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Abstract—Network coding is a novel solution that significantly
improve the throughput and energy consumed of wireless net-
works by mixing traffic flows through algebraic operations. In
conventional network coding scheme, a packet has to wait for
packets from other sources to be coded before transmitting. The
wait-and-code scheme will naturally result in packet loss rate
in a finite buffer. We will propose Enhanced Network Coding
(ENC), an extension to ONC [1] in continuous time domain.

In ENC, the relay transmits both coded and uncoded packets
to reduce delay. In exchange, more energy is consumed in
transmitting uncoded packets. ENC is a practical algorithm to
achieve minimal average delay and zero packet-loss rate under
given energy constraint. The system model for ENC on a general
renewal process queuing is presented. In particular, we will show
that there exists a fundamental trade-off between average delay
and energy. We will also present the analytical result of lower
bound for this trade-off curve, which can be achieved by ENC.

Index Terms—Network coding, Delay, energy consumed, Wire-
less networks

I. INTRODUCTION

Network coding, where packets from two or more sources
are allowed to be transmitted and processed jointly, has
recently attracted much attention due to its potential for high-
speed network [2]. It has recently been found that the broadcast
nature of network coding is suitable for improving the energy
consumed in wireless network, which is critical in energy-
limited wireless sensor network. Significant recent effort has
been dedicated to this field.

Using network coding in wireless scenario for saving energy
consumption and improving information exchange consumed
is first proposed in [3]. In [4], a wireless network with a
centralized relay and N sources exchanging their information,
was proposed in order to characterize the relay-assistant net-
work under fading and multiuser interference. A more general
scenario without centralized relay is presented in [5]. With
network coding, the number of packets needed transmitted
is decreased significantly, which improves energy consumed
significantly. A physical layer network coding was considered
in [6], [7]. The received signal is simply amplified and
broadcast in a noise version of the summation of the two
source signals. By doing this, the complexity of the relay node
is reduced.

The above works were mainly focused on enhancing the
performance of a synchronized network. However, due to the

stochastic nature of wireless network, the packets arriving
pattern should be taken into account. Moreover, delay and
packet-loss rate, which is critical parameter in Quality of
Service (QoS), is seldom considered. In [1], delay-energy
relation is considered, and theoretical delay-energy trade-off
curve is given. Furthermore, A novel scheduling scheme for
network coding, ONC - Opportunistic Network Coding, is
proposed in the discrete time domain in order to achieve
the optimal trade-off boundary. An analysis on first-come-
first-serve policy in continuous time domain is presented in
[8]. In this paper, ONC will be extended to continuous time
domain, referred as Enhanced Network Coding (ENC), which
mainly focuses on renewal process and Poisson process for
packet arriving pattern. We will show that with a finite buffer,
conventional network coding scheme results in inevitable
packet loss. This paper will also presented the optimal delay-
energy trade-off curve in continuous time domain. We will
observe that first-come-first-serve policy is not sufficient to
achieve the minimized delay.

The rest of this paper is organized as follows. The details
of system model and general description of ENC policy is
presented in Section II. Section III will show that why we need
ENC and the rigorous mathematical model of ENC for renewal
process and Poisson process arriving pattern. The expression
of systems parameters including delay, packet-loss rate, and
energy consumed is proposed. With the parameters given,
Section IV relates delay and energy with a linear programming
problem. After solving this problem, we will have the optimal
curve of delay-energy trade-off as well as the optimal ENC
policy under different energy constraints. It will be shown that
there exists a fundamental trade-off between delay and energy,
which implies the performance limits of wireless network
coding.

II. SYSTEM MODEL

A wireless network consists two nodes A and B that wants
to exchange their packets via a relay is considered, as depicted
in Figure 1. With network coding, the relay only need to
broadcast the bit-by-bit XOR result of a packet of Node A
and a packet of Node B. Each node can then decode its
desired packet by implementing XOR operation again between
the received packet and the packet from itself. Compared
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Fig. 1. Wireless Switching Network using Network Coding
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Fig. 2. Queuing Model in the Relay Node

with the conventional method of transmitting the two packets
individually, network coding can save 50% energy for the relay
node in each transmission.

Packets from node A and B arrive at the relay from
two independent Poisson processes with equal parameters λ
through an ideal channel. We will show that the parameter
λ could be also applied in renewal process. The relay node
maintains two finite buffers to store the backlog packets, which
can hold at most K packets, as shown in Figure 2. The relay
employs the following policy in transferring the packet.

1) When a packet arrives, if the queue holding the traffic
from the opposite direction is not empty, the relay sends
out the coded version of the binary sum of this packet
and the packet in the queue from the opposite direction
immediately.

2) When a packet arrives, if the queue holding the traffic
from the opposite direction is empty, the relay sends out
the oldest packet in the queue with the probability of gk,
where k denotes the current number of storing packet in
the queue.

3) When no packet arrives, the relay sends out the packet
it stored with a certain probability. This probability is
described as a Poisson process depending on the current
state k. The parameter for this Poisson process is fk.

All of above policies are depicted in Figure 3. In all cases, we
assume that the packet size is small enough that the transmis-
sion delay is negligible. In other words, the transmissions can
be modeled as points on the time axis. Therefore, the average
delay experienced by the packets equals the average amount
of time the spend in the queue at the relay. In the next section,

Policy 1) Policy 2) Policy 3)

Packets from 
Node A

Packets from 
Node B

Packets 
trasmitted

Fig. 3. ENC Policies

ENC Parameters gk fk
Conventional Network Coding 0 0

“first-come-first-serve” gk =

{
1 k = K

0 k 6= K
0

TABLE I
POLICY COMPARISON AMONG CONVENTIONAL NETWORK CODING, FCFS

AND ENC

we will explore the relationship of the average delay with the
average transmission energy of the relay.

Note that when the probability of sending an un-coded
packet is fixed to be 0, ENC reduces to conventional wireless
network coding, where all packets are network-coded. Hence,
conventional wireless network coding can be viewed as a
special case of ENC. In [8], a policy called “first-come-first-
serve”(FCFS) was presented. It can be viewed as another
special case of ENC with parameters fk ≡ 0. The relay only
transmits un-coded packet when buffer is full. There is a brief
summary in Table I.

In this paper, we will show that conventional wireless
network coding is not optimal, in terms of delay and packet
loss, even results in huge packet-loss rate. The performance
limit of wireless network coding, in terms of delay-energy
trade-off, will be presented. We shall also optimize ENC to
achieve the optimal trade-off.

III. DELAY-ENERGY TRADE-OFF ANALYSIS

In this section, we present a rigorous mathematical descrip-
tion of ENC. A finite-state Markov chain is formulated for
delay and energy consumed analysis.

A. Why ENC?

Conventional network coding approach usually assumes a
buffer with a infinite length on the relay for storing packets.
However, in the practical implementation, infinite buffer is
impossible. Through the following theorem, we could see that
the finite buffer implies the conventional network coding has
inevitable packet loss.



First of all, we remark that at most one queue at the relay
node can be non-empty. (Otherwise, the relay should XOR
and transmit the packets from two queues immediately. We
denote the number of packets on the relay at the time instance
t by |R(t)|, and the number of all packets arriving at the relay
before the time instance t by Q(t). If R(t) > 0, it means
that only packets from Node A is in the queue. If R(t) < 0,
packets from Node B can be found in the queue. Bk is a
random variable represents the kth packets that arriving at the
relay. Its definition is as follows:

Bk :=

{
1 Packet comes from Node A
−1 Packet comes from Node B

We assume that each Bk has independent identical distri-
bution for all k and E(Bk = 0.

Theorem 1: The probability of buffer overflow is

Pr(|R(t)| > K) ≈ 2Φ(− K√
Q(t)σB

for any given finite K-packet-buffer, where σB is the
variance of Bk, and Φ(z) = Pr(X < z), X ∼ N(0, 1).

Proof: With the definition in Section II, since the sum of
Bk represents the number of remaining packets in the relay,
one can easily obtains the following equation,

R(t) =

Q(t)∑
k=1

Bk

When t→∞, Q(t)→∞, according to central limit theorem,
we have

R(t) ∼ N(0,
√
Q(t)σB

Now let us calculate the probability of buffer overflow.

Pr(|R(t)| > K) = Pr(| R(t)√
Q(t)σB

| > K√
Q(t)σB

≈ 2Φ(− K√
Q(t)σB

We know that lim
t→∞

Q(t) = ∞. So when t → ∞, R(t) has
infinite variance, and the over flow probability Pr(|R(t)| >
K) → 1. Thus, without ENC, the system performance will
decrease significantly.

This result can also be derived through Little’s Law. Assume
that at the time instance t, the queue only has the packets
from Node A, i.e. R(t) > 0. At the same time, packets from
Node A and Node B arrive at the relay at the identical rate
of λ packets/second. When packets from Node A arrives, the
length of queue increases. We could see that the “arriving rate”
is λ. When packets from Node B arrives, the length of queue
decreases with parameter λ. So the “service rate” is also λ.
According to Little’s Law, a queue with identical arriving time
and service time will have infinite length. Thus, with a finite
buffer, the packet-loss rate will be unavoidable.

In other case, if Node A and Node B has different flow
strength, the situation could be even worse. Assume that the
strength of Node A is λ and µ for Node B. If λ > µ, in the case
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Fig. 4. System Performance Comparison between Conventional Network
Coding and ENC

above, obviously the “arriving rate” exceeds “service rate”,
and the queue will be infinite. If λ < µ, when all Node A’s
packets are network coded and sent out, Node B’s packets start
to accumulate in the queue, which will result in R(t) < 0, the
“arriving rate” exceeds “service rate” again. In the discussion
below, we only consider the scenario that Node A and Node
B has identical flow strength.

Figure 4 presents the system performance comparison be-
tween conventional network coding and ENC with parameters
gK = 1 and fk ≡ 0. The buffer size K is set to 20. In this
figure, we can see that in most of time, the buffer overflows in
conventional network coding. ENC limits the maximum queue
length to be 20. However, this simple group of parameters in
not optimal for ENC, since it has potential waste of energy.
We will show in the following part of this paper that there exist
a group of ENC parameters which fully utilize given energy
constraint to achieve minimum delay.

B. Queuing Model

Before we considering the optimal policy on a finite buffer,
we first give a rigorous mathematical model on renewal
process queuing and its special case - Poisson process queuing.

1) Renewal Process Queuing Model: A renewal process
is a generalization of the Poisson process. In essence, the
Poisson process is a continuous-time Markov process on the
positive integers which has independent identically distributed
holding times at each integer i (exponentially distributed)
before advancing to the next integer i+1. In a renewal process,
the distribution of the gaps has arbitrary independent identical
distribution. Let us denote the probability distribution function
as f(t) and the total number of packets as N(t).

Definition 1: The short term average renewal rate is defined
as

λ(t) :=
dE {N(t)}

dt



Definition 2: The long term average renewal rate is defined
as

λ
′

:= lim
t→∞

λ(t)

With the above definitions, we notice that λ
′

has the same
character as the parameter λ in a Poisson process. It represent
the number of packets arriving at the relay in a unit time. In
order to calculate λ

′
, we have the following theorems.

Lemma 1: The short term average renewal rate of a renewal
process is given by

Λ(s) =
ψ(s)

1− ψ(s)

where Λ(s) and ψ(s) are Laplace transformation of λ(t) and
f(t)

Λ(s) =

∫ ∞
0

λ(t) exp(−st)dt

ψ(s) =

∫ ∞
0

f(t) exp(−st)dt

Theorem 2: The long term average renewal rate of a re-
newal process is given by

λ
′

=
1∫∞

0
tf(t)dt

Proof: According to Definition 2 and Lemma 1, we have

λ
′

= lim
t→∞

λ(t)

= lim
s→0

sΛ(s)

= lim
s→0

(
s

1− ψ(s)
− s)

= lim
s→0

s

1−
∫∞

0
f(t) exp(−st)dt

= lim
s→0

s∫∞
0
f(t)stdt

=
1∫∞

0
tf(t)dt

Thus the above theorem holds.
2) Poisson Queuing Model: Let us focus on the special

case of renewal process - Poisson process. Assume that the
Node A and Node B exchange packets via the relay with the
rate of λ packet/second, i.e. the short term arriving rate λ(t)
is a constant. In the following discussion, if we replace the
Poisson parameter λ with long term average renewal rate λ

′
,

all theorems can be applied to renewal process as well.
Based on the transmission policy at the relay described

in Section II, the state of queues at the relay node can
be characterized with an integer S(t) ∈ [0,K], where K
represents the total length of queue at the relay.

S(t) = |R(t)|

Since the future state is independent from its past given the
current state, S(t) is a continuous time finite state Markov
chain. With the policy defined before, we could derive the
transition probability of S(t).

0λ 1λ 1−Kλ

1µ 2µ
Kµ

2−Kλ

1−Kµ

Fig. 5. Finite State Markov Chain Model of Buffer State

We depict the above mathematical description in Figure 5.
Theorem 3: The buffer state S(t) is a K + 1 state Markov

Chain with transition probability Pr(S(t + ∆t) = j|S(t) =
i) = pij∆t, which satisfies pij = 0 for |j − i| > 1 and

pk,k+1 =

{
λ(1− gk 1 ≤ k ≤ K
2λ(1− g0 k = 0

(1)

pk,k−1 = λ+ fk (2)

Proof: First, we derive the transition probability (1) and
(2). For k = 0, the event S(t+ ∆t) = S(t) + 1 is equivalent
to the event that the relay only receives a packet from either
source node and does not transmit an un-coded packet. Hence,

p0,1 = lim
∆t→0

2(λ∆t)(1− g0

∆t
= 2λ(1− g0

For 1 ≤ k ≤ K − 2, the event S(t + ∆t) = S(t) + 1
is equivalent to the event that the relay nodes only receives
a packet from the source whose packets are already in the
queue, and does not transmit an un-coded packet. Hence, we
have

pk,k+1 = lim
∆t→0

(λ∆t)(1− gk
∆t

= λ(1− gk

Note that the event S(t + ∆t) = S(t) − 1 is equivalent to
the event that (1) the relay only receives a packet from the
opposite source to one already in the queue; or (2) the relay
transmits an un-coded packet without receiving any packets.
As a result,

pk,k−1 = lim
∆t→0

λ∆t+[1−2(λ∆t)](fk∆t)
∆t

= λ+ fk

For convenience, let us denote

λk =

{
pk,k+1 0 ≤ k ≤ K − 1

λ(1− gK k = K
(3)

µk = pk,k−1 (4)



We shall mainly use λk and µk rather than gk and fk as the
ENC parameters in the following discussion. Also note that
gk ∈ [0, 1] and fk ≥ 0. Thus, λk and µk satisfy the following
constraints:

0 ≤ λk ≤

{
2λ k = 0

λ 1 ≤ k ≤ K

µk ≥ λ

C. Delay and Packet-Loss

With the Markov chain model, we can investigate the
network layer performance of ENC, namely, delay and packet-
loss. We first present the stationary state probability of S(t) =
k, denoted by πk, k = 0, 1, · · · ,K, in the following theorem.
The proof of this theorem can be find in [9].

Theorem 4: The stationary state probability πk is given by

πk = π0

k−1∏
m=0

λm
µm+1

where

π0 = [1 +

K∑
k=1

k−1∏
m=0

(
λm
µm+1

]−1

We next present the average packet delay by the following
corollary, ignoring the potential lost packets.

Corollary 1: The average delay of ENC is given by

D =
1

2λ

K∑
k=0

kπk

Proof: Assume that at the time instance t = t0, there is
k packets in the queue. Let us consider the time a particular
packet will experience. Because ENC policy means no differ-
ence between two nodes, the probability that this k packets
has the same source origin as our last packet is 1

2 . Thus the
average length of the queue consisting of the packets from a
particular node can be obtained as

K̄ =
1

2

K∑
k=0

kπk

Recall that the average arriving time of a Poisson process is
λ, according to the Little’s law, (1) holds.
We can also characterize the packet-loss rate of ENC.

Corollary 2: The normalized packet-loss rate of ENC is
given by

ξ =
πKλK

2λ

Proof: As mentioned above, the packet loss of ENC re-
sults from a full queue. The buffer overflow event is equivalent
as follows:

Pr(S(t+ ∆t) > K) = Pr(S(t) = K)λK∆t

This is the buffer overflow probability for a single packet. We
should normalize it by dividing it with the total number of
packets that arrives at the relay in the time interval ∆t, i.e.
2λ∆t. Thus, the corollary is verified.

To avoid retransmission, packet dropping is not allowed in the
relay node. As a result, when the buffer is in state S(t) = K,
the relay must send a packet if it receives a packet from the
source whose packets are already in the queue. Thus, we have
gK = 1, or equivalently,

λK = 0

In particular, as shown in Section III-A, conventional wire-
less networking’s packet-loss rate cannot be 0 in general.
However, in some scenario, such as UDP, packet loss is
allowed. We will see that allowing ξ 6= 0 further reduce the
energy needed.

D. Energy Consumption

Having obtained the delay and packet-loss rate of ENC,
we now focus on its energy consumption. As described in
Section II, the relay transmits a packet under any of three
circumstances. Thus, we have the following theorem:

Theorem 5: Conditioned on the buffer state S(t) = k, the
energy consumption εk is a random variable satisfying

Pr(εk = ε|S(t) = k) =

{
−λ0 + 2λ k = 0

−λk + µk + λ 1 ≤ k ≤ K
(5)

Pr(εk = 0|S(t) = k) = 1− Pr(εk = ε|S(t) = k) (6)

where ε is the average energy for transmitting one packet.
Proof: For k = 0, the relay transmits with probability g0

when receiving packet from either source.

ε0 = ε lim
∆t→0

2(λ∆t)g0

∆t
= 2λg0ε = ε(−λ0 + 2λ)

For 1 ≤ k ≤ K, the relay transmits when (1) receiving
a packet from opposite source; (2) receiving a packet from
the same source whose packets are already in queue (with
probability gk); (3) receiving no packet and transmitting the
oldest packet in queue.

εk = ε lim
∆t→0

(λ∆t)(1+gk+(1−2λ∆t)(fk∆t)
∆t

= ε[λ(1 + gk + fk]
= ε(−λk + µk + λ)

Hence, (5) holds. (6) can then be verified by the probability
normalization
The average energy consumed in the relay node can be given
by the following theorem.

Theorem 6: With ENC, the average energy consumed in the
relay node can be given by

Eave = ε(λπ0 + λ− λKπK (7)

Proof: According to the definition of the average energy,

Eave =

K∑
k=0

εkπk (8)



Then by substituting (5) into (8), it follows that

Eave = ε[(−λ0 + 2λ)π0 +
K∑
k=1

(−λk + µk + λ)πk]

= ε[λπ0 + λ−
K−1∑
k=0

λkπk +
K∑
k=1

µkπk − λKπK ]

(9)
According to the character of stationary probability,

K−1∑
k=0

λkπk =

K∑
k=1

µkπk

Then by substituting (III-D) into (9), (7) holds.
For different physical layer designs, the transmission energy ε
can be different. And for different data rate, λ is different as
well. We notice that Eave is a linear function of ελ. To obtain
a unified result, we divide Eave with ελ

E =
Eave

ελ
= π0 + 1− 2ξ

We notice that when the packet-loss rate is 0 for ENC,
namely, ξ = 0, the normalized average energy can be further
simplified to be

E = π0 + 1

The normalized energy E represents the ratio of the actual
energy Eave to the average arriving rate λ and the average one-
time energy consumption ε. According to (4), the performance
of ENC is determined by the transition probabilities λk and
µk. A key problem for ENC is, therefore, how to choose λk
and µk to optimize the system performance in terms of delay
and energy.

IV. OPTIMAL DELAY-ENERGY TRADE-OFF

We have already related the performance of ENC, in terms
of average delay and energy consumption, to the transition
probabilities λk and µk, in Section III. In this section, we shall
address the fundamental problem of how can the average delay
of ENC be minimized given an average energy constraint. The
discussion is conducted in two parts - loss-free and non-loss-
free.

A. Loss-free Scenario

Let Ēmax denote the normalized energy constraint. In this
context, a deterministic optimization problem for minimizing
the packet delay, D, of ENC can be formulated as follows.

Problem 1: Minimize D = 1
2λ

K∑
k=0

kπk, subject to

π0 + 1 ≤ Ēmax

0 ≤ λk ≤

{
2λ k = 0

λ 1 ≤ k ≤ K
µk ≥ λ

πk = π0

k−1∏
m=0

λm

µm+1

π0 = [1 +
K∑
k=1

k−1∏
m=0

( λm

µm+1
]−1

Let D∗ denote the minimal delay determined by the
above problem. Intuitively, D∗ is a decreasing function of
Ēmax,which we shall denote as

D∗ = d∗(Ēmax

The function d∗(�) represents the optimal delay-energy
trade-off. In this paper, we are interested in both the for-
mulation of the trade-off function and how to achieve the
optimal trade-off. To do this, we convert Problem 1 into a
linear programming problem as described in the following
theorem.

Theorem 7: The optimization Problem 1 is equivalent to a
linear programming problem given by

Minimize D = 1
2λπ

∗
0

K∑
k=1

kρk, subject to



K∑
k=1

ρk = 1
π∗0
− 1

ρ1 ≤ 2

ρk+1 − ρk ≤ 0 1 ≤ k ≤ K − 1

ρk ≥ 0

where π∗0 is a constant defined by the following formula.

π∗0 =


0 Ēmax < 1

Ēmax − 1 1 ≤ Ēmax ≤ 2

1 Ēmax > 1

Proof: Let

ρk =

k−1∏
m=0

λm
µm+1

It is easily seen that ρk ≥ 0. Also, we have

ρ1 =
λ0

µ1
≤ 2

Since

ρk+1 =
λk
µk+1

ρk

We get ρk+1 − ρk ≤ 0.
Next, we note that the average delay is decreased with

the increase of the average energy. To achieve the maximum
energy allowed, we could make π0 to be

π0 = Ēmax − 1

At the same time, also note that π0 ≤ 1. Thus,

π∗0 =


0 Ēmax < 1

Ēmax − 1 1 ≤ Ēmax ≤ 2

1 Ēmax > 2

Then the above theorem follows.
Next, we present the analytical optimal solution to Theorem 7.



Theorem 8: The analytical optimal solution to Theorem 7
is given by

ρ∗k =


2 k ≤ k∗
1
π∗0
− 1− 2k∗ k = k∗ + 1

0 k > k∗ + 1

(10)

where
k∗ =

⌊
(

1

π∗0
− 1)/2

⌋
(11)

Proof: Note that the objective function is the weighted
summation of ρk with weight k. Subject to the given summa-
tion of ρk, one needs to minimize the ρk with a relatively larger
weight to minimize the weighted summation. As a result, there
exists a positive integer k∗, which satisfies

0 = ρ∗K = · · · = ρ∗k∗+2 ≤ ρ∗k∗+1 < ρ∗k∗ = · · · ρ∗1 = 2

According to the constraint, k∗ is the largest integer satisfying

2k∗ ≤ 1

π∗0
− 1

So the theorem holds.
Having solved the linear programming problem, we next
present the optimal delay-energy trade-off function as well as
the optimal ENC that can achieve that trade-off.

Theorem 9: The optimal ENC delay-energy trade-off func-
tion for loss-free transmission is

d ={
k∗+1

2λ [1− (Ēmax − 1)(k∗ + 1)] 1
1+2K + 1 ≤ Ēmax ≤ 2

0 Ēmax > 2
(12)

Proof: Notice that the maximum length of queue is K.
We have

K∑
k=1

ρk ≤ 2K

Thus,
Ēmax ≥ 1 +

1

1 + 2K
(13)

Otherwise, the feasible region is empty and hence there is
no solution. Next, we substitute (11), (10) into equations in
Theorem 7, the above theorem holds.
According to Theorem 7, we can also present the optimal
parameters for ENC.

Theorem 10: One group of optimal parameters for ENC
with maximal average energy Ēmax are given as follows:

λ∗k =


2λ k = 0

λ 1 ≤ k ≤ k∗

0 k∗ + 1 ≤ k ≤ K
(14)

µ∗k =

{
λ k 6= k∗ + 1

2λ
ρ∗
k∗+1

k = k∗ + 1
(15)

Proof: From (IV-A), (IV-A), and (10), we have λ∗0 = 2µ∗1,
and λ∗k = µ∗k+1 for k ≤ k∗. For k > k∗ + 1, ρ∗k = 0, thus

λ∗k−1 = 0 and µ∗k can be any positive value. We let µ∗k = λ for
convenience. Finally, note that ρ∗k∗ = 2, thus µ∗k∗+1 = 2λ

ρ∗
k∗+1

.

By substituting (14), (15) into (3), (4), we can obtain the
optimal probability of transmitting a packet without network
coding

g∗k =

{
0 k ≤ k∗

1 k∗ + 1 ≤ k ≤ K
(16)

f∗k =

{
2λ

ρ∗
k∗+1

− λ k = k∗ + 1

0 k 6= k∗ + 1
(17)

This is the analytical result of delay-energy trade-off curve
lower bound. ENC on this parameters could achieve the delay
lower bound given energy constraint.

B. Non-loss-free Scenario

In this subsection, the optimal delay function and ENC
parameters that satisfy the allowed normalized packet loss rate
ξ are presented. We assume that the packet-loss in ENC only
is only introduced by a full queue. Note that the delay in non-
loss-free scenario only represents the delay of the packets that
arrive at the destination successfully.

Theorem 11: The optimal delay-energy trade-off function
that achieve normalized packet loss rate ξ in a K-packet buffer
is

d =
K

2λ
[1− (Ēmax − 1 + 2ξ)K] (18)

where 1
1+2K + 1− 2ξ ≤ Ēmax ≤ 1

1+2K + 1.
Proof: Recall that in (13), we require that Ēmax ≥ 1 +

1
1+2K . However, this constraint is not always satisfied. (III-D)
implies that the normalized packet loss rate ξ can be view as
a virtual energy that lowers down the energy threshold from
1+ 1

1+2K to 1+ 1
1+2K −2ξ. Moreover, in this case, from (10),

ρK = 1
π0
−1−2(K−1) = 2. Thus, k∗+ 1 = K according to

(11). The optimal delay function can be applied to non-loss-
free scenario simply by replacing Ēmax with Ēmax + 2ξ in
(12) and replacing k∗ + 1 with K.
In the non-loss-free scenario, we are not interested system
performance in terms of delay and energy. We are more
interested in how to configure ENC’s parameters - especially
gk to achieve particular packet loss rate.

Theorem 12: The parameters of ENC that achieve normal-
ized packet loss rate ξ in a K-packet buffer with energy
constraint Ēmax = 1 + 1

1+2K − 2ξ is

gk =

{
1 0 ≤ k ≤ K − 1

1− (1 + 2K)ξ k = K

fk ≡ 0

Proof: According to (III-D),

π0 = Ēmax − 1 + ξ =
1

1 + 2K
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Fig. 6. Packet-loss Rate of ENC

As we already know in the proof to the last theorem, ρK =
2, we have πK = π0ρK = 2

1+2K . Recall the definition of
normalized packet loss rate,

πKλK = 2ξλ

By substitute (IV-B) into (3), the theorem holds.
Figure 6 shows the relationship between normalized packet
loss rate ξ and ENC parameter gK . We could see that gK
changes linearly against ξ. However, one can not save energy
in exchange of packet loss rate unlimitedly. It is because
the stationary probability of a full queue πK is not large
enough for introducing a packet loss rate of ξ. When ξ
exceeds 1

1+2K , i.e. the normalized energy constraint is less
than 1 − 1

1+2K , ENC can not achieve the minimal energy
constraint by enhancing allowed packet loss rate constraint.

V. NUMERICAL RESULTS

In this section, sample numerical results are presented to
demonstrate the potential of ENC and validate the theoretical
results of this work. We developed a event-driven simulator
with C++ based on Monte-Carlo method to verify our theo-
retical model.

A. Packet Loss Rate for Conventional Network Coding

In (12), if we let gK = 0, the ENC reduces to conventional
network coding. We are interested in acquiring the curve of
normalized packet-loss rate ξ against the buffer length K when
gK = 0. Figure 7 presents the theoretical curve of ξ = 1

1+2K
and simulation result in squares.

Again, we observe that with a finite buffer, conventional
network coding will result in inevitable packet loss, i.e. ξ 6= 0.
However, when conventional network coding scheme employs
a larger buffer, the packet loss rate will decreases.
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Fig. 7. Packet Loss Rate for Conventional Network Coding

B. Delay-Energy Trade-off for ENC

Assume that the maximal relay buffer space is K = 3. The
theoretical optimal delay-energy trade-off curve, as well as
the simulation results of the optimal trade-off achieving ENC
strategies, is presented.

We observe the delay and energy consumed while changing
f∗k and k∗. Figure 8 shows the theoretical and simulation
results for the optimal delay-energy trade-off. The theoretical
optimal trade-off curve is shown by the solid line. The
simulation results for the four optimal ENC strategies are
show by the squares in the three cases. It can be seen that
the simulation results fit on the theoretical curve perfectly.
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Fig. 8. Optimal Delay-energy Trade-off for ENC

From this result, we could see that
1) The optimal delay is a decreasing function of minimal

energy constraint. The curve consists K straight lines,
which indicates the delay is linear to the minimal energy
constraint.



2) In the simulation, notice the three special cases, where
the energy constraints are given by

Ēmaxm = 1 + 1
1+2m + δ m = 1, 2, 3

where δ → 0+. Recall that in (10), (16) and (17),

ρ∗k∗+1 =
1

π∗0
− 1− 2

⌊
(

1

π∗0
− 1)/2

⌋
∈ [0, 2]

When Ēmaxm is slightly larger than 1+ 1
1+2m , ρ∗k∗+1 = 2,

f∗k∗+1 = 0. So we have k∗+ 1 = m and f∗k ≡ 0 for any
k in this case. The optimal ENC strategy becomes quite
simple.

3) When the energy constraint is large, namely, Ēmax > 2,
the delay is zero. That means the relay transmits a packet
the time receiving it without storing. When the energy
constraint is small, the delay increases rapidly. When
Ēmax < 1 + 1

1+2K = 1 + 1
7 ≈ 1.143, the delay is

infinite, which indicates the given energy is not sufficient
for packet-loss free transmitting. Recall that in Sec-
tion III-A, we prove that conventional network coding
could not avoid packet loss in a finite buffer. Here we
can easily see that the conventional network coding has
the normalized energy constraint Ēmax = 1 < 1+ 1

1+2K
for any positive integer K.

VI. CONCLUSIONS

In this paper, we proposed a continuous-time opportunistic
network coding or ENC method in the continuous time do-
main, where the relay node can transmit either network-coded
or un-coded packets. We show that the conventional network
coding scheme on a finite buffer implies inevitable packet loss.
By using a Markov model, the packet delay, packet-loss rate,
and average energy consumption of ENC were presented for
general renewal process queuing and classical Poisson process
queuing. Given the delay and energy results, the performance
bound of ENC was proposed in terms of delay-energy trade-
off. We also presented an ENC strategy which can achieve
the optimal trade-off. Through simulations, the developed
theoretical results were validated. It was also demonstrated
that the proposed ENC can achieve lower delay compared to
conventional wireless network coding scheme.
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