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UNIFORM BOUNDS FOR STRONGLY F -REGULAR

SURFACES

PAOLO CASCINI, YOSHINORI GONGYO, AND KARL SCHWEDE

Abstract. We show that if (X,B) is a two dimensional Kawamata log
terminal pair defined over an algebraically closed field of characteristic
p, and p is sufficiently large, depending only on the coefficients of B,
then (X,B) is also strongly F -regular.

1. Introduction

It has been well understood for a long time that in the study of birational
geometry over the complex field, it is convenient to work with log pairs
with mild singularities, such as Kawamata log terminal singularities. On
the other hand, in the study of birational geometry in positive characteris-
tic, it is not clear what the right category of singularities is. On one side,
Kawamata log terminal singularities are the right singularities because they
are preserved by the minimal model program, on the other hand, strongly
F -regular singularities, which are defined via the Frobenius morphism, are
important because they allow to extend many results known over the com-
plex field to algebraically closed field of positive characteristic.

The aim of this paper is to study the relationship within these two cat-
egories of singularities in dimension two. In a sequence of papers, Hara-
Watanabe [HW02], Hara-Yoshida [HY03], and Takagi [Tak04] proved that
if (X,B) is a log pair defined over the complex numbers, then (X,B) is
Kawamata log terminal if and only if its reduction modulo p is strongly
F -regular, for any sufficiently large p. In addition, any strongly F -regular
pair is always Kawamata log terminal. On the other hand, even in the case
of surfaces, it is possible to show the existence of Kawamata log terminal
pairs which are not strongly F -regular (e.g. see Example 3.4 for a sequence
of examples in any characteristic).

Here we prove that if (X,B) is a two dimensional Kawamata log terminal
pair defined over an algebraically closed field of characteristic p, and p is
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sufficiently large, depending on the coefficients of B, then (X,B) is also
strongly F -regular.

More specifically, our main theorem is the following:

Theorem 1.1. Let I ⊆ (0, 1) ∩ Q be a finite subset and let Γ = D(I) (cf.
Definition 2.1).

Then there exists a positive constant p0 depending only on I such that

if (X,B :=
∑ℓ

i=1 qiDi) is a two dimensional Kawamata log terminal pair
defined over an algebraically closed field of characteristic p > p0 and such
that the coefficients of B belong to Γ, then (X,B) is strongly F -regular.

Note that in the absolute case, i.e. assuming that B = 0, then the result
follows from [Har98], with p0 = 5. For an arbitrary finite set I, it is possible
to find p0 effectively, using the bound of Corollary 3.9, although this bound
is not sharp.

Thanks to the work of Hacon and Xu [HX13], we are able to show the
existence of dlt flips, if the characteristic of the underlying field is sufficiently
large:

Theorem 1.2. Let I ⊆ (0, 1] be a finite set. Then there exists a prime pI ,
depending only on I, such that if (X,B) is a three dimensional dlt pair over
an algebraically closed field of characteristic p > pI , such that the coefficients
of B belong to I, and f : X −→ Y is a (X,B)-flipping contraction, then the
flips exists.

Recently Birkar [Bir13] has proven a stronger version of the result above,
by showing that dlt flips always exists over any algebraically closed field of
characteristic pI > 5, by using different methods than ours.

The paper is organised as follows: In Section 2, we introduce the tools
used in the rest of the paper. In Section 3, we prove Theorem 1.1 in the
special case X = A2 and where B is a line arrangement. By a standard cone
construction, this allows us to show that if (P1, B) is a log Fano pair defined
over a field of characteristic p and p is sufficiently large, depending on the
coefficients of B, then (P1, B) is globally F -regular. Thus, by using a global
to local method, this leads to a proof of Theorem 1.1 in the general case, as
in Section 4. Finally, in Section 5, we prove Theorem 1.2.

Acknowledgement. We would like to thank H. Tanaka and Y. Prokhorov
for many useful discussions. We would also like to thank the referee for
carefully reading the paper and for many helful suggestions.

2. Preliminary results

We work over an algebraically closed field k of positive characteristic p,
unless otherwise stated.

We refer to [KM98] for the classical definitions of singularities appearing
in the minimal model program (e.g. Kawamata log terminal pairs), except
for the fact that in our definitions we require the pairs to have effective
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boundaries. Given a log pair (X,∆) and a geometric valuation E over X,
we denote by a(E,X,∆) the log discrepancy of (X,∆) with respect to E.
We say that a pair (X,∆) is log Fano if it is Kawamata log terminal and
−(KX +∆) is ample.

We refer to [SS10] for the classical definition of singularities in positive
characteristic (see also Definition 2.4 and Definition 2.7).

Given a subset I ⊆ [0, 1], we will say that I is ACC (respectively DCC) if
it satisfies the ascending chain condition (respectively the descending chain
condition).

Definition 2.1 (Hyperstandard set). Let I ⊆ [0, 1] be a subset. We define:

I+ = {
m
∑

j=1

ajij | ij ∈ I, aj ∈ N for j = 1, . . . ,m} ∩ [0, 1],

and

D(I) = {
m− 1 + f

m
| m ∈ N, f ∈ I+} ∩ [0, 1].

The following results are well known:

Lemma 2.2. [MP04, Lemma 4.4] Let I ⊆ [0, 1] be a subset. Then

D(D(I)) = D(I) ∪ {1}

and I is DCC if and only if D(I) is DCC.

Lemma 2.3. [MP04, Lemma 4.3] Let (X,∆) be a log canonical pair such
that the components of ∆ belong to a subset I ⊆ [0, 1], and let S be an irre-
ducible component of ⌊∆⌋. Let Θ be the divisor on S defined by adjunction:

(KX +∆)|S = KS +Θ.

Then, the coefficients of Θ belong to D(I).

2.1. Some remarks on F -pure thresholds. Suppose that D ≥ 0 is a di-
visor on a normal integral affine scheme X = SpecR. We begin by recalling
the definition of sharp F -purity and the F -pure threshold

Definition 2.4 (Sharp F -purity and strong F -regularity). For any real
number λ ≥ 0, we say that (X,λD) is sharply F -pure if for some e > 0
there exists

φ ∈ HomOX

(

F e
∗ (OX(⌈(pe − 1)λD⌉)),OX )

such that φ(F e
∗OX) = OX .

We say that (X,λD) is strongly F -regular if for every effective Weil divisor
E ≥ 0 there exists e > 0 and

φ ∈ HomOX

(

F e
∗ (OX(⌈(pe − 1)λD + E⌉)),OX )

such that φ(F e
∗OX) = OX .
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Remark 2.5. In the above definition of sharp F -purity, if a single e > 0
yields a φ, then all multiples ne of that e > 0 also yield elements

φn ∈ HomOX

(

Fne
∗ (OX(⌈(pne − 1)λD⌉)),OX )

such that φn(Fne
∗ OX) = OX .

Definition 2.6 (F -pure threshold). With (X,D) as above, the F -pure
threshold of (X,D), denoted fpt(X,D), is defined to be

sup
{

t > 0 | (X, tD) is sharply F -pure
}

.

In the case that X is Q-Gorenstein and D is Q-Cartier, it can be shown that
fpt(X,D) is a rational number [STZ12].

2.2. Globally F -regular pairs. We now recall the definition of globally
F -regular pairs:

Definition 2.7 (Global F -regularity). [HX13, SS10, Smi00] Let f : X −→ Y
be a proper morphism of normal varieties and let ∆ ≥ 0 be a Q-divisor on
X. Then (X,∆) is globally F -regular over Y if for any effective divisor D,
there exists a positive integer e such that

OX −→ OX(⌈(pe − 1)∆⌉+D)

splits locally over Y .

Remark 2.8. Using the same notation as Definition 2.7, if Y is affine then
(X,∆) is globally F -regular over Y if and only if for any effective divisor D,
there exists a positive integer e such that the natural map

H0(X,OX (⌊(1 − pe)(KX +∆)⌋ −D) −→ H0(X,OX )

is surjective [HX13, Proposition 2.10].

Let X be a normal projective variety and let L be an ample divisor on
X. We denote by R(X,L) =

⊕

m∈Z H
0(X,OX (mL)) the section ring of L.

The corresponding affine cone over X is given by

W = SpecR(X,L).

For each effective Q-divisor ∆ on X, we denote by ∆W the associated Q-
divisor on W (e.g. see [Kol13, §3.1] for more details).

Proposition 2.9. Let X be a normal variety, ∆ ≥ 0 a Q-divisor on X and
L an ample divisor. Let W be the affine cone over X associated to L and
let ∆W be the corresponding Q-divisor.

Then KW + ∆W is Q-Cartier if and only if r(KX + ∆) ∼Q L for some
rational number r ∈ Q. In this case:

(1) (X,∆) is log Fano if and only if (W,∆W ) is Kawamata log terminal.
(2) (X,∆) is globally F -regular if and only if (W,∆W ) is strongly F -

regular (in fact, this holds even without the Q-Cartier assumption).

Proof. (1) is well known (e.g. see [Kol13, Lemma 3.1]). (2) follows from
[SS10, Proposition 5.3] �
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Lemma 2.10. Let (X,∆) be a sharply F -pure pair and let C be an effective
divisor such that (X,∆) is strongly F -regular outside the support of C and
(X,∆ + εC) is sharply F -pure for some ε > 0. Then (X,∆) is strongly
F -regular.

Proof. We may assume that X is affine. Thus, the claim follows from [SS10,
Corollary 3.10]. �

The following result is a slight generalization of [Har98, Proposition 4.3]
and [HX13, Propsition 3.8].

Proposition 2.11. Let f : X −→ Y be a birational morphism of normal
varieties. Let ∆ and B be Q-divisors on X such that (X,∆) is purely log
terminal, S = ⌊∆⌋ is prime and normal, (X,B) is Kawamata log terminal
and B + S ≤ ∆. Assume that

(1) −(KX +∆) is f -ample,
(2) S is f -exceptional,
(3) If KS +∆S = (KX +∆)|S is defined by adjunction, then (S,∆S) is

a globally F -regular pair.

Then (X,B) is globally F -regular over Y .

Proof. By standard perturbation techniques (e.g. see [HX13, Lemma 2.8 and
2.13]), we may assume that the Q-Cartier indices of KX + ∆ and KX + B
are not divisible by p. We may also assume that Y is affine. Let E be
an effective divisor on X. We may write E = n0S + E′, where E′ is an
effective divisor which does not contain S in its support and n0 is a positive
integer. We may assume that E′ is Cartier, after possibly replacing E by a
larger divisor. For any sufficiently divisible positive integer e, we consider
the following diagram:

H0(X,OX ((1− pe)(KX +∆)− E′))
α
✲ H0(X,OX)

H0(S,OS((1 − pe)(KS +∆S)− E′|S))

γ

❄

δ
✲ H0(S,OS).

β

❄

The fact that the diagram commutes follows from the fact that the different
∆S coincides with the F -different [Das13]. Since (S,∆S) is globally F -
regular, the map δ is surjective for e ≫ 0. On the other hand γ is sujrective
since −(KX + ∆) is f -ample and e ≫ 0. Thus β ◦ α is surjective. By
Nakayama’s lemma, so is α near f(S). Since ∆ ≥ B, we have

H0(X,OX ((1− pe)(KX +∆)−E′)) ⊆ H0(X,OX ((1− pe)(KX +B)−E)).

Thus, the surjectivity of

H0(X,OX ((1− pe)(KX +B)− E)) −→ H0(X,OX )
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for e ≫ 0 follows. �

Proposition 2.12. [HX13, Lemma 2.12] Let f : X −→ T be a proper bira-
tional morphism of normal varieties such that (X,∆) is globally F -regular
over T .

Then (T,∆T = f∗∆) is strongly F -regular.

Proposition 2.13. Let (X,∆) be a two dimensional Kawamata log terminal
pair and let q ∈ X be a closed point.

Then there exists a birational morphism f : Y −→ X such that

(1) f is an isomorphism over X \ {q},
(2) E = f−1(q) is irreducible,
(3) −(KY +∆Y + E) is f -ample, where ∆Y = f−1

∗ ∆,
(4) (Y,∆Y + E) is purely log terminal.

We follow closely the proof in [Xu14, Remark 1]. The exceptional divisor
E is called the Kollár component of (X,∆).

Proof. Without loss of generality we may assume that X is affine. We first
show that there exists an effective Q-Cartier divisor H on X such that there
exists exactly one exceptional divisor E over X with f(E) = q, such that
a(E,X,∆ +H) = 0. Let L ≥ 0 be a Q-divisor on X such that (X,∆ + L)
is log canonical but not Kawamata log terminal at the point q. We may
assume that ⌊∆+L⌋ = 0. Let g : Z −→ X be a log resolution of (X,∆+L).
After possibly replacing X by a smaller open subset, we may assume that g
is an isomorphism except over q. Then for any t ∈ [0, 1], we may write

KZ +∆Z + tLZ +
k

∑

i=1

ai(t)Ei = g∗(KX +∆+ tL)

where ∆Z = g−1
∗ ∆, LZ = g−1

∗ L, and E1, . . . , Ek are prime exceptional divi-
sors. Furthermore, for each i = 1, . . . , k, the function ai(t) is linear, ai(t) ≤ 1
for any t ∈ [0, 1] and there exists i ∈ {1, . . . , k} such that ai(1) = 1. Let

b1, . . . , bk positive integers so that the divisor A = −
∑k

i=1 biEi is g-ample.
Fix ε > 0 be a (small) rational number and choose δ > 0 to be sufficiently
small so that

A′ = εg∗L+ δA

is effective. Let ci(t) = ai(t) + δbi, for any i = 1, . . . , k. Then

KZ +∆Z + tLZ +A′ +
k

∑

i=1

ci(t)Ei = g∗(KX +∆+ (t+ ε)L).

Then there exists t0 ∈ (0, 1) such that max{ci(t0) | i = 1, . . . , k} = 1. We
may assume that c1(t0) = 1. For any i = 2, . . . , k, let ηi ≥ 0 be rational
numbers such that ηi > 0 if and only if ci(t0) = 1. We may assume that
ηi (and ε) are sufficiently small so that the following holds: if we denote
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ci = ci(t0) − ηi, I = {i = 2, . . . , k | ci > 0}, there exists an effective Q-
divisor

A′′ ∼Q A′ +
∑

i≥2

ηiEi

such that if

Θ = t0LZ +A′′ +
∑

i∈I

ciEi

then (Z,E1 +∆Z +Θ) is purely log terminal.
We have

KZ +E1 +∆Z +Θ+
∑

ci<0

ciEi ∼Q g∗(KX +∆+ (t0 + ε)L).

Thus, if H = g∗Θ, then H ∼Q (t0 + ε)L, (X,∆ + H) is log canonical
and there exists exactly one exceptional divisor E = E1 over X such that
a(E,X,∆ +H) = 0, as claimed.

Thus, there exists a birational morphism f : Y −→ X from a normal
surface Y which extracts E (e.g. see [Pro01, Proposition 3.1.2]). Note that
the proof depends on the existence of a minimal model for a two dimensional
dlt pair over X, which holds also in positive characteristic (e.g. see [Tan12,
Theorem 0.4]). In particular, f admits a unique f -exceptional divisor E and
(1) and (2) follow. If ∆Y and HY are the strict transform of ∆ and H on
Y respectively, then (Y,∆Y + HY + E) is purely log terminal. Thus, (4)
follows. We may write f∗H = HY +mE, for some m > 0. Since

KY +∆Y +HY + E = f∗(KX +∆+H) ∼Q,f 0,

it follows that −(KY + ∆Y + E) ∼Q,f −mE. Since −E is f -ample, (3)
follows. �

2.3. Complements. Similarly to [HX13], we will use Shokurov’s theory of
complements. The results in this section hold over any algebraically closed
field.

Definition 2.14. Let f : X −→ Y be a proper morphism of normal varieties
and let (X,D = S+B) be a log canonical pair where S = ⌊D⌋ and B ≥ 0 is
a Q-divisor whose support does not contain any component of S. Let n be
a positive integer. We say that D′ is an n-complement of (X,D) over Y if

(1) n(KX +D′) ∼f 0,
(2) (X,D′) is log canonical, and
(3) nD′ ≥ nS + ⌊(n+ 1)B⌋.

If D′ ≥ D, then the complement D′ is called effective. If (X,D) admits an
n-complement over Y , then we say that (X,D) is n-complementary over Y .

Lemma 2.15. Let n be a positive integer and let I ⊆ (0, 1] be a finite set.
Let X = P1 and let B be a Q-divisor on X such that

(1) the coefficients of B belong to D(I), and
(2) −(KX +B) is nef.
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Then, there exists a positive integer M , depending only on I and n, such
that (X,B) admits an nq-complement, for some positive integer q ≤ M .

Proof. The result follows from [PS09, Proposition 5.7]. Note that although
the result in [PS09] is stated only over the complex field, the proof is char-
acteristic free. �

Theorem 2.16. Let I ⊆ [0, 1]∩Q be a finite set of rational numbers. Then
there exists a positive integer N such that if f : S −→ T is a proper map of
normal surfaces and (S,B) is a log pair such that

(1) (S,B) is Kawamata log terminal,
(2) −(KS +B) is f -nef, and
(3) the coefficients of B belong to I,

then there exists an effective m-complement Bc of (S,B) over T such that
(S,Bc) is log canonical but not Kawamata log terminal and m ≤ N .

Proof. Assume that n is a positive integer such that na is integral for any
a ∈ I. We want to show that there exists a positive integer M , depending
only on I such that, if (S,B) is a log pair which satisfies (1),(2) and (3),
then (S,B) is nq-complementary, for some positive integer q ≤ M . Since
nqB is integral, any nq-complement of (S,B) is automatically effective.

As in the proof of Proposition 2.13, there exists a nef Q-divisor H ≥ 0
such that (S,B +H) admits exactly one exceptional divisor E over S with
log discrepancy zero. We may assume that (S,B +H) has no codimension
one log canonical centers and SuppH dose not contain any f -exceptional
divisors. We denote B′ = B + H. Then (S,B′) is log canonical but not
Kawamata log terminal. Let g : X −→ S be the birational morphism which
extracts E and let h : X −→ T be the induced morphism. We may write

KX +B′
X = g∗(KS +B′) and KX +BX = g∗(KS +B)

for some B′
X ≥ 0 such that B′

X = E + {B′
X}, where E = ⌊B′

X⌋, and
BX ≤ B′

X . Note that BX is not necessarily effective. We denote by H ′ the
strict transform of H in X.

We denote by B′′
X = E ∨BX the divisor obtained by replacing the coeffi-

cient corresponding to E in BX by 1 and by keeping all the other coefficients
of BX unchanged. Thus, we have

BX ≤ B′′
X ≤ B′

X and g∗B
′′
X = B

since B′
X − B′′

X = H ′. Note that the difference of B′′
X and BX is only the

coefficient of E. In addition, we have that (X,B′′
X ) is plt.

We claim that −(KX + B′′
X) is nef over T . Indeed if we have an h-

exceptional curve C with −(KX + B′′
X).C < 0, then C is contained in the

support of B′
X −B′′

X since −(KX +B′
X) is nef over T . However, the support

of B′
X −B′′

X is equal to the support of H ′ which is not contracted by h. This
is a contradiction and therefore −(KX +B′′

X) is nef over T .
Let Θ ≥ 0 be the Q-divisor on E defined by

KE +Θ = (KX +B′′
X)|E .



UNIFORM BOUNDS FOR STRONGLY F -REGULAR SURFACES 9

By Lemma 2.3, the coefficients of Θ belong to D(I). Thus, by Lemma 2.15,
there exists a positive integer M , depending only on I, such that (E,Θ)
admits an nq-complement, for some positive integer q ≤ M . Using the
same methods as in [Pro01, Proposition 6.0.6], it follows that (X,B′′

X ) is
nq-complementary over T . Note that the proof in [Pro01] relies on the
Kawamata-Viehweg vanishing theorem for proper birational morphisms of
surfaces, which also holds in positive characteristic (e.g. see [HX13, Lemma
2.23]).

Thus, by [Pro01, Proposition 4.3.1], (S,B) is nq-complimentary over T .
Since (X,B′′

X) is not Kawamata log terminal, it follows that the complement
that we obtained is log canonical but not Kawamata log terminal. �

3. Uniform bounds on the F -pure threshold for line

arrangements in A2

Throughout the section we fix X = A2
k = Speck[x, y] with maximal ideal

at the origin m = 〈x, y〉.
For each i = 1, . . . , ℓ, define a distinct divisor (line) Di = div(x − λiy)

going through the origin and choose integers ai > 0. Consider the divisor
D =

∑

aiDi. We fix d =
∑

ai.
Our first goal is to recall known bounds on the F -pure threshold of (X,D).

First we handle the highly pathological case when one of the ais is very large.

Lemma 3.1. Suppose that for some i, 2ai ≥ d.
Then

fpt(X,D) = lct(X,D) =
1

ai
.

Proof. Note that this condition can be satisfied for at most two values of i.
In the case where 2ai, 2aj ≥ d, i 6= j, then ai = aj = d/2 and we have a
simple normal crossings pair and the statement is obvious.

Thus we can assume that there is a unique i with 2ai ≥ d. Set D′ =
∑

j 6=i ajDj and fix d′ =
∑

j 6=i aj . By F -adjunction [HW02, Sch09], it is suf-

ficient to verify that (Di,
1
ai
D′|Di

) is sharply F -pure. But Di
∼= A1 and

D′|Di
= d′O where O is the origin. But d′/ai ≤ 1 which proves that

(Di,
1
ai
D′|Di

) is sharply F -pure and completes the proof of the lemma. �

We recall the following result independently obtained by Hara and Mon-
sky [Har98]. Similar bounds (which are good enough for our purposes) can
also be obtained by modifying the method of [BS13, Lemmas 3.3, 3.4] which
also works in higher dimensions.

Theorem 3.2. ([Har06, Proposition 3.3], [Mon06, Theorem 17]) Suppose

D =
∑ℓ

i=1 aiDi is a line arrangement through the origin in X = A2 as
above with d =

∑

ai. If 2ai < d for all i then

fpt(X,D) ≥
2p− ℓ+ 2

dp
.
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As an easy corollary we obtain the following.

Corollary 3.3. Fix X = A2. Suppose that Λ is a set of rational numbers
in (0, 1] and t0 is positive real constant such that for each integer d > 2, if
λ < 2

d for some λ ∈ Λ, then 2
d − λ ≥ t0. Suppose

p ≥
1

t0

Then for any line arrangement (X,D :=
∑ℓ

i=1 aiDi) with integer ai so that
for some λ ∈ Λ we have (X,λD) is Kawamata log terminal, then (X,λD)
is strongly F -regular.

Before proving this corollary we make two observations. Firstly, we notice
that Λ is bounded away from zero by hypothesis (since 2

d converges to zero).
Secondly, the condition on Λ is satisfied for any ACC subset of (0, 1] which
is also bounded away from zero.

Proof. Note that the cases of ℓ = 1, 2 are uninteresting as then (X,D) is
SNC and so (X,λD) is Kawamata log terminal if and only if it is strongly

F -regular. We fix D =
∑ℓ

i=1 aiDi with d =
∑ℓ

i=1 ai and fix λ ∈ Λ such that
(X,λD) is Kawamata log terminal. We need to show that λ < fpt(X,D), we

know that λ < lct(X,D). Note that we may assume that 2ai < d =
∑ℓ

i=1 ai
for all i since otherwise lct(X,D) = fpt(X,D) = 1

ai
by Lemma 3.1. Thus

we see that lct(X,D) = 2
d so that 2

d − λ ≥ t0 ≥
1
p .

Now observe that

λ ≤
2

d
−

1

p
≤

2

d
−

ℓ

dp
=

2p− ℓ

dp
<

2p− ℓ+ 2

dp
≤ fpt(X,D).

where the last inequality comes from Theorem 3.2. This completes the proof.
�

Example 3.4. We cannot weaken the hypothesis of Corollary 3.3 to simply
that Λ is an ACC set. For example, suppose that Λ = { 1

n}n∈N. Then for

each prime integer p, set D to be the set of p + 1 distinct lines of A2
Fp
. In

other words, D = div(xy(x+ y)(x + 2y) . . . (x+ (p − 1)y)). Then it is easy
to check that fpt(X,D) = 1

p < 2
p+1 = lct(X,D). In particular, for each

prime p, (X, 1pD) is not strongly F -regular even though it is Kawamata log

terminal.

Example 3.5 (Standard coefficients). Suppose that

Λ = D(∅) = {
n− 1

n
| n ∈ N}

is the set of standard coefficients. Then the only element λ ∈ Λ with λ < 2/d,
for some d > 2 is λ = 2−1

2 = 1/2, for d = 3. In particular, we see that

1/6 = 2/3 − 1/2 = min{2/d − λ > 0 | d > 2, λ ∈ Λ}.
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It follows from Corollary 3.3 that if p > 6 = 1
1/6 and λ ∈ Λ, then (X,λD) is

Kawamata log terminal if and only if it is strongly F -regular where X = A2

and D is a line arrangement.

Example 3.6 (Simple hyperstandard coefficients). Fix a positive integer n.
Suppose that

Λn = D(
{

1
n

}

)

= D(
{

a
n | a = 0, . . . n

}

)

=
{

nm+a−n
nm | m ∈ N, a = 0, . . . n

}

=
{

0, 1
n ,

2
n , . . . ,

n−1
n , 1, 12 ,

n+1
2n , . . . , 2n−1

2n , 23 ,
2n+1
3n , . . . , 3n−1

3n , 34 , . . .
}

We want to find the minimum of 2
d − λ, with λ ∈ Λn and d ∈ N such that

d > 2 and 2
d−λ > 0. Note that there are only finitely many λ ∈ Λn which

are less than 2/d (and all of those are before the 2
3 in the list above), and

we only must consider d = 3, . . . , 2n− 1. Also note we may as well consider
n ≥ 3 since n = 1, 2 are already covered by Example 3.5.

For d = 3, we see that

m3 = min
{

2
3 − λ > 0 | λ ∈ Λn

}

= min{2
3 − n+a

2n > 0 | a = 0, . . . , n} ≥ 1
6n .

Likewise for each 2n− 1 ≥ d > 3 we see that

md = min
{

2
d − λ > 0 | λ ∈ Λn

}

= min
{

2
d − a

n > 0 | a = 0, . . . , n
}

≥ 1
dn ≥ 1

(2n−1)n .

We set m = min{m3,m4, . . . ,m2n−1}.
Notice that

2

2n− 1
−

1

n
=

2n − (2n − 1)

(2n− 1)n
=

1

(2n− 1)n
.

It follows easily that m = min
(

1
(2n−1)n ,m3

)

. If n ≥ 4 then 2n − 1 > 6 in

which case m = 1
(2n−1)n . Finally, we consider n = 3 explicitly. Note that

for m3 we are minimizing 2
3 − 3+a

6 and we see that that is minimized when

a = 0 in which case m3 =
1
6 ≥ 1

(2n−1)n = 1
15 .

Combining this example with Corollary 3.3 yields the following result.

Corollary 3.7. Suppose that X = A2 and D is a line arrangement through
the origin. If n ≥ 3, Λ = D({ 1

n}) and p > 2n2 − n then for any λ ∈ Λ,
we have that (X,λD) is Kawamata log terminal if and only if it is strongly
F -regular.

For our application, we need to handle the case when the coefficients of
D are rational numbers from Λ. This can be more complicated as we shall
see.
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Corollary 3.8. Fix X = A2. Let ε > 0 be a rational number and let
Γ ⊆ (ε, 1) ∩Q be a subset which satisfies ACC.

Then there exists a positive constant p0 depending only on Γ (and in

particular on ε) such that if the line arrangement (X,B :=
∑ℓ

i=1 qiDi) is a
Kawamata log terminal pair defined over a field of characteristic p > p0 and
such that q1, . . . , qℓ ∈ Γ, then (X,B) is strongly F -regular.

Proof. Suppose not. Then, for any i ∈ N there exists a pair

(X,Bi =

ℓi
∑

j=1

qi,jDi,j)

defined over an algebraically closed field of characteristic pi, which is Kawa-
mata log terminal but not strongly F -regular and such that lim pi = ∞ and
qi,j ∈ Γ.

Since (X,Bi) is Kawamata log terminal and qi,j > ε, it follows that

ℓi <
2

ε
.

Thus, after possibly taking a subsequence, we may assume that ℓi = ℓ > 2
is constant. By Corollary 3.3, we may assume that the set of coefficients

{qi,j | i ∈ N, j = 1, . . . , ℓ}

is not finite and since Γ satisfies ACC, after possibly taking a subsequence,

we may assume that qi :=
∑ℓ

j=1 qi,j is a strictly decreasing sequence. Note
we may also assume that qi > 2qi,j for all i, j. We may write

Bi =
1

ci

ℓ
∑

j=1

bi,jDi,j

for some positive integers ci, bi,1, . . . , bi,ℓ. Let λi =
1
ci
and letGi =

∑ℓ
j=1 bi,jDi,j

so that Bi = λiGi. Let di =
∑ℓ

j=1 bi,j = ciqi. Then by assumption, we have
that for any i ∈ N,

fpt(X,Gi) ≤ λi < lct(X,Gi).

Thus, by Lemma 3.1 and Theorem 3.2, we have

2pi − ℓ+ 2

dipi
≤ λi <

2

di
.

In particular,

1−
ℓ− 2

2pi
=

2pi − ℓ+ 2

2pi
≤

diλi

2
=

di
2ci

=
qi
2

< 1.

Since lim pi = ∞ and qi is a strictly decreasing sequence, we get a contra-
diction. �

For our purposes however, we need to handle sets of the formD(I) because
those sorts of set will occur via adjunction.
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Corollary 3.9. Let I ⊆ (0, 1) ∩Q be a finite subset and let Γ = D(I). Fix
ε = min I ∪ {1

2}, and

S = {q =

ℓ
∑

i=1

qi | qi ∈ Γ such that
∑

i 6=j

qi > 1 for any j = 1, . . . ℓ} ∩ (0, 2).

Define Q = maxS and p0 = ⌊1−ε
ε · 1

1−Q/2⌋ and observe it depends only on I.

If the line arrangement (X,B :=
∑ℓ

i=1 qiDi) is a Kawamata log terminal
pair defined over a field of characteristic p > p0 and such that q1, . . . , qℓ ∈ Γ,
then (X,B) is strongly F -regular.

Note that although S is not finite, it is easy to check that since I is finite,
the maximum of S is attained and in particular Q < 2.

Proof. Assume that (X,B =
∑ℓ

i=1 qiDi) is a Kawamata log terminal pair
which is not strongly F -regular and such that qi ∈ Γ.

Assume first that there exists j ∈ {1, . . . , ℓ} such that
∑

i 6=j qi ≤ 1. Let

C = Dj +
∑

i 6=j

qiDi.

Then C ≥ B and (Dj , (C −Dj)|Dj
) = (A1,

∑

i 6=j qiO) where O ∈ A1 is the

origin. In particular, (A1,
∑

i 6=j qiO) is sharply F -pure and by F -adjunction

it follows that (X,C) is also sharply F -pure. By Lemma 2.10, it follows that
(X,B) is strongly F -regular, a contradiction.

We now assume that
∑

i 6=j qi > 1 for any j ∈ {1, . . . , ℓ}. Let q =
∑ℓ

j=1 qi.

Since (X,B) is Kawamata log terminal, we have that q < 2 and ℓ < 2
ε . In

particular, q ∈ S and therefore q ≤ Q.
We may write

B =
1

c

ℓ
∑

i=1

biDi

for some positive integers c, b1, . . . , bℓ. Let λ = 1
c and let G =

∑ℓ
j=1 biDi so

that B = λG. Let d =
∑ℓ

j=1 bi = cq.
Thus, by Lemma 3.1 and Theorem 3.2, we have

2p− ℓ+ 2

dp
≤ λ <

2

d
.

In particular,

1−
ℓ− 2

2p
=

2p− ℓ+ 2

2p
≤

d

2c
=

q

2
< 1

and it follows

p ≤
1

2

( ℓ− 2

1− q/2

)

<
2
ε − 2

2−Q
.

Thus, the claim follows. �
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Remark 3.10. Note that while it might be natural to require that I is an
arbitrary DCC set (since if I is finite, D(I) is DCC), there are difficulties
with this assumption. For instance if I is a DCC set containing {2

3 − 1
n}

then it is not difficult to see that the conclusion of Corollary 3.8 fails to hold
for a configuration of three lines (since if p ≡ 2 mod 3, then fpt < lct = 2

3).

The bound of Corollary 3.9 is far from sharp as the following example
shows. Thus we hope that the bound can be substantially improved.

Example 3.11. Suppose that I = ∅. Then it is not difficult to see that
ε = 1

2 and Q = maxS = 1
2 + 2

3 + 4
5 = 59/30. Hence we can take p0 = 30.

This is far from optimal, see [HX13, Section 3]

Example 3.12. Next suppose that I = {1
3}. We see that ε = 1

3 . We

consider three values for ℓ = 3, 4, 5 (notice ℓ < 2
1/3 = 6). Note that the list

of valid qi as in Example 3.6 is

{1, 12 ,
1
3 ,

2
3 ,

4
6 ,

5
6 ,

6
9 ,

7
9 ,

8
9 ,

3
4 ,

10
12 ,

11
12 ,

4
5 ,

13
15 ,

14
15 ,

5
6 ,

16
18 ,

17
18 ,

6
7 ,

19
21 ,

20
21 ,

7
8 ,

22
24 ,

23
24 ,

8
9 , . . .}

= {1, 12 ,
1
3 ,

2
3 ,

5
6 ,

7
9 ,

8
9 ,

3
4 ,

11
12 ,

4
5 ,

13
15 ,

14
15 ,

17
18 ,

6
7 ,

19
21 ,

20
21 ,

7
8 ,

23
24 ,

25
27 ,

26
27 , . . .}

First we consider ℓ = 5. Then we see immediately that any qi <
2
3 (since

the minimum value of the other qj is
1
3). But the only such elements of D(I)

are {1
3 ,

1
2} and the Q associated to any such sum is even smaller than the

I = ∅ case.
Next we consider ℓ = 4. Note we cannot have three of the qi equalling

1
3 since then their sum would be ≤ 1. Hence at most two of the qi are
1
3 and so since the smallest value a third qi can be is 1

2 , we see that any

such qi < 2 − (13 + 1
3 + 1

2) = 5
6 . The only values of D(I) less than 5

6 are

{1
3 ,

1
2 ,

2
3 ,

7
9 ,

3
4 ,

4
5}. A quick computation shows that Q = 1

3 + 1
3 +

1
2 + 4

5 = 59
30

again and we recover nothing new compared to the I = ∅ case.
Finally we consider ℓ = 3. Suppose now that q1 ≤ q2 ≤ q3. Of course, at

least one of the qi <
2
3 since their sum is less than 2 and so either q1 =

1
3 or

q1 =
1
2 .

Suppose first that q1 =
1
3 . It follows that q2 <

5
6 and also since q1+q2 > 1

we know that q2 ∈ {7
9 ,

3
4 ,

4
5}. We break this up into cases.

q1 =
1
3 , q2 =

7
9 : and so q1+ q2 =

10
9 and q3 <

8
9 . The largest possible p3

is then 13
15 . We see that Q ≥ 1

3 + 7
9 +

13
15 = 89

45 .

q1 =
1
3 , q2 =

3
4 : and so q1 + q2 = 13

12 and q3 < 11
12 . The largest possible

q3 is then 19
21 . We see that Q ≥ 1

3 +
3
4 +

19
21 = 167

84 .

q1 =
1
3 , q2 =

4
5 : and so q1 + q2 = 17

15 and q3 < 13
15 . The largest possible

q3 is then 6
7 . We see that Q ≥ 1

3 + 4
5 +

6
7 = 209

105 .

Now we handle the case that q1 = 1
2 . It follows that q2 < 3

4 and also since

q1 + q2 > 1, we know that q2 ∈ {2
3}. Hence we see that q1 + q2 = 7

6 and so

q3 <
5
6 . The largest possible q3 is then

4
5 and we see that Q ≥ 1

2+
2
3+

4
5 = 29

30 .
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Summarizing, we see that Q = 209
105 . Since ε = 1

3 we see that

p0 =
(1− (1/3)

1/3

)( 1

1− 209/210

)

= 2 · 210 = 420.

This completes the example.

Removing the explicit bound of Theorem 1.1 we can restate Corollary 3.9
as follows.

Corollary 3.13. Let I ⊆ (0, 1) ∩Q be a finite subset and let Γ = D(I).
Then there exists a positive constant p0 depending only on Γ such that

if the line arrangement (X := A2, B :=
∑ℓ

i=1 qiDi) is a Kawamata log
terminal pair defined over a field of characteristic p > p0 and q1, . . . , qℓ ∈ Γ,
then (X,B) is strongly F -regular.

4. Global to local

The aim of this section is to prove Theorem 1.1. We begin with the
following:

Corollary 4.1. Let I ⊆ (0, 1) ∩Q be a finite subset and let Γ = D(I).
Then there exists a positive constant p0 depending only on I such that if

(P1, B :=
∑ℓ

i=1 qiPi) is a log Fano pair defined over an algebraically closed
field of characteristic p > p0 and such that the coefficients of B belong to Γ,
then (P1, B) is globally F -regular.

Proof. By considering the cone associated to L = OP1(1), Proposition 2.9

implies that (P1,
∑ℓ

i=1 qiPi) is globally F -regular (resp. log Fano) if and

only if (A2,
∑ℓ

i=1 qiDi) is strongly F -regular (resp. Kawamata log terminal),
where D1, . . . ,Dℓ are some suitable distinct lines through the origin.

Thus, Corollary 3.13 implies the claim. In fact we can even choose p0
effectively using the bound of Corollary 3.9. �

We can now proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let B be a Q-divisor such that (X,B) is Kawamata
log terminal. We may assume that X is affine and let q ∈ X be a closed
point. By Proposition 2.13, we can take a birational morphism f : Y −→ X
such that

(1) f is isomorphic over X \ {q},
(2) E = f−1(q) is irreducible,
(3) −(KY +BY + E) is f -ample, where BY = f−1

∗ B,
(4) (Y,BY + E) is purely log terminal.

In particular, if we write KE + BE = (KY + BY + E)|E then (E,BE) is
Kawamata log terminal and by Lemma 2.3 and Lemma 2.2, the coefficients
of BE belong to D(I). Thus, Corollary 4.1 implies that there exists a pos-
itive integer p0 such that (E,BE) is globally F -regular, if p > p0. Then
Proposition 2.11 implies that (Y,BY ) is globally F -regular over X. Thus,
by Proposition 2.12, (X,B) is strongly F -regular. �
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5. On the existence of flips

This section is highly inspired by Section 3 in [HX13]. In particular, our
goal is to extend [HX13, Theorem 3.1] by the following:

Theorem 5.1. Let I ⊆ (0, 1) be a finite set. Then there exists a prime pI ,
depending only on I, such that if (S,B) is a pair over an algebraically closed
field of characteristic p > pI , f : S −→ T is a morphism of normal surfaces,
such that

(a) (S,B) is Kawamata log terminal,
(b) −(KS +B) is f -nef, and
(c) the coefficients of B belong to I,

then (S,B) is globally F -regular over T .

Following the same steps as in [HX13, §4.4], it is possible to show that
Theorem 5.1 implies Theorem 1.2.

We now begin the proof of Theorem 5.1. Let Bc ≥ B and N as in
Theorem 2.16 and let ν : S̃ −→ S be a smooth dlt model of (S,Bc). We may
write

KS̃ +Bc
S̃
= ν∗(KS +Bc) and KS̃ +BS̃ = ν∗(KS +B),

where (S,Bc
S̃
) is divisorially log terminal and BS̃ ≤ Bc

S̃
. Note that BS̃ is

not necessarily effective. By Theorem 2.16, it follows that C = ⌊Bc
S̃
⌋ is not

zero. We first assume that (S̃, Bc
S̃
) is purely log terminal.

Claim 5.2. There exist a finite subset J ⊆ [0, 1] depending only on I and a
Q-divisor B∗

S̃
≥ 0 such that

(1) BS̃ ≤ B∗
S̃
≤ Bc

S̃
(2) the coefficients of B∗

S̃
belong to J ,

(3) ⌊B∗
S̃
⌋ = C, and

(4) −(KS̃ +B∗
S̃
) is nef over T and −(KS̃ +B∗

S̃
)|C is ample.

We now prove how Claim 5.2 implies Theorem 5.1. We may write

(KS̃ +B∗
S̃
)|C = KC +B∗

C .

In particular (C,B∗
C ) is log Fano. By Corollary 4.1, there exists p0 depending

only on J (and therefore depending only on I) such that if the characteristic
of the base field is greater than p0 then (C,B∗

C) is globally F -regular. Thus,
Theorem 5.1 follows immediately from Proposition 2.11.

We now proceed with the proof of Claim 5.2. The following Lemma is
obvious:

Lemma 5.3. Let I ⊆ [0, 1] be a finite set. Then for any ε > 0, the set
D(I) ∩ (0, 1 − ε) is finite.
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In particular, because our I is finite, we apply Lemma 5.3 for ε = 1/N .
Then there exists a sufficiently small rational number x > 0 such that for
any a ∈ D(I) we have that

a /∈
(p− x

q − x
,
p

q

)

for any q = 2, . . . , N, p = 1, . . . , q − 1.

We use J to denote
{p− x

q − x
| q = 2, . . . , N, p = 1, . . . , q−1

}

∪
{p

q
| q = 2, . . . , N, p = 1, . . . , q−1

}

.

Let g = f ◦ ν : S̃ −→ T . Note that C is g-exceptional. In addition, since
(S,B) is Kawamata log terminal and −(KS + B) is f -nef, it follows that
(T,BT ) is Kawamata log terminal. Thus, since g factors through the mini-
mal resolution of S, it follows that the graph associated to the exceptional
divisor of g is a tree and its components are smooth rational curves which
meet transversally with each other. We now proceed similarly as in [HX13,
Lemma 3.3]. Let D be the connected component of Bc

S̃
−BS̃ which contains

C. Assume by contradiction that D is g-exceptional. Then

D2 = (Bc
S̃
−BS̃) ·D

= (KS̃ +Bc
S̃
) ·D − (KS̃ +BS̃) ·D

= −(KS +B) · ν∗D ≥ 0.

which is a contradiction. Thus, there exists a curve contained in the support
ofD which is not g-exceptional. Thus, there exists a chain of smooth rational
curves in S̃

C0 = C,C1, . . . , Ck

such that, Ci−1 · Ci = 1 if i = 1, . . . , k − 1, C0, . . . , Ck−1 are g-exceptional,
Ck is not g-exceptional and C1, . . . , Ck are contained in the support of Bc

S̃
.

Let q ∈ {2, . . . , N} such that q(KS̃ + Bc
S̃
) ∼Z,S 0. Then the coefficients of

Bc
S̃
− C are of the form p/q for some p ∈ {1, . . . , q − 1}. We define B∗

S̃
by

replacing, for each i = 1, . . . , k, the coefficient in Bc
S̃

of the form p/q by

the coefficient (p − x)/(q − x), and for each other curve in the support of
Bc

S̃
we do not change the coefficient. In particular, we have that B∗

S̃
≤ Bc

S̃
,

⌊B∗
S̃
⌋ = C and the coefficients of B∗

S̃
− C belong to J .

It follows immediately that −(KS̃ +B∗
S̃
) ·C < 0. Thus, −(KS̃ +B′

S̃
)|C is

ample.
We now show that −(KS̃+B∗

S̃
) is nef over T . To this end, we use the same

argument and the same notation as in [HX13, Lemma 3.4]. It is enough to
show that −(KS̃ +B∗

S̃
) ·Cj ≥ 0 for any j = 1, . . . , k − 1. For any j < k − 1,

it holds that
pj−1

q
+

pj+1

q
+

pj
q
C2
j +

r

q
− 2− C2

j = 0

from that

(KS̃ +Bc
S̃
) · Cj = 0.
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This implies that

pj−1 + pj+1 + r − 2q + (pj − q)C2
j = 0

which, in turn, implies that

pj−1 − x

q − x
+

pj+1 − x

q − x
+

pj − x

q − x
C2
j +

r

q
− 2−C2

j ≤ 0.

Thus, −(KS̃ + Bc
S̃
) · Ci ≥ 0 for any j = 1, . . . , k − 2. A similar calculation

yields −(KS̃ +Bc
S̃
) · Ck−1 < 0 and the claim follows.

Finally, by the same proof as [HX13, Lemma 3.5] and since by assumption
the coefficients of B are not contained within the interval (p−x

q−x ,
p
q ) for any

coefficient p/q of Bc
S̃
, it follows that BS̃ ≤ B∗

S̃
. If (S̃, Bc

S̃
) is purely log

terminal, then (S̃, B∗
S̃
) is also purely log terminal and therefore Claim 5.2

follows.

We now assume that (S̃, Bc
S̃
) is not purely log terminal. Let

J = {
p

q
| q = 2, . . . , N, p = 1, . . . , q − 1}.

Proceeding exactly as in [HX13, pag. 19], we can find a Q-divisor B∗
S̃
≥ 0

which satisfies the following properties:

(1) (S,B∗
S̃
) is purely log terminal, and C = ⌊B∗

S̃
⌋ is a smooth rational

curve,
(2) BS̃ ≤ B∗

S̃
≤ Bc

S̃
,

(3) −(KS̃ +B∗
S̃
) is nef over T ,

(4) −(KS̃ +B∗
S̃
)|C is ample, and

(5) if we write (KS̃ + B∗
S̃
)|C = KC + Θ, there exists a divisor Θ′ ≥ Θ

on C whose coefficients belong to D(J) and such that (C,Θ′) is log
Fano.

By Corollary 4.1, it follows that if p is sufficiently large, depending only on
J (and therefore depending only on I), then (C,Θ′) is globally F -regular.
Thus, (C,Θ) is also globally F -regular, and the statement follows again by
Proposition 2.11.
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