface

template<typename T> twofold<T> tdiv(twofold<T> x, twofold<T> y);
template<typename T> twofold<T> tdiv(twofold<T> x, T y);
template<typename T> twofold<T> tdiv(T x, twofold<T> y);
template<typename T> twofold<T> tdiv(coupled<T> x, coupled<T> y);
template<typename T> twofold<T> tdiv(coupled<T> x, T y);
template<typename T> twofold<T> tdiv(T x, coupled<T> y);
template<typename T> coupled<T> tdiv(T x, T y);

template<typename T> coupled<T> pdiv(coupled<T> x, coupled<T> y);
template<typename T> coupled<T> pdiv(coupled<T> x, T y);
template<typename T> coupled<T> pdiv(T x, coupled<T> y);
template<typename T> coupled<T> pdiv(T x, T y);

The prefix “t” in the function name means twofold and prefix “p” means “coupled” type of output. Main

set of functions implement algorithms for twofold arguments, plus the special algorithms in case if input

is non-overlapping “coupled” or just a dotted number. Additional algorithms simulate Dekker arithmetic

over “coupled” inputs by renormalizing the output, so ensuring result is also “coupled”.

Generic type T may be scalar double/float or AVX vector __m256d/__m256. Even if T is vector, we add

yet another vectoring level and define functions of array arguments. The tested compilers are very good

in optimizing array functions, so we can utilize up to 90% percent of processor peak performance. Our

test iterates the array calculations and measures the performance.

We add prefix “v” to the vector function names, and suffix “2” or “1” to distinguish functions with two

or one twofold/coupled arguments. Resulting vector r[] is always shaped (twofold or coupled):

Fragment 6: Example of the array function interfaces:

 void vtadd2 (int m, twofold<__m256d> x[], twofold<__m256d> y[], twofold<__m256d> r[]);
 void vtadd1 (int m, twofold<__m256d> x[], __m256d y[], twofold<__m256d> r[]);
 void vtadd (int m, __m256d x[], __m256d y[], twofold<__m256d> r[]);

 void vpadd2 (int m, coupled<__m256d> x[], coupled<__m256d> y[], coupled<__m256d> r[]);
 void vpadd1 (int m, coupled<__m256d> x[], __m256d y[], coupled<__m256d> r[]);
 void vpadd (int m, __m256d x[], __m256d y[], coupled<__m256d> r[]);

Functions tadd() of coupled arguments are tested only indirectly via calling from padd().

We measure performance in millions of twofold/coupled outputs per second. We call this metric mega-

operations-per-second, briefly mega-ops, or mega-flops. Our goal: be not slower than 1/10 of processor

peak if data fit into CPU cache. If CPU peak were 10+ gigaflops for standard double type, our target is 1+

gigaflops for twofolds over doubles.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

19

Performance
 Test system

 Test results

 Conclusion

Test system
For performance testing we used laptop, built on ultra-low-voltage processor, with peak performance

around 10 gigaflops for standard double type. Not very best choice for high-performance computing.

But we still can use it for proving the concept, if twofold arithmetic at all can operate at 1+ gigaflops

with this sort of modern processors, and that performance is slower by only 2x if data not in cache.

We have filtered intermittent effects in testing by repeating test runs and selecting lower-level results.

This stabilize results and this way allows comparing performance of twofold arithmetic and of regular

dotted floating-point operations.

The test system was HP Pavilion 15 laptop, built on Intel Core i5-4200U (Haswell) processor of nominal

frequency 1.6 GHz and up to 2.6 GHz in turbo mode, the memory was 2x4 GB banks of PC-12800 (DDR3)

so enabling up to 25.6 GB/s in overall. The compilers were GNU g++ 4.8.2 (Cygwin) and Microsoft Visual

Studio 2013 Express. Performance data hereon are for GNU compiler that shows better megaflops.

The following table shows results of memory reading and copying and of dotted arithmetic. This result is

for “vector” test with __m256 and __m256d as basic types; see other data at my Web site [7]. CPU actual

frequency was around 2.25 GHz as I could observe with Windows Task Manager. Note that CPU did a bit

more, about 2.5 GHz in “scalar” test with float or double as basic types.

The function vmem() reads data from two arrays x[] and y[] and writes to another third array r[], so

simulating fetching data for arithmetic operations and storing results. The functions vadd(), vmul(),

vdiv(), and vsqrt() actually perform the arithmetic operations:

Table 1: Memory copy and arithmetic over dotted data of “vector” basic types

 float double

func small medium large small medium large

vmem 19753.5 2340.6 969.72 9924.99 1167.57 484.942

vadd 14774.8 2093.19 971.261 7398.14 1038.89 484.135

vmul 14644 2074.52 971.51 7228.24 1035 485.604

vdiv 1422.15 1409.71 999 363.132 361.956 356.078

vsqrt 1423.99 1421.31 1200.21 362.533 363.717 361.607

The test tries small, medium, and large arrays of around 100, 10 thousands, and 1 million of float or

double elements, so the arrays fit the fastest L1 cache, fit the last-level (L3) cache, or do not fit CPU

cache. The left part of the table is for single and the right is for double-precision basis type, or for the

__m256 and __m256d in “vector” test (which are the AVX 256-bit packs of 8 floats or of 4 doubles).

For add/subtract and multiply operations, this processor peak is around 18 gigaflops in single precision

and 9 gigaflops in double if operating at 2.25 GHz, or 20 and 10 gigaflops if at 2.5 GHz. As we observed,

CPU operated at nearly 2.25 GHz with twofold/coupled arithmetic, and at nearly 2.5 GHz with “scalar”

dotted arithmetic testing. Such system’s behavior looks caused by automatic balancing of CPU heating.

L1 cache performance looks enough to feed arithmetic if small arrays. Performance with large arrays

limited by memory bandwidth, except very slow dividing square root of double-precision numbers.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

20

With large arrays, performance looks 2x below our expectation. With ~1 gigaflops at single precision,

each operation gets two numbers and writes one, so such performance implies reading 8 GB/s and

writing 4 GB/s, so transferring 12 GB/s in overall. This is around half of bandwidth we expected.

If we look at results in more details available at our Web site [7], there we can see twice-higher results

intermittently occurring in test runs. We filtered such full-bandwidth results away, and analyzed easier

to reproduce half-bandwidth results. Note that achieving maximal CPU performance is not a subject of

this work, enough if we can compare results for dotted and twofold/coupled arithmetic.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

21

Test results
Look at performance results for twofold arithmetic over the “vector” __m256 and __m256d types:

Table 2: Twofold performance over AVX “vector” types

 float double

func small medium large small medium large

vtadd2 2238.72 1021.61 459.423 1141.65 509.554 230.971

vtadd1 2495.9 1142.39 509.304 1265.07 570.755 259.465

vtadd 2926.55 1337.6 618.993 1456.83 669.919 306.501

vtsub2 2183.93 976.855 429.351 1122.57 495.039 223.265

vtsub1 2518.56 1136.72 514.479 1268.57 565.852 263.608

vtsub 2973.46 1331.08 661.223 1510.45 691.52 329.568

vtmul2 3653.93 1036.89 469.32 1830.35 518.363 237.62

vtmul1 4891.44 1193.9 553.781 2445.97 596.938 279.025

vtmul 6115.15 1398.88 664.782 2774.36 699.494 331.331

vtdiv2 642.519 641.706 483.259 162.599 162.365 160.154

vtdiv1 637.749 636.9 564.571 162.347 162.279 160.605

vtdiv 637.58 638.315 590.21 162.37 162.256 158.014

vtsqrt1 430.109 429.065 382.773 108.182 107.982 106.058

vtsqrt 635.026 625.015 617.678 162.262 161.748 160.645

Twofold add/subtract functions operate at 15% of actual peak performance for dotted as measured by

the dot-test (Table 1), show 1120+ versus 7400 megaflops for double precision if small data in L1 cache.

If one or both arguments are dotted, performance is 17% and 20% correspondingly. Versus theoretical

peak, which is 9 gigaflops for doubles at 2.25 GHz, twofold add/subtract performs at 12-17% of peak.

Twofold multiply operates at 24% to 38% versus measured actual peak of 7300 megaflops for doubles.

Versus theoretical peak of 9 gigaflops at 2.25 GHz, twofold multiplication operates at 20% to 30%.

For large data not in cache, twofold add/subtract/multiply performance looks driven by memory, and

appears nearly 2.1 times slower than dotted, 230 twofold versus 484 dotted megaflops for doubles if

both arguments are shaped.

In overall, in terms of our 10x and 2x criteria:

 twofold add/subtract/multiply meet the “10x” criterion, even with significant handicap

 nearly meet the “2x” criterion, though not quite, twofold is 2.1 times slower than dotted

Twofold dividing and square root appear 2.2x and 3.3x slower than dotted, as we presumed.

For more data, please see our Web site [7]. There you can find results for “coupled” functions, which

appear nearly same as for twofold. And results for scalar types with compiler-driven vectoring for AVX.

The scalar results look fine for dotted functions, but look really awful for twofold/coupled. Thus, we

need to optimize manually for good performance with twofold/coupled arithmetic.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

22

Conclusion
Twofold arithmetic can operate at 10% to 40% of processor peak if data in cache. Performance with

large data is nearly 2x times below the dotted arithmetic, as limited with memory bandwidth.

This way, this implementation of twofold arithmetic meets our 10x performance criterion with good

handicap, and almost meets the 2x criterion. This is very good result: we meet our performance goal!

We need to utilize 100% of processor’s peak performance to meet the performance goals with twofolds.

Manual code vectoring is necessary here; automatic vectoring by modern C++ compilers is not enough.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

23

Applications
 Summation

 Linear Ax=f

 Square root

 Conclusion

Summation
Simplest but important test is just summation 𝑠 = ∑ 𝑥𝑖 or scalar product 𝑝 = ∑ 𝑥𝑖𝑦𝑖. Let us consider

even simpler partial case (I heard it from Marius Cornea). Imagine a counter 𝑠 designed to accumulate

sum of many identical values 𝑥𝑖 = 𝑡, where both 𝑠 and 𝑡 are not precise. This example is from real tech

accident, where 𝑠 was counting time (in seconds) and 𝑡 was equal to 1/10 second.

In that accidental case, 𝑠 and 𝑡 were implemented as single-precision floating-point values, which allows

relative inaccuracy 𝜀~10−7 that seems good enough. The problem was inaccuracy accumulation in 𝑠 if a

lot of summations. For example, if we wait 100 hours, the accumulated error in 𝑠 would get as large as

almost 4 hours or 4%, and the error would exceed 40% of correct value if we wait 1000 hours.

Let us show how twofolds could address this situation. Following is testing log that you can find under

“applications” folder in our code archive (see C++ test code section above). The test named test100h

shows the floating-point values of 𝑠 and 𝑡 if implemented as twofold over float or double type. Here

the twofold value of “1/10 s” refers to 𝑡, and “result” corresponds to 𝑠:

test: type=float, hours=100
 1/10 s: 0.1[-1.49012e-09]
 result: 96.3958[3.54008] hours
 expect: 100 hours
test: type=double, hours=100
 1/10 s: 0.1[0]
 result: 100[3.33695e-09] hours
 expect: 100 hours
test: type=float, hours=1000
 1/10 s: 0.1[-1.49012e-09]
 result: 582.542[461.249] hours
 expect: 1000 hours
test: type=double, hours=1000
 1/10 s: 0.1[0]
 result: 1000[-6.12184e-07] hours
 expect: 1000 hours

Here each number in square brackets is the error part of the corresponding twofold number.

No surprise, double precision appears enough to keep accumulated error reasonably low, and twofold

arithmetic shows specific estimate: around 310-9 for easier 100-hours case, and 610-7 for 1000 hours.

For single precision, twofold arithmetic provides much worse estimates for accumulated errors: around

3.5 for 100-hours test, and around 461.2 per 1000 hours. Such estimates correctly signal on the problem

with awful main results: 96.4 instead of 100 hours, and 582.5 instead of 1000. With such estimates, the

controlling software could stop operations and so prevent the accident caused by the summation error.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

24

Linear Ax=f
Consider using twofolds in direct Gauss solver for 𝐴𝑥 = 𝑓 linear system with very simple matrix 𝐴, which

would be just a Jordan block with a small 𝜆:

𝐴 = [
𝜆 1 0
0 ⋱ 1
0 0 𝜆

]

Well known that such simple system might be very bad for solving numerically if 𝜆 is far from unity. Let

us see if twofolds can identify and assess the accumulation of inaccuracy in such numeric solution.

Following is testing log for the “gauss” test you can find under the “applications” folder in the twofolds

code archive (see section C++ test code above). Here we solve with 3x3 matrix, and 𝜆 equal to 1/10 for

well-conditioned case and 1/1000 for ill-conditioned. The system’s right part 𝑓 especially designed for

simple expected solution 𝑥.

The test solves the system with direct Gauss method. Test calculates with twofolds over float or

double type. For initializing matrix 𝐴, we convert 𝜆 to double type and then to float, so diagonal

elements for float case include rounding error estimates.

Following piece of test log is for well-conditioned 3x3 system:

test, float, well3
 A
 0.1[-1.49012e-09] 1[0] 0[0]
 0[0] 0.1[-1.49012e-09] 1[0]
 0[0] 0[0] 0.1[-1.49012e-09]
 f
 11[0] 11[0] 1[0]
 x (expected)
 10[0] 10[0] 10[0]
 x (solution)
 10[0] 10[0] 10[0]

test, double, well3
 A
 0.1[0] 1[0] 0[0]
 0[0] 0.1[0] 1[0]
 0[0] 0[0] 0.1[0]
 f
 11[0] 11[0] 1[0]
 x (expected)
 10[0] 10[0] 10[0]
 x (solution)
 10[-5.05151e-14] 10[4.996e-15] 10[-5.55112e-16]

Occasionally, twofolds fail identifying any error in float calculations. But twofold estimates look well

found for double case: twofold says, error of x[2] is around 510-16, around 10 of ULP, like we should

expect. And error gradually increases, by 1 𝜆⁄ = 10 times in x[1], and then by 10 times more in x[0].

Following piece of test log is for ill-conditioned 3x3 matrix:

test, float, ill3
 A
 0.001[-4.74975e-11] 1[0] 0[0]
 0[0] 0.001[-4.74975e-11] 1[0]
 0[0] 0[0] 0.001[-4.74975e-11]
 f
 1001[0] 1001[0] 1[0]
 x (expected)
 1000[0] 1000[0] 1000[0]

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

25

 x (solution)
 939.026[60.9742] 1000.06[-0.0609741] 1000[6.10351e-05]

test, double, ill3
 A
 0.001[0] 1[0] 0[0]
 0[0] 0.001[0] 1[0]
 0[0] 0[0] 0.001[0]
 f
 1001[0] 1001[0] 1[0]
 x (expected)
 1000[0] 1000[0] 1000[0]
 x (solution)
 1000[-2.07959e-08] 1000[2.07959e-11] 1000[-2.08167e-14]

Here, inaccuracy gradually increases by 1 𝜆⁄ = 1000 times from x[2] to x[1] and then to x[0]. Twofolds

correctly assess this accumulated inaccuracy for both float and double types. For float case, solution

looks obviously wrong in x[0], and twofold correctly shows how much wrong is it.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

26

Square root
To illustrate twofold square root, we solve quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with school formula:

𝑥0,1 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

We let 𝑎 = 1 and 𝑏 = 2, and try 𝑐 very close to 0 or to 1, specifically 𝑐 = 10−8 or 𝑐 = 1 ± 10−8. First

case examines accuracy loss in −𝑏 + √𝑏2 − 4𝑎𝑐, and second is about square root of inaccurate input.

Note that binary32 type (aka float) cannot represent 1 ± 10−8, thus 𝑏2 − 4𝑎𝑐 would be wrong with

single precision. For double type, this formula must cause losing around half of significant digits.

Following is fragment from test log found at our Web site [7]:

test: type=float
 a: 1[0]
 b: 2[0]
 c: 1e-08[6.07747e-17]
 d: 2[1e-08]
 x0: -2[-5e-09]
 x1: 0[5e-09]
test: type=double
 a: 1[0]
 b: 2[0]
 c: 1e-08[0]
 d: 2[6.07747e-17]
 x0: -2[-1.4141e-16]
 x1: -5e-09[3.03874e-17]

Here we let 𝑐 = 10−8, so discriminant 𝑑 = √𝑏2 − 4𝑎𝑐 must equal √3.99999996 ≈ 2 − 10−8, and

result must be 𝑥0 ≈ −1.999999995 and 𝑥1 ≈ −5.0000000125 ∙ 10−9.

Double precision results fit these expectations modulo printing fewer significant digits; and accuracy

estimate for 𝑥1 predictably says around half of significant digits is lost. Single precision (float) is not

enough, and twofold correctly assesses inaccuracy; particularly, 𝑥1 looks completely wrong here.

Note how twofold square root behaves if argument gets out of range. Here we let 𝑐 = 1 + 10−8, so

result is NaN, which we can identify or propagate through further computations:

test: type=float
 a: 1[0]
 b: 2[0]
 c: 1[1e-08]
 d: 0[nan]
 x0: -1[nan]
 x1: -1[nan]
test: type=double
 a: 1[0]
 b: 2[0]
 c: 1[0]
 d: nan[nan]
 x0: nan[nan]
 x1: nan[nan]

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

27

Conclusion
These are very simple though typical examples of how twofolds could assure more reliable computing.

Note that in these tests, twofolds would not over-estimate actual inaccuracy; avoid paranoid signaling

on problem if situation is actually fine. Such good behavior is not just occasion:

If basic precision is enough, like for double here, 2x-higher precision of twofold is moreover enough,

and 𝑧1 is relatively small. But if 𝑧1 is large, this almost for sure means basic precision is not enough.

This is somewhat similar to memory parity check: if parity bit looks fine this means nothing as system

might just miss a problem, but if parity bit is wrong this must signal on a real problem.

Thus, potentially you may double-check almost any math result with minimal risk of irrelevant panic.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

28

Discussion
 Motivation

 Technology

 Processors

 Compilers

Motivation
Our motivation follows simple philosophy that isolating arithmetic difficulties is job for technology.

Human must have privilege be unaware on too many details, and concentrate on areas of interest,

construction, science, education, etc.

We design a twofold daemon to check accuracy of all floating-point results. Daemon would work in on-

fly manner, in parallel with main computations. Daemon would avoid needless panic, and its cost would

be affordable for majority of mathematic computations.

Checking all results with twofolds would simplify programming mathematics, let human encode math

formulas directly “as is”, and fix only in case of problems. If no problems found, such checking anyway

assures reliability of math computations.

Technology
For implementing the twofolds daemon, we adapt Dekker arithmetic [1] for modern processors, which

were not available in 1970th. This allows twofolds be very fast, so the daemon would minimally damage

overall performance of your program.

Computers evolve very quickly duplicating capacity every 18 months according to Moore’s law. So cost

of checking would seem negligible very soon, while benefits are substantial. Besides, future computers

could support twofolds in hardware, so minimizing burden.

Application examples show that twofolds do not tend overestimating problems. This good property is

not occasional but follows from twofold’s approach. We use 2x-higher precision for assessing accuracy

of 1x-precise results. If 1x-precision is fine, then 2x is fine moreover and assessment converges.

This potentially allows checking all sorts of mathematic calculations with minimal risk of irrelevant panic.

If we instrument any mathematic program by replacing all float and double variables with twofolds,

such program would compute bitwise same result plus check its accuracy.

Processors
How difficult might be supporting twofold and similar techniques (like “double-double”) in future CPUs?

We need faster Two-Sum and Two-Product operations described in Background. Two-sum can be as fast

as three add/subtract operations according to Algorithm 1.1, so results could retire every 3 CPU ticks. If

a more expensive implementation with a conveyor, ultimately results could retire every 1 tick.

Thus, twofold summation Algorithms ATF/STF 1 could take only 5 or even 3 ticks instead 8, doing around

twice faster so far. Special summation with Algorithm ATF 1.1, could cost 4 or even 2 ticks instead of 7,

so operate 2x or even 3x faster in important cases of sum ∑ 𝑥𝑖 and dot-product ∑ 𝑥𝑖𝑦𝑖.

Two-Product is easier than FMA, so can be same fast, retire every tick. With such improvement, twofold

multiplication Algorithm MTF 1 could cost 7 ticks instead of 8, which speedup does not look critical.

Compilers
For best performance, twofold/coupled arithmetic needs support in compilers. Twofold arithmetic

formulas seem too complicated for automatic vectoring, so compilers should learn these patterns.

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

29

Gratitude
Here we would like to thank the following people with whom we have discussed these ideas and results:

 Marius Cornea (Intel)

 Bob Hanek (Intel)

 Victor Kostin (Intel)

 Dmitry Baksheev (Intel)

 Evgeny Petrov (Intel)

 Alexander Semenov (UniPro)

 Ivan Golosov (UniPro)

Here, “Intel” is Intel Corporation (http://intel.com), UniPro web site is http://unipro.ru/eng/index.html

http://intel.com/
http://unipro.ru/eng/index.html

Twofold fast arithmetic 2014 (C) Evgeny Latkin Free for non-commercial

30

References
[1] T. Dekker, A Floating-Point Technique for Extending the Available Precision, Numer. Math. 18, 224-

242 (1971)

[2] D. Priest, On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate

Computations, ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z

[3] J. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.

Discrete & Computational Geometry, 305–363, 1997.

[4] Y. Hida, X. Li, D. Bailey, Library for Double-Double and Quad-Double Arithmetic,

http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf

[5] High-Precision Software Directory by D. Bailey et al, http://crd-legacy.lbl.gov/~dhbailey/mpdist/

[6] J.-M. Muller, et al. Handbook of Floating-Point Arithmetic. Springer, 2010

[7] See more materials at our Web site: https://sites.google.com/site/yevgenylatkin/

ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z
http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
https://sites.google.com/site/yevgenylatkin/

