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Abstract

A new approach for simulating flows over complex geometries is developed by
introducing an accurate virtual interpolation point scheme as well as a virtual
local stencil approach. The present method is based on the concept of point
collocation on a virtual staggered structure together with a fractional step
method. The use of a virtual staggered structure arrangement, which stores
all the variables at the same physical location and employs only one set of
nodes using virtual interpolation points, reduces the geometrical complexity.
The virtual staggered structure consists of the virtual interpolation points
and the virtual local stencil. Also, computational enhancement of the virtual
interpolation point method is considerable since the present method directly
discretizes the strong forms of the incompressible Navier-Stokes equations
without numerical integration. It makes a key difference from others. In the
virtual interpolation point method, the choice of an accurate interpolation
scheme satisfying the spatial approximation in the complex domain is im-
portant because there is the virtual staggered structure for computation of
the velocities and pressure since there is no explicit staggered structure for
stability. In our proposed method, the high order derivative approximations
for constructing node-wise difference equations are easily obtained. Several
different flow problems (decaying vortices, lid-driven cavity, triangular cav-
ity, flow over a circular cylinder and a bumpy cylinder) are simulated using
the virtual interpolation point method and the results agree very well with
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previous numerical and experimental results. They verify the accuracy of the
present method.

Keywords: virtual interpolation point; local stencil; staggered grid; moving
least-squares approximation; momentum interpolation method; projection
method; fractional step method; incompressible Navier-Stokes flow.

1. Introduction

The ability to handle complex geometries has been one of the main is-
sue in computational fluid schemes because most engineering problems have
complex geometries. So far, two kinds of grid arrangements to simulating
complex flow have been known: staggered grids and non-staggered grids.
For the staggered grids, vector components and scalar variables are stored
at different locations, while for the non-staggered grids, vector variables and
scalar variables are stored at the same locations, being half a control-volume
width apart in each coordinate. Staggered grid methods are popular be-
cause of their ability to prevent checkerboard pressure in the flow solution
as discussed in [1]. The main disadvantages of such an arrangement are the
geometrical complexity due to the boundary conditions, and the difficulty of
implementation to non-orthogonal curvilinear grids [2]. In the non-staggered
grid methods, the main disadvantages are the primitive variables and mass
conservation in order to solve the pressure field, either interpolation cell-face
velocities or interpolate the pressure gradients in a special way, usually with
an upwind-bias to avoid the checkerboard pressure fields in the flow solution.

Since most engineering problems posed on complex geometries with rough
boundary pervade many fields of research(see, Figure 10), it is rather diffi-
cult for the ordinary staggered grid method or non-staggered grid method to
compute the solution with numerical integration. For the purpose of numeri-
cal simplicity and efficiency, we introduce a virtual interpolation point(VIP)
method using a moving least-squares(MLS) approximation without numeri-
cal integration.

Indeed, we distribute the global nodes regularly and introduce the vir-
tual interpolation points on a local stencil(see, Figure 1). In the proposed
method, the high order derivative approximations for constructing node-wise
difference equations are easily obtained. Such capability allows us to get a
local stencil estimate of the flux derivatives and thus preserve all complicated
discontinuous behaviors of solutions. We emphasize that the mesh generation
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is unnecessary in our scheme and that we are convinced that our method is
more effective in higher dimensions such as three-dimensional problem with
a complex geometry.

Many researchers have been studying the meshfree method [3, 4, 5]. The
meshfree method bases on the MLS approximation. The meshfree is attrac-
tive because it requires no connectivity among nodes in constructing approx-
imation. Until now, however, they are prone to produce a false pressure
field-checkerboard pressure. The meshfree method for hyperbolic equations
has not yet been possible in literatures due to the lack of an innate dissi-
pation mechanism essential to suppress numerical oscillations by convective
terms in hyperbolic equations.

Recently, an upwind meshfree method using virtual local stencil approach
was presented by Park et al [6, 7, 8], who simulated the compressible flow
for the high voltage gas blast circuit breaker with the moving boundary.

1.1. The present contribution

The objective of the present study is to develop the VIP method that
introduce both the virtual interpolation point and the virtual local sten-
cil to represent properly on complex geometries. The present method is
based on the MLS approach on a virtual staggered structure together with a
fraction-step method. The virtual staggered structure consists of the virtual
interpolation points and the virtual local stencil. It makes a key difference
from others. In this implementation, the set of nodes for computation can be
distributed arbitrarily in principle and hence the proposed method is applied
to the flow problems on complex geometry.

The virtual local stencil(as in Park et al [6]) and the virtual interpolation
points are applied only on the virtual staggered structure. A second-order
accurate interpolation scheme for evaluating the virtual interpolation point is
proposed in this study, which is numerically stable irrespective of the relative
position between the virtual local stencil and the virtual staggered structure.
It will be also shown that introduction of the virtual interpolation point is
necessary to obtain physical solutions and enhance accuracy.

In the VIP method, the high order derivative approximations for con-
structing node-wise difference equations are easily obtained(see, Figure 2).
Also, computational enhancement is considerable since the present method
directly discretizes the strong forms of incompressible Navier-Stokes equa-
tions without numerical integration.
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The focus of this paper is laid on the contribution to a stable flow compu-
tation without explicit structure of staggered grid. In our method, we don’t
have to explicitly construct the staggered grid at all. Instead, there exists
only virtual interpolation point at each computational node, which plays a
key role in discretizing the conservative quantities of the incompressible flow.
In fact, it can be regarded as an imaginary staggered structure, accordingly.
Particularly in our method, one set of nodes distributed on the flow domain
is needed due to the virtual interpolation point.

We emphasize that the mesh and grid generation are unnecessary in our
scheme and that we are convinced that our method is more effective in higher
dimensions such three-dimensional problem with a complex geometry.

The reminder of the paper is organized as follows: Sections 2 and 3
present the time integration and the spatial approximation. In section 4, we
propose the stable second-order VIP method for solving the incompressible
Navier-Stokes equation. Various numerical results are presented to show
the accuracy, efficiency, stability, and robustness and superiority of proposed
scheme in Section 5. In Section 6, conclusions are drawn.

2. Governing Equations and Time Integration

The use of a virtual staggered structure arrangement, which stores all the
variables at the same physical location and employs only one set of nodes
using virtual interpolation points(see, Figure 1), reduces the geometrical com-
plexity. In the present study, the VIP scheme, as in Park et al. [6, 7, 8] is
applied to satisfy the continuity for the local stencil in complex domains.

The incompressible Navier-Stokes flows are represented with the following
governing equations,

ut +∇ ·
(

uuT
)

+∇p−
1

Re
∇2u = 0 on Ω, (1)

∇ · u = 0 on Ω, (2)

where u and p are the velocity components and pressure of the flow. All
the variables are nondimensionalized by the characteristic velocity and length
scales, and Re is the Reynolds number.

The time integration method used to solve Eqs.(1) and (2) is based on a
fractional step method where a pseudo-pressure is used to correct the velocity
field so that the continuity equation is satisfied at each computational time
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step. In this study, we use a second-order semi-implicit time advancement
scheme (a second-order Adams-Bashforth for the convection terms and a
second-order Crank-Nicolson method for the diffusion terms)

Au⋆ = rn, (3)

∆φn+1 =
1

△t
∇ · u⋆, (4)

un+1 = u⋆ − (△t)∇φn+1, (5)

pn+1 = pn + φn+1 −
△t

2Re
∆φn+1, (6)

where

A =
1

△t

(

I−
△t

2Re
∆

)

,

rn =
1

△t

(

I+
△t

2Re
∆

)

un −
[

∇ ·
(

uuT
)]n+ 1

2 ,

u⋆ is the intermediate velocity, and φ is the pseudo-pressure. Also, △t
and I are the computational time step and the identity operator.

In the present study, the VIP method is applied to Cartesian coordinate.
The time-integration method is based on the method of Kim and Moin [9]
to enhance computational efficiency.

3. Moving Least-Squares Approximation

For spatial approximation of solutions, the MLS approximation in the
literature [3] is employed. We briefly explain the MLS approximation.

For simplicity, we just consider 2-dimensional space and take m = 2
but it can be extended to n-dimension. Multi-index notations are adapted
throughout the paper

x = (x, y) and ∂(α,β)
x

= ∂α
x∂

β
y ,
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where α and β are non-negative integers. For a continuous function u(x) we
can approximate this function at a point x̄ = (x̄, ȳ) in terms of polynomials
up to some order dependently on a neighborhood of x̄, which is found by
Weierstass.

Let um(x, x̄) be a polynomial up to degree m which depends on the point
x̄. Then for some coefficient vectors c, it can be assumed that

um(x, x̄) = c1(x̄) +

(

x− x̄

ρ(x̄)

)

c2(x̄) +

(

y − ȳ

ρ(x̄)

)

c3(x̄)

+

(

x− x̄

ρ(x̄)

)2

c4(x̄) +

(

x− x̄

ρ(x̄)

)(

y − ȳ

ρ(x̄)

)

c5(x̄) +

(

y − ȳ

ρ(x̄)

)2

c6(x̄).

The dilation function ρ(x̄) can be regarded as the size of a neighborhood at
x̄ for approximation.

In order to find the best approximation um(x, x̄) with the coefficient c(x̄),
we define the locally weighted square functional of the form on a given set of
nodes, Λ = {xi ∈ Ω̄|i = 1, 2, · · · , N}.

J(c(x̄)) =
N
∑

i=1

Φ

(

x− x̄

ρ(x̄)

)

|um(xi, x̄)− u(xi)|
2

where the weight function is taken as the following form,

Φ (y) =

{
(

1− ‖y‖(1−‖y‖)2
)4

, if ‖y‖ < 1

0 , otherwise.

Minimizing the functional J , the local approximation um(x, x̄) is deter-
mined with coefficient c(x̄). In fact, it is the best approximation, partially
near x̄. Moreover, um is a polynomial is x, so that we can differentiate it
as many times as we want. It is also natural that the derivative of um(x, x̄)
w.r.t. x are good approximate of derivatives. Therefore, we pay our attention
to the values of um(x, x̄) and its derivatives at x̄. This observation produces
the following approximates,

(

D[α,β]u
)

(x̄) ≡ lim
x→x̄

∂(α,β)
x

um(x, x̄).
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Following the above procedure, we finally have the representation formula
for approximated derivatives,

(

D[α,β]u
)

(x̄) =

N
∑

i=1

u(xi)Ψ
[α,β]
i (x̄), (7)

in which we call Ψ
[α,β]
i (x̄) the [α, β]-th approximative of a shape function at

x̄i. For detailed description, see the reference [3].

4. Implementation using Virtual Interpolation Point

Using the conventional MLS approximations only, we have empirically
experienced that the fractional step method becomes unstable. This is why
we elaborate the VIP scheme on a virtual local stencil for stability.

The VIP method is developed for the solution of computational fluid
dynamics problems that does not require the use of staggered grid systems.
This implementation of this scheme is performed on only one set of nodes
for both velocities and pressure. It makes a key difference from others. In
this implementation, the set of nodes for computation can be distributed
arbitrarily in principle and hence the proposed method can be applied to the
flow problems on complicated geometry.

4.1. Numerical Flux using the VIPs on a Local Stencil

The key idea of VIP scheme is that conservative variables are obtained by
the conventional MLS approximation at the auxiliary virtual interpolation
points, which are not necessary nodes. In the present method, the choice of
an accurate interpolation scheme satisfying the spatial approximation in the
complex domain is important because there is the virtual staggered struc-
ture for computation of the velocities and pressure but there is no explicit
staggered structure for stability. In the proposed method, the high order
derivative approximations for constructing node-wise difference equations are
easily obtained.

We first introduce the approximations of the identity and Laplacian op-
erators,

I = D[0,0] and ∆ = D[2,0] +D[0,2], (8)
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using the MLS approximations in (7). The Laplacians in (3), (4),and (6)
are all replaced with the operator in (8). In addition, every variable without
differential operators is approximated through the identity operator.
[

∇ ·
(

uuT
)]n+1/2

is the non-linear convection term at node x. Implicitly
handling viscous term eliminates the numerical instability due to the CFL

restriction. The term
[

∇ ·
(

uuT
)]n+1/2

is approximated in a second-order
temporal approximation for the convective derivative term at time level tn+1/2

which is usually called Adams-Bashforth,

[

∇ ·
(

uuT
)]n+1/2

=
1

2

[

3∇ ·
(

un (un)T
)

−∇ ·
(

un−1
(

un−1
)T
)]

+O(∆t2).

Second, instead of directly applying the derivative approximations in MLS
approximation to the convective terms, we simply take the direct difference
for implementing the divergence operator as in the finite difference method.
Let xe,xw,xs, and xn denote east, west, south, and north points from the
node xi on the local stencil in Fig. 1. We call these points the virtual in-
terpolation points of xi. When xi is far away from the boundary, it is not
difficult to choose the virtual interpolation points around xi. However, tech-
nical problem can happen in case where the node xi is close to the boundary
of the computational domain.

Node

Virtual Staggered Sturcture

Virtual Local Stencil

Virtual Interpolation Points

xi xexw

xn

xs

Figure 1: Schematic diagram for virtual interpolation points on the local stencil at a node
xi ∈ Λ.

Three conservative terms under consideration are, ∇ ·
(

uuT
)

appearing
in rn in (3), ∇ · u in (4), and, ∇φ in (5). At each interior node xi ∈ Ω ∩ Λ,
the following discretizations are used for the local conservation over a local
stencil consisting to the virtual interpolation points at node xi ∈ Ω ∩ Λ;
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1. Convection Term using the VIPs on the Virtual Local Stencils

∇ ·
(

uuT
)

∣

∣

∣

∣

xi

≈

(

u2(xe)−u2(xw)
‖xe−xw‖

+ u(xn) v(xn)−u(xs) v(xs)
‖xn−xs‖

u(xe) v(xe)−u(xw) v(xw)
‖xe−xw‖

+ v2(xn)−v2(xs)
‖xn−xs‖

)

,

where

u(x
vip
) =

N
∑

i=1

Ψ
[0,0]
i (x

vip
)ui, vip = e, w, n, s,

2. Divergence Term using the VIPs on the Virtual Local Stencils

∇ · (u⋆)

∣

∣

∣

∣

xi

≈
u⋆(xe)−u⋆(xw)

‖xe−xw‖
+ v⋆(xn)−v⋆(xs)

‖xn−xs‖
,

where

u⋆(x
vip
) =

N
∑

i=1

Ψ
[0,0]
i (x

vip
)u⋆

i , vip = e, w, n, s,

3. Gradient Term using the VIPs on the Virtual Local Stencils

∇φ

∣

∣

∣

∣

xi

≈

(

φ(xe)−φ(xw)
‖xe−xw‖

φ(xn)−φ(xs)
‖xn−xs‖

)

,

where

φ(x
vip
) =

N
∑

i=1

Ψ
[0,0]
i (x

vip
)φi, vip = e, w, n, s.
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Figure 2: 2D α-th shape functions with quadratic basis

5. Numerical experiments

In this section, several different flow problems (Decaying vortices, lid-
driven cavity flow, triangular cavity flow, flow over a circular cylinder and a
bumpy circular cylinder) are simulated using the VIP method proposed in
this study and the results agree very well previous numerical and experimen-
tal results, verifying the accuracy of the present method.

5.1. Taylor decaying vortices

The temporal and spatial accuracy of the VIP method is verified by sim-
ulating the two-dimensional unsteady flows such as

u(x, y, t) = − cosx sin ye−2t,

v(x, y, t) = sin x cos ye−2t,

p(x, y, t) = −
1

4
[cos 2x+ cos y] e−4t.

We consider the Taylor decaying vortices on the domain Ω = (0, π)× (0, π),
which is discretized with regular nodes.
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As shown in the Fig. 3, we have obtained the convergence results of O(h2)
and O(∆t2) for the temporal and spatial on uniform nodes, respectively.

h10-3 10-2 10-1 100
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Maximum error of velocity
L2 error of velocity
Maximum error of pressure
L2 error of pressure
h2

(a) ∆t = 10−4.

∆t10-3 10-2 10-1 100
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Maximum error of velocity
L2 error of velocity
Maximum error of pressure
L2 error of pressure
∆ t2

(b) h = π/320.

Figure 3: Error convergence plots of Taylor decaying vortex: (a) Spatial of the VIP method
evaluated using the unsteady Navier-Stokes Taylor vortex analytical solution at t = 0.1;
(b) Temporal accuracy of the VIP method evaluated using the unsteady Navier-Stokes
Taylor vortex analytical solution at t = 1.0.

5.2. Lid-driven cavity flow

This classical problem has become a standard benchmark for assessing
the performance of algorithms for the incompressible Navier-Stokes equa-
tions. For a typical example of the interior flow with corner singularity, many
researchers have extensively studied the square cavity flow on a unit square
domain to access the accuracy of the numerical solution. The u-velocity on
the vertical center line x = 0.5 and the v-velocity on the horizontal center line
y = 0.5 are given in Fig. 4d. For each sectional velocity, typical regular(see,
Figures 4a - 4c) distributed nodes are, respectively, employed for comparison
purpose. It is shown that all the results obtained from the VIP method are
in good agreement with the data by Giha et al. [10] which ha been a widely
accepted reference for the validation.
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(a) 22,925 nodes (b) 12,048 nodes

(c) 7,897 nodes

u(0.5,y)

x

y

v(
x,

0.
5)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

-0.4

-0.2

0

0.2

0.4

Ghia
Present (a)
Present (b)
Present (c)

Re=1,000

(d)

Figure 4: Cavity flow: (a), (b), and (c) are various regular distributed nodes(a-c); (d)
velocity profiles along middle sections for the various regular nodes of the square cavity
problem Re=1000.

5.3. Triangular cavity flow

The two-dimensional steady incompressible flow inside a triangular driven
cavity is also an interesting subject like the square driven cavity flow. This
flow was studied analytically by Moffatt [11] in the Stokes regime. Moffatt
showed that the intensities of eddies and the distance of eddy centers from
the corner, follow a geometric sequence.

We apply the VIP method to this Moffatt eddy simulation for the flow
in a wedge-shaped domain(see, Figure 5). In the velocity profile, the points
where the u-velocity has local maximum correspond to the u-velocity at the
dividing streamline between the eddies, where Moffatt have used these ve-
locities as a measure of the intensity of consecutive eddies. Table 1 and 2
tabulate the calculated ratios of rn/rn+1 and In/In+1 for isosceles triangle
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with θ = 28.072◦ along with analytical predictions of Moffatt and the agree-
ment is good. The contour lines for u-velocity, v-velocity, pressure, stream
function, and vorticity are shown in Fig. 6 where the sequence of eddies is
well presented. The changing signs of the velocity components are properly
illustrated toward the vertex of the wedge, which causes the small eddies.

r1/r2 r2/r3 r3/r4 r4/r5 r5/r6

VIP method(400× 800/2) 1.99 2.01 2.01 2.00 1.96
Moffatt [11] rn/rn+1 = 2.01

Table 1: Relative eddy center locations rn/rn+1 for isosceles triangle with θ = 28.072◦

I1/I2 I2/I3 I3/I4 I4/I5 I5/I6

VIP method(400× 800/2) 385.7 406.0 402.3 388.1 380.9
Moffatt [11] In/In+1 = 407

Table 2: Relative eddy center intensities In/In+1 for isosceles triangle with θ = 28.072◦

(a) (b)

Figure 5: Isosceles triangle cavity flow with θ = 28.072◦ : (a) Problem description; (b)
regular distributed nodes.
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(a) (b) (c) (d) (e)

Figure 6: Moffatt eddies toward the vertex of an isosceles triangle with θ = 28.072◦ : (a)
u-velocity; (b) v-velocity; (c) pressure; (d) stream function; (e) vorticity.

5.4. Flow past a circular cylinder: Steady and Unsteady

Flow past a circular cylinder is one of the classical problems of fluid
mechanics. For lower value of Reynolds number, the flow is steady and
symmetric. And as the Reynolds number is increased, the flow past a circular
cylinder is a problem unsteady in nature and, therefore, good numerical
accuracy is required in order to capture the different phenomena present in
the evolving solution.

To validate the VIP scheme, the numerical simulation of the steady and
unsteady flows past a circular cylinder is carried out. In the problem under
investigation, depicted in Fig. 7 along with the computational domain and
the distributed nodes. The Reynolds number in the this flow is defined as
Re = u∞D/ν where D is the diameter of the cylinder. We impose u = 1
and v = 0 for inlet, and traction free condition, (tx, ty) = 0 for outlet, and
v = 0 and tx = 0 for top and bottom boundary. The traction vector t is
defined by t = −pn+ ν∂u/∂n with n denoting the outward normal. At low
Reynolds numbers, the flow develops two symmetric wakes past the cylinder.
This solution becomes unstable for Reynolds numbers over 40, and periodic
vortex shedding appears. These vortices are transported by the flow, creating
what is known in the literature as Von Karman vortex street.

Figure 8 shows the spanwise vorticity contours for Re = 40 and Re =
100. Table 3 and Figure 9 show the results of simulations together with the
previous numerical results of Takami et al. [12] and H. Ding [13], where CD

is the drag coefficient(time-averaged value in case of Re=100) and C ′
L is the

amplitude of lift-coefficient fluctuations (maximum deviation from the time-
averaged value) at Re=100. The Strouhal number (St = fd/u∞) is also in
excellent agreement with numerical results(see, Table 3 and Figure 9).
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Re CD C
′

L St

VIP method 40 1.536
100 1.328 ± 0.31 0.164

Takami et al. [12] 40 1.536
H. Ding [13] 100 1.325 ± 0.28 0.164

Table 3: Simulation results for flow over a circular cylinder.

(a) (b)

Figure 7: Flow past a circular cylinder : (a) Problem description; (b) regular distributed
nodes and close-up of the central block containing the cylinder.

(a) (b)

Figure 8: Spanwise vorticity contours near a circular cylinder : (a) Re = 40; (b) Re =
100, instantaneous vorticity contours are drawn.
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Figure 9: Results of flow past a circular cylinder with Re = 100: (a) Temporal evolution
of lift coefficient and drag coefficient; (b) Normalized power spectral density (PSD) for
lift coefficient. The Strouhal number (St) is indicated by the summit of the curve (St =
0.164)).

5.5. Flow past a bumpy circular cylinder

Analytic solutions are rarely available, and conventional numerical com-
putations are usually out of reach since the rapidly varying wrinkles and the
domain have different length scales. The traditional remedy is to pose spe-
cial boundary conditions on a mollified domain to capture the geometrical
influence of the wrinkles. The development of such conditions is cumbersome
in general, and modeling error estimates can be out of reach.

Nevertheless, many problems involving oscillating boundaries or inter-
faces arise in many fields of physics and engineering sciences, such as the
scattering of acoustic waves on small periodic obstacles, the free vibrations
of strongly nonhomogeneous elastic bodies, the behavior of fluids over rough
walls.

Interesting example in the fluid mechanics is the flow field around golf
balls, in which the wrinkles associated to the curvature decrease the gap
between the air-pressure behind and in front of the ball.

As depicted below, we represent the surface by a bumpy circle x(θ) of
which the radial deviation is introduced by the following sinusoidal curves:

x(θ) = r [1 + γ cos(mbθ)] (cos θ, sin θ),

where r is a dimensionless average radius of the bumpy circle, γ denotes the
amplitude ratio of a bump, and mb is the total number of bumps along the
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circumference. r=0.5, γ=0.1 and mb = 10, 20, 30, · · · , 90, 100 are used in our
simulations(see, Figure 10). The present method never employs any meshes,
grids, or even integration cells, i.e., being entirely free from connectivity data.
Thus it has an advantage over other numerical methods that are based on
subdivisions in modelling this complex geometry of bumpy circular cylinder,
as can be noticed from (b) in Fig. 11. Stepwise adaptive node distribution is
also employed similarly as introduced in the previous example of flow around
a circular cylinder. For all cases, we use a fixed value of Re = 40. Stepwise
adaptive node distribution is also employed similarly as introduced in the
previous example of flow around a circular cylinder.

The aim of this example is to investigate the correlation between the
drag coefficient and the shape of bumpy circles. With the increase of bumpy
numbers, mb, we calculate the drag coefficients given by

CD =
FD

U2R
,

where FD is the drag force, U is the characteristic velocity (U=1), and the
maximum radius R is the characteristic length(R=0.55).

Drag reduction via altering the no-slip condition, often achieved through
microgeometries or micro-patterning which trap the fluid, is a topic that has
received attention over the years. This reduction, known as the roller bearing
effect, is due to the formation of embedded vortices within the bumps(or
triangular cavities).

Several interesting trends are found in our results. First of all, the changes
of drag coefficients are noticeable as the number of bumps increases. Drag
data was then compared to that obtained over a regular smooth circular
cylinder. The result of drag coefficients(CD) are presented in Fig. 15(a). The
coefficient of total drag increases until mb reaches 30. Then, after mb=30,
the total drag coefficient decreases back. Exceeding mb = 100, the coefficient
becomes far less than the reference value that is the case of the regular smooth
circle of the radius R and is plotted on the vertical axis in the figure. Results
show that for mb > 30 an appreciable drag reduction of greater than 7.9% is
obtained.

We also show the dependence of form drag and viscous drag on the bump
number in Fig. 15(b). It is as well of interesting note that the viscous drag
coefficient decreases as the number of bumps increases. It keeps decreasing
down to less than 80% lesser value than that of the regular circle (mb = 0).
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The flow pattern is illustrated in Figs. 12, 13, and 14 for the cases of mb

= 10, 30, 50, 70, 90, 100. In figure. 12, the lines do not depict equal intervals,
which is intended to visualize the weak eddies arising between bumps. These
eddies may implicate the energy transfer from flow and, as a result, the drag
on the body. In order to further convince ourselves, we show the values of
pressure(Cp) profiles along the surfaces are given in Fig. 16 for three different
numbers of bumps, mb =10, 30, and 100. The pressure profiles vary up and
down along the circumference, being consistent with the each bumpy shape
considered.

The bumpy circular cylinders are able to reduce the total drag in a vis-
cous flow via an embedded vortex inside of the bumps that imposes a slip
condition, versus a no-slip condition, where the bottom wall in a viscous flow
would normally be. Increased aspect ratio and reduced gap height lead to
better drag reduction potential at Reynolds number,Re =40.
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(b) mb = 10. (c) mb = 20. (d) mb = 30.

(e) mb = 40. (f) mb = 50. (g) mb = 60.
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(k) mb = 100.

Figure 10: The numerical setting for flow past various bump cylinders: (a) the compu-
tational domain with the external dimension of (−8, 30) × (−16, 16); (b)-(k) are various
shape of bumpy circles.
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(a)

(b) mb = 100

Figure 11: The numerical feather for flow past a bumpy cylinder(mb=100): (a) the node
distribution(236, 604 nodes) of the full domain for the computations of the external flow;
(b) the close up and the zoom-in views of the bumpy circle and the radial stepwise uniform
node distribution with the radius of R=0.55
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(a) mb = 10 (b) mb = 30

(c) mb = 50 (d) mb = 70

(e) mb = 90 (f) mb = 100

Figure 12: Flow pattern around various bumpy circular cylinders with Re = 40. The
stream function contours around the body for six different numbers of bumps, mb = 10,
30, 50, 70, 90, and 100.
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(a) mb = 10 (b) mb = 30

(c) mb = 50 (d) mb = 70

(e) mb = 90 (f) mb = 100

Figure 13: Flow pattern around various bumpy circular cylinders with Re = 40. The
pressure contours around the body for six different numbers of bumps, mb = 10, 30, 50,
70, 90, and 100.
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(a) mb = 10 (b) mb = 30

(c) mb = 50 (d) mb = 70

(e) mb = 90 (f) mb = 100

Figure 14: Flow pattern around various bumpy circular cylinders with Re = 40. The
vorticity contours around the body for six different numbers of bumps, mb = 10, 30, 50,
70, 90, and 100.
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Figure 15: Dependence of drag coefficients on the number of bumps with Re = 40: (a)
total Drag; (b) viscous drag and form drag. Three values on the vertical axis are the drag
coefficients calculated in the reference case where the regular smooth circle of the radius
R = 0.55 is employed.
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6. Conclusion

In this study, a new VIP method is presented by introducing the accurate
virtual interpolation point scheme as well as the virtual local stencil approach.
The present method is based on the concept of point collocation on a virtual
staggered structure together with a fractional step method.

The virtual staggered structure consists of the virtual interpolation points
and the virtual local stencil. The use of the virtual staggered structure
arrangement, which stores all the variables at the same physical location and
employs only one set of nodes using virtual interpolation points, reduces the
numerical difficulty is caused by geometrical complexity.

In the VIP method, the choice of an accurate interpolation scheme satis-
fying the spatial approximation in the complex domain is important because
there is the virtual staggered structure for computation of the velocities and
pressure since there is no explicit staggered structure for stability. In our
proposed method, the high order derivative approximations for constructing
node-wise difference equations are easily obtained.

Several different flow problems (decaying vortices, lid-driven cavity, tri-
angular cavity, flow over a circular cylinder and a bumpy cylinder) are sim-
ulated using the virtual interpolation point method proposed in this study.
The simulation results with both the the accurate virtual interpolation point
scheme and the virtual local stencil approach agree very well with the previ-
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ous numerical and experimental results, indicating the validity and accuracy
of the present VIP method.
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