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We investigate the behavior of the Generalized Likelihood Ratio Test (GLRT) (Fan, Zhang
and Zhang [Ann. Statist. 29 (2001) 153–193]) for time varying coefficient models where the
regressors and errors are non-stationary time series and can be cross correlated. It is found
that the GLRT retains the minimax rate of local alternative detection under weak dependence
and non-stationarity. However, in general, the Wilks phenomenon as well as the classic residual
bootstrap are sensitive to either conditional heteroscedasticity of the errors, non-stationarity or
temporal dependence. An averaged test is suggested to alleviate the sensitivity of the test to the
choice of bandwidth and is shown to be more powerful than tests based on a single bandwidth.
An alternative wild bootstrap method is proposed and shown to be consistent when making
inference of time varying coefficient models for non-stationary time series.

Keywords: conditional heteroscedasticity; functional linear models; generalized likelihood ratio
tests; local linear regression; local stationarity; weak dependence; wild bootstrap

1. Introduction

Specification tests are important in many nonparametric settings. Generally, one is inter-
ested in testing whether certain nonparametric components are significant, or whether
they have a more parsimonious and efficient parametric representation. In the time series
context, there is a large literature devoting to the latter topic, see for instance Hjellvik et
al. [18], Fan and Li [16], Dette and Spreckelsen [9, 10], An and Cheng [1] and Paparoditis
[31], among others. Many of the previous results perform specification for stationary time
series.
The purpose of the paper is to develop specification tests for nonparametric regression

of non-stationary time series. Specifically, consider the following time-varying coefficient
model:

yi = x⊤
i β(ti) + εi, i= 1, . . . , n, (1)

where ti = i/n, xi = (xi1, xi2, . . . , xip)
⊤ are p× 1 dimensional time series of regressors or

predictors, εi are error series satisfying E(εi|xi) = 0. Here ⊤ denotes matrix or vector
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transpose. The processes {xi} and {εi} are allowed to be non-stationary and can be
cross correlated. We assume that the regression parameters β(·) := (β1(·), . . . , βp(·))⊤
is a smooth function on [0,1]. Nonparametric specification of model (1) boils down to
testing whether β(·) or a component of it has a certain parametric representation.
Due to their flexility and interpretability in investigating shifting association between

the response and predictors over time, model (1) and its stochastic coefficient version have
attracted considerable attention in various fields. See, for instance, Orbe et al. [29, 30], Cai
[3], Brown et al. [2] an Stock and Watson [37] for applications in econometrics; Kitagawa
and Gersch [23] and Gersch and Kitagawa [17] for applications in signal processing;
Hoover et al. [20] and Ramsay and Silverman [34] for applications in longitudinal and
functional data analysis. Most of the aforementioned literature on model (1) focused on
parameter estimation. However, it seems that the important issue of model validation or
specification of (1) have received little attention.
For varying coefficient models of i.i.d. samples, Fan, Zhang and Zhang [15] proposed the

generalized likelihood ratio test (GLRT) as a general rule for nonparametric specification;
see also Dette [6] for a closely related earlier test based on nonparametric analysis of
variance (ANOVA). We also refer to the excellent review paper of Fan and Jiang [14] and
the references cited therein for a more detailed discussion of the GLRT and related tests.
The GLRT has three major advantages. First, it is of simple and intuitively appealing
form. For instance, consider testing

H0: β(·) = β0(·) ←→ Ha: β(·) 6= β0(·), (2)

where β0(·) is a known function on [0,1]. Then the GLRT statistic is proportional to
(RSS0 −RSSa)/RSS0, where RSS0 and RSSa are residual sum of squares under the null
and alternative hypothesis, respectively. Hence, it is similar in form to the classic analysis
of variance. Second, the GLRT is powerful to apply. Fan, Zhang and Zhang [15] showed
that the GLRT can detect local alternatives with the optimal rate in the sense of Ing-
ster [22]. Third, the test is asymptotically nuisance parameter free; known as the Wilks
phenomenon. The Wilks phenomenon insures that the residual wild bootstrap, that is,
drawing i.i.d. samples from the centered empirical distribution of the residuals, is asymp-
totically consistent for the inference. In fact, the Wilks phenomenon is shown to hold for
a wide range of nonparametric models when testing under the GLRT. See, for instance,
Fan and Jiang [13] for additive models and Fan and Huang [12] for varying coefficient
partially linear models. For state-domain nonparametric regression for stationary time
series, Hong and Lee [19] showed that the Wilks phenomenon continue to hold when the
errors are conditionally homogeneous.
In this paper, we shall prove that the Wilks phenomenon is sensitive to either condi-

tional heteroscedasticity of the errors, non-stationarity or temporal dependence in model
(1). In particular, the Wilks phenomenon fails for model (1) even when the errors and
regressors are stationary and conditionally homogeneous. The latter finding is drasti-
cally different from the state domain regression case in Hong and Lee [19] where the
Wilks phenomenon is shown to hold when the errors are conditionally homogeneous. As
a consequence, the residual wild bootstrap fails for model (1) under dependence since
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the latter bootstrap generates (conditional) i.i.d. samples and hence mimics the Wilks
type asymptotic behavior. A new robust methodology is needed when performing model
specification for (1) under dependence and non-stationarity.
According to a result on Gaussian quadratic form approximation to the GLRT, we shall

propose in this paper a new wild bootstrap method for the nonparametric specification
of model (1). The latter bootstrap is shown to be consistent under non-stationarity and
dependence. We further discover that the GLRT, though fails to be asymptotically piv-
otal, retains the minimax rate of local alternative detection under weak dependence and
non-stationarity. Hence, the GLRT with the robust wild bootstrap is powerful to apply.
Note that Zhou and Wu [43] discussed simultaneous confidence band (SCB) construction
for model (1) which could be used for model specification. However, the SCB can detect
local alternatives with inferior rates than that of the GLRT and hence is not a powerful
tool for specification.
It is known that nonparametric specification is sensitive to the choice of smoothing

bandwidth. To alleviate the problem, Horowitz and Spokoiny [21] and Fan, Zhang and
Zhang [15], among others, proposed to maximize the test statistic over a wide range
of bandwidths. However, for the GLRT test, the asymptotic behavior of the resulting
statistic is unknown even for i.i.d. samples, which hampers the application of the latter
test. It is worth mentioning that Zhang [41] derived the asymptotic null distribution of
the maximum test for a bounded number of bandwidths. On the other hand, Müller
[25] suggested to average the GLRT over a range of bandwidths as an alternative to the
maximum test. The latter suggestion stems from surprising results, such as Lehmann
[24], that the averaged likelihood ratio test can be more powerful than the maximum
likelihood ratio test for complex alternatives. In this paper, we shall propose to use the
averaged test for the specification of model (1) to alleviate the sensitivity of the test to
the choice of bandwidth. We derive the asymptotic distribution and the local power of
the averaged test. It is found that the averaged test is asymptotically at least as powerful
as the best test based on a single bandwidth regardless of the shape of the alternative,
the non-stationary dependence structure of the data or the kernel function. Our finding
is potentially interesting for a wide range of nonparametric specification problems.
Recently, there have been many results on modeling non-stationary time series from

the spectral domain. See, for instance, Dahlhaus [4], Nason et al. [26] and Ombao et al.
[28], among others. At the same time, there is a great recent interest in specification
of non-stationary time series in the spectral domain. Examples include, among others,
Dahlhaus [5], Neumann and von Sachs [27], Paparoditis [32, 33], Sergides and Paparoditis
[36] and Dette et al. [8]. However, for the varying coefficient regression (1), models from
the spectral domain do not seem to be directly useful for an asymptotic theory. In this
paper, we shall adopt the time domain modeling of locally stationary time series in Zhou
and Wu [42]. The latter framework and the associated dependence measures directly
facilitate the theory of the current paper.
The rest of the paper is organized as follows. Section 2 introduces the GLRT statistic

and the non-stationary time series models for the error and regressor series. In Section
3, we shall derive the asymptotic null distribution and local power of the GLRT for
parametric and semi-parametric null hypotheses. A detailed discussion on the failure of
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the Wilks phenomenon is included. In Section 4, we shall introduce the averaged test and
the corresponding robust bootstrap and investigate their asymptotic behavior. In Section
5, we shall construct a monte carlo experiment to study the finite sample accuracy of the
proposed averaged test. Proofs of the asymptotic results are placed in Section 6.

2. Preliminaries

2.1. The GLRT statistics

Consider the testing problem (2). The GLRT compares the residual sum of squares (RSS)
under the null and alternative hypotheses, and a large difference indicates violation of
the null. We refer to Fan, Zhang and Zhang [15] for a detailed derivation of the statistic.
Specifically, the GLRT statistic

λn =
n

2
log

RSS0

RSSa
≈−n

2

RSSa −RSS0

RSS0
, (3)

where RSS0 =
∑n

i=1(yi − x⊤
i β0(ti))

2 is the RSS under the null hypothesis and RSSa =∑n
i=1(yi − x⊤

i β̂(ti))
2 is the RSS under the nonparametric alternative. Here β̂(·) is the

local linear kernel estimate of β(·) (Fan and Gijbels, [11]), which is defined as

(β̂bn(t), β̂
′

bn(t)) = argmin
η0,η1∈Rp

n∑

i=1

(yi − x⊤
i η0 − x⊤

i η1(ti − t))
2
Kbn(ti − t), (4)

where K is a kernel function, bn > 0 is the bandwidth, and Kc(·) = K(·/c), c > 0.
Throughout this paper, we shall always assume that the kernel K ∈ K, the collection
of symmetric density functions K with support [−1,1] and K ∈ C1[−1,1]. Define

Sn,l(t) = (nbn)
−1

n∑

i=1

xix
⊤
i [(ti − t)/bn]

l
Kbn(ti − t)

for l= 0,1, . . . , where 00 := 1, and

Rn,l(t) = (nbn)
−1

n∑

i=1

xiyi[(ti − t)/bn]
l
Kbn(ti − t).

Let η̂bn(t) = (β̂
⊤

bn(t), bn(β̂
′

bn(t))
⊤)⊤. Then it can be shown that (Fan and Gijbels, [11])

η̂bn(t) =

(
Sn,0(t) S⊤

n,1(t)

Sn,1(t) Sn,2(t)

)−1(
Rn,0(t)

Rn,1(t)

)
:= S−1

n (t)Rn(t). (5)

We shall omit the subscript bn in η̂, β̂ and β̂
′
hereafter if no confusion will be caused.
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2.2. Locally stationary time series models

Throughout this paper, we shall assume that both (xi) and (εi) belong to a general class
of locally stationary time series in the sense of Zhou and Wu [42] as follows,

xi =G(ti, (. . . , ǫi−1, ǫi)), i= 1,2, . . . , n,
(6)

εi =H(ti, (. . . , ξi−1, ξi))V (ti, (. . . , ǫi−1, ǫi)), i= 1,2, . . . , n,

where G(·) = (G1,G2, . . . ,Gp)
⊤(·), (ǫi)i∈Z are i.i.d., (ξi)i∈Z are also i.i.d. and (ǫi)i∈Z is

independent of (ξi)i∈Z. Let Fi = (. . . , ǫi−1, ǫi) and Gi = (. . . , ξi−1, ξi). We assume that

E(H(t,Gi)) = 0 and Var(H(t,Gi)) = 1,

almost surely for all t ∈ [0,1], in which case V 2(ti,Fi) is the conditional variance of εi
given Fi.
It is clear from (6) that (xi) and (εi) are non-stationary. Formulation (6) can be

interpreted as physical systems with Fi and Gi being the inputs and xi, εi being the
outputs, respectively, and G, H and V being the transforms or filters that represent the
underlying physical mechanism. By allowing G, H and V varying smoothly with respect
to t, we have local stationarity of (xi) and (εi). See also Zhou and Wu [42] for more
discussions. The above formulation of covariates and error processes is very general and
includes many settings in the existing time series regression literature as special cases.
To help understand the formulation, we shall consider the following three cases:

(a) (I.i.d. model). Assume that xi = G0(ǫi) and εi = H0(ξi). Then (x⊤
i , εi)

n
i=1 is a

random sample and (εi)
n
i=1 is independent of (xi)

n
i=1. This type of design was discussed

extensively in Fan, Zhang and Zhang [15] and Fan and Jiang [14], among others.
(b) (Exogenous model). In (6), we assume that V (ti,Fi) = V0(ti). In this case, the

regressors and errors are two independent locally stationary processes. Under further
restrictions on the processes, this type of model was studied in Robinson [35], Orbe et
al. [29, 30] among others.

(c) (Endogenous model). Assume (6). Note that in this case the errors are correlated
with the regressors since they both depend on inputs Fi. This type of model is suitable
when the errors exhibit heteroscedasticity with respect to time and the regressors. When
xi and H(t,Gi) are stationary, the case was considered in Cai [3] among others.

Write χi = (ǫi, ξi)
⊤ and Ri = (. . . , χi−1, χi). For a generic locally stationary time series

Zi = L(ti,Ri). The strength of the temporal dependence in {Zi} can be measured by how
strongly the ‘current’ observation of the time series, Zi, is influenced by the innovation
χ0 which occurred i steps ahead. More specifically, we can define

δp(L, k) = sup
0≤t≤1

‖L(t,Rk)−L(t,R∗
k)‖p where R∗

k = (R−1, χ
∗
0, χ1, χ2, . . . , χi) (7)

and {χ∗
i } is an i.i.d. copy of {χi}. Implementing the idea of coupling, δp(L, k) measures

the effect of χ0 in generating observations that are k steps away. Therefore, if δp(L, k)
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decays fast as k gets large, short range dependence is implied. We refer to Zhou and Wu
[42] for more discussions and examples on the above dependence measures.

3. Asymptotic results

For a family of stochastic processes (L(t,Ri))i∈Z, we say that it is Lq stochastic Lipschitz
continuous on [0,1] if sup0≤s<t≤1[‖L(t,R0)− L(s,R0)‖q/(t− s)] <∞. Denote by Lipq
the collection of such systems. Let Up be the collection of processes (L(t,Ri))i∈Z such
that ‖L(t,R0))‖p <∞ for all t ∈ [0,1]. Let ClI, l ∈N, be the collection of functions that
have lth order continuous derivatives on the interval I ⊂R. We shall make the following
assumptions:

(A1) Let M(t) be the p× p matrix with (i, j)th entry mij(t) = E[Gi(t,F0)Gj(t,F0)].
Assume that the smallest eigenvalue of M(t) is bounded away from 0 on [0,1] and M(t) ∈
C2[0,1].
(A2) G(t,Fi) ∈ U32 ∩ Lip2 for some r > 0.
(A3) U(t,Ri) :=G(t,Fi)V (t,Fi)H(t,Gi) ∈ U4 ∩ Lip2.
(A4)

∑∞

k=0 δ32(G, k)<∞.
(A5) δ4(V, k) + δ4(H,k) = O((k+ 1)−2).
(A6) δ4(U, k) = O(χk) for some χ ∈ (0,1).
(A7) The smallest eigenvalue of Λ(t) is bounded away from 0 on [0,1], where

Λ(t) =

∞∑

i=−∞

cov(U(t,R0),U(t,Ri)). (8)

(A8) The coefficient functions βj(·) ∈ C2[0,1], j = 1, . . . , p.

A few remarks on the regularity conditions are in order. Conditions (A1), (A2) and (A4)
insures local stationarity and short memory of the regressor process xi. The existence of
the 32rd moment is for technical convenience only and may be relaxed. The eigenvalue
constraint in condition (A1) insures the non-singularity of the design. Conditions (A3),
(A5) and (A6) guarantees the smoothness and short range dependence of the error process

εi. Furthermore, condition (A7) means that the asymptotic covariance matrix of β̂(t) is
non-singular.

3.1. The null distributions

Theorem 1. Assume that condition (A) holds and that nb
9/2
n =O(1) and nb4n/(logn)

6→
∞. Then under H0, we have

√
bn

{
2λn +

K̃(0)

bnV

∫ 1

0

tr[H(t)] dt+
nb4nµ

2
2

4V

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt

}
⇒N(0, σ2/V2), (9)
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where

σ2 =

∫

R

K̃2(t) dt

∫ 1

0

tr[H(t)2] dt,

K̃(·) = K ∗ K(·) − 2K(·), H(·) = Λ1/2(·)M−1(·)Λ1/2(·), V =
∫ 1

0
E[V (t,F0)]

2 dt, µ2 =∫ 1

−1 x
2K(x) dx, ‘∗’ is the convolution operator and ‘tr’ denotes the trace of a matrix.

Theorem 1 reveals the asymptotic behavior of the GLRT for a very wide class of
predictor and error processes. In particular, the latter Theorem explains when and why
the Wilks phenomenon fails. In the following, we will consider four special cases to see how
endogeneity, non-stationarity and temporal dependence influence the Wilks phenomenon.
To simplify the discussion, we will assume in the examples below that the asymptotic bias

effect,
nb4nµ

2
2

4V

∫ 1

0
[β′′(t)]⊤M(t)β′′(t) dt, is asymptotically negligible in (9). In practice, the

latter task can be achieved by pre-whitening. We will discuss bias reduction techniques
for GLRT in Section 4.2.

Example 1 (I.i.d. sample without endogeneity). Consider the case when xi =G(ǫi)
and εi = CH(ζi), where C is a positive constant. In this case, the covarites and errors
are two independent i.i.d. sequences and the conditions in Fan, Zhang and Zhang [15]
are satisfied. Note that V = C2, Λ(t) =M(t)C2 and H(t) = C2Ip, where Ip is the p× p
identity matrix. In particular,

∫ 1

0

tr[H(t)] dt/V = p and

∫ 1

0

tr[H(t)2] dt/V2 = p (10)

in (9). Hence, it is easy to check that

√
bn

{
2λn +

pK̃(0)

bn

}
⇒N

(
0, p

∫

R

K̃2(t) dt

)
,

which coincides with Theorem 5 of Fan, Zhang and Zhang [15] and the Wilks phenomenon
holds.

Example 2 (The effect of temporal dependence). In this case xi = G(Fi) and
εi = CH(Gi), where C is a positive constant. Hence, {xi} and {εi} are two stationary
processes which are independent of each other. In particular, neither endogeneity nor
non-stationary is assumed in the model. It is easy to see that, in this case,

Λ(t) =C2
∞∑

i=−∞

E[G(F0)G
⊤(Fi)]E[H(G0)H(Gi)], (11)

V =C2 and M(t) = E[G(F0)G
⊤(F0)]. An important observation is that

∫ 1

0

tr[H(t)] dt/V = tr

(
{E[G(F0)G

⊤(F0)]}−1
∞∑

i=−∞

E[G(F0)G
⊤(Fi)]E[H(G0)H(Gi)]

)
,
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∫ 1

0

tr[H(t)2] dt/V2 = tr

([
{E[G(F0)G

⊤(F0)]}−1
∞∑

i=−∞

E[G(F0)G
⊤(Fi)]E[H(G0)H(Gi)]

]2)

are no longer nuisance parameter free compared with the results in (10). As a conse-
quence, the Wilks phenomenon fails to hold in this case. Additionally, it is easy to see
that the latter loss of pivotality is due to the fact that the summands in (11) are generally
nonzero for i 6= 0, which is caused by the temporal dependence. Indeed, if the summands
are zero for i 6= 0 in (11), then Λ(t) = C2

E[G(F0)G
⊤(F0)] and we have (10). Like in

many pivotal tests such as the Wald test, the term RSS0/n≈ V in the GLRT serves as
a scaling device which cancels out the variance factor in RSS1 − RSS0 and makes the
test pivotal in the i.i.d. case. However, as shown above, RSS0/n fails to fulfill the latter
scaling task under dependence.

Example 3 (The effect of non-stationarity). Let xi =G(ti, ǫi) and εi = V (ti)H(ti, ζi).
Here {xi} and {εi} are two independent but non-stationary sequences which are inde-
pendent of each other. In this case, we have

∫ 1

0

tr[H(t)] dt/V = p and

∫ 1

0

tr[H(t)2] dt/V2 = p

∫ 1

0 V 4(t) dt

(
∫ 1

0
V 2(t) dt)2

. (12)

Note that the second term in (12) depends on the time-varying variance V 2(t) and hence

the Wilks phenomenon fails to hold in this case. Additionally, observe that
∫ 1
0
V 4(t)dt

(
∫ 1
0
V 2(t)dt)2

≥
1 and the equation holds if and only if V (t) is a constant function. Compared with the
results in (10), we conclude that, in this case, non-stationarity in the errors tends to
inflate the variance of GLRT. Furthermore, if {εi} has constant variance, then the Wilks
phenomenon holds even if {xi} is a non-stationary sequence.

Example 4 (The effect of endogeneity). Suppose that xi = G(ǫi) and εi =
V (ǫi)H(ζi). In this case {xi} and {εi} are two i.i.d. sequences which are dependent
of each other. We obtain

∫ 1

0

tr[H(t)] dt/V = tr({E[G(ǫ0)G
⊤(ǫ0)]}−1

E[G(ǫ0)G
⊤(ǫ0)V

2(ǫ0)])/E[V
2(ǫ0)],

∫ 1

0

tr[H(t)2] dt/V2 = tr([{E[G(ǫ0)G
⊤(ǫ0)]}−1

E[G(ǫ0)G
⊤(ǫ0)V

2(ǫ0)]]
2
)/(E[V 2(ǫ0)])

2
.

Note that if E[G(ǫ0)G
⊤(ǫ0)V

2(ǫ0)] = E[G(ǫ0)G
⊤(ǫ0)]E[V

2(ǫ0)], then we have (10) and
hence the Wilks phenomenon. Due to the dependence of G(ǫ0) and V (ǫ0), the latter
factorization generally fails and hence the Wilks phenomenon fails to hold in this case.

In many real applications, one is interested in specifying a component of β(·). For
instance, one may want to test whether βj(·) is significantly different from zero. This
leads us to consider the following hypothesis testing problem where both H01 and Ha1
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are nonparametric:

H01: β
(1)(·) = β

(1)
0 (·) ←→ Ha1: β(1)(·) 6= β

(1)
0 (·), (13)

where

β(t) =

(
β(1)(t)

β
(2)(t)

)
, β0(t) =

(
β
(1)
0 (t)

β
(2)
0 (t)

)
and xi =

(
x
(1)
i

x
(2)
i

)
,

β
(1)(t), β

(1)
0 (t) and x

(1)
i are p1 < p dimensional and β

(1)
0 (t) is a known function. Define

y∗i = yi − [β
(1)
0 (ti)]

⊤x
(1)
i . Then under H01 the functions βj(·), j = p1 + 1, . . . , p can be

estimated by the local linear regression of y∗i on x
(2)
i with bandwidth bn. Throughout

the paper we assume that the bandwidth bn used under H01 is the same as that under
Ha1. Asymptotic results can be easily obtained using the arguments of the paper when
the two bandwidths are different. However, the resulting asymptotic bias and variance
are much more complicated. For the sake of presentational clarity, we will only consider
the case of equal bandwidth.
The GLRT statistic for testing H01 against Ha1 is defined as

λ1n =
n

2
log

RSS1

RSSa
=

n

2

[
log

RSS1
RSS0

− log
RSSa
RSS0

]
≈−n

2

RSSa −RSS1
RSS0

, (14)

where RSS1 is the RSS under H01.
Write

M(t) =

(
M11(t) M12(t)

M21(t) M22(t)

)
and Λ(t) =

(
Λ11(t) Λ12(t)

Λ21(t) Λ22(t)

)
,

where M11(t) and Λ11(t) are of dimension p1 × p1.

Define p× p matrix H2(t) = diag(0p1 ,Λ
1/2
22 (t)M−1

22 (t)Λ
1/2
22 (t)). We have the following

theorem.

Theorem 2. Assume that condition (A) holds and that nb
9/2
n =O(1) and nb4n/(logn)

6→
∞. Then under H01, we have

√
bn

{
2λ1n +

K̃(0)

bnV

∫ 1

0

tr[H∗(t)] dt+
nb4nµ

2
2

4V

∫ 1

0

Υ(t) dt

}
⇒N(0, σ2

1/V2),

where H∗(·) = H(·) − H2(·), Υ(t) = [β′′(t)]⊤M(t)β′′(t) − {[β(2)(t)]′′}⊤M22(t)[β
(2)(t)]′′

and

σ2
1 =

∫

R

K̃2(t) dt

∫ 1

0

tr[{H∗(t)}2] dt.
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Theorem 2 unveils the asymptotic null distribution of the test under H01. Following
very similar arguments as those in Examples 1–4, the Wilks phenomenon can be shown
to be sensitive to non-stationary, temporal dependence and endogeneity in this case as
well.
Practitioners and researchers often encounter testing problems where the null is speci-

fied up to a parametric part. For instance, one may want to test whether β(·) is really time
varying in model (1), which amounts to testing β(·) = C for some unspecified constant
vector C. Heuristically, since the convergence rate of the local linear estimates is always
slower than the

√
n parametric rate, it is expected that the null distribution will not be

altered as long as we plug in a
√
n consistent estimate of the unspecified parametric part.

The following discussion rigorously confirms the intuition. Consider testing

H̃01: β
(1)(·) = β

(1)
0 (·, θ0) for some unknown θ0 ∈Ω⊂R

q,

where {β(1)
0 (·, θ): θ ∈ Ω} is a parametric family of smooth functions. Let ỹ∗i = yi −

(β
(1)
0 )⊤ × (ti, θ̂)x

(1)
i and R̃SS1 be the residual sum of squares of the local linear re-

gression of ỹ∗i on x
(2)
i with bandwidth bn. We shall make the following assumptions on

the parametric family β
(1)
0 (·, θ) and the estimate θ̂:

(B1) For each t ∈ [0,1], β
(1)
0 (t, θ) is C2 in θ in a neighborhood Θ of θ0. Additionally,

sup
t∈[0,1],θ∈Θ

{∣∣∣∣
∂β

(1)
0 (t, θ)

∂θ

∣∣∣∣+
∣∣∣∣
∂2β

(1)
0 (t, θ)

∂θ2

∣∣∣∣
}
<∞.

(B2) Under H̃01, ‖θ̂− θ0‖4 =O(1/
√
n).

Proposition 1. Under H̃01, condition (B) and the assumptions of Theorem 2, we have

R̃SS1 −RSS1 −OP(
√
nb2n) =OP(1). (15)

The OP(
√
nb2n) term on the left-hand side of (15) corresponds to the extra bias in-

troduced by the estimation error of θ. And the OP(1) term on the right-hand side of
(15) corresponds to the extra variance caused by the latter error. Both terms are asymp-
totically negligible compared to the OP(nb

4
n) bias and OP(1/bn) variance of RSS1. As a

consequence, the results of Theorems 1 and 2 continues to hold if θ is replaced by θ̂.

3.2. Local power of the GLRT

Proposition 2. Assume the alternative Ha,n: β(·) = β0(·) + n−4/9fn(·), where fn(·) ∈
C2[0,1]. Further assume that bn = cn−2/9 for some c > 0, that

∫ 1

0 |f ′′n (t)|dt= o(n4/9) and
that

∫ 1

0

f⊤n (t)M(t)fn(t) dt→ F1, n−8/9

∫ 1

0

[f ′′n (t)]
⊤
M(t)f ′′n (t) dt→ F2
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for some finite constants F1 and F2. Then under condition (A), we have

√
bn

{
2λn +

K̃(0)

bnV

∫ 1

0

tr[H(t)] dt

}
+

c9/2µ2
2

4V

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt+

c9/2µ2
2

4V F2 −
c1/2

V F1

⇒N(0, σ2/V2).

When the errors and regressors are weakly dependent locally stationary time series,
Proposition 2 claims that the GLRT can still detect local alternatives with the optimal
rate O(n−4/9) in the sense of Ingster [22]. As a consequence, the GLRT is powerful
to apply for nonparametric model validation of model (1) under non-stationarity and
dependence. However, it should be noted that the GLRT may not be the most powerful
among all rate optimal tests. In the literature, among other examples, Zhang and Dette
[40] discovered that other tests may yield smaller variance than the GLRT for independent
samples. From Proposition 2, the asymptotic local power of the GLRT with level α

βα(c) = Φ(R1 − z1−α) where R1 =
c1/2F1 − c9/2µ2

2F2/4

σ
, (16)

Φ(·) and z1−α denote the cumulative distribution function and the 1−α quantile of the
standard normal distribution. Assume that F1 6= 0 and F2 6= 0, then simple calculations
show that the bandwidth which maximizes the above power is

b̃n = c̃n−2/9 where c̃=

(
4F1

9µ2
2F2

)1/4

.

Remark 1. A typical example which satisfies F1 6= 0 and F2 6= 0 is when fn(t) =
anf(a

2
n(t− t0)), where f ∈ C2[−1,1], t0 ∈ (0,1) and an = n1/9. Simple calculations show

that

F1 =

∫ 1

−1

f⊤(t)M(t0)f(t) dt, F2 =

∫ 1

−1

[f ′′(t)]
⊤
M(t0)f

′′(t) dt. (17)

Hence F1 6= 0 and F2 6= 0 as long as the corresponding terms in (17) are nonzero.

4. Tests for locally stationary time series

4.1. The test

Consider the testing problem (2). Two important observations lead to the following
modifications of the original GLRT when testing for non-stationary time series. First,
as shown in Examples 2–4, the denominator RSS0/n is redundant when testing for non-
stationary time series. Second, as we discussed in the Introduction, averaging the test
over a range of bandwidths can reduce the sensitivity of the test with respect to the



12 Z. Zhou

selection of bandwidth and may also gain power over tests based on a single (optimal)
bandwidth. Based on the above discussions, we suggest using the following averaged test
when specifying model (1) for non-stationary time series:

λ∗
n =

∫ cmax

cmin

(RSS0 −RSSa(zn
−γ)) dz, (18)

where RSSa(b) is the RSS under Ha when bandwidth is chosen as b, 0< cmin < cmax <∞.
Large λ∗

n indicates evidence against H0. In the literature, nonparametric ANOVA tests
ignoring the denominator were first proposed in Dette [6] for independent samples. Dette
and Hetzler [7] also considered averaged nonparametric specification tests over a range
of bandwidths. The following theorem derives the asymptotic null distribution of the
averaged test.

Theorem 3. Assume that condition (A) holds and that 2/9≤ γ < 1/4. Then under H0,
we have

√
n−γ

{
λ∗
n + nγK̃(0)[log(cmax)− log(cmin)]

∫ 1

0

tr[H(t)] dt

+
n1−4γµ2

2(c
5
max − c5min)

20

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt

}
⇒N(0, (σ∗)

2
),

where

(σ∗)
2
=

∫

R

Q2(cmax, t) dt

∫ 1

0

tr[H(t)2] dt and

Q(x, y) =

∫ x

cmin

[2K(y/z)−K ∗K(y/z)]/z dz.

Now we consider the local power of λ∗
n under the alternative Ha,n specified in Propo-

sition 2. By Theorem 3 and similar arguments as those of Proposition 2, it is easy to
show that the asymptotic local power of λ∗

n with level α

β∗
α(cmin, cmax) = Φ(R2 − z1−α)

(19)

where R2 =
(cmax − cmin)F1 − (c5max − c5min)µ

2
2F2/20

σ∗
.

Suppose that λn is asymptotically unbiased; namely R1 > 0. From (19) and (16), we
observe that λ∗

n is asymptotically more powerful than λn if and only if R2/R1 > 1.
Simple calculations show that

R2/R1 =
[(cmax − cmin)F1 − (c5max − c5min)µ

2
2F2/20]

√∫
R
K̃2(t) dt

[c1/2F1 − c9/2µ2
2F2/4]

√∫
R
Q2(cmax, t) dt

.
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An interesting observation from the above equation is that R2/R1 does not depend on
the dependence or the non-stationarity structure of the data. Furthermore, we have the
following result.

Proposition 3. Under Ha,n and the assumptions of Proposition 2, we have

sup
0<cmin<cmax<∞

β∗
α(cmin, cmax)≥ sup

0<c<∞

βα(c). (20)

Proposition 3 claims that, asymptotically, the averaged test λ∗
n is at least as powerful

as the test which is based on the maximum generalized likelihood ratio. The result is very
general in the sense that it does not depend on the nature of the local alternative fn(·),
the dependence structure of the data or the kernel function. When we restrict ourselves
to a specific kernel function, the power comparison can be more exact. Let us consider
the following example:

Example 5. Suppose that λn is asymptotically unbiased and that the bandwidth for λn

is chosen as cn−2/9. Let cmin = c̃minc for some fixed c̃min ≤ 1 and let cmax = c̃maxc such
that c̃max solves the equation x4 + c̃minx

3 +(c̃min)
2x2 +(c̃min)

3x+(c̃min)
4 = 5. Choosing

cmax in the latter way insures that F1 and F2 do not enter the ratio R2/R1 and hence
the power comparison is relatively simple. Now simple calculations show that

R2/R1 =
(c̃max − c̃min)

√∫
R
K̃2(t) dt

√∫
R
(
∫ c̃max

c̃min
[2K(y/z)−K ∗K(y/z)]/zdz)2 dy

. (21)

An application of the Cauchy–Schwarz inequality similar to the proof of Proposition 3
shows that sup0<c̃min≤1R2/R1 ≥ 1 regardless of the kernel function. Now let us consider
the uniform kernel K(x) = I{|x| ≤ 1}/2. Figure 1 shows R2/R1 as a function of c̃min. We

Figure 1. Ratio R2/R1 as a function of c̃min in Example 5. The uniform kernel is used.
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observe from the figure that the averaged test λ∗
n is asymptotically more powerful than

λn on (0,1) regardless of the shape of the alternative. Figure 1 further supports the use
of the averaged test.

4.2. Bias reduction and bandwidth range selection

As we see from Theorem 3, the asymptotic bias of λ∗
n involves the second derivative of

β(t) and the estimation of the latter quantity is generally highly nontrivial. Following
the idea of Fan and Jiang [14], a prewhitening technique can be used to alleviate the
problem. More specifically, consider the following null hypothesis:

H̃0: β(·) = β0(·, θ) for some unknown θ0 ∈Ω⊂R
q,

where {β0(·, θ): θ ∈Ω} is a parametric family of smooth functions. Let θ̂0 be a
√
n con-

sistent estimator of θ0 and define β∗(t) = β(·)−β0(t, θ̂0). Then by the similar arguments
as those of Proposition 1, the asymptotic bias and variance of estimating θ0 is negligible
in the current setting and hence testing H̃0 is equivalent to testing

H̆0: β
∗(·) = 0 versus H̆a: β

∗(·) 6= 0.

Then we can perform λ∗
n to testing H̆0 with transformed regression coefficients β∗(·) and

response y̆i = yi − x⊤
i β0(t, θ̂0). Note that the local linear estimator of β∗(·) has no bias

under H̆0 and we can avoid the notorious problem of bias estimation .
As mentioned in Fan and Jiang [14], a choice of larger bandwidth favors smoother

alternatives and a smaller bandwidth tends to detect less smooth alternatives. Thanks to
the introduction of the averaged test, the sensitivity of the test to the choice of bandwidth
is alleviated due to the introduction of a group of bandwidths. On the other hand,
the correlation of λn between nearby bandwidths are usually quite high and hence in
practice one only needs to average the test over a grid of relatively separated bandwidths.
Zhang [41] found that the correlation between λn(h) and λn(ch) is quite high for c= 1.3.
As suggested by Fan and Jiang [14], here we recommend choosing the grid of three
bandwidths b̃n/1.5, b̃n and b̃n × 1.5 to represent small, medium and large bandwidths
and average the test over the latter grid. Here b̃n = b∗n × n−1/45 and b∗n is the optimal
bandwidth for nonparametric curve estimation.

4.3. The robust wild bootstrap

A direct implementation of the asymptotic distribution in Theorem 3 may not perform
satisfactorily in practice due to the following two reasons. First, the convergence rate
of test statistic equals O(n−1/9) when bandwidth bn is chosen optimally. The rate is
quite slow and hence the asymptotic approximation may not be accurate for moderate
samples. Second, as we can see from the proof of Lemma 7 in Section 6, the asymptotic
normal approximation is particularly rough at the boundaries of the time interval for
finite samples. As a remedy, we observe the following proposition.
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Proposition 4. Let the bandwidth range be [cminn
−γ , cmaxn

−γ ] for some 0 < cmin <
cmax <∞. Suppose that either (1): β0(·) is a linear function or (2): γ > 2/9. Then under
H0, condition (A) and the assumption that γ < 1/4, on a possibly richer probability space,
there exist i.i.d. p-dimensional standard Gaussian random vectors V1, . . . , Vn, such that

λ∗
n =Φn + oP(

√
nγ), (22)

where

Φn =

∫ cmax

cmin

{
2

n∑

i=1

Ṽ ⊤
i [ESn,n(s)(ti)]

−1
T̃n,n(s)(ti)−

n∑

i=1

[z⊤i [ESn,n(s)(ti)]
−1

T̃n,n(s)(ti)]
2

}
ds

with n(s) = sn−γ , zi = (x⊤
i ,0

⊤
p )

⊤, Ṽi = (V ⊤
i Λ1/2(ti),0

⊤
p )

⊤, T̃n,b(t) = (T̃⊤
n,0,b(t), T̃

⊤
n,1,b(t))

⊤

and

T̃n,l,b(t) = (nb)−1
n∑

i=1

Λ1/2(ti)Vi[(ti − t)/b]
l
Kb(ti − t), l= 0,1. (23)

Proposition 4 follows easily from (30) and Lemma 5 in Section 6. Details are omitted.
The latter proposition claims that λ∗

n can be well approximated by a Gaussian quadratic
form Φn. In particular, we observe from the proofs in Section 6 that the approximation
is accurate at the boundaries due to the fact that it directly mimics the form of the test
statistic. When implementing λ∗

n, we recommend generating a large (say of size 1000)
sample of i.i.d. copies of Φn and use the resulting empirical distribution to approximate
that of λ∗

n under the null hypothesis and obtain the p-value of the test.
As we suggested in Section 4.2, in practice, one usually uses a grid of bandwidths
B = {cminn

−γ = b1 < b2 < · · · < bM = cmaxn
−γ} and calculate λ∗

n(B) =
∑M

i=1(RSS0 −
RSSa(bi)). To perform wild bootstrap in those cases, one compares λ∗

n(B) to the simu-
lated quantiles of

Φn(B) :=
M∑

j=1

{
2

n∑

i=1

Ṽ ⊤
i [ESn,bj (ti)]

−1
T̃n,bj (ti)−

n∑

i=1

[z⊤i [ESn,bj (ti)]
−1

T̃n,bj (ti)]
2

}

to calculate the p-value of the test. In Section 5, we shall conduct a simulation study to
compare the finite sample performance of the wild bootstrap and the direct implemen-
tation of the asymptotic distribution.
If one is interested in the semiparametric testing problem H01 versus Ha1 in (13), then

the corresponding averaged test is

λ∗
1n =

∫ cmax

cmin

(RSS1(zn
−γ)−RSSa(zn

−γ)) dz. (24)

Write εi = ([ε
(1)
i ]⊤, [ε

(2)
i ]⊤)⊤ and Vi = ([V

(1)
i ]⊤, [V

(2)
i ]⊤)⊤, where ε

(1)
i and V

(1)
i are p1

dimensional. Define S
(2)
n,b, S

(2)
n,l,b, z

(2)
i , Ṽ

(2)
i , T

(2)
n T

(2)
nl , T̃

(2)
n , T̃

(2)
nl and Φ

(2)
n in the same way
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as their counterparts without the superscript (2) with xi, εi, Λ(t) and Vi therein replaced

by x
(2)
i , ε

(2)
i , Λ22(t) and V

(2)
i , respectively. We have the following proposition.

Proposition 5. Suppose that 1/4 > γ > 2/9. Then under H01 and condition (A), on
a possibly richer probability space, there exist i.i.d. p-dimensional standard Gaussian
random vectors V1, . . . , Vn, such that

λ∗
1n =Φn −Φ(2)

n +oP(
√
nγ). (25)

Note that Φn − Φ
(2)
n is a quadratic form of V1, . . . , Vn. By Proposition 5, in practice,

one could generate a large sample of i.i.d. copies of Φn − Φ
(2)
n to obtain the p-value of

testing H01.

4.4. Long-run covariance matrix estimation

By Lemma 9 in Section 6, ESn,n(s)(ti) in Proposition 4 can be well approximated by
Sn,n(s)(ti). Therefore, in order to implement the wild bootstrap, one only needs to esti-
mate the long-run covariance matrix Λ(·). Here we suggest using the local lag window
estimate of Λ(·) proposed in Zhou and Wu [43]. For the sake of completeness, we will
briefly introduce the estimator here. We refer to the latter paper for more details in-
cluding the derivation of convergence rates of the estimator and the choice of smoothing
parameters.
Define L̂i := xiε̂i, where ε̂i’s are the residuals under the alternative. For a window size

m and a bandwidth τn, Λ(·) can be estimated by

Λ̂(·) =
n∑

i=1

ω(·, i)∆i where ω(·, i) = Kτn(ti − ·)∑n
j=1Kτn(tj − ·)

and ∆i = (
∑m

j=−m L̂i+j)(
∑m

j=−m L̂⊤
i+j)/(2m+1). Zhou and Wu [43] showed that Λ̂(t) is

always positive semidefinite and has convergence rate O(n−2/7) when m=O(n2/7) and
τn =O(n−1/7).

5. Simulation studies

In this section, we shall design simulations to study the accuracy of the wild bootstrap
procedure of the paper and compare it with that of the bootstrap procedure of Fan and
Jiang [14] and the method of direct implementation of the asymptotic distribution in (9).
Let us consider the following model

yi = β1(ti) + β2(ti)x2i + εi (26)

and the test H0: β1(·) = β2(·) = 0. The following four scenarios are considered in order
to investigate the effects of endogeneity, non-stationarity and temporal dependence.
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Scenario (a). In this case x2i’s are i.i.d. exponential random variables with mean 1

and εi’s are i.i.d. standard normal. The two processes {x2i} and {εi} are independent.

The latter design satisfies the conditions in Fan, Zhang and Zhang [15] and hence it is

expected that the bootstrap procedure in Fan and Jiang [14] will work in this case.

Scenario (b). In this scenario x2i’s are i.i.d. exponential random variables with mean

1 and εi = x2iζi, where ζi’s are i.i.d. standard normal and are independent of {x2i}. In
scenario (b) we are interested in investigating the effect of endogeneity on the behavior

of GLRT.

Scenario (c). Let x2i’s be independent student t random variables and the degrees of

freedom of x2i = 5 + 10ti. Let εi = exp(−1/ti)/(100t4i )ζi, where ζi’s are i.i.d. standard

normal. Further let x2i’s and εi’s be independent. Note that {εi} is a locally stationary

process with time-varying variance and {x2i} is locally stationary process with smoothly

varying tail index. In this case, we are investigating the effect of non-stationarity on the

behavior of GLRT.

Scenario (d). Let x2i = ǫiǫi−1, where ǫi’s are i.i.d. standard normal. Let εi = 0.5εi−1+

ζi, where ζi’s are i.i.d. standard normal. Further let {ǫi} be independent of {ζi}. Note
{x2i} and {εi} are two stationary weakly dependent processes. In this case we are inter-

ested in investigating the effect of temporal dependence on the behavior of GLRT.

We consider two different sample sizes, n = 200 and 400. We compare three different

methods, namely the robust wild bootstrap test (22) (WILD), test based on the asymp-

totic distribution (9) (ASYM) and the residual bootstrap test of Fan and Jiang [14] (IID).

Both the single bandwidth test λn in (3) and the suggested averaged test λ∗
n in (18) are

considered. For the averaged test, the bandwidth ranges are selected as [b̃n/1.5,1.5b̃n]

according to the discussion in Section 4.2. To investigate the sensitivity of the accuracy

of the wild bootstrap method on the choice of bandwidth, three different bandwidths,

namely 0.15,0.25 and 0.35 are considered in the simulation. Based on 500 replications,

the simulated type I error rates at 10% nominal level are summarized in Table 1 be-

low.

We observe from Table 1 that, for the robust wild bootstrap, the simulated type I

errors of the averaged test and the single bandwidth test are reasonably close to the

nominal and the performance is stable for all four cases when n = 400. For n = 200,

the robust bootstrap is slightly anti-conservative in cases (a), (b) and (d) for small

bandwidths. As we expected, the averaged test performs more stably than the single

bandwidth test. On the other hand, we observe that tests based on the asymptotic dis-

tribution do not perform well for moderately large samples. As we discussed in Section

4.3, the reason is due to the slow convergence of the test statistic and the rough approx-

imation of the asymptotic distribution at the boundaries. The residual wild bootstrap

performs slightly better than our robust wild bootstrap for i.i.d. data without endo-

geneity. However, we observe that the residual bootstrap is no longer consistent under

non-stationarity, temporal dependence or endogeneity, which is consistent with our the-

oretical findings.
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Table 1. Simulated type I error rates (in percentage) for the wild bootstrap test (22) (WILD),
test based on the asymptotic distribution (9) (ASYM) and the bootstrap test of Fan and Jiang
[14] (IID) with nominal level 10% under scenarios (a), (b), (c) and (d). For the averaged test
λ∗

n
, the bandwidth range is selected as [̃bn/1.5,1.5b̃n ]. Series length n= 200 and 400 with 500

replicates

n= 200 n= 400

Method (a) (b) (c) (d) (a) (b) (c) (d)

Averaged test λ∗

n

WILD b̃n = 0.15 7.5 7.4 10.4 7.1 8.1 8 9.7 9.1

WILD b̃n = 0.25 8.5 8.15 10.2 7.7 8.5 8.4 9.8 9.7

WILD b̃n = 0.35 8.9 8.7 10 7.7 8.7 9.1 9.2 9.8

ASYM b̃n = 0.15 35.4 14.4 18.8 28.2 38.3 18.5 15.0 33

ASYM b̃n = 0.25 39.1 18.5 19.4 33.3 39.9 21.2 17.8 36.3

ASYM b̃n = 0.35 44.1 21.4 18.0 36.2 44.5 23.8 20.7 38.4

IID b̃n = 0.15 10.4 83.6 20.5 68.8 11.9 87.7 15.7 73.3

IID b̃n = 0.25 11.4 79.6 19.1 61.9 9.9 82.7 17.9 63.8

IID b̃n = 0.35 11.0 74.3 17.8 55.9 10.2 78.8 19.8 56.8

Single bandwidth test λn

WILD bn = 0.15 5.0 5.8 10.2 5.8 8.6 7.2 11.2 9.4
WILD bn = 0.25 8.2 7.8 9.4 8.8 9.2 8.2 10.2 11.6
WILD bn = 0.35 9.8 9.2 9.0 8.2 11.2 9.6 11.2 11.4
ASYM bn = 0.15 32.2 13.2 17.8 27.8 27.4 16.8 13.8 30
ASYM bn = 0.25 36.2 19.6 20.4 36.8 29 20.2 16.8 36.6
ASYM bn = 0.35 43.6 21.2 20.4 38.8 34 22 18 38
IID bn = 0.15 8.2 86.8 20.8 73.2 10.8 89 15.2 76.2
IID bn = 0.25 7.8 82.2 20.6 63 9.4 80.2 18 63.4
IID bn = 0.35 10.4 76.2 17.4 55.6 12 77.2 17.8 56.6

6. Proofs

Note that under the null hypothesis H0,

RSSa −RSS0 = 2
n∑

i=1

x⊤
i εi(β(ti)− β̂(ti)) +

n∑

i=1

{x⊤
i (β(ti)− β̂(ti))}2 := 2In + II n. (27)

On the other hand, by (5),

Sn(t)(η̂(t)−η(t)) =

(
b2nSn,2(t)(β

′′(t) + o(1))/2

b2nSn,3(t)(β
′′(t) + o(1))/2

)
+

(
Tn,0(t)

Tn,1(t)

)
:=Bn(t)+Tn(t), (28)

where η(t) = (β⊤(t), bnβ
′⊤(t))⊤, and

Tn,l(t) = r2n

n∑

i=1

xiεi[(ti − t)/bn]
l
Kbn(ti − t), l= 0,1, . . .
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with rn := 1/
√
nbn. In (28), Bn(t) corresponds to the bias of the local linear estimate at

time t. Lemmas 1 and 2 below control the asymptotic influence of the bias term Bn(·)
on RSSa −RSS0.

Lemma 1. Define zi = (x⊤
i ,0

⊤
p )

⊤, where 0p is the column vector of p zeros. Under

condition (A), we have −In =Dn1 +OP(
√
nb2n), where Dn1 :=

∑n
i=1 z

⊤
i εiS

−1
n (ti)Tn(ti).

Proof. By (27) and (28), we have

−In −Dn1 =
n∑

i=1

z⊤i εiS
−1
n (ti)Bn(ti).

Define IDn1 = E[(−In − Dn1)
2|Fn] and Pi(·) = E(·|Gi) − E(·|Gi−1). Recall that Gi =

(. . . , ξi−1, ξi). Using the facts that H(t,Gi) =
∑i

j=−∞PjH(t,Gi) and Pi and Pj are or-
thogonal for i 6= j, elementary calculations show that

IDn1 =

n∑

i=1

n∑

j=1

n∑

k=−∞

E[PkH(ti,Gi)PkH(tj ,Gj)]

× V (ti,Fi)S
−1
n (ti)Bn(ti)V (tj ,Fj)S

−1
n (tj)Bn(tj).

Let δH(k, p) = 0 if k < 0. Note that

n∑

k=−∞

|E[PkH(ti,Gi)PkH(tj ,Gj)]| ≤
n∑

k=−∞

‖PkH(ti,Gi)‖‖PkH(tj ,Gj)‖

≤
n∑

k=−∞

δH(i− k,2)δH(j − k,2)

≤ C(|i− j|+ 1)
−2

.

On the other hand, by Lemma 9, the Hölder’s inequality and similar arguments as those
of Lemma 6 in Zhou and Wu [43], we have

E|V (ti,Fi)S
−1
n (ti)Bn(ti)V (tj ,Fj)S

−1
n (tj)Bn(tj)|

≤ ‖V (ti,Fi)‖4‖S−1
n (ti)‖8‖Bn(ti)‖8‖V (tj ,Fj)‖4‖S−1

n (tj)‖8‖Bn(tj)‖8 ≤Cb4n.

Therefore, EIDn1 ≤C
∑n

i=1

∑n
j=1(|i− j|+ 1)−2b4n ≤ Cnb4n. Note that E(−In −Dn1)

2 =
EIDn1. Therefore, this lemma follows. �

Lemma 2. Under condition (A) and the assumption that nb
5/2
n →∞, we have

II n =Dn2 +
nb4nµ

2
2

4

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt+oP(nb

4
n),

where Dn2 :=
∑n

i=1{z⊤i S−1
n (ti)Tn(ti)}2.
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Proof. By (27) and (28), we have

II n −Dn2 =

n∑

i=1

(z⊤i S
−1
n (ti)Bn(ti))

2
+2

n∑

i=1

z⊤i S
−1
n (ti)Bn(ti)z

⊤
i S

−1
n (ti)Tn(ti)

:= ID∗
n2 +2ID∗∗

n2.

By Lemma 9 and the Hölder’s inequality, it follows that

ID∗
n2 −

n∑

i=1

{z⊤i [ESn(ti)]
−1

Bn(ti)}2 =OP(nb
4
n/
√
nbn).

By condition (A4) and the similar arguments as those in the proof of Lemma 1, we have

n∑

i=1

{z⊤i [ESn(ti)]
−1

Bn(ti)}2 −E

[
n∑

i=1

{z⊤i [ESn(ti)]
−1

Bn(ti)}2
]
=OP(

√
nb4n).

It is easy to see that, for i= 1,2, . . . , n,

E(z⊤i [ESn(ti)]
−1

Bn(ti))
2 − b4nE

(
z⊤i [ESn(ti)]

−1

(
Sn,2(ti)β

′′(ti)/2

Sn,3(ti)β
′′(ti)/2

))2

= o(b4n).

Additionally, by Lemma 9 and simple algebra, we have

n∑

i=1

E

(
z⊤i [ESn(ti)]

−1

(
Sn,2(ti)β

′′(ti)/2

Sn,3(ti)β
′′(ti)/2

))2

= nµ2
2

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt/4 + o(n).

Therefore, ID∗
n2 = nb4nµ

2
2

∫ 1

0
[β′′(t)]⊤M(t)β′′(t) dt/4+ op(nb

4
n). Furthermore,

ID∗∗
n2 = r2n

n∑

j=1

n∑

i=1

z⊤i S
−1
n (ti)Bn(ti)z

⊤
i S

−1
n (ti)xjKbn(ti − tj)εj .

Recall that rn = 1/
√
nbn. Following the similar arguments as those in the proof of Lemma

1, we have ID∗∗
n2 =OP(

√
b3n) = oP(nb

4
n). Details are omitted. Hence, the lemma follows. �

Lemma 3. Under condition (A) and the assumption that nb3n→∞, we have

Dn1 = D̄n1 + oP(1/
√
bn),

where D̄n1 =
∑n

i=1 z
⊤
i εi[ESn(ti)]

−1Tn(ti).

Proof. Let IDn1 =Dn1 − D̄n1 and ISn(t) = S−1
n (t)− [ESn(t)]

−1. Then

IDn1 =

n∑

i=1

z⊤i εiISn(ti)Tn(ti).
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Let An,k =
∑k

i=1 z
⊤
i εiISn(ti) and An,0 = 0. Then by Lemma 9 and the similar arguments

as those of Lemma 1, it is easy to show that max1≤k≤n ‖An,k‖4 ≤Crn
√
n. Note that

IDn1 =
n∑

i=1

(An,i −An,i−1)Tn(ti) =
n−1∑

i=1

An,i(Tn(ti)−Tn(ti−1)) +An,nTn(tn).

By the similar arguments as those of Lemma 1, we have

max
1≤i≤n

‖Tn(ti)−Tn(ti−1)‖4 ≤Cr3n (29)

and ‖Tn(tn)‖4 =O(rn). Therefore,

‖IDn1‖ ≤
n−1∑

i=1

‖An,i‖4‖Tn(ti)−Tn(ti−1)‖4 + ‖An,n‖4‖Tn(tn)‖4

≤ C

(
n−1∑

i=1

rn
√
nr3n + rn

√
nrn

)
=O(1/(

√
nb2n)) = o(1/

√
bn).

Therefore, the lemma follows. �

Lemma 4. Under condition (A) and the assumption that nb3n→∞, we have

Dn2 = D̄n2 + oP(1/
√
bn),

where D̄n2 =
∑n

i=1{z⊤i [ESn(ti)]
−1Tn(ti)}2.

Proof. Note thatDn2−D̄n2 =
∑n

i=1 Γ1(i)Γ2(i), where Γ1(i) = z⊤i (S
−1
n (ti)+[ESn(ti)]

−1)×
Tn(ti) and Γ2(i) = z⊤i (S

−1
n (ti)− [ESn(ti)]

−1)Tn(ti).

Let SΓ1(i) =
∑i

j=1 Γ1(i) for 1≤ i≤ n and SΓ1(0) = 0. Then

Dn2 − D̄n2 =
n∑

i=1

(SΓ1(i)− SΓ1(i))Γ2(i) =
n−1∑

i=1

SΓ1(i)(Γ2(i)− Γ2(i+1)) + SΓ1(n)Γ2(n).

Note that

SΓ1(i) = r2n

n∑

k=1

i∑

j=1

z⊤j (S
−1
n (tj) + [ESn(tj)]

−1
)Kbn(tk − tj)

(
xkεk

xkεk[(tk − tj)/bn]

)

= r2n

n∑

k=1

Ξ1(i, k)εk + r2n

n∑

k=1

Ξ2(i, k)εk,

where

Ξ1(i, k) =

i∑

j=1

z⊤j (S
−1
n (tj) + [ESn(tj)]

−1
)Kbn(tk − tj)z

⊤
k ,
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Ξ2(i, k) =

i∑

j=1

z⊤j (S
−1
n (tj) + [ESn(tj)]

−1
)Kbn(tk − tj)(0

⊤
p ,x

⊤
k )

⊤
.

By Lemma 9 and the Hölder’s inequality, maxi‖Ξ1(i, k)‖ ≤Cnbn. Hence by similar con-
ditioning arguments as those in the proof Lemma 1,

r2nmax
i

∥∥∥∥∥

n∑

k=1

Ξ1(i, k)εk

∥∥∥∥∥=O(
√
n).

Similarly, r2nmaxi‖
∑n

k=1Ξ2(i, k)εk‖=O(
√
n). Hence, maxi‖SΓ1(i)‖=O(

√
n). By simi-

lar arguments, we have

max
i
‖Γ2(i)− Γ2(i+1)‖=O(r4n) and ‖Γ2(n)‖=O(r2n).

Therefore

E|Dn2 − D̄n2| ≤
n−1∑

i=1

‖SΓ1(i)‖‖Γ2(i)− Γ2(i+ 1)‖+ ‖SΓ1(n)‖‖SΓ2(n)‖

= O(1/(
√
nb2n)) = o(1/

√
bn).

The lemma follows. �

Lemma 5. Under condition (A) and the assumption that nb3n→∞, we have

D̄n2 =Θn +oP(1/
√
bn),

where Θn =
∑n

i=1T
⊤
n (ti)[ESn(ti)]

−1
E[ziz

⊤
i ][ESn(ti)]

−1Tn(ti).

Proof. Note that D̄n2 =
∑n

i=1T
⊤
n (ti)[ESn(ti)]

−1ziz
⊤
i [ESn(ti)]

−1Tn(ti). Therefore

D̄n2 −Θn =

n∑

i=1

T⊤
n (ti)Θn(i),

where Θn(i) = [ESn(ti)]
−1{ziz⊤i −E[ziz

⊤
i ]}[ESn(ti)]

−1Tn(ti). Note that

i∑

j=1

Θn(j) = r2n

n∑

k=1

i∑

j=1

[ESn(tj)]
−1{zjz⊤j −E[zjz

⊤
j ]}[ESn(tj)]

−1

×Kbn(tk − tj)

(
xkεk

xkεk[(tk − tj)/bn]

)
.
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By the short memory property of xi in condition (A4) and similar arguments as those
in the proof of Lemma 1, we have

max
i

∥∥∥∥∥

i∑

j=1

[ESn(tj)]
−1{zjz⊤j −E[zjz

⊤
j ]}[ESn(tj)]

−1
Kbn(tk − tj)

∥∥∥∥∥=O(
√
nbn).

Hence by similar conditioning arguments as those in the proof of Lemma 1, we have

max
i

∥∥∥∥∥

i∑

j=1

Θn(j)

∥∥∥∥∥=O(
√
nrn).

Together with (29) and the summation by parts technique used in Lemma 3, it follows
that E|D̄n2 −Θn|=O(1/(

√
nb2n)) = o(1/

√
bn). The lemma follows. �

Lemma 6. Assume condition (A). Then on a possibly richer probability space, there
exist i.i.d standard p dimensional Gaussian random vectors V1, . . . , Vn, such that

|Θn −Θ∗
n|+ |D̄n1 − D̄∗

n1|=OP((logn)
3/2/(n1/4b3/2n )), (30)

where

Θ∗
n =

n∑

i=1

T̃⊤
n (ti)[ESn(ti)]

−1
E[ziz

⊤
i ][ESn(ti)]

−1
T̃n(ti),

D̄∗
n1 =

n∑

i=1

Ṽ ⊤
i [ESn(ti)]

−1
T̃n(ti).

Proof. Recall the definitions of Ṽi, T̃n(t) and T̃n,l(t) in Proposition 4. We will only

prove Θn −Θ∗
n =OP((logn)

3/2/(n1/4b
3/2
n )) since D̄n1 − D̄∗

n1 =OP((logn)
3/2/(n1/4b

3/2
n ))

follows by similar arguments. Note that

Θn =
n∑

i=1

T⊤
n (ti)[ESn(ti)]

−1
E[ziz

⊤
i ][ESn(ti)]

−1
Tn(ti) :=

n∑

i=1

T⊤
n (ti)Θ̃n(i).

By Corollaries 1 and 2 of Wu and Zhou [39], on a possibly richer probability space, there
exist i.i.d p dimensional standard Gaussian random vectors V1, . . . , Vn, such that

max
1≤i≤n

|∆i|=OP(n
1/4(logn)3/2), (31)

where ∆i =
∑i

j=1(εjxj −Λ1/2(tj)Vj). Write Θ
(1)
n =

∑n
i=1 T̃

⊤
n (ti)Θ̃n(i). Then

|Θn −Θ(1)
n |

=

∣∣∣∣∣

n∑

i=1

[T⊤
n (ti)− T̃⊤

n (ti)]Θ̃n(i)

∣∣∣∣∣
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=

∣∣∣∣∣

n∑

i=1

[(T⊤
n,0(ti),0

⊤
p )− (T̃⊤

n,0(ti),0
⊤
p )]Θ̃n(i) + [(0⊤

p ,T
⊤
n,1(ti))− (0⊤

p , T̃
⊤
n,1(ti))]Θ̃n(i)

∣∣∣∣∣

:=

∣∣∣∣∣

n∑

i=1

[W⊤
n,0(ti)Θ̃n(i) +W⊤

n,1(ti)Θ̃n(i)]

∣∣∣∣∣.

Write ∆̃i = (∆⊤
i ,0

⊤
p )

⊤ and ∆̃0 = 0. Note that

n∑

i=1

W⊤
n,0(ti)Θ̃n(i) = r2n

n∑

i=1

n∑

k=1

(∆̃k − ∆̃k−1)Kbn(tk − ti)Θ̃n(i)

= r2n

n∑

k=1

(∆̃k − ∆̃k−1)

n∑

i=1

Kbn(tk − ti)Θ̃n(i)

:= r2n

n∑

k=1

(∆̃k − ∆̃k−1)Ωn(k).

By the summation by parts formula,
∣∣∣∣∣

n∑

k=1

(∆̃k − ∆̃k−1)Ωn(k)

∣∣∣∣∣ =
∣∣∣∣∣

n−1∑

k=1

∆̃k(Ωn(k)−Ωn(k +1)) + ∆̃nΩn(n)

∣∣∣∣∣

≤ max
1≤i≤n

|∆̃i|
(

n−1∑

k=1

|Ωn(k)−Ωn(k+ 1)|+ |Ωn(n)|
)
.

By the smoothness of K(·) and the similar arguments as those in the proof of Lemma 1,
it follows that

max
1≤k≤n−1

‖Ωn(k)−Ωn(k +1)‖=O(rn), ‖Ωn(n)‖=O(1/rn).

Therefore by (31), we have
∣∣∣∣∣

n∑

i=1

W⊤
n,0(ti)Θ̃n(i)

∣∣∣∣∣=OP{n1/4 log3/2n(nr3n + rn)}=OP((logn)
3/2/(n1/4b3/2n )).

Similarly,
∣∣∣∣∣

n∑

i=1

W⊤
n,1(ti)Θ̃n(i)

∣∣∣∣∣=OP((logn)
3/2/(n1/4b3/2n )).

Hence, |Θn −Θ
(1)
n |=OP((logn)

3/2/(n1/4b
3/2
n )). Note that

∣∣∣∣∣Θ
(1)
n −

n∑

i=1

T̃⊤
n (ti)[ESn(ti)]

−1
E[ziz

⊤
i ][ESn(ti)]

−1
T̃n(ti)

∣∣∣∣∣=
n∑

i=1

Θ̂n(ti)[Tn(ti)− T̃n(ti)],
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where Θ̂n(ti) = T̃⊤
n (ti)[ESn(ti)]

−1
E[ziz

⊤
i ][ESn(ti)]

−1. Hence by similar arguments, it fol-
lows that ∣∣∣∣∣

n∑

i=1

Θ̂n(ti)[T̃n(ti)−Tn(ti)]

∣∣∣∣∣=OP((logn)
3/2/(n1/4b3/2n )).

The lemma follows. �

Lemma 7. Under condition (A) and the assumption that bn→ 0, nbn→∞, we have

√
bn

{
Θ∗

n − 2D̄∗
n1 − K̃(0)

∫ 1

0

tr[H(t)H⊤(t)] dt/bn

}
⇒N(0, σ2).

Proof. Note that both Θ∗
n and D∗

n1 are quadratic forms of i.i.d. standard Gaussian
random vectors. By Lemma 9 and similar arguments as those in the proof of Lemma 5,
it can be shown that Θ∗

n −Θ∗∗
n =OP(1) and D̄∗

n1 − D̄∗∗
n1 =OP(1), where

Θ∗∗
n =

n∑

i=1

T̃⊤
n,0(ti)M

−1(ti)T̃n,0(ti),

D̄∗∗
n1 =

n∑

i=1

V ⊤
i Λ1/2(ti)M

−1(ti)T̃n,0(ti).

Note that

Θ∗∗
n = r4n

n∑

k=1

n∑

r=1

V ⊤
k Λ1/2(tk)

[
n∑

i=1

M−1(ti)Kbn(tk − ti)Kbn(tr − ti)

]
Λ1/2(tr)Vr

and that M−1(ti)Kbn(tk− ti)Kbn(tr− ti) = 0 if |tk− tr| ≥ 2bn or min{|ti− tr|, |ti− tk|} ≥
bn. Hence by Lemma 9 and similar arguments as those in the proof of Lemma 5, it follows
that

Θ∗∗
n −Θ∗∗∗

n =O(1) where Θ∗∗∗
n = r2n

n∑

k=1

n∑

r=1

V ⊤
k H̃(tk)K ∗Kbn(tk − tr)H̃

⊤(tr)Vr,

where H̃(·) = Λ1/2(·)M−1/2(·). Similarly,

D∗∗
n1 −D∗∗∗

n1 =O(1) where D∗∗∗
n1 = r2n

n∑

k=1

n∑

r=1

V ⊤
k H̃(tk)Kbn(tk − tr)H̃

⊤(tr)Vr .

Using the fact that Vi’s are i.i.d. standard Gaussian, elementary calculations show that

√
bn

{
Θ∗∗∗

n − 2D̄∗∗∗
n1 − K̃(0)

∫ 1

0

tr[H(t)] dt/bn

}
⇒N(0, σ2).

The lemma follows. �
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Lemma 8. Under conditions (A1)–(A7), we have

∑n
i=1 ε

2
i

n
=

∫ 1

0

ϑ2(t) dt+OP(1/
√
n),

where ϑ2(t) = E[V (t,F0)]
2.

Proof. Note that Eε2i = ϑ2(ti). Therefore

n∑

i=1

[ε2i − ϑ2(ti)] =

n∑

k=−∞

n∑

i=1

P∗
kε

2
i ,

where P∗
i (·) = E(·|Ri)−E(·|Ri−1). Since P∗

i and P∗
j are orthogonal for i 6= j, we have

∥∥∥∥∥

n∑

i=1

[ε2i − ϑ2(ti)]

∥∥∥∥∥

2

=
n∑

i=1

n∑

j=1

n∑

k=−∞

E[P∗
kε

2
iP∗

kε
2
j ]≤

n∑

i=1

n∑

j=1

n∑

k=−∞

‖P∗
kε

2
i ‖‖P∗

kε
2
j‖.

Let (χ∗
k) be an i.i.d. copy of (χk). By Theorem 1 in Wu [38], ‖P∗

kε
2
i ‖ ≤ ‖ε2i − ε2i,k‖, where

εi,k = (Rk−1, χ
∗
k, χk+1, . . . , χi) if k ≤ i and εi,k = εi otherwise. By the Cauchy–Schwarz

inequality, we have for i≥ k

‖ε2i − ε2i,k‖
≤ ‖εi + εi,k‖4‖εi − εi,k‖4 ≤C‖H(ti,Gi)V (ti,Fi)−H(ti,Gi,k)V (ti,Fi,k)‖4
≤C{‖H(ti,Gi)‖4‖(V (ti,Fi)− V (ti,Fi,k)‖4 + ‖V (ti,Fi,k)‖4‖H(ti,Gi)−H(ti,Gi,k)‖4}
≤C(i− k+1)−2.

Therefore,

∥∥∥∥∥

n∑

i=1

[ε2i − ϑ2(ti)]

∥∥∥∥∥

2

≤C

n∑

i=1

n∑

j=1

min(i,j)∑

k=−∞

(i− k+ 1)−2(j − k+ 1)−2 ≤Cn.

Hence, ‖∑n
i=1[ε

2
i − ϑ2(ti)]‖=O(

√
n). Note that

∑n
i=1 ϑ

2(ti) = n
∫ 1

0
ϑ2(t) dt+O(1). The

lemma follows. �

Lemma 9. Recall that µh =
∫ 1

−1 x
hK(x) dx. Under condition (A), we have

sup
0≤t≤1

‖S−1
n (t)− [ESn(t)]

−1‖8 =O

(
1√
nbn

)
.

Additionally, sup0≤t≤1 |[ESn(t)]
−1|=O(1). For h= 0,2, we have

sup
bn≤t≤1−bn

|[ESn,h(t)]
−1 − [µhM(t)]

−1|=O(b2n).
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Proof. The proof follows by the similar arguments as those of Lemma 6 in Zhou and
Wu [43]. Details are omitted. �

Proof of Theorem 1. Theorem 1 follows from Lemmas 1–8 above and the Slutsky’s
theorem. �

Proof of Theorem 2. Recall that εi = ([ε
(1)
i ]⊤, [ε

(2)
i ]⊤)⊤ and Vi = ([V

(1)
i ]⊤, [V

(2)
i ]⊤)⊤,

where ε
(1)
i and V

(1)
i are p1 dimensional. Note that, under H01, we have a local linear

regression of y∗i on x
(2)
i . Recall again the definitions of S

(2)
n , S

(2)
nl , z

(2)
i , Ṽ

(2)
i , T

(2)
n , T

(2)
nl ,

T̃
(2)
n and T̃

(2)
nl in Section 4.3.

Following very similar arguments as those in Lemmas 1 to 8, it can be shown that

RSS1 −RSS0 −B(2)
n =Θ(2)∗

n − 2D̄
(2)∗
n1 +oP(1/

√
bn), (32)

where B
(2)
n =

nb4nµ
2
2

4

∫ 1

0 {[β
(2)(t)]′′}⊤M22(t)[β

(2)(t)]′′ dt+oP(nb
4
n),

Θ(2)∗
n =

n∑

i=1

[T̃(2)
n (ti)]

⊤
[ES(2)

n (ti)]
−1

E[z
(2)
i z

(2)⊤
i ][ES(2)

n (ti)]
−1

T̃(2)
n (ti),

D̄
(2)∗
n1 =

n∑

i=1

Ṽ
(2)⊤
i [ES(2)

n (ti)]
−1

T̃(2)
n (ti).

Note that Θ
(2)∗
n and D̄

(2)∗
n1 are quadratic forms of i.i.d. Gaussian vectors V1, . . . , Vn. The-

orem 2 follows easily from (30) and (32). �

Proof of Proposition 1. Define Y∗ = (y∗1 , . . . , y
∗
n)

⊤ and Ỹ∗ = (ỹ∗1 , . . . , ỹ
∗
n)

⊤. Let ε̂i and

ε̃i be the ith residual of the local linear regression of y∗i and ỹ∗i on x
(2)
i , respectively.

From (5), we can write ε̂i = y∗i −RiY
∗ and ε̃i = ỹ∗i −RiỸ

∗, where Ri is a 1× n vector
which can be written in a closed form (5). Note also that Ri is functionally independent
of the errors εi. Hence,

R̃SS1 −RSS1 =
n∑

i=1

(ε̃2i − ε̂2i ) =
n∑

i=1

(ε̃i − ε̂i)
2 +2

n∑

i=1

ε̂i(ε̃i − ε̂i) := I +2II .

Let δi =−(x(1)
i )⊤(β

(1)
0 (ti, θ̂)− β

(1)
0 (ti, θ0)) and ∆n = (δ1, . . . , δn). Hence,

E(I) =
n∑

i=1

‖ε̃i − ε̂i‖2 =
n∑

i=1

‖δi −Ri∆n‖2.

From condition (B), it is easy to see that, for sufficiently large n,

∥∥∥ max
1≤i≤n

|β(1)
0 (ti, θ̂)− β

(1)
0 (ti, θ0)|

∥∥∥
4
=O(1/

√
n).
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Therefore, it is easy to derive from condition (A) that

max
1≤i≤n

‖δi‖=O(1/
√
n) and max

1≤i≤n
‖Ri∆n‖=O(1/

√
n). (33)

Hence, I =OP(1). We now deal with II . Note that, by (28),

ε̂i = εi − (z
(2)
i )

⊤
(η̂(2)(ti)− η(2)(ti)) = εi − (z

(2)
i )

⊤
(S(2)

n (ti))
−1

[B(2)
n (ti) +T(2)

n (ti)].

Hence,

II =

n∑

i=1

(z
(2)
i )

⊤
(S(2)

n (ti))
−1

B(2)
n (ti)[ε̃i − ε̂i] +

n∑

i=1

εi[ε̃i − ε̂i]

+

n∑

i=1

(z
(2)
i )

⊤
(S(2)

n (ti))
−1

T(2)
n (ti)[ε̃i − ε̂i]

:= II ∗ + II ∗∗ + II ∗∗∗.

By Hölder inequality, condition (A) and (33), the bias term

E|II ∗| ≤
n∑

i=1

‖z(2)i ‖6‖S(2)
n (ti)

−1‖6‖B(2)
n (ti)‖6[‖δi‖+ ‖Ri∆n‖] = O(

√
nb2n).

Write Ji = −(x(1)
i )⊤

∂β
(1)
0 (ti,θ0)
∂θ and let J = (J⊤

1 , . . . , J⊤
n )⊤. By second order Taylor ex-

pansion of β
(1)
0 (ti, θ̂) at θ0 and condition (B), it is easy to see that

ε̃i − ε̂i = (Ji −RiJ)(θ̂ − θ0) + ri, (34)

with the reminder term ri satisfying max1≤i≤n ‖ri‖=O(1/n). Therefore,

E|II ∗∗| ≤
∥∥∥∥∥

n∑

i=1

εi(Ji −RiJ)

∥∥∥∥∥‖(θ̂− θ0)‖+ max
1≤i≤n

‖ri‖
n∑

i=1

‖εi‖

By the similar conditioning arguments as those in the proof of Lemma 1, it is easy to
show that ‖∑n

i=1 εi(Ji −RiJ)‖ = O(
√
n). Hence E|II ∗∗| = O(1). By similar arguments

and elementary but tedious calculations, it follows that E|II ∗∗∗|=O(1). Therefore, the
proposition follows. �

Proof of Proposition 2. Let RSS0 =
∑n

i=1 ε
2
i . Then RSSa − RSS0 = RSSa − RSS0 −

(RSS0 −RSS0). Under the local alternative β(·) = β0(·) + n−4/9fn(·), we have

RSS0 −RSS0 = n−4/9
n∑

i=1

f⊤n (ti)xiεi + n−8/9
n∑

i=1

[f⊤n (ti)xi]
2
.
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By the similar arguments as those in the proof of Lemma 1, it is easy to show that

√
bnn

−8/9
n∑

i=1

[f⊤n (ti)xi]
2
= c1/2

∫ 1

0

f⊤n (t)M(t)fn(t) dt+ oP(1),

n∑

i=1

f⊤n (ti)xiεi = OP(n
1/2).

On the other hand, by Lemmas 1–8 and the fact that β(·) = β0(·)+n−4/9fn(·), it is easy
to show that

√
bn

{
RSSa −RSS0 −

K̃(0)

bn

∫ 1

0

tr[H(t)] dt

}
− c9/2µ2

2

4

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt− c9/2µ2

2

4
F2

⇒N(0, σ2)

and RSS0/n= V + oP(1). Therefore, the proposition follows. �

Proof of Theorem 3. A careful check of Lemmas 1 and 2 shows that the asymptotic
bias of λ∗

n

B∗
n =

∫ cmax

cmin

n(zn−γ)4µ2
2

4
dz

∫ 1

0

[β′′(t)]
⊤
M(t)β′′(t) dt+ oP(n

1−4γ). (35)

Another careful check of Lemmas 3 to 8 and using Lemma 9 show that

λ∗
n −B∗

n =

∫ cmax

cmin

n∑

k=1

n∑

r=1

V ⊤
k H̃(tk)[2Kzn−γ (tk − tr)

(36)
−K ∗Kzn−γ (tk − tr)]H̃

⊤(tr)Vr/(nzn
−γ) dz + oP(n

−γ/2).

Since Vi’s are i.i.d. standard Gaussian, a central limit theorem for λ∗
n−B∗

n can be easily
derived. Now Theorem 3 follows from (35) and (36). Details are omitted. �

Proof of Proposition 3. By the Cauchy–Schwarz inequality,

∫

R

Q(cmax, y)
2 dy =

∫

R

[∫ cmax

cmin

([2K(y/z)−K ∗K(y/z)]/
√
z)× 1/

√
z dz

]2
dy

≤
∫

R

[∫ cmax

cmin

[2K(y/z)−K ∗K(y/z)]
2
/z dz

∫ cmax

cmin

1/zdz

]
dy

= (log(cmax)− log(cmin))

∫ cmax

cmin

∫

R

[2K(y/z)−K ∗K(y/z)]
2
/z dy dz

= (log(cmax)− log(cmin))(cmax − cmin)

∫

R

K̃2(t) dt.
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Consider any fixed c ∈ (0,∞). Plugging the above inequality into (19) and letting cmax ↓ c
and cmin ↑ c, it follows that sup0<cmin<cmax<∞ β∗

α(cmin, cmax)≥ βα(c). Hence, the propo-
sition follows. �
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