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ON THE FINITE TIME BLOW-UP OF BIHARMONIC MAP

FLOW IN DIMENSION FOUR

LEI LIU AND HAO YIN

Abstract. In this paper, we show that for certain initial values, the (extrinsic)
biharmonic map flow in dimension four must blow up in finite time.

1. Introduction

Let (M, g) be a closed Riemannian manifold of dimension four and (N, h) be
another closed Riemannian manifold, which is isometrically embedded in R

N . The
critical points of the following functional

E(u) =

∫

M

|△u|2 dv

are called (extrinsic) biharmonic maps. We also define

E(u) =
∫

M

∣∣∇2u
∣∣2 + |∇u|4 dv

and notice that since the target manifold is compact, we can bound E(u) by E(u).
The associated heat flow of E(u) was first studied by Lamm [7]. In [7], the

author proved that in dimension four, the following evolution equation

(1.1) ∂tu = −△2u+△(B(u)(∇u,∇u)) + 2∇〈△u∇P (u)〉 − 〈△P (u),△u〉
has a local solution for all smooth initial value. Here B is the second fundamental
form of N ⊂ R

N and P (u) is the projection to the tangent space TuN . Moreover,
the solution is global if the W 2,2 norm of the initial value is small. Following the
famous work of Struwe on harmonic map flow [11], Gastel [6] and Wang [15] showed
the existence of a global weak solution with at most finitely many singular times.

It is a natural question whether the flow develops finite singularity. The problem
is particularly interesting given that all weak biharmonic maps with bounded W 2,2

norm in dimension four are known to be smooth (see [13]). The corresponding
problem for harmonic map flow was answered by Chang, Ding and Ye [3]. After
that, more finite-time singularity examples were found by Topping [12], Li and
Wang [8] and very recently by Chen and Li [4]. The last construction shows that
the blow-up could be forced by topological reason and its proof relies on the no
neck theorem for approximate harmonic maps of Qing and Tian [10]. In fact, it
was pointed out by Qing and Tian that the no neck theorem could be used in
showing finite time blow-up.

Recently, the authors proved the no neck theorem for the blow-up of a sequence
of (extrinsic) biharmonic maps with bounded energy. In light of [4], it is very
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natural to move the argument to the case of biharmonic map flow and this is the
purpose of this paper. Precisely, we show

Theorem 1.1. Suppose that M ′ is any closed manifold of dimension m > 4 with
nontrivial π4(M

′) and let M = M ′#Tm be the connected sum of M ′ with the torus
of the same dimension. For any Riemannian metric g on M , we can find (infinitely
many) initial map u0 : S4 → M such that the biharmonic map flow (1.1) starting
from u0 develops finite time singularity.

As remarked earlier, the proof relies on the idea of [4]. However, we give a
slightly different presentation. Since we are less ambitious in proving the most
general theorems, our assumption on the topology of M enables us to be more
specific in the construction. Moreover, we define and use the concept of the width
of a biharmonic map u from S4 to M . Very roughly, the idea of the proof is the
following. By a compactness argument, we show that the width of biharmonic
maps from S4 to M is bounded by a constant depending on the energy of the map
(and the geometry of M of course). However, we can construct initial map u0 with
bounded energy but in a homotopy class in which every smooth representation
must have very large width. If no finite-time singularity occurs, we may choose a
sequence ti → ∞ such that the bi-tension field of u(ti) goes to zero in L2 norm.
Hence, u(ti) is a sequence of approximate biharmonic maps. u(ti) either converges
to a smooth biharmonic map in the same homotopy class, which is not possible
because the energy of the limit is smaller than that of u0, or blows up. In the
latter case, the total number and energy of each bubble, as well as the weak limit
is bounded and the no neck theorem (Theorem 2.1) implies a contradiction as well.

The rest of the paper is organized as follows. In Section 2, we generalize the no
neck result in [9] to the case of approximate biharmonic maps. The generalization
is in two directions. The first is to involve a non-zero bi-tension field and the second
is to show the neck analysis works on round sphere instead of flat domains in R

4.

Remark 1.2. For many PDE theorems, especially about regularity of geometric
PDE, the curvature of the domain is not essential. Hence, it suffices to prove the
theorem in the case of domains of Euclidean space. In this paper, we think it may
not be very obvious that the neck analysis of biharmonic maps works on curved
space. Hence, we present a detailed proof in the case of round metric on S4, which
is needed by the proof of Theorem 1.1.

In spite of the complexity caused by the round metric, we still believe that the
neck analysis works in general. However, that would require greater efforts. We
also note that this is not an issue for the neck analysis of harmonic maps, because
of the conformal invariance.

In Section 3, the width of a map from S4 to M is defined and the width of
biharmonic maps from both S4 and R

4 are bounded by the energy. Finally, Theorem
1.1 is proved in Section 4.

Remark 1.3. Recently, we notice that Breiner and Lamm [2] proved a no neck
theorem for a sequence of biharmonic maps with bi-tension fields in L logL when
the target manifold is a sphere. In this paper, by approximate biharmonic maps, we
mean bi-tension field is bounded in L2.
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2. No neck for approximate biharmonic maps

In this section, we show that the main result of [9] can be generalized to a
sequence of approximate biharmonic maps ui defined on S4.

We use a subscript g to denote operators defined on S4 with round metric, such
as △g and ∇g. △ and ∇ are reserved for the Laplace and gradient with respect to
the flat metric given by normal coordinates around some point in S4. We always
take the normal coordinates x so that the scaling u(λx) is well defined for small λ.
Moreover, due to the Gauss Lemma, the geodesic ball Br is the same as the ball of
radius r with respect to the flat metric given by the normal coordinates. Finally,
there is no need to distinguish the Lp norm for our purpose.

We will prove

Theorem 2.1. Let ui be a sequence of approximate biharmonic maps from B4 to
N satisfying
(2.1)
△2

gu = △g(B(u)(∇gu,∇gu)) + 2∇g · 〈△gu,∇(P (u))〉 − 〈△g(P (u)),△gu〉+ τ(u).

with

(2.2)

∫

B̃1

∣∣∇2
gui

∣∣2 + |∇gui|4 dvg < Λ and ‖τ(ui)‖Lp(B1) < Λ

for some Λ > 0 and p ≥ 4
3 . Assume that there is a positive sequence λi → 0 such

that

ui(λix) → ω

on any compact set K ⊂ R
4, that ui converges weakly in W 2,2 to u∞ and that ω is

the only bubble. Then,

(2.3) lim
δ→0

lim
R→∞

lim
i→∞

oscBδ(0)\BλiR
(0)ui = 0.

Remark 2.2. In Theorem 2.1, we assume that there is only one bubble. The same
result holds in the case of multiple bubbles. The proof is routine argument by now
and hence is omitted.

The proof is similar to the proof of Theorem 1.1 in [9], which we outline below.
We first recall some definitions and results, which are modified only slightly.

2.1. minor modifications. The following is a modified version of ε−regularity,
proved in the Appendix of [9].

Theorem 2.3 (ε0-regularity). Let u ∈ W 4,p(B1)(p > 1) be an approximate bihar-
monic map. There exists ε0 > 0 such that if

∫
B1

|∇2u|2 + |∇u|4dx ≤ ǫ0 then

‖u− u‖W 4,p(B1/2) ≤ C(‖∇2u‖L2(B1) + ‖∇u‖L4(B1) + ‖τ(u)‖Lp(B1)),

where u is the mean value of u over B1.

Remark 2.4. We may very well use ∇g in the above lemma. It is the type of result
that Riemannian metric does not make any difference.

Next, we modify the definition of η−approximate biharmonic map as follows.
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Definition 2.5. Let u be a smooth function defined on Br2 \ Br1 , u is called an
η−approximate biharmonic function if it satisfies

△2
gu(r, θ) = a1∇g△gu+ a2∇2

gu+ a3∇gu+ a4u(2.4)

+
1

|∂Br|

∫

∂Br

b1∇g△gu+ b2∇2
gu+ b3∇gu+ b4udσ + h(x).

where ai, bi and h are smooth functions satisfying, for any ρ ∈ [r1, r2/2],
(a) ‖gij(ρx) − δij‖C4(B2\B1)

< η. Namely, the metric after scaling to B2 \B1 is

close to the flat metric in C4 norm.
(b)

(2.5) ‖|x|4(1−1/p)h‖Lp(Br2\Br1)
≤ η

and
(c)

4∑

i=1

‖ai‖L4/i(B2ρ\Bρ)
+ ‖bi‖L4/i(B2ρ\Bρ)

≤ η.

Remark 2.6. One can check that if u is an η−approximate biharmonic function
on Br2 \Br1 , then w(x) = u(xλ ) is another η−approximate biharmonic function on
Bλr2 \Bλr1 .

The following is a version of interior Lp estimate for approximate biharmonic
function. It is used in the proof of three circle lemma.

Lemma 2.7. Suppose that u : B4 \B1 → R is a η−approximate biharmonic func-
tion(for small η) with

4∑

i=1

‖ai‖L4/i(B4\B1)
+ ‖bi‖L4/i(B4\B1)

≤ η and ‖h‖Lp(B4\B1)
≤ C.

Then, for any p > 1, we have

‖u‖W 4,p(B3\B2)
≤ C(‖u‖Lp(B4\B1)

+ ‖h‖Lp(B4\B1)
).

Proof. Without loss of generality, we assume the metric g is the standard Euclidean
metric. The main idea is similar to the lemma 3.3 in [9], but the assumptions on
ai and bi are different from [9]. Next, we sketch the proof here.

For 0 < σ < 1, set Aσ = B3+σ \ B2−σ and A′
σ = B3+ 1+σ

2
\B2− 1+σ

2
. Let ϕ be a

cut-off function supported in A′
σ satisfying: (1) ϕ ≡ 1 in Aσ; (2)

∣∣∇jϕ
∣∣ ≤ c

(1−σ)j

for j = 1, 2, 3, 4 and some universal constant c; (3) ϕ is a function of |x|.
Computing directly, we have

△2(ϕu) = △(ϕ△u + 2∇ϕ∇u+ u△ϕ)

= ϕ△2u+ 4∇△u∇ϕ+ 4∇2u∇2ϕ+ 2△u△ϕ+ 4∇△ϕ∇u+△2ϕu

= ϕa1∇△u+ ϕa2∇2u+ ϕa3∇u+ ϕa4u+ ϕh

+ϕ
1

|∂Br|

∫

∂Br

b1∇△u+ b2∇2u+ b3∇u + b4udσ

+4∇△u∇ϕ+ 4∇2u∇2ϕ+ 2△u△ϕ+ 4∇△ϕ∇u+△2ϕu.
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Next, we estimate the Lp(p > 1) norm of the right hand side of the above equation.
By our choice of ϕ and the assumption of a1, we have

‖∇△u∇ϕ‖Lp(A′

σ)
≤ C

1− σ

∥∥∇3u
∥∥
Lp(A′

σ)

and

‖ϕa1∇△u‖Lp(A′

σ)

≤ ‖a1∇△(ϕu)‖Lp(A′

σ)
+
∥∥a1∇2u∇ϕ

∥∥
Lp(A′

σ)
+
∥∥a1∇u∇2ϕ

∥∥
Lp(A′

σ)
+
∥∥a1u∇3ϕ

∥∥
Lp(A′

σ)

≤ ‖a1‖L4

∥∥∇3(ϕu)
∥∥
L

4p
4−p (A′

σ)
+

C

1− σ

∥∥a1∇2u
∥∥
Lp(A′

σ)
+

C

(1− σ)2
‖a1∇u‖Lp(A′

σ)

+
C

(1− σ)3
‖a1u‖Lp(A′

σ)

≤ η ‖ϕu‖W 4,p(A′

σ)
+ C





∥∥∇2u
∥∥
L

4p
4−p (A′

σ)

1− σ
+

‖∇u‖
L

4p
4−p (A′

σ)

(1− σ)2
+

‖u‖
L

4p
4−p (A′

σ)

(1− σ)3





≤ η ‖ϕu‖W 4,p(A′

σ)
+ C

(∥∥∇3u
∥∥
Lp(A′

σ)

1− σ
+

∥∥∇2u
∥∥
Lp(A′

σ)

(1− σ)2
+

‖∇u‖Lp(A′

σ)

(1 − σ)3
+

‖u‖Lp(A′

σ)

(1− σ)4

)
,

the last interpolation is from Sobolev embedding (Theorem 5.8 in [1])
∥∥∇ku

∥∥
L

4p
4−p (A′

σ)
≤ C(

∥∥∇k+1u
∥∥
Lp(A′

σ)
+
∥∥∇ku

∥∥
Lp(A′

σ)
)

where the constant is independent of σ.
Moreover, Jensen’s inequality implies that

∫

A′

σ

ϕp

|∂Br|p
(∫

∂Br

b1∇△u

)p

dx

≤
∫

A′

σ

ϕp 1

|∂Br|

(∫

∂Br

|b1∇△u|p
)
dx

≤ C

∫

A′

σ

ϕp
∣∣b1∇3u

∣∣p dx.

Now, the same estimate used for ‖ϕa1∇△u‖Lp(A′

σ)
can be used again to get the

same upper bound.
Similar argument applies to the remaining terms and gives an estimate of Lp

norm of △2(ϕu), if we choose η sufficiently small, by which the Lp estimate of
bi-Laplace operator implies

‖ϕu‖W 4,p(A′

σ)
≤ C

(∥∥∇3u
∥∥
Lp(A′

σ)

1− σ
+

∥∥∇2u
∥∥
Lp(A′

σ)

(1− σ)2
+

‖∇u‖Lp(A′

σ)

(1− σ)3
+

‖u‖Lp(A′

σ)

(1 − σ)4
+ ‖h‖Lp

)
.

In particular, we have

(1− σ)4
∥∥∇4u

∥∥
Lp(Aσ)

≤ C
(
(1 − σ)3

∥∥∇3u
∥∥
Lp(A′

σ)
+ (1− σ)2

∥∥∇2u
∥∥
Lp(A′

σ)

+(1− σ)‖∇u‖Lp(A′

σ)
+ ‖u‖Lp(A′

σ)
+ ‖h‖Lp

)
.

By setting

Ψj = sup
0≤σ≤1

(1− σ)j
∥∥∇ju

∥∥
Lp(Aσ)
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and noting that

A′
σ = A 1+σ

2
and 1− σ = 2(1− 1 + σ

2
),

we obtain

(2.6) Ψ4 ≤ C(Ψ3 +Ψ2 +Ψ1 +Ψ0 + ‖h‖Lp).

We claim that for j = 1, 2, 3, the following interpolation inequality holds for any
ǫ > 0,

Ψj ≤ ǫ4−jΨ4 +
C

ǫj
Ψ0.

In fact, by the definition of Ψj , for any γ > 0, there is σγ ∈ [0, 1] such that

Ψj ≤ (1− σj)
j
∥∥∇ju

∥∥
Lp(Aσγ )

+ γ

≤ ǫ4−j(1 − σγ)
4
∥∥∇4u

∥∥
Lp(Aσγ )

+
C

ǫj
‖u‖Lp(Aσγ ) + γ

≤ ǫ4−jΨ4 +
C

ǫj
Ψ0 + γ.

Here we used the interpolation inequality

∥∥∇ju
∥∥
Lp(Aσγ )

≤ η4−j
∥∥∇4u

∥∥
Lp(Aσγ )

+
C3

ηj
‖u‖Lp(Aσγ )(2.7)

with η = ǫ(1 − σγ). We remark that the constant in the above interpolation
inequality are independent of σ ∈ [0, 1] (see the proof of Lemma 5.6 in [1]).

By sending γ to 0 and choosing small ǫ, we obtain from (2.6)

Ψ4 ≤ C (Ψ0 + ‖h‖Lp) ,

from which our lemma follows. �

For the universal constant L > 0 given in Section 3 of [9], set

Ai = Be−(i−1)L \Be−iL

and

Fi(u) =

∫

Ai

1

|x|4
u2dx.

Remark 2.8. Here is a technical issue. We use dx instead of dvg in the definition
of Fi(u). The advantage is that Fi(u) is invariant under the scaling x → λx. Since
g is close to Euclidean metric, this difference does not matter when we use Fi(u)
as a control of L2 norm.

Theorem 2.9. There is some constant η0 > 0 such that the following is true.
Assume that u : Ai−1∪Ai∪Ai+1 → R

N is an η0−approximate biharmonic function
in the sense of (2.4). Suppose

(2.8) max
i−1,i,i+1

‖|x|4(1−1/p)h‖2Lp(Ai)
≤ η0Fi(u)

and

(2.9)

∫

∂Br

udθ = 0

for r ∈ [e−l1L, e−(l2−1)L]. Then
(a) if Fi+1(u) ≤ e−LFi(u), then Fi(u) ≤ e−LFi−1(u);
(b) if Fi−1(u) ≤ e−LFi(u), then Fi(u) ≤ e−LFi+1(u);



finite time blow-up 7

(c) either Fi(u) ≤ e−LFi−1(u), or Fi(u) ≤ e−LFi+1(u).

Proof. (The proof is almost the same as Theorem 3.4 in [9]. For reader’s conve-
nience, we repeat it below.)

The exact value of i does not matter, because Fi is invariant under scaling.
Hence, we consider only the case of i = 2. Assume the theorem is not true. We
have a sequence of ηk → 0 and a sequence of uk defined on A1 ∪ A2 ∪ A3 (and a
sequence of gk defined on A1∪A2∪A3 as required in (a) of Definition 2.5) satisfying

△2
gk
uk(r, θ) = ak1∇gk△gkuk + ak2∇2

gk
uk + ak3∇gkuk + ak4uk(2.10)

+
1

|∂Br|

∫

∂Br

bk1∇gk△gkuk + bk2∇2
gk
uk + bk3∇gkuk + bk4uk + hk(x)

with

(2.11) max
1,2,3

‖|x|4(1−1/p)hk‖2Lp(Ai)
≤ ηkF2(uk)

and

(2.12)

4∑

i=1

‖aki‖L4/i(B2ρ\Bρ)
+ ‖bki‖L4/i(B2ρ\Bρ)

≤ ηk,

for any B2ρ \Bρ ⊂ A1 ∪ A2 ∪A3.
By taking subsequence, we assume that one of (a), (b) and (c) is not true for uk.

If (a) is not true, then we have

F2(uk) ≥ eLF3(uk) and F2(uk) > e−LF1(uk).

If (b) is not true, then

F2(uk) ≥ eLF1(uk) and F2(uk) > e−LF3(uk).

If (c) is not true, then

F2(uk) > e−Lmax{F1(uk), F3(uk)}.
In any case, we control F1(uk) and F3(uk) by F2(uk). Multiplying by a constant to
uk if necessary, we assume that F2(uk) = 1 for all k. The above discussion shows
that

‖uk‖L2(A1∪A2∪A3)
≤ C.

Lemma 2.7 shows that (by passing to a subsequence) we have

uk ⇀ u weakly in L2(A1 ∪ A2 ∪ A3),

uk → u strongly in L2(A2).

By (2.10), (2.11) and (2.12), we know that u is a nonzero biharmonic function
with respect to the flat metric defined on A1 ∪ A2 ∪ A3 satisfying (2.9), because
gk converges strongly in C3 norm to the flat metric. The three circle lemma for
biharmonic function (Theorem 3.1 in [9]) implies that

(2.13) 2F2(u) < e−L(F1(u) + F3(u)).

If (c) does not hold for uk, we have

2F2(uk) ≥ e−L(F1(uk) + F3(uk)).

By the strong convergence of uk in L2(A2) and weak convergence in L2(A1∪A2∪A3),
we have

2F2(u) ≥ e−L(F1(u) + F3(u)),
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which is a contradiction to (2.13). Similar argument works for other cases. �

2.2. estimate the tangential energy. Let ui be the sequence in Theorem 2.1.
Assume that

Σ = Bδ \BλiR =

li⋃

l=l0

Al

and for any ε > 0, by choosing δ small and R large, we may also assume (by an
inductiona argument of Ding and Tian [5])

(2.14)

∫

Al

∣∣∇2ui

∣∣2 + |∇ui|4 dx < ε4 < ε0

for l = l0, · · · , li. Set ũi(x) = ui(e
−lLx), by ε0-regularity Theorem 2.3, we have

‖ũi−ũi‖W 4,p(A0) ≤ C(‖∇2ũi‖L2(A−1∪A0∪A1)+‖∇ũi‖L4(A−1∪A0∪A1)+‖τ(ũi)‖Lp(A−1∪A0∪A1)),

where ũi is the mean value of ũi over A0.
Scaling back, if δ is sufficiently small, we will get

4∑

k=0

‖|x|k−4/p∇k(ui − ũi)‖Lp(Al)

≤ C(‖∇2ui‖L2(Al−1∪Al∪Al+1) + ‖∇ui‖L4(Al−1∪Al∪Al+1) + e−lL4(1−1/p)‖τ(ui)‖Lp(Al−1∪Al∪Al+1))

≤ Cε.

Let r = et, then as a function of (t, θ), we have

‖ui − ũi‖W 4,p(−lL,−(l−1)L)×S3 ≤ Cε,(2.15)

for any l0 ≤ l ≤ li.
The theorem is equivalent to the statement that for any ε > 0, we can find δ

small and R large such that

oscBδ\BλiR
ui < Cε

for i sufficiently large.
Set

u∗
i (r) =

1

|∂Br|

∫

∂Br

ui(r, θ)dσ.

The Poincaré inequality and (2.14) imply
∫

Al

1

|x|4
|ui − u∗

i |2 dx ≤ Cε2.

Lemma 2.10. There exists some ε1 > 0 such that if ε < ε1 in (2.14) and δ < ε1,
wi = ui − u∗

i is an η0−approximate biharmonic function defined on Bδ \ BλiR in
the sense of (2.4), where η0 is the constant in Theorem 2.9.

Remark 2.11. Although the proof is parallel to Lemma 4.1 in [9]. We reproduce it
because (1) we now uses the sphere metric instead of the flat one; (2) the definition
of η−approximate biharmonic function is different.

Proof. For simplicity, we omit the subscript i. Recall that u satisfies

△2
gu = α1(u)∇g△gu#∇gu+ α2(u)∇2

gu#∇2
gu(2.16)

+α3(u)∇2
gu#∇gu#∇gu+ α4(u)∇gu#∇gu#∇gu#∇gu+ τ(u).
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Here αi(u) is a smooth function of u and # is the contraction of tensors with respect
to g, for which we have for example,

|∇g△gu#∇gu| ≤ C |∇g△gu| |∇gu| .

Since △g = ∂2

∂r2 + 3 cos r
sin r

∂
∂r + 1

sin2 r
△S3 and

∫
S3 △S3fdθ = 0 for any f , we have

△2
gu

∗(r) =
1

|∂Br|

∫

∂Br

△2
gudσ

=
1

|∂Br|

∫

∂Br

α1(u)∇g△gu#∇gu+ α2(u)∇2
gu#∇2

gu

+α3(u)∇2
gu#∇gu#∇gu+ α4(u)∇gu#∇gu#∇gu#∇gudσ

+
1

|∂Br|

∫

∂Br

τ(u)dσ

= I + II + III + IV +
1

|∂Br|

∫

∂Br

τ(u)dσ.

Remark 2.12. Here we make essential use of the symmetry of spherical metric to
simplify the computation in the first line above. This is partially the reason that we
work on round S4.

Computing directly, we get

I =
1

|∂Br|

∫

Br

α1(u)∇g△gu#∇gu− α1(u
∗)∇g△gu#∇gu

+α1(u
∗)∇g△gu#∇gu− α1(u

∗)∇g△gu
∗#∇gu

+α1(u
∗)∇g△gu

∗#∇gu− α1(u
∗)∇g△gu

∗#∇gu
∗dσ

+α1(u
∗)∇g△gu

∗#∇gu
∗

=
1

|∂Br|

∫

∂Br

β4[u](u− u∗) + β1[u]∇g△g(u− u∗)

+β3[u]∇g(u − u∗)dσ + α1(u
∗)∇g△gu

∗#∇gu
∗.

Here βi[u] is some expression depending on u, u∗ and their derivatives. Those βi’s
may differ from line to line in the following. However, thanks to Theorem 2.3, we
have

‖βi‖L4/i(B2ρ\Bρ)
≤ η0 for ρ ∈ [λiR, δ/2],

if ε in (2.14) is smaller than some ε1. We shall require the above holds for all βi

and β′
i below by asking ε1 to be smaller and smaller.

The same computation gives

II =
1

|∂Br|

∫

Br

β4[u](u− u∗) + β2[u]∇2
g(u − u∗)dσ + α2(u

∗)∇2
gu

∗#∇2
gu

∗,

III =
1

|∂Br|

∫

∂Br

β4[u](u− u∗) + β2[u]∇2
g(u− u∗) + β3[u]∇g(u − u∗)dσ

+α3(u
∗)∇2

gu
∗#∇gu

∗#∇gu
∗

and

IV =
1

|∂Br|

∫

∂Br

β4[u](u− u∗) + β3[u]∇g(u − u∗)dσ + α4(u
∗)∇gu

∗#∇gu
∗#∇gu

∗#∇gu
∗.
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In summary, u∗ satisfies an equation similar to (2.16) except an error term of the
form

1

|∂Br|

∫

∂Br

β1[u]∇g△gw + β2[u]∇2
gw + β3[u]∇gw + β4[u]wdσ.

Subtract the equation of u∗ with (2.16) and handle the terms like α1(u)∇g△gu#∇gu−
α1(u

∗)∇g△gu
∗#∇gu

∗ as before to get

△2
gw = β′

1[u]∇g△gw + β′
2[u]∇2

gw + β′
3[u]∇gw + β′

4[u]w

+
1

|∂Br|

∫

∂Br

β1[u]∇g△gw + β2[u]∇2
gw + β3[u]∇gw + β4[u]wdσ + h,

where

h = τ(u)− 1

|∂Br|

∫

∂Br

τ(u)dσ.

To see that h satisfies (b) of Definition 2.5, we notice that 4(1− 1
p ) > 0 and

∥∥∥|x|4(1−
1
p ) h

∥∥∥
Lp(Bδ\BλiR

)
≤ δ4(1−

1
p ) ‖h‖Lp(Bδ\BλiR

) ≤ Cδ4(1−
1
p ) ‖τ(ui)‖Lp(B1)

.

Since τ(ui) is uniformly bounded in Lp, the lemma follows by choosing δ small. �

Now we apply Theorem 2.9 to the function wi.

Lemma 2.13. For any 0 < ε < ε1 and sufficiently small δ > 0, we have

(2.17) Fl(wi) ≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−min{8(1−1/p),1}(li−l)L

)
,

for l0 < l < li.

Proof. Let the set of l(l0 < l < li), for which the condition (2.8) is not true, be
denoted by {j1, · · · , jni} and we assume that

l0 < j1 < j2 < · · · < jni < li.

By definition, for each l = jk,

max
l−1,l,l+1

‖|x|4(1−1/p)hi‖2Lp(Al)
≥ η0Fl(wi).(2.18)

Then we have

Fl(wi) ≤ C max
l−1,l,l+1

∥∥∥|x|4(1−
1
p ) hi

∥∥∥
Lp(Al)

≤ Ce−8(1−1/p)lL

≤ Cδ8(1−1/p)e−8(1−1/p)(l−l0)L

≤ Cε2e−8(1−1/p)(l−l0)L,

if we choose δ small.
By the choice of jk, the condition (2.8) holds for jk < l < jk+1, k = 1, ..., i−1. By

an application of Theorem 2.9 (see also Lemma 4.2 in [9]), we have, for jk < l < jk+1

Fl(wi) ≤ C
(
e−L(l−jk)Fjk(wi) + e−L(jk+1−l)Fjk+1

(wi)
)

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L

)
.
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So, if j1 = l0 + 1 and jni = li − 1, the inequality (2.17) follows immediately. If
not, assuming j1 > l0 + 1, by Theorem 2.9 again, we have, for l0 < l < j1,

Fl(wi) ≤ C
(
e−L(l−l0)Fl0(wi) + e−L(j1−l)Fj1(wi)

)

≤ C
(
e−L(l−l0)Fl0(wi) + ε2e−min{8(1−1/p),1}(l−l0)L

)

≤ Cε2e−min{8(1−1/p),1}(l−l0)L.

Similarly, if jni < li − 1, we have, for jni < l < li − 1,

Fl(wi) ≤ C
(
e−L(l−jni

)Fjni
(wi) + e−L(li−l)Fli(wi)

)

≤ C
(
ε2e−min{8(1−1/p),1}(l−l0)L + e−L(li−l)Fli(wi)

)

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−L(li−l)

)

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−min{8(1−1/p),1}(li−l)L

)
.

�

Since wi satisfies (2.4), we may use Lemma 2.7 to get estimates for the derivatives
of wi and the tangential derivatives of ui. In the following, (r, θ) is the polar
coordinates where θ ∈ S3 is a point of the unit sphere. A function u(r, θ) is also

considered a function of (t̃, θ), where r = et̃. We denote the gradient operator on
S3 by ∇S3 and the Laplacian on S3 by △S3 .

Remark 2.14. Since we have only Lp norm of bi-tension fields bounded, we may
not prove pointwise decay bound for tangential derivatives. Hence we need the
following lemma as a replacement.

Lemma 2.15. ∫

(−lL,−(l−1)L)×S3

(
|△S3ui|2 + |∂t̃∇S3ui|2

)
dt̃dθ(2.19)

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−min{8(1−1/p),1}(li−l)L

)
.

Or equivalently,∫

[t̃,t̃+1]×S3

(
|△S3ui|2 + |∂t̃∇S3ui|2

)
dt̃dθ

≤ Cε2
(
e−min{8(1−1/p),1}(log δ−t̃) + e−min{8(1−1/p),1}(t̃−log λiR)

)
.

Proof. Setting
w̃(x) = wi(e

−(l−1)Lx),

we have

‖w̃‖2L2(A0∪A1∪A2)
≤ C(Fl−1(wi) + Fl(wi) + Fl+1(wi))

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−min{8(1−1/p),1}(li−l)L

)
.

By scaling, w̃ satisfies

△2
gw̃(r, θ) = a1∇g△gw̃ + a2∇2

gw̃ + a3∇gw̃ + a4w̃(2.20)

+
1

|∂Br|

∫

∂Br

b1∇g△gw̃ + b2∇2
gw̃ + b3∇gw̃ + b4w̃dθ + h̃(x).
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Here

h̃(x) = e−4(l−1)Lh(e−(l−1)Lx)

and

h(x) = τ(ui)−
1

|(∂Br)|

∫

∂Br

τ(ui)dσ.

Letting λ = e−(l−1)L, we have
∥∥∥h̃
∥∥∥
Lp(A0∪A1∪A2)

(2.21)

=

(∫

A0∪A1∪A2

∣∣λ4h(λx)
∣∣p dx

) 1
p

= λ4(1−1/p)(

∫

Al−1∪Al∪Al+1

|h(x)|p dx)1/p

≤ Ce−4(1−1/p)(l−1)L

≤ Cδ4(1−1/p)e−4(1−1/p)(l−l0)L

≤ Cεe−4(1−1/p)(l−l0)L,

if δ is small.
Lemma 2.7 and the Sobolev embedding theorem imply that

∫

(−lL,−(l−1)L)×S3

(|△S3ui|2 + |∂t̃∇S3ui|2)dt̃dθ

≤ C

∫

A1

(
∣∣∇2w̃

∣∣2 + |∇w̃|2)dx

≤ Cε2
(
e−min{8(1−1/p),1}(l−l0)L + e−min{8(1−1/p),1}(li−l)L

)
.

�

2.3. proof of Theorem 2.1. With the preparations of previous subsections, we
may now prove Theorem 2.1. For the rest of the proof, we require p ≥ 4

3 and hence

min
{
8(1− 1

p ), 1
}
= 1.

The rest of the proof is some type of Pohozaev argument. It follows the same
line of Section 5 of [9]. However, the proof there made use of the explicit expression
of bi-Laplace operator in polar coordinates of R

4. Since we are now using the
round metric on S4, we think it is necessary to justify the reason why the proof
still works. As can be seen from below, this is not obvious and the proof depends
on some detailed computation.

To begin with, we define a function (for r < 1)

t(r) =

∫ r

1

1

sin s
ds.

Obviously, t′(r) = 1
sin r . One may want to compare it with t̃(r) = log r. In fact, we

have

0 < t̃(r) − t(r) < C for r < 1
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and t̃′(r) is comparable with t′(r). As a consequence, the result of Lemma 2.15 can
be further rewritten as (noting that p ≥ 4/3 here)

∫

[t,t+1]×S3

(
|△S3ui|2 + |∂t∇S3ui|2

)
dtdθ(2.22)

≤ Cε2
(
e−(t(δ)−t) + e−(t−t(λiR))

)
.

Recall that the metric is given by g = dr2 +sin2 rdθ2. (Here dθ2 is the standard
metric on the unit sphere.) To simplify the notations, we write f(r) = sin r and f ′

is the derivative of f with respect to r. The Laplace operator is

△gu = ∂2
r +

3f ′

f
∂ru+

1

f2
△S3u.

By using ∂t = f∂r, we may compute

△gu = f−2
(
∂2
t + 2f ′∂t +△S3

)
u.

Writing △gu = f−2w, we obtain

△2
gu = f−2

(
∂2
t + 2f ′∂t +△S3

)
(f−2w)

= f−4
(
∂2
t + 2f ′∂t +△S3

)
w

+f−2
(
∂2
t (f

−2)w + 2∂t(f
−2)∂tw + 2f ′∂t(f

−2)w
)

= f−4
(
∂2
t − 2f ′∂t +△S3

)
w − 2

f ′′

f3
w

By the definition of w and f ′′ = −f , we have

△2
gu = f−4

(
∂2
t − 2f ′∂t +△S3

) (
∂2
t + 2f ′∂t +△S3

)
u+ 2f−2w

= f−4
(
(∂2

t +△S3)2 − 4(f ′∂t)(f
′∂t)
)
u

+f−4
(
(∂2

t +△S3)(2f ′∂t)− (2f ′∂t)(∂
2
t +△S3)

)
u+ 2f−2w

In comparison with the case of flat metric, f causes some extra terms. It is the
primary goal here to show that we can handle these extra terms properly.

4(f ′∂t)(f
′∂t) = 4(f ′)2∂2

t − 4f2f ′∂t,

where we used ∂t = f ′∂r and f ′′ = −f because f(r) = sin r.
Note that △S3 commutes with f ′∂t and we compute

∂2
t (2f

′∂t)− (2f ′∂t)∂
2
t

= ∂2
t (2f

′)∂t + 2∂t(2f
′)∂2

t

= −4f2f ′∂t − 4f2∂2
t .

In summary, we have

(2.23) △2
gu = f−4

(
(∂2

t +△S3)2 − 4∂2
t

)
u+ 2f−2w,

where we used (f ′)2 + f2 = 1.
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Remark 2.16. The first term in the above formula is almost the same as the flat
case. The importance of the computation is to show the error caused by the round
metric is just f−2w. Since w involves only first and second order derivatives, it can
be controlled by the energy. If there is a third order derivative term here, then the
proof below would fail.

By the definition of τ , we have

∫

S3

f4△2
gu · ∂tudθ =

∫

S3

f4τ(u) · ∂tudθ.

By (2.23), the above is equivalent to

∫

S4

(
(∂2

t +△S3)2 − 4∂2
t

)
u∂tudθ =

∫

S3

(f4τ(u)− 2f2w)∂tudθ.

The left hand side is now completely identical to the form which is dealt with in
Section 5 of [9]. For simplicity, we set

τ̃ (u) = τ(u) − 2f−2w = τ(u) − 2△gu.

Since u has finite energy, τ̃ (u) is also uniformly bounded in Lp for p ∈ [4/3, 2].
The same computation as in [9] gives

∂t

∫

S3

∂tu∂
2
t udθ −

∫

S3

3

2

∣∣∂2
t u
∣∣2 + 2 |∂tu|2 dθ(2.24)

=

∫

S3

−1

2
|△S3u|2 + |∂t∇S3u|2 +

∫ t

−∞

∫

S3

f4τ̃ (u) · ∂tudsdθ.

We will integrate the above inequality from t(λiR) to t(δ). We estimate the right
hand side first. Thanks to (2.22), we have

∫ t(δ)

t(λiR)

∫

S3

−1

2
|△S3u|2 + |∂t∇S3u|2 dθ ≤ Cε2.

Transforming back to x−coordinates by ∂t = f∂r and dσ = f3dθ, we get

∣∣∣∣∣

∫ t(δ)

t(λiR)

∫ t̃

−∞

∫

S3

f4τ̃ (u) · ∂tudθdsdt̃
∣∣∣∣∣

≤
∫ t(δ)

t(λiR)

∫

Br(t̃)

|τ̃ (u)| |f∂ru| dxdt̃

≤
∫ δ

λiR

∫

Br

|τ̃ (u)| |∇u| dxdr

≤ Cδ ‖τ̃ (u)‖L4/3(B1)
‖∇u‖L4(B1)

.
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In summary, the integration of (2.24) yields (by taking σ small with respect to ε)
∫ t(δ)

t(λiR)

∫

S3

3

2

∣∣∂2
t u
∣∣2 + 2 |∂tu|2 dθdt(2.25)

≤ C

(∫

{t(δ)}×S3

|∂tu∂2
t u|dθ +

∫

{t(λiR)}×S3

|∂tu∂2
t u|dθ + ε2

)

≤ C ‖∂tu‖L2({t(δ)}×S3)

∥∥∂2
t u
∥∥
L2({t(δ)}×S3)

+C ‖∂tu‖L2({t(λiR)}×S3)

∥∥∂2
t u
∥∥
L2({t(λiR)}×S3)

+ Cε2

≤ Cε2,

where the last inequality comes from the (2.15) and Sobolev embedding and trace
theorem. In fact, we have W 4,p(Ω) embeds into W 3,2(Ω), which in turn embeds
into W 2,2(∂Ω).

Remark 2.17. We remark that in fact, the argument above gives an independent
proof of the energy identity in the blow up analysis of biharmonic maps with tension
field in Lp for some p ≥ 4

3 .

For some fixed t0 ∈ [t(λiR), t(δ)], set

F (t) =

∫ t0+t

t0−t

∫

S3

3

2

∣∣∂2
t u
∣∣2 + 2 |∂tu|2 dθdt.

F is defined for 0 ≤ t ≤ min {t0 − t(λi)R, t(δ)− t0}. Integrating (2.24) from t0 − t
to t0 + t, we obtain

F (t) ≤ 1

2
√
3

(∫

{t0−t}×S3

+

∫

{t0+t}×S3

)
3

2

∣∣∂2
t u
∣∣2 + 2 |∂tu|2 dθ

+

∫ t0+t

t0−t

(∫

S3

−1

2
|△S3u|2 + |∂t∇S3u|2 dθ +

∫ t̃

−∞

∫

S3

f4τ̃ (u) · ∂tudsdθ
)
dt̃.

With the help of (2.22), we can have
∫ t0+t

t0−t

∫

S3

−1

2
|△S3u|2 + |∂t∇S3u|2 dθds ≤ Cε2

(
e−(t(δ)−t0) + e−(t0−t(λiR))

)
et.

On the other hand,
∣∣∣∣∣

∫ t0+t

t0−t

∫ t̃

−∞

∫

S3

f4τ̃ (u) · ∂tudsdθdt̃
∣∣∣∣∣

≤
∫ t0+t

t0−t

∫

Br(t̃)

|τ(u)| |∇u| |f | dxdt̃

≤ Ce
1
2 (t0+t) ‖τ(u)‖L4/3(B1)

‖∇u‖L4(B1)

≤ Cδ1/2e−1/2(log δ−t0)et/2

≤ Cδ1/2e−1/2(t(δ)−t0)et

Remark 2.18. Note that since r′(t) = sin r and 1
2r ≤ sin r ≤ r for r < 1, we have

et < r(t) < et/2
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for t < 0.

Hence, if δ is small, we obtain

F (t) ≤ 1

2
∂tF (t) + Cε2

(
e−

1
2 (t(δ)−t0) + e−

1
2 (t0−t(λiR))

)
et.

Multiplying e−2t to both sides of the inequality, we have

(e−2tF (t))′ ≥ −Cε2
(
e−

1
2 (t(δ)−t0) + e−

1
2 (t0−t(λiR))

)
e−t.

We assume without loss of generality that t(δ)−t0 ≤ t0−t(λiR). Then, we integrate
the above inequality from t = 1 to t = t(δ)− t0 to get

F (1) ≤ e−2(t(δ)−t0)+2F (t(δ)− t0) + Cε2
(
e−

1
2 (t(δ)−t0) + e−

1
2 (t0−t(λiR))

)

≤ Cε2
(
e−

1
2 (t(δ)−t0) + e−

1
2 (t0−t(λiR))

)
.

Here we used (2.25).
Together with (2.22), we obtain

∫ t0+1

t0−1

∫

S3

|∇̃2u|2 + |∇̃u|2dθdt ≤ Cε2
(
e−

1
2 (t(δ)−t0) + e−

1
2 (t0−t(λiR))

)
,

Here ∇̃ is the gradient of [t(λiR), t(δ)] × S3 with the product metric. Recall that∣∣t̃(r) − t(r)
∣∣ is bounded by some universal constant and ∂t and ∂t̃ are comparable.

Hence, we can translate the above decay estimate into a decay with respect to
t̃ = log r.

∫ t̃0+1

t̃0−1

∫

S3

|∇̃2u|2 + |∇̃u|2dθdt̃ ≤ Cε2
(
e−

1
2 (log(δ)−t̃0) + e−

1
2 (t̃0−log(λiR))

)
,

Direct computation shows that
∫

B
et̃0+1\Bet̃0−1

|∇2u|2 + 1

|x|2 |∇u|2dx ≤ C

∫ t̃0+1

t̃0−1

∫

S3

|∇̃2u|2 + |∇̃u|2dθdt̃

≤ Cε2
(
e−

1
2 (log δ−t̃0) + e−

1
2 (t̃0−log λiR)

)
.

Then by Sobolev embedding and the ε0−regularity (Theorem 2.3), we have

osc((t̃0−1/2,t̃0+1/2)×S3)u

≤ C(

∫

B
et̃0+1\Bet̃0−1

|∇2u|2 + 1

|x|2 |∇u|2dx)1/2 + e4t̃0(1−1/p)‖τ(u)‖Lp(B
et̃0+1\Bet̃0−1 )

≤ Cε
(
e−

1
4 (log δ−t̃0) + e−

1
4 (t̃0−log λiR)

)
.

It is easy to derive the no neck estimate from here. Hence, we complete the proof
of Theorem.

3. bounding width by energy

Let M be the manifold in the Theorem 1.1 and g be any Riemannian metric on
M . Since M = M ′#Tm, there is an embedded sphere S of dimension m− 1 in M
which separates M into M1 and M2 and M/M2 is homeomorphic to M ′ and M/M1

is homeomorphic to Tm. Here M/Mi is the quotient topology space by identifying
all points in Mi as one point.
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Let M̃ be a cover of M and g̃ be the lift of g. For a map u : S4 → M , we define
the width of u as

W (u) = max
x,y∈S4

d(M̃,g̃)(ũ(x), ũ(y))

for a lift ũ of u. Since the lift is unique up to the action of the deck transformation
of M̃ , the definition is independent of the choice of ũ.

Remark 3.1. It is perhaps more natural to use the universal cover. Theoretically,
any cover will make the proof work. Since the main purpose is to construct exam-
ples, we use the definition which is convenient for our purpose. Of cause, the width
depends on the choice of the cover.

Similarly, we can define the width of u from R
4 to M by

W (u) = sup
x,y∈R4

d(M̃,g̃)(ũ(x), ũ(y))

for a lift ũ.

Remark 3.2. Since R
4 is non-compact, it is possible that W (u) is not finite. For

application in this paper, we shall only be interested in the bubble map u : R4 → M .
There are several ways to see that for a bubble map with finite energy this width
is finite. First, one can compose u with the stereographic projection and prove a
removable singularity theorem for a PDE system similar but not identical to the
biharmonic map equation as Wang did for quasi-biharmonic maps in Lemma 3.4
[14]. Second, the proof of removable singularity theorem in [9] can be applied in this
case. Finally, since all such bubble maps come from the limit of some biharmonic
map sequence, as remarked near the end of Section 2 of [9], this is a consequence
of the main theorem in [9].

The main result of this section is

Lemma 3.3. For any C1 > 0, there is another constant C2 depending on C1 and
the geometry of M such that any biharmonic map u from R

4 (or S4 ) to M with
E(u) < C1 satisfies that W (u) < C2.

The proof uses the compactness properties of biharmonic maps (taking the bub-
bling into account). The non-compactness of R4 causes some technical problem.
We need the following lemma to control the energy decay at the infinity.

Lemma 3.4. There is a constant ε2 > 0 depending on M . If u : R4 → M is a
biharmonic map satisfying

∫

R4\B1

∣∣∇2u
∣∣2 + |∇u|4 dx < ε2,

then u is uniformly continuous at the infinity in the sense that for any ε > 0, there
is R > 0 independent of u such that

oscR4\BR
u < ε.

Proof. The proof is just another version of Section 6 of [9]. The only difference is
that for a removable singularity theorem, we study B1 \ {0}, which is

B1 \ {0} =

∞⋃

i=1

Ai
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where

Ai = Be−(i−1)L \Be−iL ,

while in this lemma, we study the asymptotic behavior of u on

R
4 \B1 =

0⋃

i=−∞

Ai.

In the proof of the removable singularity theorem, we prove exponential decay as
i → ∞ (|x| → 0), while here we prove exponential decay as i → −∞ (|x| → ∞).
We need ε2 to be small, so that we can use Theorem 2.9 on Ai−1 ∪ Ai ∪ Ai+1 for
i = −1,−2, · · · .

This lemma follows from the exponential decay of |∇S3u| and |∂tu|. �

Proof of Lemma 3.3. We only prove the case for R4 and the case for S4 is simpler.
If the lemma is not true, we can find a sequence of biharmonic maps uk : R4 → M
with E(uk) ≤ C1, but

lim
k→∞

W (uk) = +∞.

Since E(uk) and W (uk) are invariant under the scaling, we may assume without
loss of generality that

(3.1)

∫

R4\B1

∣∣∇2uk

∣∣2 + |∇uk|4 dx < ε2.

(3.1) implies that the bubble points are restricted to B̄1.
Let u∞ be the weak limit. Since there is no bubble outside B̄1, uk converges

to u∞ on BR \ B2 uniformly for fixed R. Together with Lemma 3.4 and (3.1), the
convergence is uniform on R

4 \B2.
The bubbles are described as follows. Assume that there are l bubbles (including

ghost bubbles, which is just trivial map), ωi(i = 1, · · · , l) and there are m(m ≤ l)
blow-up points pi(i = 1, · · · ,m) with pi ⊂ B2. Each ωi is the limit of

wi,k(x) := uk(λi,kx+ xi,k).

Since there could be bubbles on top of ωi, the convergence is strong on the domain

Ωi,k = BR \
(
⋃

s

Bδ(yk,s)

)
,

where we use s to parameterize the bubbles on top of ωi. Moreover, for each bubble
ωi, there is a neck region of the form Br2(∗) \ Br1(∗), which we denote by Ni,k.
There is no need to be precise about r1, r2 and the centers of the balls, it suffices
to notice that the no neck theorem implies that

(3.2) lim
k→∞

oscNi,k
uk = o(δ, R),

where o(δ, R) goes to zero when δ → 0 and R → ∞.



finite time blow-up 19

By definition, if ũk is a lift of uk, we have

W (uk) = sup
y,z∈R4

d(M̃,g̃)(ũk(y), ũk(z))(3.3)

≤
l∑

i=1

sup
y,z∈Ωi,k

d(M̃,g̃)(ũk(λi,ky + xi,k), ũk(λi,kz + xi,k))

+ sup
y,z∈Ni,k

d(M̃,g̃)(ũk(y), ũk(z))

+ sup
y,z∈R4\

⋃
m
i=1 Bδ(pi)

d(M̃,g̃)(ũk(y), ũk(z)).

Now we give an upper bound for the left hand side of the above equation. For
the first line, since wi,k converges strongly to ωi on Ωi,k, we have

max
y∈Ωi,k

d(M,g)(wi,k(y), ωi(y)) ≤ o(1).

Here o(1) goes to zero as k → ∞. Noticing that ũk(λi,kx+ xi,k) is a lift of wi,k(x)
(defined on Ωi,k), we can find a lift of ωi, denoted by w̃i such that

max
y∈Ωi,k

d(M̃,g̃)(ũk(λi,ky + xi,k), ω̃i(y)) ≤ o(1).

Therefore, we have

(3.4) lim sup
k→∞

sup
y,z∈Ωi,k

d(M̃,g̃)(ũk(λi,ky + xi,k), ũk(λi,kz + xi,k)) ≤ W (ωi).

For the second line, we need some general fact from Riemannian geometry as
follows. There is some small σ > 0 depending on both (M, g) and (M̃, g̃) such

that for any geodesic ball B ⊂ M of radius σ and its lift B̃ ⊂ M̃ , we have that
(B, d(M,g)) is isometric to (B̃, d(M̃,g̃)) as metric spaces.

Thanks to (3.2), for small δ and large R so that the image uk(Ni,k) lies in a
geodesic ball of radius σ, we have

(3.5) lim sup
k→∞

sup
y,z∈Ni,k

d(M̃,g̃)(ũk(y), ũk(z)) ≤ Co(δ, R).

To bound the last line in (3.3), it suffices to note that uk converges uniformly
on R

4 \ ⋃m Bδ(pi) to u∞. To see this, we note that uk converges strongly on
B2 \ ∪Bσ(pi) and uk converges strongly on R

4 \B2 as remarked earlier. Hence,

(3.6) lim sup
k→∞

sup
y,z∈R4\

⋃
m
i=1 Bδ(pi)

d(M̃,g̃)(ũk(y), ũk(z)) ≤ W (u∞).

(3.4), (3.5) and (3.6) add up to give an upper bound forW (uk), which contradicts
the assumption that limk→∞ W (uk) = ∞ and hence proves the lemma. �

4. proof of the main theorem

Let u(t) be a solution to (1.1) with u(0) = u0. Along the flow,

d

dt
E(u) ≤ 0.

Hence, E(u) is uniformly bounded (before the possible blow-up at least). Since the
target manifold is compact, u is bounded and hence E(u) is also uniformly bounded.

The key observation to the proof is that for some C1 > 0 and arbitrarily large
C3, we can choose u0 with E(u0) < C1 and any smooth u′ homotopic to u0 satisfies
W (u′) > C3.
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Assuming that such u0 is found, we claim that u(t) must blow-up in finite time
and hence Theorem 1.1 is proved. If otherwise, the solution exists for any t > 0.
Since ∫ ∞

0

∫

S4

|∂tu|2 dvdt < ∞,

we may choose a sequence of tk going to ∞ such that

lim
k→∞

‖∂tu‖L2 (tk) → 0.

For simplicity, we denote u(tk) by uk.
Since E(uk) is bounded and the ε−regularity (Theorem 2.3) holds, the usual

blow-up analysis works. Assume that there are l bubbles ωi(i = 1, · · · , l), which is
the limit of uk(λi,kx+ xi,k) and m(m < l) blow-up points pi. Let Ωi,k and Ni,k as
before. We still have

W (uk) ≤
l∑

i=1

sup
y,z∈Ωi

d(M̃,g̃)(ũk(λi,ky + xi,k), ũk(λi,kz + xi,k))

+ sup
y,z∈Ni,k

d(M̃,g̃)(ũk(y), ũk(z))

+ sup
y,z∈R4\

⋃m
i=1 Bδ(pi)

d(M̃,g̃)(ũk(y), ũk(z)).

By Theorem 2.1, we can bound the right hand side by

l∑

i=1

W (ωi) +W (u∞) + 1.

By Lemma 3.3, each W (ωi) and W (u∞) is bounded by a constant C2 depending
on C1. Moreover, the number of bubbles is also bounded by a constant depending
on C1. Hence, there is a constant C4 such that

lim sup
k→∞

W (uk) < C4.

This would be a contradiction and hence proves Theorem 1.1 if C4 < C3.
Now let’s show how to construct u0.
Recall that M = M ′#Tm. There is a natural cover of M , which is obtained

by modifying R
m. R

m is the universal cover of Tm, with the deck transformation
group G = Z

m. Let p0 be any point of Rm and let the orbit of the action of G
containing p0 be {pi}∞i=0. Suppose Ui be a small neighborhood of pi diffeomorphic
to the ball of dimension m and V ⊂ M ′ be an open set diffeomorphic to a ball.
For each i = 0, 1, · · · , we remove Ui from R

m and identify the boundary of Ui with
the boundary of a copy of M ′ \ V , which we denote by Wi. The new complete

non-compact manifold is denoted by M̃ . G acts on M̃ naturally and the quotient
is M . If M is equipped with a Riemannian metric g and g̃ is the pull back metric,
then the projection π : M̃ → M is isometric map.

Since π4(M
′) is not trivial, there is a smooth map h : S4 → M ′, which is

not homotopic to constant map. Since m > 4 and h is not surjective, assume by
deforming it smoothly that

(1) h(S4) ⊂ M ′ \ V̄ ;
(2) h maps the entire southern hemisphere to a single point q ∈ M ′ \ V̄ .
Let hi be the copy of h from S4 to Wi and qi be the copy of q in Wi.
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For any C3, pick i such that

d(M̃,g̃)(W0,Wi) > C3.

Let Ψ(Φ) be the stereoprojection from R
4 to S4, which maps the infinity to the

south (north) pole and maps ∂B1 to the equator. Consider the map w : R4 → Wi

defined by

w(x) = hi ◦Ψ(x).

w is a constant map outside B1. Set

C1 = E(w) + E(h) + 1.

We claim that for σ very small, we can find smooth u0 satisfying
(1)

u0 =

{
π ◦ h0(x) x ∈ S4 \Bσ(S);

π ◦ w(Φ
−1(x)
σ2/2 ) x ∈ Bσ2(S).

(2) E(u0) < C1.
By the above definition, we observe that u0|∂Bσ(S) = q0 and u0|∂Bσ2 (S) = qi.

The first observation follows trivially from the definition of h0. For the latter, we
notice that

∣∣Φ−1(x)
∣∣ is almost σ2 for every x ∈ ∂Bσ2(S), because Φ is almost an

isometry near S and σ is going to be small.
Since the energy is scaling invariant and Φ is almost isometric in small neigh-

borhood of the south pole, we have
(∫

S4\Bσ(S)

+

∫

Bσ2 (S)

)
|△u0|2 dv < E(h) + E(w) +

1

2
.

It suffices to show that we can define u0 on Bσ(S) \Bσ2(S) so that u0 is smooth
and the contribution to the energy on this part is smaller than 1

2 . By choosing σ

small, the metric of S4 on Bσ is close to the flat metric. Hence, it suffices to check
this with flat metric.

Let γ : [0, 1] → M̃ be the shortest geodesic in M̃ connecting q0 to qi. Let
ϕ : [0, 1] → [0, 1] be a smooth function satisfying

(1) ϕ′ ≥ 0;
(2) ϕ(x) = 0 for all 0 ≤ x ≤ 1

8 and ϕ(x) = 1 for all 7
8 ≤ x ≤ 1;

(3) |ϕ′|+ |ϕ′′| ≤ C for some universal constant C.
Set

u0(x) = π ◦ γ ◦ ϕ
(
log σ − log |x|

− logσ

)
.

For simplicity, we write L for d(M̃,g̃)(q0, qi). Note that

|(π ◦ γ)′| = L.

Since γ and π ◦ γ are geodesics, we have

(π ◦ γ)′′ +B(π ◦ γ)((π ◦ γ)′, (π ◦ γ)′) = 0

where B is the second fundamental form of N . Therefore,

|(π ◦ γ)′′| = CL2.

We estimate the derivative of u0 as follows.

|∂ru0| ≤
CL

r(− log σ)
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and
∣∣∂2

ru0

∣∣ ≤ CL

r2(− log σ)
.

Hence,
∫

Bσ\Bσ2

|△u0|2 dx

≤ C

∫ σ

σ2

∣∣∣∣∂
2
ru0 +

3

r
∂ru0

∣∣∣∣
2

r3dr

≤ CL2

(log σ)2

∫ σ

σ2

1

r
dr

≤ CL2

(− log σ)
.

For any L, we can choose σ so that the above is as small as we want. Hence,
we check that u0 satisfies E(u0) < C1. It remains to check that for any map u′

homotopic to u0, W (u′) > C3. Let ũ′ be the lift of u′, which is homotopic to the
following lift of u0,

ũ0 =





h0(x) x ∈ S4 \Bσ(S);

γ ◦ ϕ( log σ−log|x|
− log σ ) x ∈ Bσ(S) \Bσ2(S);

w(Φ
−1(x)
σ2/2 ) x ∈ Bσ2(S).

We claim that ũ′ ∩ W0 6= ∅ and ũ′ ∩ Wi 6= ∅. To see this, consider a continuous
map π̃ from M̃ to M ′ (precisely, a manifold homeomorphic to M ′), which maps
any point in M \W0 to one point. If ũ′ ∩W0 is empty, then π̃ ◦ ũ′ is a constant
map. However, π̃ ◦ ũ0 is homotopic to h0 and hence is nontrivial. The proof for
ũ′ ∩Wi 6= ∅ is the same.

In summary, we have constructed a map u0 such that E(u0) < C1 and W (u′) >
C3 for any u′ homotopic to u0. This finishes the proof of Theorem 1.1.
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