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Abstract

If X is a topological space then there is a natural homomorphism π1(X) → K1(X)
from a fundamental group to a K1-homology group. Covering projections depend of

fundamental group. So K1-homology groups are interrelated with covering projections.

This article is concerned with a noncommutative analogue of this interrelationship.
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1 Introduction

It is known that K1(S
1) ≈ Z. If x is a generator of K(S1) than there is a natural homomor-

phism ϕK : π1(X) → K1(X) given by

[ f ] 7→ K1( f )(x) (1)

where f is a representative of [ f ] ∈ π1(X). This homomorphism does not depend on a

basepoint because K1(X) is an abelian group . So the basepoint is omitted. Let K11(X) ⊂
K1(X) be the image of ϕK. Then K11(X) is a homotopical invariant.

Example 1.1. We have a natural isomorphism ϕK : π1(S
1) → K1(S

1). From π1(S
1) = Z it

follows that there is a n-listed covering projection fn : S1 → S1 for any n ∈ N.

.

Example 1.2. Let f : S1 → S1 be an n listed covering projection, C f is the mapping cone

[12] of f . Then π1(C f ) ≈ K1(C f ) ≈ Zn and there is a natural isomorphism ϕK : π1(C f ) →

K1(C f ). There is n - listed universal covering projection fn : Ĉ f → C f .

Finitely listed covering projections depend of fundamental group. Any epimorphism
π1(X) → Z (resp. π1(X) → Zn) corresponds to the infinite sequence of finitely listed

covering projections (resp. an n - listed covering projection). If ϕ : π1(X) → G is an

epimorphism (G ≈ Z or G ≈ Zn) such that ker ϕK ⊂ ker ϕ then there is an algebraic
construction of these covering projections which is described in this article. A noncom-

mutative analogue of K11(X) is discussed.
This article assumes elementary knowledge of following subjects

1. Algebraic topology [12].

2. C∗− algebras and K-theory [1], [4], [9], [10].

Following notation is used.
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Symbol Meaning

A+ Unitization of C∗− algebra A

A+ A positive cone of C∗− algebra A

AG Algebra of G invariants, i.e. AG = {a ∈ A | ga = a, ∀g ∈ G}
Â Spectrum of C∗ - algebra A with the hull-kernel topology

(or Jacobson topology)

Aut(A) Group * - automorphisms of C∗ algebra A
B(H) Algebra of bounded operators on Hilbert space H

B∞ = B∞({z ∈ C | |z| = 1}) Algebra of Borel measured functions on the {z ∈ C | |z| = 1} set.

C (resp. R) Field of complex (resp. real) numbers
C∗ {z ∈ C | |z| = 1}

C(X) C∗ - algebra of continuous complex valued

functions on topological space X

Cb(X) C∗ - algebra of bounded continuous complex valued

H Hilbert space
I = [0, 1] ⊂ R Closed unit interval

Gtors ⊂ G The torsion subgroup of an abelian group
K(H) or K Algebra of compact operators on Hilbert space H

Mn(A) The n × n matrix algebra over C∗− algebra A

Map(X, Y) The set of maps from X to Y
M(A) A multiplier algebra of C∗-algebra A

Ms(A) = M(A ⊗K) Stable multiplier algebra of C∗− algebra A
N Monoid of natural numbers

Q(A) = M(A)/A Outer multiplier algebra of C∗− algebra A

Qs(A) = (M(A ⊗K))/(A ⊗K) Stable outer multiplier algebra of C∗− algebra A
Q Field of rational numbers

sp(a) Spectrum of element of C∗-algebra a ∈ A
U(H) ⊂ B(H) Group of unitary operators on Hilbert space H

U(A) ⊂ A Group of unitary operators of algebra A

Z Ring of integers
Zm Ring of integers modulo m

Ω Natural contravariant functor from category of commutative

C∗ - algebras, to category of Hausdorff spaces

2 Galois extensions of C∗ - algebras and noncommutative

covering projections

2.1 General theory

2.1. Galois extensions. Let G be a finite group, a G-Galois extensions can be regarded as
particular case of Hopf-Galois extensions [8], where Hopf algebra is a commutative alge-
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bra C(G). Let A be a C∗-algebra, let G ⊂ Aut(A) be a finite group of ∗- automorphisms.

Let AM
G be a category of G-equivariant modules. There is a pair of adjoint functors

(F, U) given by

F = A ⊗AG − :AG M →A MG; (2)

U = (−)G :A MG →AG M. (3)

The unit and counit of the adjunction (F, U) are given by the formulas

ηN : N → (A ⊗AG N)G, ηN(n) = 1 ⊗ n;

εM : A ⊗AG MG → M, εM(a ⊗ m) = am.

Consider a following map

can : A ⊗AG A → Map(G, A) (4)

given by
a1 ⊗ a2 7→ (g 7→ a1(ga2)), (a1, a2 ∈ A, g ∈ G).

The can is a AM
G morphism.

Theorem 2.2. [3] Let A be an algebra, let G be a finite group which acts on A, (F, U) functors
given by (2), (3). Consider the following statements:

1. (F, U) is a pair of inverse equivalences;

2. (F, U) is a pair of inverse equivalences and A ∈AG M is flat;

3. The can is an isomorphism and A ∈AG M is faithfully flat.

These the three conditions are equivalent.

Definition 2.3. If conditions of theorem 2.2 are hold, then A is said to be left faithfully flat
G-Galois extension

Remark 2.4. Theorem 2.2 is an adapted to finite groups version of theorem from [3].

In case of commutative C∗-algebras definition 2.3 supplies finitely listed covering pro-

jections of topological spaces. However I think that above definition is not quite good
analogue of noncommutative covering projections. Noncommutative algebras contains

inner automorphisms. Inner automorphisms are rather gauge transformations [6] than
geometrical ones. So I think that inner automorphisms should be excluded. Importance

of outer automorphisms was noted by Miyashita [7]. It is reasonably take to account outer

automorphisms only. I have set more strong condition.

Definition 2.5. [11] Let A be C∗ - algebra. A *- automorphism α is said to be generalized

inner if is obtained by conjugating with unitaries from multiplier algebra M(A).

Definition 2.6. [11] Let A be C∗ - algebra. A *- automorphism α is said to be partly inner if

its restriction to some non-zero α- invariant two-sided ideal is generalized inner. We call
automorphism purely outer if it is not partly inner.

4



Instead definitions 2.5, 2.6 following definitions are being used.

Definition 2.7. Let α ∈ Aut(A) be an automorphism. A representation ρ : A → B(H) is
said to be α - invariant if a representation ρα given by

ρα(a) = ρ(α(a)) (5)

is unitary equivalent to ρ.

Definition 2.8. Automorphism α ∈ Aut(A) is said to be strictly outer if for any α- invariant

representation ρ : A → B(H), automorphism ρα is not a generalized inner automorphism.

Definition 2.9. Let A be a C∗ - algebra and G ⊂ Aut(A) be a finite subgroup of * - auto-
morphisms. An injective * - homomorphism f : AG → A is said to be a noncommutative

finite covering projection (or noncommutative G - covering projection) if f satisfies following
conditions:

1. A is a finitely generated equivariant projective left and right AG Hilbert C∗-module.

2. If α ∈ G then α is strictly outer.

3. f is a left faithfully flat G-Galois extension.

The G is said to be covering transformation group of f . Denote by G(B|A) covering transfor-

mation group of covering projection A → B.

2.10. Irreducible representations of noncommutative covering projections. Let f : AG → A

be a noncommutative G - covering projection. Let ρ : A → B(H) be an irreducible

representation. Let g ∈ G and ρg : A → B(H) be such that

ρg(a) = ρ(ga).

So it is an action of G on Â such that

g 7→ (ρ 7→ ρg); ∀g ∈ G, ∀ρ ∈ Â. (6)

Let us enumerate elements of G by integers, i. e. g1, ..., gn ∈ G, n = |G| and define action

of σ : G × {i, ..., n} → {i, ..., n} such that σ(g, i) = j ⇔ gj = ggi Let ρ⊕ = ⊕g∈Gρg : A →
B(Hn) be such that

ρ⊕(a)(h1, ..., hn) = (ρ(g1a)h1, ..., (ρ(gna)hn). (7)

Let us define such linear action of G on Hn that

g(h1, ..., hn) = (hσ(g−1,1), ..., hσ(g−1,n)). (8)

From (7), (8) it follows that

g(ah) = (ga)(gh); ∀a ∈ A, ∀g ∈ G, ∀h ∈ Hn,
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i.e. Hn ∈A MG. Equivariant representation ρ⊕ defines representation η : AG → B(K).

K = (Hn)G. If η is not an irreducible then there is a nontrivial AG - submodule N  

K. From AM
G ≈AG M it follows that A ⊗AG N  Hn is a nontrivial A - submodule.

If we identify H with first summand of Hn then (A ⊗AG K) ∩ H  H is a nontrivial

A - submodule. This fact contradicts with that ρ is irreducible. So η is an irreducible
representation. In result we have a natural map

f̂ : Â → ÂG, (ρ 7→ η) (9)

and
ÂG ≈ Â/G. (10)

2.2 Covering projection of C∗-algebras with continuous trace

Definition 2.11. [10] A positive element in C∗ - algebra A is abelian if subalgebra xAx ⊂ A
is commutative.

Proposition 2.12. [10] A positive element x in C∗ - algebra A is abelian if dim π(x) ≤ 1 for
every irreducible representation π : A → B(H) of A.

2.13. Let A be a C∗ - algebra. For each x ∈ A+ the (canonical) trace Tr(π(x)) of π(x)
depends only on the equivalence class of an irreducible representation π : A → B(H), so

that we may define a function x̂ : Â → [0, ∞] by x̂(t) = Tr(π(x)) whenever π ∈ t. From
Proposition 4.4.9 [10] it follows that x̂ is lower semicontinuous function on a in Jacobson

topology.

Definition 2.14. [10] We say that element x ∈ A+ has continuous trace if x̂ ∈ Cb(Â). We

say that A is a C∗ - algebra with continuous trace if set of elements with continuous trace

is dense in A+. We say that a C∗ - algebra A is of type I if each non-zero quotient of A
contains non-zero abelian element. If A is even generated (as C∗ - algebra) by its abelian

elements we say that it is of type I0.

Theorem 2.15. (Theorem 5.6 [10]) For each C∗ - algebra A there is a dense hereditary ideal K(A),
which is minimal among dense ideals.

Proposition 2.16. [10] Let A be a C∗ - algebra with continuous trace Then

1. A is of type I0;

2. Â is a locally compact Hausdorff space;

3. For each t ∈ Â there is an abelian element x ∈ A such that x̂ ∈ K(Â) and x̂(t) = 1.

The last condition is sufficient for A to have continuous trace.

Remark 2.17. From [5], Proposition 10, II.9 it follows that a continuous trace C∗-algebra
is always a CCR-algebra, a C∗-algebra where for every irreducible representation π : A →
B(H) and for every element x ∈ A, π(x) is a compact operator, i.e. π(A) = K(H).
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Lemma 2.18. Let AG → A be a noncommutative covering projection such that A is a CCR-

algebra. Then G acts freely on Â.

Proof. Suppose that G does not act freely on Â. Then there are x ∈ Â and g ∈ G such
that gt = t (t ∈ Â). By definition 2.9 g should be strictly outer. Let ρ : A → B(H) be

representative of x. Then ρg is also representative of x. So ρ is unitary equivalent to ρg,
i. e. there is unitary U ∈ U(H) such that ρg(a) = Uρ(a)U∗ (∀a ∈ A). According to 2.17

ρ(A) = K(H), ρ(M(A)) = B(H), ρ(U(M(A))) = U(H). So it is u ∈ M(A) such that

ρ(u) = U and we have ρg(a) = ρ(u)ρ(a)ρ(u∗). It means that g is inner with respect to ρ,
so action of g is not strictly outer. This contradiction proves the lemma.

Lemma 2.19. [10] Let G be a finite group and f : AG → A is a G - covering projection. If AG is

a continuous trace C∗ - algebra then A is also a continuous trace C∗ - algebra.

Proof. From 2.10 it follows that for any irreducible representation ρ : A → B(H) there is a

irreducible representation η : AG → B(H) such that

ρ|AG = η (11)

Let x ∈ AG be an abelian element of AG. From 2.12 it follows that dim η(x) ≤ 1 for any
irreducible representation η : AG → B(H). From (11) it follows that dim ρ(x) ≤ 1 for any

irreducible representation ρ : A → B(H). So any abelian element of AG is also an abelian

element of A. Let t ∈ Â and s = f̂ (t) ∈ ÂG where f̂ is defined by (9). From 2.12 it follows
that there is an abelian element x ∈ AG such that x̂ ∈ K(ÂG) and x̂(s) = 1. However x is

a abelian element of A, x̂ ∈ K(A) and x̂(t) = x̂(s) = 1. From 2.16 it follows that A is a
continuous trace C∗ - algebra.

Proposition 2.20. [2] If a topological group G acts properly on a topological space then orbit space

X/G is Hausdorff. If also G is Hausdorff, then X is Hausdorff.

Theorem 2.21. Let f : AG → A be a noncommutative finite covering projection and AG is a
continuous trace algebra. Then is a Â → Â/G is a (topological) covering projection.

Proof. From lemma 2.19 it follows that A is a continuous trace algebra. From 2.16 it follows

that a space Â is Hausdorff. From 2.18 it follows that G acts freely on Â. From (10) it

follows that ÂG ≈ Â/G. It is known [12] that if a finite group G acts freely on Hausdorff
space X then X → X/G is a covering projection.

Remark 2.22. From theorem 2.21 it follows that finite covering projections of commutative

algebras are just covering projections of their character spaces. If AG is a commutative C∗

- algebra then dim π(AG) = 1 for all irreducible π : A → B(H). If f : AG → A is

noncommutative G covering projection and AG is commutative then AG is continuous

trace algebra Ω(AG) ≈ ÂG. From 2.19 it follows that A is also a continuous trace C∗ -
algebra. If ρ : A → B(H) then ρ(A) = K(H). Let us recall construction from 2.10. Let us

enumerate elements of G by integers, i. e. g1, ..., gn ∈ G, n = |G| and define action of σ :

7



G × {i, ..., n} → {i, ..., n} such that σ(g, i) = j ⇔ gj = ggi Let ρ⊕ = ⊕g∈Gρg : A → B(Hn)
be such that

ρ⊕(a)(h1, ..., hn) = (ρ(g1a)h1, ..., (ρ(gna)hn). (12)

Let us define such linear action of G on Hn that

g(h1, ..., hn) = (hσ(g−1,1), ..., hσ(g−1,n)). (13)

From (7), (13) it follows that

g(ah) = (ga)(gh); ∀a ∈ A, ∀g ∈ G, ∀h ∈ Hn,

i.e. Hn ∈A MG. Representation ρ⊕ defines representation η : AG → B(K). K = (Hn)G.

From 2.10 η is irreducible representation and since AG is commutative it follows that
dim K = 1. From (13) it follows that dim H = 1. Thus the dimension of any irreducible

representation of A equals to 1. It means that any irreducible representation is commu-
tative. From this fact it follows that A is a commutative C∗ - algebra Â = Ω(A) and

Ω( f ) : Ω(A) → Ω(AG) is a (topological) covering projection.

2.3 Covering projections of noncommutative torus

2.23. A noncommutative torus [13] Aθ is C∗-norm completion of algebra generated by two
unitary elements u, v which satisfy following conditions

uu∗ = u∗u = vv∗ = v∗v = 1;

uv = e2πiθvu,

where θ ∈ R. If θ = 0 then Aθ = A0 is commutative algebra of continuous functions on

commutative torus C(S1 ×S1). There is a trace τ0 on Aθ such that τ0(∑−∞<i<∞,−∞<j<∞ aiju
ivj) =

a00. C∗ - norm of Aθ is defined by following way ‖a‖ =
√

τ0(a∗a). Let us consider * -

homomorphism f : Aθ → Aθ′ , where Aθ′ is generated by unitary elements u′ and v′.

Homomorphism f is defined by following way:

u 7→ u′m;

v 7→ v′n;

It is clear that

θ′ =
θ + k

mn
; (k = 0, ..., mn− 1). (14)

Lemma 2.24. Above ∗-homomorphism Aθ → Aθ′ is a noncommutative covering projection.

Proof. We need check conditions of definition 2.9. Aθ′ is a free Aθ module generated by

monomials u′iv′j (i = 0, ..., m − 1; j = 0, ..., n − 1), so it is projective finitely generated Aθ-

module. Commutative C∗- subalgebras C(u′) ⊂ Aθ′ and C(v′) ⊂ Aθ′ generated by u′ and
v′ respectively are isomorphic to algebra C(S1), where S1 is one dimensional circle. There
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are induced by f *-homomorphisms C(S1) = C(u) → C(u′) = C(S1) , C(S1) = C(v) →
C(v′) = C(S1). These *-homomorphisms induces m and n listed covering projections
respectively. Covering groups of these covering projections are G1 ≈ Zm and G2 ≈ Zn

respectively. Generators of these groups are presented below:

u′ 7→ e
2πi
m u′; (15)

v′ 7→ e
2πi

n v′. (16)

Equations (15), (16) define action of G = Zm × Zn on Aθ′ and Aθ = AG
θ′ . Inner automor-

phisms of Aθ′ are given by

v′ 7→ u′pv′u′∗p = e
2πipθ

mn v′.

u′ 7→ v′qu′v′∗q = e
2πiqθ

mn u′.

These inner automorphisms do not coincide with automorphisms given by (15), (16). Let

us show that can : Aθ′ ⊗Aθ
Aθ′ → Map(G, Aθ′) is an isomorphism in Aθ

MG category. This
fact follows from the set theoretic bijectivity of the can. Homomorphisms of commutative

algebras C(u) → C(u′), C(v) → C(v′) correspond to covering projection, it follows that

there are elements xi ∈ C(u′) (i = 1, ..., r), yj ∈ C(v′) (j = 1, ..., s) such that

∑
1≤i≤r

x2
i = 1C(u′); (17)

∑
1≤i≤r

xi(g1xi) = 0; g1 ∈ G1; (18)

∑
1≤j≤s

y2
i = 1C(v′); (19)

∑
1≤j≤s

yi(g2yi) = 0; g2 ∈ G2, (20)

where g1 and g2 are nontrivial elements of Zm and Zn.

Let ak, bk ∈ Aθ be such that

ak = yjxi,

bk = xiyj,

where k = 1, ..., rs.

From (17)- (20) it follows that

∑
1≤k≤rs

akbk = 1Aθ′
;

∑
1≤k≤rs

ak(gbk) = 0,

where g ∈ G = Zm × Zn is a nontrivial element. If ϕ ∈ Map(G, Aθ) is such that gi 7→ ci

(i = 1, ..., mn) then

ϕ = can

(
mn

∑
i=1

rs

∑
k=1

ak ⊗ g−1
i bkci

)
. (21)
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So can is a surjective map. Let us show that can is injective. Aθ′ is a free left Aθ module,

because any element a ∈ Aθ′ has following unique representation

a =
m−1, n−1

∑
r=0,s=0

arsu
′rv′s (ars ∈ Aθ). (22)

From (22) it follows that any element x ∈ Aθ′ ⊗Aθ
Aθ′ has following unique representation

x =
m−1, n−1

∑
r=0,s=0

ars ⊗ u′rv′s (ars ∈ Aθ′). (23)

Let us prove that can maps above sum of linearly independent elements of Aθ′ ⊗Aθ
Aθ′ to

sum of linearly independent elements of Map(Zm × Zn, Aθ′). Really if

ϕ = can(a ⊗ u′rv′s) (24)

and (p, q) ∈ Zm × Zn then

ϕ((p, q)) = ϕ((0, 0))e
2πipr

m e
2πiqs

n . (25)

i.e. linearly independent elements of (23) correspond to different representations of G =
Zm × Zn, but different representations are linearly independent. So can is injective.

Remark 2.25. Let θ ∈ R be irrational number, m, n ∈ N, mn > 1, θ′ = θ/mn, θ′′ =
(θ + k)/mn (k 6= 0 mod mn). Let u, v ∈ Aθ , u′, v′ ∈ Aθ′ , u′′, v′′ ∈ Aθ′′ be unitary generators,
f ′ : Aθ → Aθ′ (resp. f ′′ : Aθ → Aθ′′) be * - homomorphism u 7→ u′m, v 7→ v′n (resp.

u 7→ u′′m, v 7→ v′′n). We have Aθ′ 6≈ Aθ′′ . So this noncommutative covering projections
are not isomorphic. However these covering projections can be regarded as equivalent

because they are Motita equivalent. Let U, V ∈ MN=mn(C) be unitary matrices such that

UV = e
2πik
nm VU.

There is following G equivariant isomorphism Aθ′ ⊗ MN(C) ≈ Aθ′′ ⊗ MN(C)

u′ ⊗ 1 → u′′ ⊗ U; v′ ⊗ 1 → v′′ ⊗ V.

This isomorphism is also Aθ − Aθ bimodule isomorphism. From K ⊗ MN(C) ≈ K it fol-

lows that there exist isomorphism Aθ′ ⊗K ≈ Aθ′′ ⊗K and there is following commutative
diagram

.

Aθ′ ⊗K Aθ′′ ⊗K

Aθ ⊗K

w

≈

'

'

'

'*

[

[

[

[℄

I find that good theory of noncommutative covering projections should be invariant with
respect to Morita equivalence. This theory can replace C∗-algebras with their stabilizations

(recall that the stabilization of a C∗ algebra A is a C∗-algebra A ⊗K).
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3 Covering projections and K-homology

3.1 Extensions of C∗-algebras generated by unitary elements

Definition 3.1. Let A be a C∗-algebra, A → B(H) is a faithful representation, u ∈ U(A+),
v ∈ U(B(H)), is such that vn = u and vi /∈ U(A+), (i = 1, ..., n − 1). A generated by v
extension is a minimal subalgebra of B(H) which contains following operators:

1. via; (a ∈ A, i = 0, ..., n − 1)

2. avi.

Denote by A{v} a generated by v extension.

Remark 3.2. Sometimes a ∗-homomorphism A → A{v} is a noncommutative covering

projection but it is not always true. If the homomorphism is a covering projection then

there is a relationship between the covering projection and K - homology.

Lemma 3.3. Let A be a C∗-algebra, A → B(H) is a faithful representation, u ∈ U(A+) is
an unitary element such that sp(u) = C∗ = {z ∈ C | |z| = 1}, ξ, η ∈ B∞(sp(u)) are Borel

measured functions such that ξ(z)n = η(z)n = z (∀z ∈ sp(u)). Then there is an isomorphism

A{ξ(u)} ⊗K → A{η(u)} ⊗K (26)

which is a left A-module isomorphism. The isomorphism is given by

ξ(u)⊗ x 7→ η(u)⊗ ξη−1(u)x; (x ∈ K). (27)

Proof. Follows from the equality ξ(u) = ξη−1(η(u)).

Remark 3.4. See remark 2.25.

Definition 3.5. A nth root of identity map is a Borel-measurable function φ ∈ B∞(C∗) such

that

(φ(z))n = z (∀z ∈ U(C(X)). (28)

Lemma 3.6. Let A be a C∗-algebra, u ∈ U((A ⊗ K)+) is such that [u] 6= 0 ∈ K1(A) then
sp(u) = C∗ = {z ∈ C | |z| = 1}.

Proof. sp(u) ⊂ C∗ since u is an unitary. Suppose z0 ∈ C be such that z0 /∈ sp(u) and

z1 = −z0. Let ϕ : sp(u)× [0, 1] → C∗ be such that

ϕ(z1eiφ, t) = z1ei(1−t)φ; φ ∈ (−π, π), t ∈ [0, 1].

There is a homotopy ut = ϕ(u, t) ∈ U((A ⊗ K)+) such that u0 = u, u1 = z1. From
[z1] = 0 ∈ K1(A) it follows that [u] = 0 ∈ K1(A). So there is a contradiction which proves

this lemma.
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3.2 Universal coefficient theorem

Universal coefficient theorem [1] establishes (in particular) a relationship between K -

theory and K- homology. For any C∗-algebra A there is a natural homomorphism

γ : KK1(A, C) → Hom(K1(A), K0(C)) ≈ Hom(K1(A), Z) (29)

which is the adjoint of following pairing

KK(C, A)⊗ KK(A, C) → KK(C, C).

If τ ∈ KK1(A, C) is represented by extension

0 → C → D → A → 0

then γ is given as connecting maps ∂ in the associated six-term exact sequence of K theory

∂

K0(C)) K0(D) K0(A)

K1(A) K1(D) K1(C)

w w

u

∂

u

u u

If γ(τ) = 0 for an extension τ then the six-term K-theory exact sequence degenerates into

two short exact sequences

0 → Ki(A) → Ki(D) → Ki(C) → 0 (i = 0, 1)

and thus determines an element κ(τ) ∈ Ext1(K∗(A), K∗(C). In result we have a sequence

of abelian group homomorphisms

Ext1(K0(A), K0(C)) → KK1(A, C) → Hom(K1(A), K0(C))

such that composition of the homomorphisms is trivial. Above sequence can be rewritten
by following way

Ext1(K0(A), Z) → K1(A) → Hom(K1(A), Z)). (30)

If G is an abelian group that

Ext1(G, Z) = Ext1(Gtors, Z),

Hom(G, Z) = Hom(G/Gtors, Z)).

From (30) it follows that K1(A) depends on K0(A)tors and K1(A)/K1(A)tors. We say that

dependence(30) on K0(A)tors is a torsion special case and dependence (29) of K1(A) on
K1(A)/K1(A)tors is a free special case.
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3.3 Free special case

Example 3.7. The n- listed coverings of example 1.1 can be constructed algebraically. From

(30) it follows that K1(C(S
1)) ≈ Z. Let u ∈ U(C(S1)) is such that [u] ∈ K1(S

1) is a
generator of K1(S

1). Let C(S1) → B(H) be a faithful representation and φ is an nth root of

identity map. If v = φ(u) ∈ B(H) then vn = u and v /∈ C(S1). According to definition 3.1
we have a ∗ - homomorphism C(S1) → C(S1){v} which corresponds to n listed covering

projection of the S1.

3.8. General construction. Construction of example 3.7 can be generalized. Let A be a C∗ -
algebra such that K1(A) ≈ G ⊕ Z. From (30) it follows that

K1(A) = G′ ⊕ Z[u] (31)

where u ∈ U((A ⊗K)+). If φ is an nth - root of identity map then we have a generated by

{φ(u)} extension A → A{φ(u)}. Sometimes this extension is a noncommutative covering

projection.

Example 3.9. Let Aθ be a noncommutative torus, K1(Aθ) ≈ Z2 Let u, v ∈ U(A) be rep-

resentatives of generators of K1(Aθ) a sp(u) = sp(v) = {z ∈ C | |z| = 1}. Following
∗-homomorphisms

Aθ → Aθ{φ(u)},

Aθ → Aθ{φ(v)}

are particular cases of noncommutative covering projections which are described in sub-

section 2.3.

Example 3.10. It is known that S3 is homeomorphic to SU(2), K1(C(SU(2))) ≈ Z and

K1(C(SU(2))) is generated by unitary u ∈ U(C(SU(2)⊗ M2(C)). Element u can be
regarded as the natural map SU(2) → M2(C) and sp(u) = {z ∈ C | |z| = 1}. Denote by

A = C(SU(2))⊗ M2(C). Let φ be a 2th - root of identity map, and v = φ(u). There is an

extension A → A{v}. Both A and A{v} are continuous trace algebras. The Z2 group acts
on A{v} such that action of nontrivial element g ∈ Z2 is given by

gv = −v.

Let ρ : A{v} → B(H) be a irreducible representation. Then V = ρ(v) is a 2 × 2 unitary

matrix. Suppose that ρ is such that by

ρ(v) =

(
1 0

0 −1

)
.

We have

ρg(v) = ρ(gv)

(
−1 0

0 1

)
.

Above matrices are unitary equivalent, i. e.
(

1 0
0 −1

)
=

(
0 −1
1 0

)(
−1 0
0 1

)(
0 1
−1 0

)
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.

So the representation ρ is unitary equivalent to the ρg and action of g is not strictly outer,
extension f : A → A{v} does not satisfy definition 2.9, i.e. f : A → A{v} is not a non-

commutative covering projection. Algebra A does not have nontrivial noncommutative
covering projections because

1. A is a continuous trace algebra,

2. Â ≈ S3,

3. π1(S
3) = 0, i.e. S3 does not have nontrivial covering projections.

Remark 3.11. This construction supplies a covering projection if x ∈ K1(X) belongs to
image of π1(X) → K1(X).

3.4 Torsion special case

Example 3.12. Universal covering from example 1.2 can be constructed algebraically. Let

f : S1 → S1 be a n listed covering projection of the circle, C f is the (topological) mapping

cone of f . C( f ) : C(S1) → C(S1) is a corresponding *- homomorphism of C∗-algebras
(u 7→ un), where u ∈ U(C(S1)) is such that [u] ∈ K1(C(S

1)) is a generator. Algebraic

mapping cone [1] CC( f ) of C( f ) corresponds to the topological space C f . CC( f ) is an

algebra of continuous maps f [0, 1) → U(C) such that

f (0) = ∑
k∈Z

akukn, ak ∈ C.

A map v = (x 7→ u) (∀x ∈ [0, 1]) is such that vi /∈ M(C(C f )) (i = 1, ..., n − 1), vn ∈
M(CC( f )). Homomorphism CC( f ) → CC( f ){v} corresponds to a n-listed covering projec-

tion from the example 1.2.

3.13. General construction. Above construction can be generalized. Let A be a C∗ - algebra

such that K1(A) = G⊕Zn, where G is an abelian group. From (30) it follows that K0(A) ≈
G′ ⊕ Zn. Let Qs(A) = M(A ⊗K)/(A ⊗K) be the stable multiplier algebra of C∗ - algebra

A. Then from [1] it follows that K1(Qs(A)) = K0(A). Let u ∈ U(Qs(A)) be such that

K1(Qs(A)) = G′ ⊕ Zn[u]. Let φ be a nth root of identity map such that φ(un) = u. Let p :
M(A ⊗K) → M(A ⊗K)/(A ⊗K) be a natural surjective *- homomorphism. It is known

[1] that unitary element v ∈ U(Qs) can be lifted to an unitary element v′ ∈ U(M(A ⊗K))
(i.e. v = p(v′)) if and only if [v] = 0 ∈ K1(Qs(A)). From n[u] = [un] = 0 it follows that

there is an unitary w ∈ U(M(A ⊗K)) such that p(w) = un. Let M(A ⊗K) → B(H) be

a faithful representation, then φ(w) ∈ U(B(H)). If φ(w) ∈ M(A ⊗K)) then p(φ(w)) =
u, however it is impossible because [u] 6= 0 ∈ K1(Qs(A)). So φ(w) /∈ M(A ⊗ K) and

similarly φ(w)i /∈ M(A ⊗K) (i = 1, ..., n − 1). So we have a generated by φ(w) extension
A ⊗K → (A ⊗K){φ(w)} which can be a noncommutative covering projection. Example

3.12 is a particular case of this general construction.

Example 3.14. Let On be a Cuntz algebra [1], K0(On) = Zn−1. Construction 3.13 supplies

a Zn−1 - Galois extension f : On ⊗K → Õn. However it is not known is f strictly outer.
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3.5 A noncommutative generalization of K11(X).

Above construction can generalize K11(X) group. Suppose that K1(X) is group generated

by x1, ..., xn. Let x ∈ {x1, ..., xn} be a generator. Construction of 3.8, 3.13 supplies extension
of A which is associated with x. The element x is said to be proper if the extension is a

noncommutative covering projection. Generalization of K11(X) is a generated by proper
elements subgroup of K1(A).

4 Conclusion

The presented here theory supplies algebraic construction of covering projections. These
projections are well known for commutative case. Example 3.9 is principally new applica-

tion of the theory. It is interesting to find other nontrivial examples of this theory.
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