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TRIPLE AND SIMULTANEOUS COLLISIONS

OF COMPETING BROWNIAN PARTICLES

ANDREY SARANTSEV

Abstract. Consider a finite system of competing Brownian particles on the real line. Each particle moves
as a Brownian motion, with drift and diffusion coefficients depending only on its current rank relative to
the other particles. A triple collision occurs if three particles are at the same position at the same moment.
A simultaneous collision occurs if at a certain moment, there are two distinct pairs of particles such that
in each pair, both particles occupy the same position. These two pairs of particles can overlap, so a triple
collision is a particular case of a simultaneous collision. We find a necessary and sufficient condition for a.s.
absense of triple and simultaneous collisions, continuing the work of Ichiba, Karatzas, Shkolnikov (2013).
Our results are also valid for the case of asymmetric collisions, when the local time of collision between the
particles is split unevenly between them; these systems were introduced in Karatzas, Pal, Shkolnikov (2012).

1. Introduction

This paper is devoted to finite systems of competing Brownian particles. First, let us informally
describe these systems. FixN ≥ 2, the quantity of particles. Take real-valued parameters g1, . . . , gN
and positive real-valued parameters σ1, . . . , σN . Consider N particles, moving on the real line. At
each time, rank them from the left to the right: the particle which is currently the leftmost one
has rank 1, the second leftmost particle has rank 2, etc., up to the rightmost particle, which has
rank N . As particles move, they can exchange ranks. We shall explain below how to resolve ties
between particles. The particles move according to the following law: for each k = 1, . . . , N , the
particle with (current) rank k moves as a Brownian motion with drift coefficient gk and diffusion
coefficient σ2

k, for each k = 1, . . . , N . Thus, the dynamics of each particle depends on its current
rank among other particles.

Let us now formally define these systems. Consider the standard setting: a filtered probability
space (Ω,F , (Ft)t≥0,P) with the filtration satisfying the usual conditions.

Any one-dimensional Brownian motion with zero drift and unit diffusion coefficients starting
from the origin is called a standard Brownian motion. The symbol a′ denotes the transpose of (a
vector or a matrix) a. We write 1(C) for the indicator of the event C.

For every vector x = (x1, . . . , xN )′ ∈ RN , let p be the permutation on {1, . . . , N} with the
following properties:

(i) it orders the components of x: xp(i) ≤ xp(j) for 1 ≤ i ≤ j ≤ N ;
(ii) ties are resolved in the lexicographic order: if 1 ≤ i < j ≤ N and xp(i) = xp(j), then

p(i) < p(j).
There exists a unique permutation p = px which satisfies these two properties. We shall call it

the ranking permutation for the vector x. For example, if x = (1,−1, 0, 0)′ , then px(1) = 2, px(2) =
3, px(3) = 4, px(4) = 1. We write x(i) = xpx(i) for i = 1, . . . , N , so that x(1) ≤ x(2) ≤ . . . ≤ x(N)

are the ranked components of the vector x.
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Definition 1.1. Take i.i.d. standard (Ft)t≥0-Brownian motions W1, . . . ,WN . For a continuous
RN -valued process

X = (X(t), t ≥ 0), X(t) = (X1(t), . . . ,XN (t))′,

denote by pt ≡ pX(t) the ranking permutation for the vector X(t) for every t ≥ 0. Suppose this
process satisfies the following SDE:

(1) dXi(t) =
N
∑

k=1

1(pt(k) = i) [gk dt+ σk dWi(t)] , i = 1, . . . , N.

Then this process X is called a classical system of N competing Brownian particles with drift
coefficients g1, . . . , gN and diffusion coefficients σ2

1 , . . . , σ
2
N . For k = 1, . . . , N , the process

Yk = (Yk(t), t ≥ 0), Yk(t) := Xpt(k)(t) ≡ X(k)(t),

is called the kth ranked particle. If pt(k) = i, then we say that the particle Xi(t) = Yk(t) at time t
has name i and rank k.

These systems were introduced in the paper [2] for financial modeling; on this topic, see subsection
1.5. The coefficients of the SDE (1) are piecewise constant functions of X1(t), . . . ,XN (t), so weak
existence and uniqueness in law for such systems follow from [4]. By definition, the ranked particles
satisfy

Y1(t) ≤ Y2(t) ≤ . . . ≤ YN (t).

Definition 1.2. A triple collision at time t occurs if there exists a rank k = 2, . . . , N − 1 such that
Yk−1(t) = Yk(t) = Yk+1(t).

A triple collision is sometimes an undesirable phenomenon. For example, existence and unique-
ness of a strong solutions of the SDE (1) has been proved only up to the first moment of a triple
collision, see [33, Theorem 2]. In this paper, we give a necessary and sufficient condition for absence
of triple collisions with probability one. First, let us define some related concepts.

Definition 1.3. A simultaneous collision at time t occurs if there are ranks k 6= l such that such
that Yk(t) = Yk+1(t), Yl(t) = Yl+1(t).

A triple collision is a particular case of a simultaneous collision.
The main result of this article is as follows.

Theorem 1.4. Consider a system from Definition 1.1.
(i) Suppose the sequence (σ2

n)1≤n≤N is concave, that is,

(2) σ2
k+1 − σ2

k ≤ σ2
k − σ2

k−1, k = 2, . . . , N − 1.

Then, with probability one, there are no triple and no simultaneous collisions at any time t > 0.
(ii) If the condition (2) fails for a certain k = 2, . . . , N − 1, then with positive probability there

exists a moment t > 0 such that there is a triple collision between particles with ranks k− 1, k, and
k + 1 at time t.

The proof of this result is given in Section 4. We can state a remarkable corollary of this theorem.

Corollary 1.5. Take a system from Definition 1.1. Suppose a.s. there are no triple collisions at
any moment t > 0. Then a.s. there are no simultaneous collisions at any moment t > 0.

It is interesting that a system of N = 4 particles can have a.s. no simultaneous collisions of the
form

(3) Y1(t) = Y2(t), Y3(t) = Y4(t),
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and at the same time triple collisions with positive probability. For example, if you take

σ1 = σ4 = 1, and σ2 = σ3 = 1− ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (3), but with positive probability there is
a triple collision of ranked particles Y1, Y2, and Y3, and with positive probability there is a triple
collision of ranked particles Y2, Y3, and Y4. If

σ1 = σ3 = 1, and σ2 = σ4 = 1 + ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (3), and a.s. no triple collisions of ranked
particles Y1, Y2, and Y3, but with positive probability there is a triple collision of ranked particles
Y2, Y3, and Y4. This is shown in the companion paper [54, Subsection 1.2].

1.1. Collision local times. Consider a system of competing Brownian particles from Defini-
tion 1.1. Define the processes B1 = (B1(t), t ≥ 0), . . . , BN = (BN (t), t ≥ 0) as follows:

Bk(t) =

N
∑

i=1

∫ t

0
1(ps(k) = i)dWi(s).

One can calculate that 〈Bi, Bj〉t = δijt; therefore, these are i.i.d. standard Brownian motions. For
k = 2, . . . , N , let the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale local time at
zero of the nonnegative semimartingale Yk − Yk−1. For notational convenience, we let L(0,1)(t) ≡ 0
and L(N,N+1)(t) ≡ 0. Then the ranked particles Y1, . . . , YN satisfy the following dynamics:

(4) Yk(t) = Yk(0) + gkt+ σkBk(t) +
1

2
L(k−1,k)(t)−

1

2
L(k,k+1)(t), k = 1, . . . , N.

The equation (4) was deduced in [1, Lemma 1] and [3, Theorem 2.5]; see also [2, Section 3] and
[31, Chapter 3].

The process L(k−1,k) is called the local time of collision between the particles Yk−1 and Yk. One
can regard the local time L(k−1,k)(t) to be the total amount of push between the (k − 1)st and the
kth ranked particles Yk−1 and Yk accumulated by time t. This amount of push is necessary and
sufficient to keep the particle Yk to the right of the particle Yk−1, so that Yk−1(t) ≤ Yk(t).

When these two particles collide, the amount of push is split evenly between them: the amount
(1/2)L(k−1,k)(t) goes to the right-sided particle Yk and pushes it to the right; the equal amount
(1/2)L(k−1,k)(t) (with the minus sign) goes to the left-sided particle Yk−1 and pushes it to the left.
One possible physical interpretation of this phenomenon: the ranked particles have the same mass;
so, when they collide, they get the same amount of push.

The local time process L(k−1,k) has the following properties: L(k−1,k)(0) = 0, L(k−1,k) is nonde-
creasing, and it can increase only when Yk−1(t) = Yk(t), that is, when particles with ranks k − 1
and k collide. We can formally write the last property as

(5)

∫ ∞

0
1(Yk(t) 6= Yk−1(t))dL(k−1,k)(t) = 0.

1.2. Systems with asymmetric collisions. If we change coefficients 1/2 in (4) to some other
values, we get the model from the paper [37]. The local times in this new model are split unevenly
between the two colliding particles, as if they had different mass. Let us now formally define this
model. First, let us describe its parameters. Let N ≥ 2 be the quantity of particles. Fix real
numbers g1, . . . , gN and positive real numbers σ1, . . . , σN , as before. In addition, fix real numbers
q+1 , q

−
1 , . . . , q

+
N , q−N , satisfying the following conditions:

q+k+1 + q−k = 1, k = 1, . . . , N − 1; 0 < q±k < 1, k = 1, . . . , N.
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Definition 1.6. Take i.i.d. standard (Ft)t≥0-Brownian motions B1, . . . , BN . Consider a continuous
adapted RN -valued process

Y = (Y (t), t ≥ 0), Y (t) = (Y1(t), . . . , YN (t))′,

and N − 1 continuous adapted real-valued processes

L(k−1,k) = (L(k−1,k)(t), t ≥ 0), k = 2, . . . , N,

with the following properties:
(i) Y1(t) ≤ . . . ≤ YN (t), t ≥ 0,
(ii) the process Y satisfies the following system of equations:

(6) Yk(t) = Yk(0) + gkt+ σkBk(t) + q+k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, . . . , N.

We let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0 for notational convenience.
(iii) for each k = 2, . . . , N , the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) has the properties men-

tioned above: L(k−1,k)(0) = 0, L(k−1,k) is nondecreasing and satisfies (5).
Then the process Y is called a system of N competing Brownian particles with asymmetric

collisions, with drift coefficients g1, . . . , gN , diffusion coefficients σ2
1, . . . , σ

2
N , and parameters of

collision q±1 , . . . , q
±
N . For each k = 1, . . . , N , the process Yk = (Yk(t), t ≥ 0) is called the kth ranked

particle. For k = 2, . . . , N , the process L(k−1,k) is called the local time of collision between the
particles Yk−1 and Yk.

The state space of the process Y is WN := {y = (y1, . . . , yN )′ ∈ RN | y1 ≤ y2 ≤ . . . ≤ yN}.
Strong existence and pathwise uniqueness for Y and L are proved in [37, Section 2.1].

Remark 1.7. Triple and simultaneous collisions for these systems are defined similarly to Defini-
tions 1.2 and 1.3.

In the case of asymmetric collisions, we can also define a corresponding named system of com-
peting Brownian particles.

Definition 1.8. Consider a continuous adapted process

X = (X(t), t ≥ 0), X(t) = (X1(t), . . . ,XN (t))′.

Suppose pt is the ranking permutation of X(t) for t ≥ 0, as before, and

Yk(t) ≡ Xpk(t)(t), k = 1, . . . , N, t ≥ 0,

Let L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale local time at zero of Yk − Yk−1, for
k = 2, . . . , N ; and L(0,1)(t) ≡ L(N,N+1)(t) ≡ 0 for notational convenience, as before.

Then this system X = (X1, . . . ,XN )′ is governed by the following SDE: for i = 1, . . . , N and
t ≥ 0,

dXi(t) =

N
∑

k=1

1(pt(k) = i) (gkdt+ σkdWi(t))

+

N
∑

k=1

1(pt(k) = i)
(

q−k − (1/2)
)

dL(k,k+1)(t)

+
N
∑

k=1

1(pt(k) = i)
(

q+k − (1/2)
)

dL(k−1,k)(t).

It is called a system of named competing Brownian particles with drift coefficients (gn)1≤n≤N ,
diffusion coefficients (σ2

n)1≤n≤N , and parameters of collision (q±n )1≤n≤N .
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The ranked particles (Y1, . . . , YN ) from Definition 1.8 form a system of ranked competing Brow-
nian particles in the sense of Definition 1.6. However, unlike the system Y from Definition 1.6,
which exists and is unique in a strong sense up to the infinite time horizon, the system X from
Definition 1.8 is known to have strong solutions only up to the first moment of a triple collision, see
[37]. This provides a motivation to find a condition which guarantees absense of triple collisions.
Here, we prove a necessary and sufficient condition for a.s. lack of triple collisions.

Theorem 1.9. Consider a system of competing Brownian particles with asymmetric collisions from
Definition 1.6.

(i) Suppose the following condition is true:

(7) (q−k−1 + q+k+1)σ
2
k ≥ q−k σ

2
k+1 + q+k σ

2
k−1, k = 2, . . . , N − 1.

Then, with probability one, there are no triple and no simultaneous collisions at any time t > 0.
(ii) If the condition (7) is violated for some k = 2, . . . , N − 1, then with positive probability there

exists a moment t > 0 such that there is a triple collision between particles with ranks k − 1, k,
and k + 1 at time t.

Note that Theorem 1.4 is a particular case of this theorem for q±k = 1/2, k = 1, . . . , N . Corol-
lary 1.5 is also true for systems with asymmetric collisions.

1.3. Method of proof: reduction to an SRBM in the orthant. Let us informally describe
a stochastic process called a semimartingale reflected Brownian motion (SRBM) in the positive
multidimensional orthant S := Rd

+, where R+ := [0,∞) and d ≥ 1 is the dimension. We formally
define an SRBM in subsection 2.1.

Fix the parameters of an SRBM: a drift vector µ ∈ Rd, a covariance matrix: a d × d-positive
definite symmetric matrix A = (aij)1≤i,j≤d, and a reflection matrix: a d×d-matrix R = (rij)1≤i,j≤d

with rii = 1, i = 1, . . . , d. Then an SRBM in the orthant S with parameters R,µ,A, denoted by
SRBMd(R,µ,A), is a Markov process with state space S which:

(i) behaves as a d-dimensional Brownian motion with drift vector µ and covariance matrix A in
the interior of the orthant S;

(ii) on each face Si = {x ∈ S | xi = 0} of the boundary ∂S, the process is reflected in the
direction of ri, the ith column of R.

If ri = ei, where ei is the ith standard basis vector in Rd, then the reflection is called normal.
Otherwise, it is called oblique.

For a system of N competing Brownian particles (the classical system or the one with asymmetric
collisions), the gaps Zk(t) = Yk+1(t)− Yk(t), k = 1, . . . , N − 1, between adjacent ranked particles

form an SRBM in the orthant RN−1
+ : see subsection 2.2. If there is a simultaneous collision

Yk(t) = Yk+1(t) and Yl(t) = Yl+1(t), then Zk(t) = Zl(t) = 0. In other words, a simultaneous
collision is equivalent to the gap process hitting non-smooth parts of the boundary of the orthant
RN−1
+ . In Theorem 2.12, subsection 2.3, we state a necessary and sufficient condition for an SRBM

to a.s. avoid non-smooth parts of the boundary. This theorem is proved in Section 3. In Section 4,
we translate these results into the language of competing Brownian particles, and prove Theorem 1.4
and Theorem 1.9.

We find whether this SRBM hits non-smooth parts Si ∩ Sj, i 6= j of the boundary ∂S. This
corresponds to triple or simultaneous collisions of competing Brownian particles. This connection
is established in subsection 2.2.

1.4. Relation to previous results. For classical systems of competing Brownian particles from
Definition 1.1, some significant partial results on the triple collision problem were known before.
In particular, a necessary and sufficient condition for absence of triple collisions for systems with
only three particles is obtained in [32]. In the article [33], it is proved that the condition (2)
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from Theorem 1.4 is necessary. For systems with asymmetric collisions from [37], some sufficient
conditions for absence of triple collisions were found, but these are not necessary conditions.

In the companion paper [54], we find a sufficient condition for avoiding collisions of four or more
particles (multiple collisions), as well as multicollisions: when a few particles collide and at the same
time other few particles collide. An example of a multicollision is Y1(t) = Y2(t) = Y3(t), Y5(t) =
Y6(t) and Y7(t) = Y8(t). A simultaneous collision (for example, Y1(t) = Y2(t) and Y3(t) = Y4(t)) is
a particular case of a multicollision. In particular, as mentioned above, we can find examples of a
system of four particles avoiding simultaneous collisions of the type (3) but having triple collisions
with positive probability.

We can also define a reflected Brownian motion in domains which are more general than the
orthant. In particular, a two-dimensional wedge is a subset of R2 of the form

{(r cos θ, r sin θ) | 0 ≤ r < ∞, 0 ≤ θ ≤ ξ}
(where ξ ∈ (0, π) is the angle of this wedge). A reflected Brownian motion with unit drift vector
and identity covariance matrix was studied in [57]. The latter paper provides a necessary and
sufficient condition for this process to a.s. avoid hitting the origin (the corner of the wedge). In
[60], the Hausdorff dimension of the set of times when this process hits the corner was found. More
generally, we can define a reflected Brownian motion in a convex polyhedron in Rd: see [13] and [14].
In [61], a reflected Brownian motion in a polyhedral domain was constructed under the so-called
skew-symmetry condition, see (13) and (24). It was shown that under this condition, it does not
hit non-smooth parts of the boundary. These results are important and are applied in this article.

Let us also mention some related sources on nonattainability of lower-dimensional manifolds by
a diffusion process: the papers [21], [47], [48], [8], and the book [22].

1.5. Motivation and historical review. The original motivation to study classical systems of
competing Brownian particles came from Stochastic Finance. An observed phenomenon of real-
world stock markets is that stocks with smaller capitalizations have larger growth rates and larger
volatilities. This can be captured by the classical model of competing Brownian particles: just let
g1 > . . . > gN and σ1 > . . . > σN , and suppose that for i = 1, . . . , N , the quantity eXi(t) is the
capitalization of the ith stock at time t. For financial applications and market models similar to
this rank-based model, see the articles [1], [17], [38], the book [16, Chapter 5] and a somewhat more
recent survey [19, Chapter 3].

Classical systems from Definition 1.1 were studied in [31], [1], [45], [9], [46], [34], [19]. There
are several generalizations of these systems: [55] (systems of competing Levy particles), [45], [33]
(infinite systems of competing Brownian particles); [18], [17], [1] (second-order stock market models,
when drift and diffusion coefficients depend on both ranks and names).

Systems of competing Brownian particles with asymmetric collisions are related to the theory
of exclusion processes: it was proved in [37, Section 3] that these systems are scaling limits of
asymmetrically colliding random walks, which constitute a certain type of exclusion processes. In
addition, thse systems are also related to random matrices and random surfaces evolving according
to the KPZ equation, see [20].

Studying an SRBM in the orthant is motivated by queueing theory. An SRBM in the orthant is
the heavy traffic limit for series of queues, when the traffic intensity at each queue tends to one, see
[50], [51], [24]. We can also define an SRBM in general convex polyhedral domains in Rd, see [14].
An SRBM in the orthant and in convex polyhedra has been extensively studied, see the survey [62],
and articles [27], [26], [29], [28], [61], [52], [56], [15], [13], [10], [24], [6], [7], [14], [12], [11], [25], [58],
[59], [63], [39], [40], [43], [49], [36], [41], [42], [57], [60].

1.6. Notation. We denote by Ik the k×k-identity matrix. For a vector x = (x1, . . . , xd)
′ ∈ Rd, let

‖x‖ :=
(

x21 + . . .+ x2d
)1/2

be its Euclidean norm. For any two vectors x, y ∈ Rd, their dot product
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is denoted by x · y = x1y1 + . . . + xdyd. We compare vectors x and y componentwise: x ≤ y if
xi ≤ yi for all i = 1, . . . , d; x < y if xi < yi for all i = 1, . . . , d; similarly for x ≥ y and x > y. We
compare matrices of the same size componentwise, too. For example, we write x ≥ 0 for x ∈ Rd if
xi ≥ 0 for i = 1, . . . , d; C = (cij)1≤i,j≤d ≥ 0 if cij ≥ 0 for all i, j.

Fix d ≥ 1, and let I ⊆ {1, . . . , d} be a nonempty subset. Write its elements in the order of
increase: I = {i1, . . . , im}, 1 ≤ i1 < i2 < . . . < im ≤ d. For any x ∈ Rd, let [x]I := (xi1 , . . . , xim)

′.
For any d× d-matrix C = (cij)1≤i,j≤d, let [C]I := (cikil)1≤k,l≤m.

2. Semimartingale Reflected Brownian Motion (SRBM) in the Orthant

2.1. Definition of an SRBM. Fix d ≥ 1, the dimension. Recall that R+ := [0,∞), and let
S := Rd

+ be the d-dimensional positive orthant. Its boundary consists of d faces Si = {x ∈ S |
xi = 0}, i = 1, . . . , d. Take the parameters R,µ,A described in Subsection 1.2: a d × d-matrix R
with diagonal elements equal to one, a d × d positive definite symmetric matrix A, and a vector
µ ∈ Rd. Assume the usual setting: a filtered probability space (Ω,F , (Ft)t≥0,P) with the filtration
satisfying the usual conditions.

Definition 2.1. Take a continuous function X : R+ → Rd with X (0) ∈ S. A solution to the
Skorohod problem in the positive orthant S with reflection matrix R and driving function X is a
continuous function Z : R+ → S such that there exists another continuous function Y : R+ → Rd

with the following properties:
(i) for every t ≥ 0, we have: Z(t) = X (t) +RY(t);
(ii) for every i = 1, . . . , d, the function Yi is nondecreasing, satisfies Yi(0) = 0 and can increase

only when Zi(t) = 0, that is, when Z(t) ∈ Si. We can write the last property formally as
∫ ∞

0
Zi(t)dYi(t) = 0.

Remark 2.2. This definition can also be stated for a finite time horizon, that is, for functions
X ,Y,Z defined on [0, T ] instead of R+.

Definition 2.3. Suppose B = (B(t), t ≥ 0) is an ((Ft)t≥0,P)-Brownian motion in Rd with drift
vector µ and covariance matrix A. A solution Z = (Z(t), t ≥ 0) to the Skorohod problem in S with
reflection matrix R and driving function B is called a semimartingale reflected Brownian motion,
or SRBM, in the positive orthant S with reflection matrix R, drift vector µ and covariance matrix
A. It is denoted by SRBMd(R,µ,A). The function Y is called the vector of regulating processes,
and its ith component Yi is called the regulating process corresponding to the face Si. The process
B is called the driving Brownian motion. We say that Z starts from x ∈ S if Z(0) = x a.s.

Definition 2.4. Take a d × d-matrix R = (rij)1≤i,j≤d. It is called a reflection matrix if rii = 1
for i = 1, . . . , d. It is called nonnegative if all its elements are nonnegative, that is, if R ≥ 0; it is
called strictly nonnegative if it is nonnegative and rii > 0 for i = 1, . . . , d. It is called an S-matrix
if there exists a vector u ∈ Rd, u > 0 such that Ru > 0. Any submatrix of R of the form [R]I ,
where I ⊆ {1, . . . , d} is a nonempty subset, is called a principal submatrix (this includes the matrix
R itself). The matrix R is called completely-S if each of its principal submatrices is an S-matrix.
It is called a Z-matrix if rij ≤ 0 for i 6= j. It is called strictly inverse-nonnegative if it is invertible
and its inverse R−1 is a strictly nonnegative matrix. It is called a nonsingular M-matrix if it is
both completely-S and a Z-matrix.

The following lemma is a useful characterization of reflection nonsingular M-matrices; its proof
is given in the Appendix.

Lemma 2.5. Suppose R is a d×d reflection matrix. Then the following statements are equivalent:
(i) R is a nonsingular M-matrix;
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(ii) R is a strictly inverse-nonnegative Z-matrix;
(iii) R = Id −Q, where Q is a nonnegative matrix with spectral radius less than 1.

We are ready to state an existence and uniqueness result, proved in [27, Theorem 1], see also
[62, Theorem 2.1]. This is not the most general result (for which the reader might want to see [52],
[56] and [62, Theorem 2.3]), but it is sufficient for our purposes.

Proposition 2.6. Suppose R is a d× d reflection nonsingular M-matrix.
(i) For every continuous driving function X : R+ → Rd with X (0) ∈ S, the Skorohod problem in

the orthant S with reflection matrix R has a unique solution.
(ii) Take a vector µ ∈ Rd and a d × d positive definite symmetric matrix A. For every x ∈ S,

there exists in the strong sense an SRBMd(R,µ,A) starting from x, and it is pathwise unique.
These processes, starting from different x ∈ S, form a Feller continuous strong Markov family.

Now we define a key concept: hitting non-smooth parts of the boundary ∂S of the orthant
S. (We already mentioned this in the Introduction.) This concept is a counterpart of triple and
simultaneous collisions for systems of competing Brownian particles.

Definition 2.7. The set

S0 := ∪1≤i<j≤d(Si ∩ Sj) ⊆ ∂S

is called non-smooth parts of the boundary ∂S. An S-valued process Z = (Z(t), t ≥ 0) hits non-
smooth parts of the boundary at time t if there exist i, j = 1, . . . , d, i 6= j such that Zi(t) = Zj(t) = 0.
We say that the process Z hits non-smooth parts of the boundary if there exists t > 0 such that it
hits non-smooth parts of the boundary at time t. If such t > 0 does not exist, then we say that Z
avoids non-smooth parts of the boundary.

2.2. Connection between an SRBM in the orthant and systems of competing Brownian

particles. In this subsection, we show that the gaps between adjacent particles in a system of
competing Brownian particles form an SRBM in the orthant.

Definition 2.8. Consider a system of N competing Brownian particles (a classical system from
Definition 1.1 or a system with asymmetric collisions from Definition 1.6). Let Y1, . . . , YN be the

ranked particles. Then the RN−1
+ -valued process

Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . , ZN−1(t))
′,

defined by

Zk(t) = Yk+1(t)− Yk(t), t ≥ 0, k = 1, . . . , N − 1,

is called the gap process for this system of competing Brownian particles.

Lemma 2.9. For a system of competing Brownian particles from Definition 1.6, the gap process is
an SRBMN−1(R,µ,A), where

(8) R =



















1 −q−2 0 0 . . . 0 0
−q+2 1 −q−3 0 . . . 0 0
0 −q+3 1 −q−4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 −q−N−1

0 0 0 0 . . . −q+N−1 1



















,
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(9) A =



















σ2
1 + σ2

2 −σ2
2 0 0 . . . 0 0

−σ2
2 σ2

2 + σ2
3 −σ2

3 0 . . . 0 0
0 −σ2

3 σ2
3 + σ2

4 −σ2
4 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . σ2

N−2 + σ2
N−1 −σ2

N−1
0 0 0 0 . . . −σ2

N−1 σ2
N−1 + σ2

N



















,

(10) µ = (g2 − g1, g3 − g4, . . . , gN − gN−1)
′ .

The matrix R in (8) is a nonsingular M-matrix.

Corollary 2.10. For a classical system of competing Brownian particles from Definition 1.1, the
gap process is an SRBMN−1(R,µ,A), where

(11) R =











1 −1/2 0 0 . . .
−1/2 1 −1/2 0 . . .
0 −1/2 1 0 . . .
...

...
...

...
. . .











,

while A and µ are given by (9) and (10), respectively.

The proof can be found in [2] for classical systems or in [37] for systems with asymmetric collisions.
However, for the sake of completeness we give the full proof here.

Proof. Using the equation (6), we get the following equation for Zk = Yk+1 − Yk:

Zk(t) =Zk(0) + (gk+1 − gk) t+ σk+1Bk+1(t)− σkBk(t)

+
(

q+k+1 + q−k
)

L(k,k+1)(t)− q+k L(k−1,k)(t)− q−k+1L(k+1,k+2)(t).

Let

W k(t) = Zk(0) + (gk+1 − gk) t+ σk+1Bk+1(t)− σkBk(t), k = 1, . . . , N − 1, t ≥ 0.

Recall that q+k+1 + q−k = 1 for k = 1, . . . , N − 1. Therefore,

Zk(t) = W k(t) + L(k,k+1)(t)− q+k L(k−1,k)(t)− q−k+1L(k+1,k+2)(t).

The RN−1-valued process W = (W 1, . . . ,WN−1)
′ is an (Ft)t≥0-Brownian motion in N − 1 dimen-

sions, with drift vector µ = (g2−g1, . . . , gN −gN−1)
′ and covariance matrix A given by (9). Indeed,

B1, . . . , BN are i.i.d. standard Brownian motions. Therefore,

〈W k〉t = 〈σk+1Bk+1(t)− σkBk(t)〉t =
(

σ2
k + σ2

k+1

)

t,

〈W k,W k+1〉t = 〈σk+1Bk+1(t)− σkBk(t), σk+2Bk+2(t)− σk+1Bk+1(t)〉t = −σ2
k+1t,

and 〈W k,W l〉t = 0 for |k − l| ≥ 2. The process L(k,k+1) for each k = 1, . . . , N − 1 satisfies the
following conditions: it starts from zero, that is, L(k,k+1)(0) = 0; it is nondecreasing, and can
increase only when Yk = Yk+1, or, equivalently, when Zk = 0. The rest is trivial. �

Remark 2.11. A system of competing Brownian particles has a simultaneous collision at time t if
and only if the gap process hits non-smooth parts S0 of the boundary ∂S at time t. This is our
method of proof: we state and prove results for an SRBM, and then we translate them into the
language of systems of competing Brownian particles.
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2.3. Main Results for an SRBM. In this subsection, we state a necessary and sufficient condi-
tion for an SRBM a.s. to avoid non-smooth parts of the boundary. For the rest of this subsection,
fix d ≥ 2. Suppose R is a d × d reflection nonsingular M-matrix. Fix a vector µ ∈ Rd and a
d× d positive definite symmetric matrix A. Recall the notation S = Rd

+ and consider the process

Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A), starting from some point x ∈ S.
Let us give a necessary and sufficient condition for an SRBM a.s. not hitting non-smooth parts

of the boundary ∂S of the orthant S.

Theorem 2.12. (i) Suppose the following condition holds:

(12) rijajj + rjiaii ≥ 2aij , 1 ≤ i, j ≤ d.

Then with probability one, there does not exist t > 0 such that Z hits non-smooth parts of the
boundary at time t.

(ii) If the condition (12) is violated for some 1 ≤ i < j ≤ d, then with positive probability there
exists t > 0 such that Zi(t) = Zj(t) = 0.

Remark 2.13. The condition (12) can be written in the matrix form as RD +DRT ≥ 2A, where
D = diag(A) = diag(a11, . . . , add) is the diagonal d× d-matrix with the same diagonal entries as A.
The case when we have equality in (12) instead of inequality, is very important: the condition

(13) RD +DRT = 2A ⇔ rijajj + rjiaii = 2aij , 1 ≤ i, j ≤ d,

is called the skew-symmetry condition. This is a very important and well-studied case: see [29],
[28], [61], [62, Theorem 3.5]. For example, under this condition, the SRBM has the product-of-
exponentials stationary distribution.

Remark 2.14. Whether an SRBMd(R,µ,A) a.s. avoids non-smooth parts of the boundary depends
only on the matrices R and A, not on the initial condition Z(0) or the drift vector µ. Some general
results of this type are shown in subsection 3.2, Lemma 3.3. But the actual probability of hitting
non-smooth parts of the boundary, if it is positive, does depend on µ and the initial condition, see
Remark 3.4.

3. Proof of Theorem 2.12

3.1. Outline of the proof. We can define a reflected Brownian motion not only in the orthant,
but in more general domains: namely, in convex polyhedra, see [14]. Similarly to an SRBM in the
orthant, this is a process which behaves as a Brownian motion in the interior of the domain and
is reflected according to a certain vector at each face of the boundary. We can reduce an SRBM
in the orthant with an arbitrary covariance matrix to a reflected Brownian motion in a convex
polyhedron with identity covariance matrix. This construction is carried out in detail in subsection
3.5, Lemma 3.18.

Let us give a brief preview here. Consider an SRBM Z = (Z(t), t ≥ 0) in the orthant Rd
+ with

covariance matrix A. Consider the process

(14) Z = (Z(t), t ≥ 0), Z(t) = A−1/2Z(t),

which is a reflected Brownian motion in the domain A−1/2Rd
+ := {A−1/2z | z ∈ Rd

+} with identity
covariance matrix.

For a reflected Brownian motion in a polyhedral domain with identity covariance matrix, a
sufficient condition (the skew-symmetry condition) for a.s. not hitting non-smooth parts of the
boundary is known, see [61, Theorem 1.1]. Note that there are two forms of the skew-symmetry
condition. One is for an SRBM in the orthant with arbitrary covariance matrix, which is (13). The
other is for a reflected Brownian motion in a convex polyhedron with identity covariance matrix,
which was introduced in [61]; in our paper, it is going to be given in (24). In Lemma 3.21 we prove
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that under this linear transformation (14), these two conditions match. This justifies why they
bear the same name. This allows us (in Lemma 3.24) to prove part (i) of Theorem 2.12 under the
skew-symmetry condition (13).

Now, we need to show this for a more general condition (12). We reduce this general case to the
case of the skew-symmetry condition (13) by stochastic comparison (Lemma 3.9). We introduce

an SRBM with new reflection matrix R̃ which satisfies the skew-symmetry condition and such that
R̃ ≥ R.

To prove part (ii), we first consider the case d = 2. The domain A−1/2R2
+ is in this case a

two-dimensional wedge, which can be written in polar coordinates

x1 = r cos θ, x2 = r sin θ,

as

0 ≤ r < ∞, ξ2 ≤ θ ≤ ξ1,

where ξ1, ξ2 are angles such that ξ2 ≤ ξ1 ≤ ξ2+π. We mentioned that a reflected Brownian motion
in this domain with zero drift vector and identity covariance matrix was studied in [57], [58], [59],
[60]. For this process, hitting non-smooth parts of the boundary means hitting the corner of the
wedge (the origin). The result [57, Theorem 2.2] gives a necessary and sufficient condition for a.s.
avoiding the corner. Using the linear transformation (14), we can then translate these results for
an SRBM in the positive quadrant with general covariance matrix. This proves (ii) for d = 2.

To prove Theorem 2.12 for the general d, we again use comparison techniques. We consider any
two components Zi, Zj of the process Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A), and compare them
with a two-dimensional SRBM using Corollary 3.10.

Some parts of the calculations in this proof below have been done in certain previous articles.
For example, the linear transformation z 7→ A−1/2z and the way it transforms an SRBM in the
orthant have been studied in the following articles: [28, Section 9, Theorem 23] (general dimension,
under the skew-symmetry condition); [37, Proposition 2] (dimension d = 2). However, to make the
exposition as lucid and self-contained as possible, we decided to do all calculations from scratch.

Remark 3.1. In this artlce, we define a reflected Brownian motion in Definition 2.3 as a semimartin-
gale. Similarly, in the article [14] a reflected Brownian motion in a convex polyhedron is defined in
a semimartingale form; we present this in Definition 3.11. However, in the papers [57] and [61], a
reflected Brownian motion is not given in a semimartingale form. Instead, it is defined as a solution
to a certain submartingale problem: see Definition 3.16. We use the semimartingale definition, and
in Lemma 3.17 we prove that the semimartingale form of a reflected Brownian motion also satisfies
the submartingale definition. This shows that we can indeed use the results from [57] and [61].

3.2. Girsanov removal of drift and independence of the initial conditions. In this sub-
section, fix d ≥ 1. Let R be a d× d reflection nonsingular M-matrix. Let A be a d× d symmetric
positive definite matrix, and let µ ∈ Rd. For every x ∈ S, denote by Px the probability measure
corresponding to the SRBMd(R,µ,A) starting from x.

Definition 3.2. For a nonempty subset I ⊆ {1, . . . , d}, let SI = {x ∈ S | xi = 0, i ∈ I}. This is
called an edge of the orthant S.

For example, S{i,j} = Si∩Sj for i 6= j is a piece of the non-smooth parts of the boundary ∂S. In

this article, we are interested in an SRBMd(R,µ,A) hitting or avoiding these edges. But for this
subsection, we shall work with a general edge SI of S.

The main result of this subsection is that the property of an SRBM to a.s. avoid SI is independent
of the starting point x ∈ S and of the drift vector µ. The proof is postponed until the end of this
subsection.
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Proposition 3.3. Let Z = (Z(t) ≥ 0) be an SRBMd(R,µ,A). Let

p(x,R, µ,A) = Px (∃ t > 0 : Z(t) ∈ SI) .

Fix a d× d reflection nonsingular M-matrix R and a positive definite symmetric d× d matrix A.
Then one of these two statements is true:

• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) = 0: (the edge SI is avoided).
• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) > 0: (the edge SI is hit).

Remark 3.4. We can reformulate Lemma 3.3 as follows: whether an SRBMd(R,µ,A) hits the edge
SI does not depend on the initial conditions and the drift vector µ; it depends only on the reflection
matrix R and the covariance matrix A.

However, suppose SRBMd(R,µ,A) hits the edge SI , so the probability p(x,R, µ,A) is positive.
What is its exact value? This probability does depend on the drift vector µ and the initial condition
x ∈ S. Let us give a one-dimensional example: a reflected Brownian motion on the positive half-line
R+ with no drift. With probability one, it hits the origin (which is the same as hitting the edge
S{1}). But a reflected Brownian motion on R+ with positive drift b, starting from x > 0, hits the

origin with probability e−2bx, see [5, Part 2, Section 2, formula 2.0.2]. This does depend on the
drift b and the initial condition x.

Definition 3.5. We say that an SRBMd(R,µ,A) avoids non-smooth parts of the boundary ∂S of
the orthant S if it avoids every edge SI with |I| = 2. Otherwise, we say that an SRBMd(R,µ,A)
hits non-smooth parts of the boundary ∂S.

From the discussion just above, we see: the property of hitting non-smooth parts of the boundary
is independent of the initial condition x and of the drift vector µ. It depends only on R and A. We
can also see it from Theorem 2.12: the condition (12) involves only elements of R and A.

3.3. Proof of Proposition 3.3. We split the proof of Lemma 3.3 in two steps. First, we show
independence of a starting point x ∈ S in Lemma 3.6, then of a drift vector µ ∈ Rd in Lemma 3.7,
using the Girsanov transformation.

Lemma 3.6. For fixed parameters R,µ,A of an SRBM, we have: either p(x,R, µ,A) = 0 for all
x ∈ S, or p(x,R, µ,A) > 0 for all x ∈ S. In other words, either an SRBMd(R,µ,A) hits the edge
SI , or it avoids the edge SI .

Proof. Since the family of the processes Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A), starting from
different points x ∈ S, is Feller continuous, the function

f(z) := Pz (∃t > 0 : Z(t) ∈ SI)

is continuous on S. Let P t(x,C) = Px(Z(t) ∈ C) be the transition function for the SRBMd(R,µ,A).
By the Markov property,

(15) Pz (∃t > 1 : Z(t) ∈ SI) =

∫

S
P 1(z, dy)f(y).

But

(16) Pz (∃t > 1 : Z(t) ∈ SI) ≤ Pz (∃t > 0 : Z(t) ∈ SI) = f(z).

Combining (15) and (16), we have:
∫

S
f(y)P 1(z, dy) ≤ f(z).

Suppose for some z0 ∈ S we have: f(z0) > 0. Since f is continuous, there exists an open neighbor-
hood U of z0 in S such that f(z) ≥ f(z0)/2 > 0 for z ∈ U . But U has positive Lebesgue measure,
and so P 1(z, U) > 0 for z ∈ S. Therefore, f(z) ≥ P 1(z, U)f(z0)/2 > 0 for all z ∈ S.
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We have proved that if f(z0) > 0 for at least one z0 ∈ S, then f(z) > 0 for all z ∈ S. This
completes the proof of the lemma. �

Lemma 3.7. Fix a nonempty subset I ⊆ {1, . . . , d}. Then an SRBMd(R,µ,A) avoids SI if and
only if an SRBMd(R, 0, A) avoids SI .

Proof. Using Lemma 3.6, without loss of generality, fix a starting point z ∈ S, the same for both
processes. Let Z = SRBMd(R,µ,A), starting from z, and let Z = SRBMd(R, 0, A), starting from z.
Let P,P be the distributions of the processes Z,Z on the space C(R+,R

d) of continuous functions
R+ → Rd. For every T > 0, let GT be the σ-subalgebra of the Borel σ-algebra of C(R+,R

d),
generated by the values of x(s), 0 ≤ s ≤ T for all functions x ∈ C(R+,R

d). By the Girsanov
theorem, for every T > 0, the restrictions P |GT

and P
∣

∣

GT

are mutually absolutely continuous: they

have common events of probability one. Therefore, the following statements are equivalent:

• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI ;
• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI .

Suppose that with probability 1, there is no t > 0 such that Zi(t) = 0 for each i ∈ I; then for every
T > 0, with probability 1, there is no t ∈ (0, T ] such that Zi(t) = 0. Since T > 0 is arbitrary,
we have: with probability 1, there is no t > 0 such that Zi(t) = 0 for each i ∈ I. The converse
statement is proved similarly. �

3.4. Stochastic comparison for an SRBM. Let us introduce the concept of stochastic domi-
nation, or domination in law.

Definition 3.8. Fix d ≥ 1 and take two Rd-valued processes Z = (Z(t), t ≥ 0), Z = (Z(t), t ≥ 0).
We say that Z is stochastically dominated by Z if for every t ≥ 0 and y ∈ Rd we have:

P(Z(t) ≥ y) ≤ P(Z(t) ≥ y).

We say that Z is pathwise dominated by Z if a.s. for all t ≥ 0 we have: Z(t) ≤ Z(t).

If the processes Z and Z are Markov, then by changing the probability space we can move from
stochastic domination to pathwise domination, see [35, Theorem 5]. There is a well-developed
theory of stochastic domination and pathwise domination for processes with oblique reflection in
the orthant. The most general result in this area is [49, Theorem 4.1], see also [41, Theorem 1.1(i)],
[23, Theorem 3.1], [43, Theorem 6(i)]. The following proposition is an immediate corollaries of [49,
Theorem 4.1].

Proposition 3.9. Take two d × d reflection nonsingular M-matrices R,R such that R ≤ R. Fix
a vector µ ∈ Rd and a positive definite symmetric d× d-matrix A. Let

Z = SRBMd(R,µ,A), Z = SRBMd(R,µ,A), such that Z(0) � Z(0).

Then Z � Z.

Here is another useful statement, proved in [53, Corollary 3.6], which is applied later in this
article.

Corollary 3.10. Let d ≥ 1 and take a d × d reflection nonsingular M-matrix. Take a vector
µ ∈ Rd and a positive definite symmetric d × d-matrix A. Fix a nonempty subset I ⊆ {1, . . . , d}
with |I| = p, 1 ≤ p < d. Let

Z = SRBMd(R,µ,A), Z = SRBMp([R]I , [µ]I , [A]I)

such that [Z(0)]I = Z(0) in law. Then [Z]I � Z.
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3.5. An SRBM in a convex polyhedron. Let us give a definition of an SRBM in convex
polyhedra from [14]. Fix the dimension d ≥ 1. First, let us define the state space, a polyhedral
domain P ⊆ Rd. Fix m ≥ 1, the number of edges. Let n1, . . . , nm ∈ Rd be unit vectors, and let
b1, . . . , bm ∈ R. The domain P is defined by

(17) P := {x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m}.
We assume that the interior of P is nonempty and for each j = 1, . . . ,m we have:

(18) {x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m, i 6= j} 6= P.

In this case, the edges of P:

Pi = {x ∈ P | ni · x = bi}, i = 1, . . . ,m,

are (d− 1)-dimensional. Note that the vectors ni, i = 1, . . . ,m, are inward unit normal vectors to
each of the faces P1, . . . ,Pm. Now, let us define an SRBM in the domain P. Fix the parameters of
this SRBM: a vector µ ∈ Rd, a d× d positive definite symmetric matrix A and a d×m-matrix R.

Definition 3.11. Fix a starting point x ∈ P. Take B = (B(t), t ≥ 0) to be a d-dimensional
Brownian motion with drift vector µ and covariance matrix A, starting from x. Take an adapted
continuous P-valued process Z = (Z(t), t ≥ 0) and an adapted continuous Rm-valued process

L = (L(t), t ≥ 0), L(t) = (L1(t), . . . , Lm(t))′,

such that:
(i) Z(t) = B(t) +RL(t), t ≥ 0;
(ii) for every i = 1, . . . ,m, Li(0) = 0, Li is nondecreasing and can increase only when Z(t) ∈ Pi.
The process Z is called a semimartingale reflected Brownian motion (SRBM) in the domain

P with reflection matrix R, drift vector µ and covariance matrix A. This process is denoted by
SRBMd(P, R, µ,A).

Remark 3.12. A particular case is an SRBM in the orthant S, which was introduced in Section 2:
SRBMd(R,µ,A) is the same as SRBMd(S,R, µ,A).

Let vi be the ith column of R. An SRBMd(P, R, µ,A) behaves as a d-dimensional Brownian
motion with drift vector µ and covariance matrix A inside P. On each face Pi, it is reflected in the
direction of the vector vi.

The paper [14] contains an existence and uniqueness result for an SRBM in P. We present this
result in a slightly weaker version, which is still sufficient for this article. For any nonempty subset
I ⊆ {1, . . . ,m}, let PI := ∩i∈IPi. A positive linear combination of vectors u1, . . . , uq is any vector
α1u1 + . . .+ αquq with α1, . . . , αq > 0.

Assumption 3.13. For every nonempty subset I ⊆ {1, . . . ,m}, we have:
(i) PI 6= ∅ and PJ ( PI for I ( J ⊆ {1, . . . ,m};
(ii) there is a positive linear combination v of vectors vi, i ∈ I, such that v · ni > 0, i ∈ I;
(iii) there is a positve linear combination n of vectors ni, i ∈ I, such that n · vi > 0, i ∈ I.

The following result in an immediate corollary of [14, Theorem 1.3].

Proposition 3.14. Under Assumption 3.13, for every x ∈ P there exists in the weak sense the
process

Z(x) = (Z(x)(t), t ≥ 0) = SRBMd(P, R, µ,A),

starting from Z(x)(0) = x, and it is unique in law. This family of processes (Z(x), x ∈ P) is Feller
continuous strong Markov.
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Remark 3.15. By Assumption 3.13(ii) applied to a subset I = {i}, we have: vi · ni > 0. So we
can normalize vi to make vi · ni = 1. This is done by replacing vi by kivi for ki := (vi · ni)

−1 and
replacing Li by k−1

i Li. Doing this for each i = 1, . . . ,m is called standard normalization. The new

reflection matrix is R = RD, where D = diag((v1 · n1)
−1, . . . , (vm · nm)−1). If vi = kivi is the ith

column of R, we can decompose it into the sum

(19) vi = ni + qi,

where

qi · ni = (vi − ni) · ni = vi · ni − ni · ni = 1− 1 = 0, i = 1, . . . ,m.

These vectors ni and qi are called the normal and tangential components of the reflection vector vi,
respectively. Similar normalization was done for an SRBM in the orthant in [6, Appendix B].

As mentioned above, in the papers [57], [58], [59], [61], [60], reflected Brownian motion was defined
as a solution to a certain submartingale problem. We are going to show that if an SRBM is defined
in a semimartingale form, as in Definition 3.11, then it is also a solution to this submartingale
problem, so we can use the results of the papers mentioned above.

Definition 3.16. Take a convex polyhedron P from (17) and the parameters R,µ,A from Defini-
tion 3.11. The symbol C2

c (P) stands for the family of twice continuously differentiable functions
f : P → R with compact support. Define the following operator for functions f ∈ C2

c (P):

Lf :=
1

2

d
∑

i=1

d
∑

j=1

aij
∂2f

∂xi∂xj
+

d
∑

i=1

µi
∂f

∂xi
.

A P-valued continuous adapted process Z = (Z(t), t ≥ 0) is called a solution to the submartingale
problem associated with (P, R, µ,A), starting from x ∈ P, if:

(i) Z(0) = x a.s.;
(ii) for every function f ∈ C2

c (P) which satisfies

vi · ∇f(x) ≥ 0 for x ∈ Pi, for each i = 1, . . . ,m,

the following process is an (Ft)t≥0-submartingale:

Mf = (Mf (t), t ≥ 0), Mf (t) = f(Z(t))−
∫ t

0
Lf(Z(s))ds.

Lemma 3.17. The process SRBMd(P, R, µ,A), starting from x ∈ P, is a solution to the sub-
martingale problem associated with (P, R, µ,A), starting from x.

The proof is postponed until the Appendix.

3.6. Connection between an SRBM in the orthant and an SRBM in a polyhedron.

Using the linear transformation (20), we can switch from an SRBMd(R,µ,A) in the orthant with
covariance matrix A to an SRBMd in a convex polyhedron with identity covariance matrix.

Lemma 3.18. Consider the process Z = (Z(t), t ≥ 0), which is an SRBMd(R,µ,A). Define a new
process Z = (Z(t), t ≥ 0) as follows:

(20) Z(t) = A−1/2Z(t).

(i) The process Z is an SRBMd(P, R, µ, Id) in the convex polyhedron

(21) P := {A−1/2z | z ∈ S} = {z ∈ Rd | A1/2z ≥ 0},



16 ANDREY SARANTSEV

with reflection matrix R := A−1/2R, drift vector µ := A−1/2µ and covariance matrix A = Id. The
domain P is a convex polyhedron as in (17) with m = d edges: Pi := {A−1/2x | x ∈ Si}, i = 1, . . . , d.
This domain satisfies the condition (18) and the Assumption 3.13 (i).

(ii) The standard normalization from Remark 3.15 gives us a new reflection matrix: R̃ :=

RD1/2 = A−1/2RD1/2. The ith column of R̃ is equal to

(22) vi := a
1/2
ii A−1/2Rei, i = 1, . . . , d.

The inward unit normal vector to the face Pi is given by

(23) ni = a
−1/2
ii A1/2ei, i = 1, . . . , d.

Furthermore, Assumption 3.13(ii) and (iii) is satisfied.

Proof. (i) We have: Z(t) = B(t)+RL(t), whereB = (B(t), t ≥ 0) is the driving Brownian motion for
the process Z, and L = (L(t), t ≥ 0) is the vector of regulating processes. Here, B is a d-dimensional
Brownian motion with drift vector µ and covariance matrix A. Define W = (W (t), t ≥ 0) as

W (t) = A−1/2B(t): this is a d-dimensional Brownian motion with drift vector µ = A−1/2µ and

identity covariance matrix. Then Z(t) := A−1/2Z(t) = W (t) + A−1/2RL(t). The state space of
Z is the domain P, given in (21). This is a convex polyhedron of the type (17). Let us show
it satisfies the condition (18) and the Assumption 3.13 (i). The linear transformation (20) is a
bijection Rd → Rd, hence it suffices to show that the orthant S satisfies the condition (18) and the
Assumption 3.13 (i), which is straightforward.

(ii) The face Pi is spanned by vectors A−1/2ej , j ∈ {1, . . . , d} \ {i}. The vector ni is normal to

Pi, so we must have: ni · A−1/2ej = 0. Since the matrix A−1/2 is symmetric, A−1/2ni · ej = 0 for

j ∈ {1, . . . , d} \ {i}. Therefore, A−1/2ni = kiei for some ki ∈ R; so ni = kiA
1/2ei. Let us find ki

such that ni is inward oriented and has unit length.
The inward orientation means that for any point w in the relative interior of the face Pi, that

is, in Pi \ (∪j 6=iPj), there exists ε > 0 such that w + εni ∈ P. But the domain P is obtained from

the orthant S = Rd
+ by the linear transformation (20). So we have: w = A−1/2z for some z in the

relative interior Si \ (∪j 6=iSj) of the face Si of ∂S. We must have w + εni ∈ P. But

w + εni = A−1/2 (z + εkiAei) , and P = {A−1/2x | x ∈ S}.
Therefore, w + εni ∈ P ⇔ z + εkiAei ∈ S. Since z ∈ Si, we have: zi = 0, and (Aei)i = aii > 0.
But zi+ εki(Aei)i = (z+ εkiAei)i ≥ 0, so we must have: ki ≥ 0. Now, let us find |ki| using the fact

that ‖ni‖ = 1. Since the matrix A1/2 is symmetric, we have:

‖A1/2ei‖ =
[

A1/2ei ·A1/2ei

]1/2
=

[

A1/2(A1/2ei) · ei
]1/2

= [Aei · ei]1/2 = a
1/2
ii .

But ‖ni‖ = 1, and ni = kiA
1/2ei. So |ki|a1/2ii = 1, and |ki| = a

−1/2
ii . Earlier, we proved that ki ≥ 0.

Therefore, ki = a
−1/2
ii , which proves (23). Now, let us show (22). The ith column of A−1/2R is

equal to A−1/2Rei. Using the fact that the matrix A1/2 is symmetric, we have:

A−1/2Rei · ni = A−1/2Rei · a−1/2
ii A1/2ei = a

−1/2
ii A1/2A−1/2Rei · ei

= a
−1/2
ii Rei · ei = a

−1/2
ii rii = a

−1/2
ii .

Therefore, the standard normalization defined in Remark 3.15 leads to

vi := a
1/2
ii A−1/2Rei, i = 1, . . . , d,

which proves (22). Now, let us show that the Assumption 3.13(ii) and (iii) is satisfied. Note that

the matrix A1/2 is symmetric, so for every i, j = 1, . . . , d we have:

vi · nj =a
1/2
ii a

−1/2
jj A−1/2Rei · A1/2ej = a

1/2
ii a

−1/2
jj A1/2A−1/2Rei · ej
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= a
1/2
ii a

−1/2
jj Rei · ej = a

1/2
ii a

−1/2
jj rij .

Fix a nonempty subset I ⊆ {1, . . . , d} with |I| = p. Since the matrix R is completely-S, the
submatrix [R]I is an S-matrix. There exist positive numbers αi, i ∈ I, such that

∑

j∈I rijαj > 0

for i ∈ I. Take n =
∑

j∈I a
1/2
jj αjnj. This is a positive linear combination of nj, j ∈ I, and

vi · n =
∑

j∈I a
1/2
ii rijαj > 0 for i ∈ I. This proves Assumption 3.13(iii). Similarly, the transposed

matrix R′ is also completely-S (this follows from Lemma 2.5(ii)), so repeating this argument with
R′ in place of R, we can prove Assumption 3.13(ii). �

3.7. Skew-symmetry condition. Consider a reflected Brownian motion in a general convex poly-
hedron in general dimension d ≥ 2. Then a sufficient condition for a.s. not hitting non-smooth
parts of the boundary is given by [61, Theorem 1.1]. It is called the skew-symmetry condition. In
the subsequent exposition, we define this condition in (24), and show that it is equivalent (under
the linear transformation (20)) to the skew-symmetry condition (13). This is the reason why these
two conditions have the same name.

Definition 3.19. Consider an SRBMd(P, R, µ,A) with µ = 0 and A = Id. Suppose the matrix R
is normalized, as described in Remark 3.15. We say that the skew-symmetry condition holds if

(24) ni · qj + nj · qi = 0, 1 ≤ i, j ≤ m.

This justifies the name of this condition: the matrix (ni · qj)1≤i,j≤m must be skew-symmetric.
We say that an SRBM Z = (Z(t), t ≥ 0) hits non-smooth parts of the boundary ∂P at time

t > 0 if there exist 1 ≤ i < j ≤ m such that Z(t) ∈ Pi ∩ Pj . This is a generalization of the
concept of an SRBM in the orthant hitting non-smooth parts of the boundary. For an SRBM in a
two-dimensional wedge, this is equivalent to hitting the corner of the wedge (the origin): a process
Z = (Z(t), t ≥ 0) with values in this wedge hits the corner at time t > 0 if Z(t) = 0.

Proposition 3.20. Under Assumption 3.13 and the skew-symmetry condition (24), an SRBMd(P, R, µ,A)
starting from some point x ∈ P \ ∂P in the interior of the polyhedral domain P a.s. does not hit
non-smooth parts of the boundary at any time t > 0.

Proof. Follows from Lemma 3.17, Proposition 3.14 and [61, Theorem 1.1]. �

The following lemma shows the equivalence of the two forms (13) and (24) of the skew-symmetry
condition under the linear transformation (20).

Lemma 3.21. Consider the process Z = (Z(t), t ≥ 0) = SRBMd(R,µ,A). Let Z be the process
defined by (20). Then the skew-symmetry condition in the form (13) holds for Z if and only if the
skew-symmetry condition in the form (24) holds for Z.

Proof. Suppose (13) is true. Using (22), (23) and the fact that vi = ni + qi, i = 1, . . . ,m (in this
case m = d), we have:

ni · qj + nj · qi = ni · (vj − nj) + nj · (vi − ni) = ni · vj − nj · vi − 2ni · nj

= a
−1/2
ii A1/2ei · a1/2jj A−1/2Rej + a

−1/2
jj A1/2ej · a1/2ii A−1/2Rei − 2a

−1/2
ii a

−1/2
jj A1/2ei ·A1/2ej .

Since the matrix A1/2 is symmetric, we have:

a
−1/2
ii A1/2ei · a1/2jj A−1/2Rej = a

−1/2
ii a

1/2
jj

(

ei ·A1/2A−1/2Rej

)

= a
−1/2
ii a

1/2
jj (ei ·Rej) = a

−1/2
ii a

1/2
jj rij ,

similarly

a
−1/2
jj A1/2ej · a1/2ii A−1/2Rei = a

−1/2
jj a

1/2
ii rji,
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v2

v1
n2

n1

ξ θ2

θ1

Figure 1. A two-dimensional wedge.

Angles θ1 and θ2 are counted toward the vertex of the wedge

Here, n1 and n2 are normal vectors, v1 and v2 are reflection vectors

V2

V1

and finally

a
−1/2
ii a

−1/2
jj A1/2ei ·A1/2ej = a

−1/2
ii a

−1/2
jj

(

ei ·A1/2A1/2ej

)

= a
−1/2
ii a

−1/2
jj (ei · Aej) = a

−1/2
ii a

−1/2
jj aij .

Therefore,

ni · qj + nj · qi = a
−1/2
ii a

1/2
jj rij + a

−1/2
jj a

1/2
ii rji − 2a

−1/2
ii a

−1/2
jj aij

= a
−1/2
ii a

−1/2
jj [rijajj + rjiaii − 2aij ] = 0.

The converse statement is proved similarly. �

3.8. An SRBM in a two-dimensional wedge. A particular case of a polyhedral domain is a
two-dimensional wedge (see Fig. 1), considered in [57], [58], [59], [60]:

V := {(r cos θ, r sin θ) | 0 ≤ r < ∞, ξ2 ≤ θ ≤ ξ1}.
Here, ξ2 < ξ1 < ξ2 + π. Its angle is defined as ξ := ξ1 − ξ2. Its boundary ∂V consists of two edges

Vi := {(r cos ξi, r sin ξi) | 0 ≤ r < ∞}, i = 1, 2.

The edge V1 is called the upper edge, and the edge V2 is called the lower edge. The difference between
them is as follows: the shorter way to rotate V1 to get V2 is clockwise rather than counterclockwise.
On each edge Vi, there is a reflection vector vi, which forms the angle θi ∈ (−π/2, π/2) with the
inward unit normal vector ni.

These angles are signed: positive angles θ1, θ2 are measured toward the vertex of V (the origin).
In other words, θ1 is the angle between n1 and v1, measured clockwise in the direction from n1 to
v1. This means the following: if the shorter way to rotate the direction of n1 to get the direction of
v1 is clockwise, then θ1 > 0; and if it is counterclockwise, then θ1 < 0. If v1 and n1 have the same
direction, then θ1 = 0. Simlarly, θ2 is the angle between n2 and v2, measured counterclockwise
from n2 to v2.

We are interested in whether a reflected Brownian motion with zero drift vector and identity
covariance matrix in this wedge hits the corner. A necessary and sufficient condition is established
in [57, Theorem 2.2].
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Proposition 3.22. Consider an SRBM Z = (Z(t), t ≥ 0) in the wedge V with µ = 0 and A = I2,
starting from a point x ∈ V \ ∂V.

(i) If θ1 + θ2 > 0, then a.s. there exists t > 0 such that Z(t) = 0.
(ii) If θ1 + θ2 ≤ 0, then a.s. there does not exist t > 0 such that Z(t) = 0.

Proof. Follows from Lemma 3.17, Proposition 3.14, and Theorem 2.2 from [57]. �

In the case of two dimensions, d = 2, the linear transformation (20) leads to an SRBM in a two-
dimensional wedge with identity covariance matrix. In the following lemma, we explicitly calculate
the parameters of this SRBM: the angle ξ of this wedge and the two angles θ1, θ2 of reflection.

Lemma 3.23. Suppose Z = SRBM2(R, 0, A) and Z is the process defined by (20). Then the
polyhedral domain P is in fact a wedge V with the angle

(25) ξ = arccos

[

− a12√
a11a22

]

.

The process Z is an SRBM in V with zero drift vector, identity covariance matrix and the angles
of reflection

(26) θ1 = arcsin
a12 − a11r21

√

a11
(

a11r221 − 2a12r21 + a22
)

,

(27) θ2 = arcsin
a12 − a22r12

√

a22
(

a22r212 − 2a12r12 + a11
)

.

Proof. First, note that A−1/2 is a positive definite matrix, so it has a positive determinant. There-
fore, the linear transformation (20) preserves the orientation of the plane R2

+. The edges of this
wedge are

Vi := A−1/2Si ≡ {A−1/2z | z ∈ Si}, i = 1, 2.

In fact, V1 is the upper edge, and V2 is the lower edge. Indeed, for the original quadrant S = R2
+,

the edge S1 = {x ∈ S | x1 = 0} is the upper edge, and the edge S2 = {x ∈ S | x2 = 0} is
the lower edge: in other words, the shorter way to rotate S1 to get S2 is clockwise rather than
counterclockwise. But under the transformation 14, S1 is mapped to V1, and S2 is mapped to
V2. This linear transformation preserves the orientation. Therefore, the shorter way to rotate V1

to get V2 is also clockwise rather than counterclockwise. The edge V1 has a directional vector
c2 = A−1/2e2, while the edge V2 has a directional vector c1 = A−1/2e1. An important remark:
consider the notation Pi, i = 1, . . . , d, for edges of the polyhedron from Lemma 3.18. Then our
current notation V1 and V2 is consistent with this notation in the sense that

(28) V1 = P1 and V2 = P2.

The angle ξ of the wedge is the angle between the edges V1 and V2. So ξ is the angle between two
vectors c1 = A−1/2e1 and c2 = A−1/2e2. Since the matrix A−1/2 is symmetric, we have:

cos ξ =
A−1/2e1 · A−1/2e2

‖A−1/2e1‖‖A−1/2e2‖
=

(A−1/2)2e1 · e2
[

(A−1/2)2e1 · e1
]1/2 [

(A−1/2)2e2 · e2
]1/2

=
A−1e1 · e2

[A−1e1 · e1]1/2 [A−1e2 · e2]1/2
=

(A−1)12

(A−1)
1/2
11 (A−1)

1/2
22

.

But

(29) A−1 =
1

a11a22 − a212

[

a22 −a12
−a12 a11

]
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Therefore,

cos ξ = − a12√
a11a22

,

and we get (25). Let us find the reflection angles θ1 and θ2. For the quadrant S = R2
+, if we rotate

the directional vector e2 of the upper face S1 clockwise by π/2, we get an inward normal vector
to this face. But the linear transformation (20) preserves the orientation, so a similar statement is

true for the wedge V: if we rotate the directional vector c2 = A−1/2e2 of the upper face V1 of the
wedge clockwise by π/2, then we get an inward normal vector

n1 ≡
[

(n1)1
(n1)2

]

:=

[

(c2)2
−(c2)1

]

Similarly, if we rotate the vector c1 = A−1/2e1 by π/2 counterclockwise, we get an inward normal
vector

n2 ≡
[

(n2)1
(n2)2

]

:=

[

−(c1)2
(c1)1

]

to V1. These are not unit vectors: ni 6= ni. In fact, ‖n1‖ = ‖c2‖ and ‖n2‖ = ‖c1‖. But n1 has
the same direction as n1, and n2 has the same direction as n2. In other words, n1 = ‖n1‖n1 and
n2 = ‖n2‖n2.

From Lemma 3.18 and (28), it follows that v1 = A−1/2r1 and v2 = A−1/2r2. These vectors are
not normalized in the sense of Remark 3.15. The angle θ1 between n1 and v1 has a sign: it is
calculated toward the origin, or, in other words, counterclockwise from n1 to v1. But n1 and n1

have the same direction. Therefore, θ1 can be calculated as the signed angle from n1 to v1 in the
counterclockwise direction:

sin θ1 =
(n1)1(v1)2 − (n1)2(v1)1

‖n1‖‖v1‖
=

−(c2)2(v1)2 − (c2)1(v1)1
‖c2‖‖v1‖

= − c2 · v1
‖c2‖‖v1‖

= − A−1/2e2 · A−1/2r1

‖A−1/2e2‖‖A−1/2r1‖
= − A−1/2e2 · A−1/2r1

[

A−1/2e2 ·A−1/2r1
]1/2 [

A−1/2e2 ·A−1/2r1
]1/2

Since the matrix A−1/2 is symmetric, the last expression is equal to

− A−1e2 · r1
[A−1e2 · e2]1/2 [A−1r1 · r1]1/2

.

Using the formula (29) for A−1 and the fact that r1 = (1, r21)
′, we have:

sin θ1 =
a12 − a11r21

√

a11
(

a11r
2
21 − 2a12r21 + a22

)

.

Similarly, we can calculate the angle θ2:

sin θ2 =
a12 − a22r12

√

a22
(

a22r212 − 2a12r12 + a11
)

.

Since θ1, θ2 ∈ (−π/2, π/2), we get (26) and (27). �

3.9. Completion of the proof of Theorem 2.12. By Lemma 3.6, without loss of generality we
can assume an SRBM starts from some point x ∈ S \ ∂S, and µ = 0. First, we prove (i) in the
case of the skew-symmetry condition (13), then move to the general case (12). Then we prove (ii)
in the case d = 2, and proceed to the case of the general dimension.

Lemma 3.24. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it satisfies the
skew-symmetry condition (13). Then the statement of Theorem 2.12(i) is true.
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Proof. Apply the linear transformation (20) to Z = (Z(t), t ≥ 0) = SRBMd(R, 0, A). By Lemma 3.18,

we get an SRBM Z = (Z(t), t ≥ 0) in the polyhedron S = A−1/2S, given by (21) with zero drift and
identity covariance matrix. It was shown in Lemma 3.21 that the skew-symmetry condition (24)
is true. Therefore, by Proposition 3.20 the process Z a.s. does not hit non-smooth parts of the
boundary ∂S at any moment t > 0. Thus, the process Z a.s. does not hit non-smooth parts of the
boundary ∂S at any moment t > 0. �

Lemma 3.25. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it satisfies the
condition (12). Then the statement of Theorem 2.12(i) is true.

Proof. Let us find another reflection nonsingular M-matrix R̃ = (r̃ij)1≤i,j≤d such that R ≥ R̃, and

the skew-symmetry condition (13) is true for an SRBMd(R̃, 0, A). We need:

(30) r̃ijajj + r̃jiaii = 2aij , i, j = 1, . . . , d.

Let r̃ij = 1 for i = j. Then (30) is true for i = j. Let

r̃ij =
1

ajj
[2aij − rjiaii] , r̃ji = rji, 1 ≤ i < j ≤ d.

This is well defined, since ajj > 0 (because the matrix A is positive definite). Also, r̃ij ≤ rij ,

because rijajj + rjiaii ≥ 2aij . Since r̃ij ≤ rij ≤ 0 for i 6= j, R̃ is a Z-matrix, so condition (30)

holds. Therefore, by [30, Theorem 2.5] (compare conditions 12 and 16), R̃ is a nonsingular M-

matrix. Consider two processes Z = SRBMd(R,µ,A), Z̃ = SRBMd(R̃, µ,A), starting from the

same initial condition x ∈ S \ ∂S. Then we have: R and R̃ are d × d reflection nonsingular M-

matrices, and R ≥ R̃. By Proposition 3.9, we have: Z̃ is stochastically smaller than Z. By [35,

Theorem 5], we can claim that a.s. for all t > 0 we have: Z̃(t) ≤ Z(t) (possibly after changing

the probability space). By Lemma 3.24, the process Z̃ a.s. does not hit non-smooth parts of the

boundary at any time t > 0. In other words, for every 1 ≤ i < j ≤ d, we have: a.s. Z̃i(t)+ Z̃j(t) > 0
for all t > 0. Therefore, a.s. Zi(t) +Zj(t) > 0 for all t > 0. Thus, with probability one the process
Z does not hit non-smooth parts of the boundary at any time t > 0. �

Now, let us prove part (ii) of Theorem 2.12. We start with the case d = 2, then move to the
general case.

Lemma 3.26. Suppose we start an SRBM in two dimensions from a point x ∈ S \ ∂S in the
interior of S. Then the statement of Theorem 2.12 (ii) is valid.

Proof. Let Z = (Z(t), t ≥ 0) = SRBM2(R, 0, A). After the linear transformation (20), we get the
process Z = (Z(t), t ≥ 0) from (20), which is an SRBM in a wedge. If we show that θ1 + θ2 > 0,

then by Lemma 3.22 we have: a.s. there exists t > 0 such that Z(t) ≡ A−1/2Z(t) = 0; therefore,
a.s. there exists t > 0 such that Z(t) = 0. But the angles θ1, θ2 are given in the equations (26)
and (27). Since θ1, θ2 ∈ (−π/2, π/2), we have:

θ1 + θ2 > 0 ⇔ sin θ1 + sin θ2 > 0,

which can be written as

(31)
a11r21 − a12

√

a11
(

a11r
2
21 − 2a12r21 + a22

)

+
a22r12 − a12

√

a22
(

a22r
2
12 − 2a12r12 + a11

)

< 0.

Then we have:

r′12 := a
−1/2
11 a

1/2
22 r12, r′21 = a

1/2
11 a

−1/2
22 r21, ρ := a

−1/2
11 a

−1/2
22 a12.
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We can rewrite the condition (31) as

r′12 − ρ
√

(r′12)
2 − 2ρr′12 + 1

+
r′21 − ρ

√

(r′21)
2 − 2ρr′21 + 1

< 0.

Or, equivalently, f(r′12 − ρ) + f(r′21 − ρ) < 0, where

f(x) :=
x

√

x2 + 1− ρ2
.

Note that the matrix A is positive definite, so detA = a11a22 − a212 > 0. Therefore, ρ2 < 1. It
is easy to show that the function f is strictly increasing on R. In addition, this function is odd:
f(x) + f(−x) ≡ 0. Therefore, f(r′12 − ρ) + f(r′21 − ρ) < 0 is equivalent to

(r′12 − ρ) + (r′21 − ρ) < 0 ⇔ r12a22 + r21a11 < 2a12.

�

Lemma 3.27. The statement (ii) of Theorem 2.12 is valid in the case of general dimension, if we
start an SRBM from a point x ∈ S \ ∂S in the interior of S.

Proof. Let Z = SRBMd(R, 0, A). Assume now that the condition (12) is not true, and for some
1 ≤ i < j ≤ d we have:

(32) rijajj + rjiaii < 2aij .

Consider the following two-dimensional SRBM: Z̃ = SRBM2([R]I , 0, [A]I ), where I = {i, j}. Ap-

plying Corollary 3.10 to I := {i, j}, we get: [Z]I � Z̃. By [35, Theorem 5], we can switch from
stochastic comparison to pathwise comparison: after changing the probability space, we can claim
that a.s. for all t > 0 we have: [Z(t)]I ≤ Z̃(t). By Lemma 3.26, with positive probability, there

exists t > 0 such that Z̃i(t) = Z̃j(t) = 0. Therefore, with positive probability there exists t > 0
such that Zi(t) = Zj(t) = 0. �

4. Proof of Theorems 1.4 and 1.9

Theorem 1.9 can be easily deduced from Theorem 2.12. First, let us prove part (i) of Theorem 1.9.
We need to rewrite the condition (12) for concrete matrices R and A arising from competing
Brownian particles, given by (8) and (9). Take i, j = 1, . . . , N − 1 and consider the condition

(33) rijajj + rjiaii ≥ 2aij .

If i = j, then (33) is always true, because for such i, j we have: rij = rji = 1, and aii = aij = ajj =
σ2
i + σ2

i+1. If |i− j| ≥ 2, then (33) is also always true, since rij = rji = aij = 0. Since the left-hand
side and the right-hand side of (33) remain the same if we swap i and j, we need only to check this
condition for j = k, i = k − 1, where k = 2, . . . , N − 1. We get:

rij = −q−k , rji = −q+k , ajj = σ2
k + σ2

k+1, aii = σ2
k−1 + σ2

k, aij = −σ2
k.

Therefore, the condition (33) takes the form

−q−k
(

σ2
k + σ2

k+1

)

− q+k
(

σ2
k−1 + σ2

k

)

≥ −2σ2
k.

This is equivalent to

(34)
(

2− q−k − q+k
)

σ2
k ≥ q−k σ

2
k+1 + q+k σ

2
k−1.

Note that q−k + q+k+1 = 1 and q+k + q−k−1 = 1. Therefore, we can rewrite (34) as in (7). This proves
part (i) of Theorem 1.9. Now, let us prove part (ii) of this theorem. Since the condition (12) is
automatically valid for i = j and for |i − j| ≥ 2, it can be violated only for i = j − 1. Suppose it
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does not hold for j = k and i = k − 1, where k = 2, . . . , N − 1 is some index. Then with positive
probability, there exists t > 0 such that

Zk−1(t) = Zk(t) = 0,

which can be written as

Yk−1(t) = Yk(t) = Yk+1(t).

This means that with positive probability, there is a triple collision between particles with ranks
k − 1, k and k + 1. This completes the proof of Theorem 1.9.

Theorem 1.4 is simply a corollary of Theorem 1.9: just plug parameters of collision q±k = 1/2,
k = 1, . . . , N into the inequality (7).

Remark 4.1. Let us explain the meaning of Corollary 1.5 informally. Consider the gap process of
a system of competing Brownian particles from Definition 1.6. This is an SRBM Z = (Z(t), t ≥ 0)
in the orthant with reflection matrix R and covariance matrix A, given by (8) and (9). In this
case, the condition (12) can be violated only for i = j − 1, because for i = j and |i − j| ≥ 2 it is
automatically true.

When Zi(t) = Zj(t) = 0 for 1 ≤ i < j ≤ d, this corresponds to a simultaneous collision at
time t in this system of competing Brownian particles: Yi(t) = Yi+1(t) and Yj(t) = Yj+1(t). But
if, in addition, we know that i = j − 1, then this is a particular case of a simultaneous collision:
namely, a triple collision between particles with ranks j − 1, j and j + 1. This implies that if the
condition (12) does not hold, then with positive probability there occurs a simultaneous collision
of a special kind: a triple collision. This is the reason why Corollary 1.5 is true.

5. Appendix

5.1. Proof of Lemma 2.5. (i) ⇒ (iii). Use [30, Theorem 2.5.3]. Since R is completely-S, it
satisfies condition 12 from this theorem. Therefore, it satisfies condition 2 from this theorem. We
get the following representation: R = γId −Q, where γ := max1≤i≤d rii = 1, and a d× d-matrix Q
is nonnegative with spectral radius less than one. (See the beginning of [30, Section 2.5.4].)

(iii) ⇒ (ii). By [44, Section 7.10], we can represent R−1 as Neumann series:

R−1 = Id +Q+Q2 + . . .

Since Q is nonnegative, R−1 is also nonnegative, and the diagonal elements of R−1 are strictly
positive (and even greater than or equal to 1).

(ii) ⇒ (i). Apply [30, Theorem 2.5.3] again: condition 17 implies condition 12. Therefore, there

exists x ∈ Rd, x > 0 such that Rx > 0, so R is an S-matrix. Take a principal submatrix R̃ of R
and show that it is also an S-matrix. Let R̃ := [R]I , where I ( {1, . . . , d} is a nonempty set. Let
x̃ := [x]I . Then rij ≤ 0 for i ∈ I and j ∈ Ic := {1, . . . , d} \ I, and

(

R̃x̃
)

i
=

∑

j∈I

rijxj ≥
d

∑

i=1

rijxj = (Rx)i > 0, i ∈ I.

Therefore, x̃ > 0 and R̃x̃ > 0. So every principal submatrix of R is an S-matrix, which proves that
the matrix R is completely-S.

5.2. Proof of Lemma 3.17. Recall that the process Z = (Z(t), t ≥ 0) which is an SRBMd(P, R, µ,A)
can be represented as Z(s) = B(t) + RL(t). Here, B = (B(t), t ≥ 0) is a d-dimensional Brown-
ian motion with drift vector µ and covariance matrix A = (aij)1≤i,j≤d; R = (rij) is an m × d-
matrix, and L = (L1, . . . , Lm)′, where each Li is nondecreasing. Therefore, the mutual variation
of the components of Z is calculated as follows: 〈Zi, Zj〉t = aijt, for i, j = 1, . . . , d. The process
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(Bi(s)−µis, s ≥ 0) is a one-dimensional driftless Brownian motion. Since f ∈ C2
c (P), the following

process is a martingale:

M(t) =
d

∑

i=1

∫ t

0

∂f

∂xi
(Z(s))d(Bi(s)− µis).

Apply the Itô-Tanaka formula to f(Z(t)):

f(Z(t))− f(Z(0)) =

d
∑

i=1

∫ t

0

∂f

∂xi
(Z(s))dZ(s) +

1

2

d
∑

i=1

d
∑

j=1

∫ t

0

∂2f

∂xi∂xj
(Z(s))d〈Zi, Zj〉s

=
d

∑

i=1

∫ t

0

∂f

∂xi
(Z(s))d (Bi(s)− µis) +

d
∑

i=1

∫ t

0

∂f

∂xi
(Z(s))µids

+
1

2

d
∑

i=1

d
∑

j=1

aij

∫ t

0

∂2f

∂xi∂xj
(Z(s))ds+

d
∑

i=1

∫ t

0

∂f

∂xi
(Z(s))d





m
∑

j=1

rijLj(s)





= M(t) +

∫ t

0
Lf(Z(s))ds+

d
∑

i=1

m
∑

j=1

∫ t

0
rij

∂f

∂xi
(Z(s))dLj(s)

= M(t) +

∫ t

0
Lf(Z(s))ds+

m
∑

j=1

∫ t

0
vj · ∇f(Z(s))dLj(s).

The third term in the last sum is nondecreasing. Indeed, for each j = 1, . . . ,m, the process Lj is
nondecreasing, and it can increase only when Z(s) ∈ Pj . But in this case, vj · ∇f(Z(s)) ≥ 0. The
rest is trivial.

Acknoweldgements

I would like to thank Ioannis Karatzas, Soumik Pal and Ruth Williams, as well as an
anonymous referee, for help and useful discussion. This research was partially supported by NSF
grants DMS 1007563, DMS 1308340, and DMS 1405210.

References

[1] Adrian D. Banner, Robert Fernholz, Tomoyuki Ichiba, Ioannis Karatzas, and Vassilios Papathanakos. Hybrid atlas models.
Ann. Appl. Probab., 21(2):609–644, 2011.

[2] Adrian D. Banner, Robert Fernholz, and Ioannis Karatzas. Atlas models of equity markets. Ann. Appl. Probab., 15(4):2296–
2330, 2005.

[3] Adrian D. Banner and Raouf Ghomrasni. Local times of ranked continuous semimartingales. Stochastic Process. Appl.,
118(7):1244–1253, 2008.
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