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Abstract

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. For a positive integer k, define Sn,k

to be the set of all permutations of [n] with exactly k disjoint cycles, i.e.,

Sn,k = {π ∈ Sn : π = c1c2 · · · ck},

where c1, c2, . . . , ck are disjoint cycles. The size of Sn,k is given by

[

n

k

]

= (−1)n−ks(n, k), where

s(n, k) is the Stirling number of the first kind. A family A ⊆ Sn,k is said to be t-intersecting if any

two elements of A have at least t common cycles. In this paper, we show that, given any positive

integers k, t with k ≥ t+1, there exists an integer n0 = n0(k, t), such that for all n ≥ n0, if A ⊆ Sn,k

is t-intersecting, then

|A| ≤

[

n− t

k − t

]

,

with equality if and only if A is the stabiliser of t fixed points.

keywords: t-intersecting family, Erdős-Ko-Rado, permutations

1 Introduction

Let [n] = {1, . . . , n}, and let
([n]
k

)

denote the family of all k-subsets of [n]. A family A of subsets of
[n] is t-intersecting if |A ∩ B| ≥ t for all A,B ∈ A. One of the most beautiful results in extremal
combinatorics is the Erdős-Ko-Rado theorem.

Theorem 1.1 (Erdős, Ko, and Rado [13], Frankl [14], Wilson [37]). Suppose A ⊆
([n]
k

)

is t-intersecting

and n > 2k − t. Then for n ≥ (k − t+ 1)(t+ 1), we have

|A| ≤

(

n− t

k − t

)

.

Moreover, if n > (k − t + 1)(t + 1) then equality holds if and only if A = {A ∈
([n]
k

)

: T ⊆ A} for

some t-set T .
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Later, Ahlswede and Khachatrian [1] extended the Erdős-Ko-Rado theorem by determining the
structure of all t-intersecting set systems of maximum size for all possible n (see also [3, 15, 22, 28,
32, 34, 35] for some related results). There have been many recent results showing that a version of
the Erdős-Ko-Rado theorem holds for combinatorial objects other than set systems (see [2, 4, 5, 6,
7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 33, 36, 38]). Most notably is
the results of Ellis, Friedgut and Pilpel [12] who showed that for sufficiently large n depending on t,
a t-intersecting family A of permutations has size at most (n− t)!, with equality if and only if A is a
coset of the stabilizer of t points, thus settling an old conjecture of Deza and Frankl in the affirmative.
The proof uses spectral methods and representations of the symmetric group.

Let Sn denote the set of permutations of [n]. For a positive integer k, define Sn,k to be the set of
all permutations of [n] with exactly k disjoint cycles, i.e.,

Sn,k = {π ∈ Sn : π = c1c2 · · · ck},

where c1, c2, . . . , ck are disjoint cycles. It is well known that the size of Sn,k is given by

[

n
k

]

=

(−1)n−ks(n, k), where s(n, k) is the Stirling number of the first kind.

We shall use the following notations:

(a) N(c) = {a1, a2, . . . , al} for a cycle c = (a1, a2, . . . , al);

(b) M(π) = {c1, c2, . . . , ck} for a π = c1c2 . . . ck ∈ Sn,k;

A family A ⊆ Sn,k is said to be t-intersecting if any two elements of A have at least t common
cycles, i.e., |M(π1) ∩M(π2)| ≥ t for all π1, π2 ∈ A.

Theorem 1.2. Given any positive integers k, t with k ≥ t + 1, there exists an integer n0 = n0(k, t),

such that for all n ≥ n0, if A ⊆ Sn,k is t-intersecting, then

|A| ≤

[

n− t

k − t

]

,

with equality if and only if A is the stabiliser of t fixed points.

2 Stirling number revisited

The unsigned Stirling number

[

n
k

]

satisfies the recurrence relation

[

n
k

]

=

[

n− 1
k − 1

]

+ (n− 1)

[

n− 1
k

]

, (1)

with initial conditions

[

0
0

]

= 1 and

[

n
0

]

=

[

0
k

]

= 0, n > 0. Note that

[

n
n

]

= 1. By using equation (1)

and induction on n,
[

n
1

]

= (n− 1)!. (2)
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By applying equation (1) repeatedly,

[

n
k

]

=

[

n− 1
k − 1

]

+ (n− 1)

[

n− 1
k

]

=

[

n− 1
k − 1

]

+ (n− 1)

[

n− 2
k − 1

]

+ (n− 1)(n − 2)

[

n− 2
k

]

=

[

n− 1
k − 1

]

+ (n− 1)

[

n− 2
k − 1

]

+ (n− 1)(n − 2)

[

n− 3
k − 1

]

+ (n− 1)(n − 2)(n − 3)

[

n− 3
k

]

...

=

n−1
∑

r=k−1

(n− 1)!

r!

[

r
k − 1

]

. (3)

In particular (by equations (2) and (3)),

[

n
2

]

= (n− 1)!

n−1
∑

r=1

1

r
. (4)

By elementary calculus, it is easy to show that for sufficiently large n,

lnn

2
< ln(n− 1) +

1

n− 1
≤

n−1
∑

r=1

1

r
≤ ln(n− 1) + 1 < 2 ln n. (5)

Hence, there are positive constants α(2) and β(2) such that

α(2)((n − 1)!(ln n)) <

[

n
2

]

< β(2)((n − 1)!(ln n)), (6)

for all n ≥ 2.

Again, by elementary calculus, for m ≥ 1 and sufficiently large n depending on m,

lnm+1 n

2(m+ 1)
<

n−1
∑

r=1

lnm r

r
<

2 lnm+1 n

m+ 1
. (7)

The following lemma follows by using equations (3) and (7), and induction on k.

Lemma 2.1. There are positive constants α(k) and β(k) such that

α(k)((n − 1)!(lnk−1 n)) <

[

n

k

]

< β(k)((n − 1)!(lnk−1 n)),

for all n ≥ k.

3 Main results

A family B ⊆ Sn,k is said to be independent if M(π1) ∩M(π2) = ∅ for all π1, π2 ∈ B.
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Lemma 3.1. Let A ⊆ Sn,k and k ≥ 2. If a maximal independent subset of A is of size at most l, then

|A| ≤ kl

[

n− 1

k − 1

]

.

Proof. Let B = {π1, π2, . . . , πl} be a maximal independent subset of A of size l. Let πi = ci1ci2 . . . cik
where ci1, ci2, . . . , cik are disjoint cycles, and

Q =

l
⋃

i=1

M(πi).

Note that |Q| = kl.

Let

Aij = {π ∈ A : cij ∈ M(π)}.

Let π ∈ A \ B. By the maximality of B, M(π) ∩Q 6= ∅. So, cij ∈ M(π) for some i, j, and π ∈ Aij.

Hence,

A =
⋃

i,j

Aij.

The lemma follows by noting that

|Aij | ≤

[

n− |N(cij)|

k − 1

]

≤

[

n− 1

k − 1

]

.

Let A ⊆ Sn,k and c1, . . . , ct by cycles such that N(ci) ∩N(cj) = ∅ for i 6= j. Let T = {c1, . . . , ct}.
We set

A(T ) = {π ∈ A : T ⊆ M(π)}.

Now, for each element π ∈ A(T ), we remove all the cycles c1, c2, . . . , ct from π and denote the resulting
set by A∗(T ). Let P =

⋃t
i=1 N(ci). Note that |A(T )| = |A∗(T )| and A∗(T ) ⊆ Sn−|P |,k−t. Here,

Sn−|P |,k−t is the set of all permutations of [n] \ P with exactly k − t disjoint cycles.

Lemma 3.2. Let A ⊆ Sn,k be maximal t-intersecting and k ≥ t + 1. Let T = {c1, . . . , ct} with

N(ci) ∩N(cj) = ∅ for i 6= j. If A∗(T ) has an independent set of size at least k + 1, then

A = {π ∈ Sn,k : T ⊆ M(π)} .

Proof. Let {π1, . . . , πk+1} be an independent subset of A∗(T ) of size k + 1. For l = 1, 2, . . . , k + 1, let

πl = c1 . . . ctdl,t+1 . . . dl,k,

where c1, . . . , ct, dl,t+1, . . . , dl,k are disjoint cycles.

Suppose there is a π ∈ A such that ci0 /∈ M(π) for a fixed i0. Since A is t-intersecting,

|M(π) ∩M(πl)| ≥ t.
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Therefore there is a jl (t+1 ≤ jl ≤ k) with dl,jl ∈ M(π). Since all the dl,jl are distinct, k = |M(π)| ≥

k + 1, a contradiction. Hence,

A ⊆ {π ∈ Sn,k : T ⊆ M(π)} .

By the maximality of A, the lemma follows.

Proof of Theorem 1.2. We may assume that A is maximal t-intersecting.

Suppose k = t+ 1. Since A is t-intersecting, there are π1, π2 ∈ A such that

π1 = c1c2 . . . ctd1

π2 = c1c2 . . . ctd2

where c1, . . . , ct, d1 are disjoint cycles, d2 6= d1 and N(d2) = N(d1). Suppose there is a π ∈ A with

ci0 /∈ M(π) for some i0. Then d1, d2 ∈ M(π). But this is impossible as N(d1) = N(d2). Hence,

A = {π ∈ Sn,k : ci ∈ M(π) for i = 1, 2, . . . , t},

for A is maximal t-intersecting. Let P =
⋃t

i=1 N(ci). Then

|A| =

[

n− |P |

1

]

≤

[

n− t

1

]

,

with equality if and only if |N(ci)| = 1 for i = 1, 2 . . . , t, i.e., A is the stabilizer of at least t fixed

points. Now, if n ≥ t+ 2, then A is the stabilizer of t fixed points.

Suppose k ≥ t+ 2. Let π0 = d1d2 . . . dk ∈ A be fixed, where d1, . . . , dk are disjoint cycles. Then

A =
⋃

T⊆M(π0),|T |=t

A(T ).

Case 1. Suppose that for each T ⊆ M(π0) with |T | = t, all independent subsets of A∗(T ) is of size

at most k. Then by Lemma 3.1 and equation (1),

|A(T )| = |A∗| ≤ k2

[

n− |P | − 1

k − t− 1

]

≤ k2

[

n− t− 1

k − t− 1

]

,

where P =
⋃

c∈T N(c). This implies that

|A| ≤ k2
(

k

t

)

[

n− t− 1

k − t− 1

]

.

By Lemma 2.1, there is are positive constants α and β such that

|A| < βk2
(

k

t

)

(

(n− t− 2)!(lnk−t−2 n)
)

,

and

α
(

(n− t− 2)!(lnk−t−1 n)
)

<

[

n− t− 1

k − t

]

.
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So, for sufficiently large n, |A| <

[

n− t− 1

k − t

]

, and by equation (1), |A| <

[

n− t

k − t

]

.

Case 2. Suppose that there is a T0 ⊆ M(π0) with |T0| = t, such that A∗(T0) has an independent set

of size at least k + 1. By Lemma 3.2,

A = {π ∈ Sn,k : T0 ⊆ M(π)} .

Let P0 =
⋃

c∈T0
N(c0). Then

|A| =

[

n− |P0|

k − t

]

≤

[

n− t

k − t

]

,

with equality if and only if |N(ci)| = 1 for i = 1, 2 . . . , t, i.e., A is the stabilizer of at least t fixed

points.
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of permutations, European J. Combin. 30 (2009), 404–414.

[18] A.J.W. Hilton and C.L. Spencer, A graph-theoretical generalisation of Berges analogue of the
Erdos-Ko-Rado theorem, Trends in Graph Theory, Birkhauser Verlag, Basel, Switzerland (2006),
225–242.

[19] F.C. Holroyd, C. Spencer and J. Talbot, Compression and Erdos-Ko-Rado graphs, Discrete Math.

293 (2005), 155–164.

[20] F.C. Holroyd and J. Talbot, Graphs with the Erdos-Ko-Rado property, Discrete Math. 293 (2005),
165–176.

[21] G. Hurlbert and V. Kamat, Erdős-Ko-Rado theorems for chordal graphs and trees, J. Combin.

Theory Ser. A 118 (2011), 829–841.

[22] P. Keevash, Shadows and intersections: Stability and new proofs, Adv. Math. 218 (2008) 1685–
1703.
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