Noncommutative covering projections and *K*-homology

June 25, 2018

Petr R. Ivankov* e-mail: * monster.ivankov@gmail.com

Abstract

If *X* is a topological space then there is a natural homomorphism $\pi_1(X) \to K_1(X)$ from a fundamental group to a *K*¹ -homology group. Covering projections depend of fundamental group. So *K*¹ -homology groups are interrelated with covering projections. This article is concerned with a noncommutative analogue of this interrelationship.

Contents

4 Conclusion [15](#page-14-1)

.

1 Introduction

It is known that $K_1(S^1) \approx \mathbb{Z}$. If *x* is a generator of $K(S^1)$ than there is a natural homomorphism $\varphi_K : \pi_1(X) \to K_1(X)$ given by

$$
[f] \mapsto K_1(f)(x) \tag{1}
$$

where *f* is a representative of $[f] \in \pi_1(X)$. This homomorphism does not depend on a basepoint because $K_1(X)$ is an abelian group . So the basepoint is omitted. Let $K_{11}(X) \subset$ *K*₁(*X*) be the image of φ_K . Then *K*₁₁(*X*) is a homotopical invariant.

Example 1.1. We have a natural isomorphism $\varphi_K : \pi_1(S^1) \to K_1(S^1)$. From $\pi_1(S^1) = \mathbb{Z}$ it follows that there is a *n*-listed covering projection $f_n : S^1 \to S^1$ for any $n \in \mathbb{N}$.

Example 1.2. Let $f : S^1 \to S^1$ be an *n* listed covering projection, C_f is the mapping cone [\[12\]](#page-14-2) of *f*. Then $\pi_1(C_f) \approx K_1(C_f) \approx \mathbb{Z}_n$ and there is a natural isomorphism $\varphi_K : \pi_1(C_f) \to$ *K*₁(*C*_{*f*}). There is *n* - listed universal covering projection $f_n : C_f \to C_f$.

Finitely listed covering projections depend of fundamental group. Any epimorphism $\pi_1(X) \to \mathbb{Z}$ (resp. $\pi_1(X) \to \mathbb{Z}_n$) corresponds to the infinite sequence of finitely listed covering projections (resp. an *n* - listed covering projection). If $\varphi : \pi_1(X) \to G$ is an epimorphism ($G \approx \mathbb{Z}$ or $G \approx \mathbb{Z}_n$) such that ker $\varphi_K \subset \text{ker } \varphi$ then there is an algebraic construction of these covering projections which is described in this article. A noncommutative analogue of $K_{11}(X)$ is discussed.

This article assumes elementary knowledge of following subjects

- 1. Algebraic topology [\[12\]](#page-14-2).
- 2. *C* [∗]− algebras and *K*-theory [\[1\]](#page-14-3), [\[4\]](#page-14-4), [\[9\]](#page-14-5), [\[10\]](#page-14-6).

Following notation is used.

2 Galois extensions of *C* ∗ **- algebras and noncommutative covering projections**

2.1 General theory

2.1. *Galois extensions*. Let *G* be a finite group, a *G*-Galois extensions can be regarded as particular case of Hopf-Galois extensions [\[8\]](#page-14-7), where Hopf algebra is a commutative alge-

bra $C(G)$. Let *A* be a C^* -algebra, let $G ⊂ Aut(A)$ be a finite group of $*$ - automorphisms. Let $_A\mathcal{M}^G$ be a category of *G*-equivariant modules. There is a pair of adjoint functors (*F*, *U*) given by

$$
F = A \otimes_{A^G} -:_{A^G} M \to_A \mathcal{M}^G; \tag{2}
$$

$$
U = (-)^{G} :_{A} M^{G} \to_{A^{G}} M. \tag{3}
$$

The unit and counit of the adjunction (*F*, *U*) are given by the formulas

$$
\eta_N: N \to (A \otimes_{A^G} N)^G, \ \eta_N(n) = 1 \otimes n;
$$

$$
\varepsilon_M: A \otimes_{A^G} M^G \to M, \ \varepsilon_M(a \otimes m) = am.
$$

Consider a following map

$$
can: A \otimes_{A^G} A \to \mathrm{Map}(G, A) \tag{4}
$$

given by

$$
a_1 \otimes a_2 \mapsto (g \mapsto a_1(ga_2)), \ (a_1, a_2 \in A, \ g \in G).
$$

The can is a $_A\mathcal{M}^G$ morphism.

Theorem 2.2. *[\[3\]](#page-14-8) Let A be an algebra, let G be a finite group which acts on A,* (*F*, *U*) *functors given by [\(2\)](#page-3-0), [\(3\)](#page-3-1). Consider the following statements:*

- *1.* (*F*, *U*) *is a pair of inverse equivalences;*
- *2.* (*F*, *U*) *is a pair of inverse equivalences and* $A \in A$ ^{*G*} *M is flat*;
- *3. The can is an isomorphism and* $A \in A$ *^G M <i>is faithfully flat.*

These the three conditions are equivalent.

Definition 2.3. If conditions of theorem [2.2](#page-3-2) are hold, then *A* is said to be *left faithfully flat G-Galois extension*

Remark 2.4. Theorem [2.2](#page-3-2) is an adapted to finite groups version of theorem from [\[3\]](#page-14-8).

In case of commutative C^{*}-algebras definition [2.3](#page-3-3) supplies finitely listed covering projections of topological spaces. However I think that above definition is not quite good analogue of noncommutative covering projections. Noncommutative algebras contains inner automorphisms. Inner automorphisms are rather gauge transformations [\[6\]](#page-14-9) than geometrical ones. So I think that inner automorphisms should be excluded. Importance of outer automorphisms was noted by Miyashita [\[7\]](#page-14-10). It is reasonably take to account outer automorphisms only. I have set more strong condition.

Definition 2.5. [\[11\]](#page-14-11) Let *A* be *C* ∗ - algebra. A *- automorphism *α* is said to be *generalized inner* if is obtained by conjugating with unitaries from multiplier algebra *M*(*A*).

Definition 2.6. [\[11\]](#page-14-11) Let *A* be *C* ∗ - algebra. A *- automorphism *α* is said to be *partly inner* if its restriction to some non-zero *α*- invariant two-sided ideal is generalized inner. We call automorphism *purely outer* if it is not partly inner.

Instead definitions [2.5,](#page-3-4) [2.6](#page-3-5) following definitions are being used.

Definition 2.7. Let $\alpha \in Aut(A)$ be an automorphism. A representation $\rho : A \rightarrow B(H)$ is said to be *α - invariant* if a representation $ρ_α$ given by

$$
\rho_{\alpha}(a) = \rho(\alpha(a)) \tag{5}
$$

is unitary equivalent to *ρ*.

Definition 2.8. Automorphism $\alpha \in Aut(A)$ is said to be *strictly outer* if for any α - invariant representation *ρ* : *A* \rightarrow *B*(*H*), automorphism *ρ*_{*α*} is not a generalized inner automorphism.

Definition 2.9. Let *A* be a C^* - algebra and $G ⊂ Aut(A)$ be a finite subgroup of $*$ - automorphisms. An injective * - homomorphism $f: A^G \rightarrow A$ is said to be a *noncommutative finite covering projection* (or *noncommutative G - covering projection*) if *f* satisfies following conditions:

- 1. *A* is a finitely generated equivariant projective left and right *A ^G* Hilbert *C* ∗ -module.
- 2. If $\alpha \in G$ then α is strictly outer.
- 3. *f* is a left faithfully flat *G*-Galois extension.

The *G* is said to be *covering transformation group* of *f* . Denote by *G*(*B*|*A*) covering transformation group of covering projection $A \rightarrow B$.

2.10. Irreducible representations of noncommutative covering projections. Let $f: A^G \rightarrow A$ be a noncommutative *G* - covering projection. Let $\rho : A \rightarrow \mathcal{B}(H)$ be an irreducible representation. Let *g* \in *G* and ρ_g : *A* \rightarrow *B*(*H*) be such that

$$
\rho_g(a) = \rho(ga).
$$

So it is an action of *G* on *A*ˆ such that

$$
g \mapsto (\rho \mapsto \rho_g); \ \forall g \in G, \forall \rho \in \hat{A}.\tag{6}
$$

Let us enumerate elements of *G* by integers, i. e. g_1 , ..., $g_n \in G$, $n = |G|$ and define action of σ : $G \times \{i, ..., n\} \to \{i, ..., n\}$ such that $\sigma(g, i) = j \Leftrightarrow g_i = gg_i$ Let $\rho_{\oplus} = \bigoplus_{g \in G} \rho_g : A \to$ $B(H^n)$ be such that

$$
\rho_{\oplus}(a)(h_1, ..., h_n) = (\rho(g_1a)h_1, ..., (\rho(g_na)h_n).
$$
\n(7)

Let us define such linear action of *G* on *Hⁿ* that

$$
g(h_1, ..., h_n) = (h_{\sigma(g^{-1}, 1)}, ..., h_{\sigma(g^{-1}, n)}).
$$
\n(8)

From [\(7\)](#page-4-0), [\(8\)](#page-4-1) it follows that

$$
g(ah) = (ga)(gh); \forall a \in A, \forall g \in G, \forall h \in H^n,
$$

i.e. $H^n \in_A \mathcal{M}^G$. Equivariant representation ρ_{\oplus} defines representation $\eta: A^G \to B(K)$. $K = (H^n)^G$. If *η* is not an irreducible then there is a nontrivial A^G - submodule $N \nsubseteq$ *K*. From $_A\mathcal{M}^G \approx_{A^G} \mathcal{M}$ it follows that $A \otimes_{A^G} N \subsetneq H^n$ is a nontrivial A - submodule. If we identify *H* with first summand of H^n then $(A \otimes_{A} G K) \cap H \subsetneq H$ is a nontrivial *A* - submodule. This fact contradicts with that *ρ* is irreducible. So *η* is an irreducible representation. In result we have a natural map

$$
\hat{f} : \hat{A} \to \widehat{A^G}, \ (\rho \mapsto \eta) \tag{9}
$$

and

$$
\widehat{A^G} \approx \widehat{A}/G. \tag{10}
$$

2.2 Covering projection of *C* ∗ **-algebras with continuous trace**

Definition 2.11. [\[10\]](#page-14-6) A positive element in C^* - algebra *A* is *abelian* if subalgebra $xAx \subset A$ is commutative.

Proposition 2.12. [\[10\]](#page-14-6) A positive element x in C^* - algebra A is abelian if dim $\pi(x) \leq 1$ for *every irreducible representation* π : $A \rightarrow \mathcal{B}(H)$ *of A.*

2.13. Let *A* be a C^* - algebra. For each $x \in A_+$ the (canonical) trace $Tr(\pi(x))$ of $\pi(x)$ depends only on the equivalence class of an irreducible representation π : $A \rightarrow B(H)$, so that we may define a function \hat{x} : $\hat{A} \to [0,\infty]$ by $\hat{x}(t) = \text{Tr}(\pi(x))$ whenever $\pi \in t$. From Proposition 4.4.9 [\[10\]](#page-14-6) it follows that \hat{x} is lower semicontinuous function on a in Jacobson topology.

Definition 2.14. [\[10\]](#page-14-6) We say that element $x \in A_+$ has *continuous trace* if $\hat{x} \in C^b(\hat{A})$. We say that *A* is a *C* ∗ - algebra *with continuous trace* if set of elements with continuous trace is dense in *A*+. We say that a *C* ∗ - algebra *A* is of type *I* if each non-zero quotient of *A* contains non-zero abelian element. If *A* is even generated (as *C* ∗ - algebra) by its abelian elements we say that it is of type I_0 .

Theorem 2.15. *(Theorem 5.6 [\[10\]](#page-14-6)) For each* C^* - algebra A there is a dense hereditary ideal $K(A)$, *which is minimal among dense ideals.*

Proposition 2.16. *[\[10\]](#page-14-6) Let A be a C*[∗] *- algebra with continuous trace Then*

- *1. A is of type I*0*;*
- *2. A is a locally compact Hausdorff space;* ˆ
- *3. For each* $t \in \hat{A}$ there is an abelian element $x \in A$ such that $\hat{x} \in K(\hat{A})$ and $\hat{x}(t) = 1$.

The last condition is sufficient for A to have continuous trace.

Remark 2.17. From [\[5\]](#page-14-12), Proposition 10, II.9 it follows that a continuous trace C[∗]-algebra is always a CCR-algebra, a \bar{C}^* -algebra where for every irreducible representation π : $A \rightarrow$ *B*(*H*) and for every element $x \in A$, $\pi(x)$ is a compact operator, i.e. $\pi(A) = \mathcal{K}(H)$.

Lemma 2.18. Let $A^G \rightarrow A$ be a noncommutative covering projection such that A is a CCR*algebra. Then G acts freely on* \hat{A} *.*

Proof. Suppose that *G* does not act freely on \hat{A} . Then there are $x \in \hat{A}$ and $g \in G$ such that $gt = t$ ($t \in \hat{A}$). By definition [2.9](#page-4-2) *g* should be strictly outer. Let $\rho : A \rightarrow B(H)$ be representative of *x*. Then *ρg* is also representative of *x*. So *ρ* is unitary equivalent to *ρg*, *i.* e. there is unitary $U \in U(H)$ such that $\rho_g(a) = U\rho(a)U^*$ ($\forall a \in A$). According to [2.17](#page-5-1) $\rho(A) = \mathcal{K}(H), \rho(M(A)) = B(H), \rho(U(M(A))) = U(H).$ So it is $u \in M(A)$ such that $\rho(u) = U$ and we have $\rho_g(a) = \rho(u)\rho(a)\rho(u^*)$. It means that *g* is inner with respect to ρ , so action of *g* is not strictly outer. This contradiction proves the lemma. \Box

Lemma 2.19. [\[10\]](#page-14-6) Let G be a finite group and $f : A^G \to A$ is a G - covering projection. If A^G is *a continuous trace C*[∗] *- algebra then A is also a continuous trace C*[∗] *- algebra.*

Proof. From [2.10](#page-4-3) it follows that for any irreducible representation ρ : $A \rightarrow \mathcal{B}(H)$ there is a irreducible representation $\eta : A^G \to B(H)$ such that

$$
\rho|_{A^G} = \eta \tag{11}
$$

 \Box

Let $x \in A^G$ be an abelian element of A^G . From [2.12](#page-5-2) it follows that dim $\eta(x) \leq 1$ for any irreducible representation $\eta : A^G \to \mathcal{B}(H)$. From [\(11\)](#page-6-0) it follows that dim $\rho(x) \leq 1$ for any irreducible representation $ρ: A \rightarrow \mathcal{B}(H)$. So any abelian element of A^G is also an abelian element of *A*. Let $t \in \hat{A}$ and $s = \hat{f}(t) \in \hat{A}^G$ where \hat{f} is defined by [\(9\)](#page-5-3). From [2.12](#page-5-2) it follows that there is an abelian element $x \in A^G$ such that $\hat{x} \in K(\hat{A}^G)$ and $\hat{x}(s) = 1$. However *x* is a abelian element of *A*, $\hat{x} \in K(A)$ and $\hat{x}(t) = \hat{x}(s) = 1$. From [2.16](#page-5-4) it follows that *A* is a continuous trace *C* ∗ - algebra.

Proposition 2.20. *[\[2\]](#page-14-13) If a topological group G acts properly on a topological space then orbit space X*/*G is Hausdorff. If also G is Hausdorff, then X is Hausdorff.*

Theorem 2.21. Let $f: A^G \to A$ be a noncommutative finite covering projection and A^G is a *continuous trace algebra. Then is a* $\hat{A} \rightarrow \hat{A}/G$ *is a (topological) covering projection.*

Proof. From lemma [2.19](#page-6-1) it follows that *A* is a continuous trace algebra. From [2.16](#page-5-4) it follows that a space \hat{A} is Hausdorff. From [2.18](#page-6-2) it follows that *G* acts freely on \hat{A} . From [\(10\)](#page-5-5) it follows that $\widehat{A^G} \approx \widehat{A}/G$. It is known [\[12\]](#page-14-2) that if a finite group *G* acts freely on Hausdorff space *X* then $X \to X/G$ is a covering projection. space *X* then $X \to X/G$ is a covering projection.

Remark 2.22. From theorem [2.21](#page-6-3) it follows that finite covering projections of commutative algebras are just covering projections of their character spaces. If *A ^G* is a commutative *C* ∗ *-* algebra then dim $π(A^G) = 1$ for all irreducible $π : A → B(H)$. If $f : A^G → A$ is noncommutative *G* covering projection and A^G is commutative then A^G is continuous trace algebra $\Omega(A^G) \approx \hat{A}^G$. From [2.19](#page-6-1) it follows that *A* is also a continuous trace C^* algebra. If $\rho : A \to \mathcal{B}(H)$ then $\rho(A) = \mathcal{K}(H)$. Let us recall construction from [2.10.](#page-4-3) Let us enumerate elements of *G* by integers, i. e. $g_1, ..., g_n \in G$, $n = |G|$ and define action of σ :

 $G \times \{i,...,n\} \to \{i,...,n\}$ such that $\sigma(g,i) = j \Leftrightarrow g_j = gg_i$ Let $\rho_{\oplus} = \oplus_{g \in G} \rho_g : A \to \mathcal{B}(H^n)$ be such that

$$
\rho_{\oplus}(a)(h_1, ..., h_n) = (\rho(g_1a)h_1, ..., (\rho(g_na)h_n).
$$
\n(12)

Let us define such linear action of *G* on *Hⁿ* that

$$
g(h_1, ..., h_n) = (h_{\sigma(g^{-1}, 1)}, ..., h_{\sigma(g^{-1}, n)}).
$$
\n(13)

From [\(7\)](#page-4-0), [\(13\)](#page-7-1) it follows that

$$
g(ah) = (ga)(gh); \forall a \in A, \forall g \in G, \forall h \in H^n,
$$

i.e. $H^n \in A \mathcal{M}^G$. Representation ρ_{\oplus} defines representation $\eta : A^G \to \mathcal{B}(K)$. $K = (H^n)^G$. From [2.10](#page-4-3) η is irreducible representation and since A^G is commutative it follows that $\dim K = 1$. From [\(13\)](#page-7-1) it follows that $\dim H = 1$. Thus the dimension of any irreducible representation of *A* equals to 1. It means that any irreducible representation is commutative. From this fact it follows that *A* is a commutative C^* - algebra $\hat{A} = \Omega(A)$ and $\Omega(f) : \Omega(A) \to \Omega(A^G)$ is a (topological) covering projection.

2.3 Covering projections of noncommutative torus

2.23. A noncommutative torus [\[13\]](#page-14-14) A_{θ} is C^* -norm completion of algebra generated by two unitary elements *u*, *v* which satisfy following conditions

$$
uu^* = u^*u = vv^* = v^*v = 1;
$$

$$
uv = e^{2\pi i\theta}vu,
$$

where $\theta \in \mathbb{R}$. If $\theta = 0$ then $A_{\theta} = A_0$ is commutative algebra of continuous functions on commutative torus $C(S^1 \times S^1)$. There is a trace τ_0 on A_θ such that $\tau_0(\sum_{-\infty < i < \infty, -\infty < j < \infty} a_{ij}u^iv^j) =$ *a*₀₀. *C*^{*} - norm of A_θ is defined by following way $||a|| = \sqrt{\tau_0(a^*a)}$. Let us consider * homomorphism $f : A_{\theta} \to A_{\theta}$, where A_{θ} is generated by unitary elements u' and v' . Homomorphism *f* is defined by following way:

$$
u \mapsto u^{\prime m};
$$

$$
v \mapsto v^{\prime n};
$$

It is clear that

$$
\theta' = \frac{\theta + k}{mn}; \ (k = 0, ..., mn - 1). \tag{14}
$$

Lemma 2.24. *Above* ∗*-homomorphism* $A_{\theta} \to A_{\theta'}$ *is a noncommutative covering projection.*

Proof. We need check conditions of definition [2.9.](#page-4-2) A_{θ} is a free A_{θ} module generated by $\mu^{i}v^{j}$ (*i* = 0, ..., *m* − 1; *j* = 0, ..., *n* − 1), so it is projective finitely generated A_{θ} module. Commutative C^* - subalgebras $C(u') \subset A_{\theta'}$ and $C(v') \subset A_{\theta'}$ generated by u' and v' respectively are isomorphic to algebra $C(S^1)$, where S^1 is one dimensional circle. There

are induced by f^* -homomorphisms $C(S^1) = C(u) \rightarrow C(u') = C(S^1)$, $C(S^1) = C(v) \rightarrow$ $C(v') = C(S^1)$. These *-homomorphisms induces *m* and *n* listed covering projections respectively. Covering groups of these covering projections are $G_1 \approx \mathbb{Z}_m$ and $G_2 \approx \mathbb{Z}_n$ respectively. Generators of these groups are presented below:

$$
u' \mapsto e^{\frac{2\pi i}{m}} u';\tag{15}
$$

$$
v' \mapsto e^{\frac{2\pi i}{n}} v'. \tag{16}
$$

Equations [\(15\)](#page-8-0), [\(16\)](#page-8-1) define action of $G = \mathbb{Z}_m \times \mathbb{Z}_n$ on $A_{\theta'}$ and $A_{\theta} = A_{\theta'}^G$. Inner automorphisms of *A^θ* ′ are given by

$$
v' \mapsto u'^p v' u'^{\ast p} = e^{\frac{2\pi i p \theta}{mn}} v'.
$$

$$
u' \mapsto v'^q u' v'^{\ast q} = e^{\frac{2\pi i q \theta}{mn}} u'.
$$

These inner automorphisms do not coincide with automorphisms given by [\(15\)](#page-8-0), [\(16\)](#page-8-1). Let us show that can : $A_{\theta'}\otimes_{A_\theta}A_{\theta'}\to\mathrm{Map}(G,A_{\theta'})$ is an isomorphism in $_{A_\theta}\mathcal{M}^G$ category. This fact follows from the set theoretic bijectivity of the can. Homomorphisms of commutative algebras $C(u) \to C(u')$, $C(v) \to C(v')$ correspond to covering projection, it follows that there are elements $x_i \in C(u')$ $(i = 1, ..., r)$, $y_j \in C(v')$ $(j = 1, ..., s)$ such that

$$
\sum_{1 \le i \le r} x_i^2 = 1_{C(u')}; \tag{17}
$$

$$
\sum_{1 \le i \le r} x_i(g_1 x_i) = 0; g_1 \in G_1; \tag{18}
$$

$$
\sum_{1 \le j \le s} y_i^2 = 1_{C(v')};
$$
\n(19)

$$
\sum_{1 \le j \le s} y_i(g_2 y_i) = 0; g_2 \in G_2,\tag{20}
$$

where g_1 and g_2 are nontrivial elements of \mathbb{Z}_m and \mathbb{Z}_n . Let a_k , $b_k \in A_\theta$ be such that

$$
a_k = y_j x_i,
$$

$$
b_k = x_i y_j,
$$

where $k = 1, ..., rs$. From [\(17\)](#page-8-2)- [\(20\)](#page-8-3) it follows that

$$
\sum_{1 \leq k \leq rs} a_k b_k = 1_{A_{\theta'}};
$$

$$
\sum_{1 \leq k \leq rs} a_k (gb_k) = 0,
$$

where $g \in G = \mathbb{Z}_m \times \mathbb{Z}_n$ is a nontrivial element. If $\varphi \in \text{Map}(G, A_\theta)$ is such that $g_i \mapsto c_i$ $(i = 1, ..., mn)$ then

$$
\varphi = \operatorname{can}\left(\sum_{i=1}^{mn} \sum_{k=1}^{rs} a_k \otimes g_i^{-1} b_k c_i\right). \tag{21}
$$

So can is a surjective map. Let us show that can is injective. $A_{\theta'}$ is a free left A_{θ} module, because any element $a \in A_{\theta'}$ has following unique representation

$$
a = \sum_{r=0, s=0}^{m-1, n-1} a_{rs} u'^r v'^s \ (a_{rs} \in A_\theta).
$$
 (22)

From [\(22\)](#page-9-0) it follows that any element $x \in A_{\theta}$ $\otimes_{A_{\theta}} A_{\theta}$ has following unique representation

$$
x = \sum_{r=0, s=0}^{m-1, n-1} a_{rs} \otimes u'^r v'^s \ (a_{rs} \in A_{\theta'}).
$$
 (23)

Let us prove that can maps above sum of linearly independent elements of A_{θ} $\otimes_{A_{\theta}} A_{\theta}$ to sum of linearly independent elements of $\text{Map}(\mathbb{Z}_m \times \mathbb{Z}_n, A_{\theta'})$. Really if

$$
\varphi = \operatorname{can}(a \otimes u^{\prime r} v^{\prime s}) \tag{24}
$$

 \Box

and $(p, q) \in \mathbb{Z}_m \times \mathbb{Z}_n$ then

$$
\varphi((p,q)) = \varphi((0,0))e^{\frac{2\pi i pr}{m}}e^{\frac{2\pi i qs}{n}}.
$$
\n(25)

i.e. linearly independent elements of [\(23\)](#page-9-1) correspond to different representations of *G* = $\mathbb{Z}_m \times \mathbb{Z}_n$, but different representations are linearly independent. So can is injective.

Remark 2.25. Let $\theta \in \mathbb{R}$ be irrational number, $m, n \in \mathbb{N}$, $mn > 1$, $\theta' = \theta / mn$, $\theta'' =$ $(\theta + k)/mn$ ($k \neq 0$ mod *mn*). Let $u, v \in A_\theta$, $u', v' \in A_{\theta'}$, $u'', v'' \in A_{\theta''}$ be unitary generators, $f': A_{\theta} \to A_{\theta'}$ (resp. $f'': A_{\theta} \to A_{\theta''}$) be * - homomorphism $u \mapsto u'^m$, $v \mapsto v'^n$ (resp. $u \mapsto u''^m$, $v \mapsto v''^n$). We have $A_{\theta'} \not\approx A_{\theta''}$. So this noncommutative covering projections are not isomorphic. However these covering projections can be regarded as equivalent because they are Motita equivalent. Let $U, V \in M_{N=mn}(\mathbb{C})$ be unitary matrices such that

$$
UV=e^{\frac{2\pi i k}{nm}}VU.
$$

There is following *G* equivariant isomorphism $A_{\theta'} \otimes M_N(\mathbb{C}) \approx A_{\theta''} \otimes M_N(\mathbb{C})$

$$
u' \otimes 1 \to u'' \otimes U; \ v' \otimes 1 \to v'' \otimes V.
$$

This isomorphism is also $A_{\theta} - A_{\theta}$ bimodule isomorphism. From $K \otimes M_N(\mathbb{C}) \approx K$ it follows that there exist isomorphism $A_{\theta'}\otimes {\cal K}\approx A_{\theta''}\otimes {\cal K}$ and there is following commutative diagram

I find that good theory of noncommutative covering projections should be invariant with respect to Morita equivalence. This theory can replace *C* ∗ -algebras with their stabilizations (recall that the stabilization of a C^* algebra *A* is a C^* -algebra $A \otimes K$).

3 Covering projections and *K***-homology**

3.1 Extensions of *C* ∗ **-algebras generated by unitary elements**

Definition 3.1. Let *A* be a *C*^{*}-algebra, $A \to B(H)$ is a faithful representation, $u \in U(A^+)$, *v* ∈ *U*(*B*(*H*)), is such that $v^n = u$ and $v^i \notin U(A^+)$, (*i* = 1, ..., *n* − 1). A *generated by v extension* is a minimal subalgebra of $B(H)$ which contains following operators:

- 1. $v^i a$; $(a \in A, i = 0, ..., n-1)$
- 2. *avⁱ* .

Denote by $A\{v\}$ a generated by *v* extension.

Remark 3.2. Sometimes a ∗-homomorphism $A \to A\{v\}$ is a noncommutative covering projection but it is not always true. If the homomorphism is a covering projection then there is a relationship between the covering projection and *K* - homology.

Lemma 3.3. Let A be a C^* -algebra, $A \rightarrow B(H)$ is a faithful representation, $u \in U(A^+)$ is *an unitary element such that* $sp(u) = \mathbb{C}^* = \{z \in \mathbb{C} \mid |z| = 1\}$, $\zeta, \eta \in B_\infty(sp(u))$ *are Borel measured functions such that* $\zeta(z)^n = \eta(z)^n = z$ ($\forall z \in sp(u)$). Then there is an isomorphism

$$
A\{\xi(u)\}\otimes\mathcal{K}\to A\{\eta(u)\}\otimes\mathcal{K}
$$
\n(26)

which is a left A-module isomorphism. The isomorphism is given by

$$
\xi(u) \otimes x \mapsto \eta(u) \otimes \xi \eta^{-1}(u)x; \ (x \in \mathcal{K}). \tag{27}
$$

Proof. Follows from the equality $\zeta(u) = \zeta \eta^{-1}(\eta(u))$.

Remark 3.4. See remark [2.25.](#page-9-2)

Definition 3.5. A *n*th *root of identity map* is a Borel-measurable function $\phi \in B_{\infty}(\mathbb{C}^*)$ such that

$$
(\phi(z))^n = z \ (\forall z \in U(C(X)). \tag{28}
$$

Lemma 3.6. Let A be a C^* -algebra, $u \in U((A \otimes K)^+)$ is such that $[u] \neq 0 \in K_1(A)$ then $sp(u) = \mathbb{C}^* = \{z \in \mathbb{C} \mid |z| = 1\}.$

Proof. $sp(u) \subset \mathbb{C}^*$ since *u* is an unitary. Suppose $z_0 \in \mathbb{C}$ be such that $z_0 \notin sp(u)$ and $z_1 = -z_0$. Let $\varphi : sp(u) \times [0,1] \to \mathbb{C}^*$ be such that

$$
\varphi(z_1e^{i\phi},t)=z_1e^{i(1-t)\phi};\ \phi\in(-\pi,\pi),\ t\in[0,1].
$$

There is a homotopy $u_t = \varphi(u, t) \in U((A \otimes K)^+)$ such that $u_0 = u$, $u_1 = z_1$. From $[z_1] = 0 \in K_1(A)$ it follows that $[u] = 0 \in K_1(A)$. So there is a contradiction which proves this lemma.

 \Box

 \Box

3.2 Universal coefficient theorem

Universal coefficient theorem [\[1\]](#page-14-3) establishes (in particular) a relationship between *K* theory and *K*-homology. For any C[∗]-algebra *A* there is a natural homomorphism

$$
\gamma: KK_1(A, \mathbb{C}) \to \text{Hom}(K_1(A), K_0(\mathbb{C})) \approx \text{Hom}(K_1(A), \mathbb{Z})
$$
\n(29)

which is the adjoint of following pairing

$$
KK(\mathbb{C}, A) \otimes KK(A, \mathbb{C}) \to KK(\mathbb{C}, \mathbb{C}).
$$

If $\tau \in KK^1(A, \mathbb{C})$ is represented by extension

$$
0 \to \mathbb{C} \to D \to A \to 0
$$

then *γ* is given as connecting maps *∂* in the associated six-term exact sequence of *K* theory

$$
K_0(C) \longrightarrow K_0(D) \longrightarrow K_0(A)
$$
\n
$$
\frac{1}{\partial} \qquad \qquad \downarrow
$$
\n
$$
K_1(A) \longleftarrow K_1(D) \longleftarrow K_1(C)
$$

If $γ(τ) = 0$ for an extension *τ* then the six-term *K*-theory exact sequence degenerates into two short exact sequences

$$
0 \to K_i(A) \to \mathcal{K}_i(D) \to K_i(\mathbb{C}) \to 0 \ (i = 0, 1)
$$

and thus determines an element $\kappa(\tau) \in \text{Ext}^1(K_*(A), K_*(\mathbb{C})$. In result we have a sequence of abelian group homomorphisms

$$
\operatorname{Ext}^1(K_0(A),K_0(\mathbb{C})) \to KK^1(A,\mathbb{C}) \to \operatorname{Hom}(K_1(A),K_0(\mathbb{C}))
$$

such that composition of the homomorphisms is trivial. Above sequence can be rewritten by following way

$$
Ext1(K0(A), Z) \to K1(A) \to Hom(K1(A), Z)).
$$
\n(30)

If *G* is an abelian group that

$$
Ext1(G, \mathbb{Z}) = Ext1(Gtors, \mathbb{Z}),
$$

Hom(G, \mathbb{Z}) = Hom(G/G_{tors}, \mathbb{Z})).

From [\(30\)](#page-11-1) it follows that $K^1(A)$ depends on $K_0(A)_{tors}$ and $K_1(A)/K_1(A)_{tors}$. We say that dependence[\(30\)](#page-11-1) on $K_0(A)_{tors}$ is a *torsion special case* and dependence [\(29\)](#page-11-2) of $K^1(A)$ on $K_1(A)/K_1(A)$ _{tors} is a free special case.

3.3 Free special case

Example 3.7. The *n*- listed coverings of example [1.1](#page-1-1) can be constructed algebraically. From [\(30\)](#page-11-1) it follows that $K_1(C(S^1)) \approx \mathbb{Z}$. Let $u \in U(C(S^1))$ is such that $[u] \in K_1(S^1)$ is a generator of $K_1(S^1)$. Let $C(S^1) \to B(H)$ be a faithful representation and ϕ is an n^{th} root of identity map. If $v = \phi(u) \in B(H)$ then $v^n = u$ and $v \notin C(S^1)$. According to definition [3.1](#page-10-2) we have a $*$ - homomorphism $C(S^1) \to C(S^1)\{v\}$ which corresponds to *n* listed covering projection of the *S* 1 .

3.8. *General construction*. Construction of example [3.7](#page-12-1) can be generalized. Let *A* be a *C* ∗ algebra such that $K^1(A) \approx G \oplus \mathbb{Z}$. From [\(30\)](#page-11-1) it follows that

$$
K_1(A) = G' \oplus \mathbb{Z}[u]
$$
\n(31)

where $u \in U((A \otimes \mathcal{K})^+)$. If ϕ is an n^{th} - root of identity map then we have a generated by ${\phi(u)}$ extension $A \to A{\phi(u)}$. Sometimes this extension is a noncommutative covering projection.

Example 3.9. Let A_{θ} be a noncommutative torus, $K_1(A_{\theta}) \approx \mathbb{Z}^2$ Let $u, v \in U(A)$ be representatives of generators of $K^1(A_\theta)$ a sp $(u) = sp(v) = \{z \in \mathbb{C} \mid |z| = 1\}$. Following ∗-homomorphisms

$$
A_{\theta} \to A_{\theta} {\phi(u)},
$$

$$
A_{\theta} \to A_{\theta} {\phi(v)}
$$

are particular cases of noncommutative covering projections which are described in subsection [2.3.](#page-7-0)

Example 3.10. It is known that S^3 is homeomorphic to $SU(2)$, $K_1(C(SU(2))) \approx \mathbb{Z}$ and $K_1(C(SU(2)))$ is generated by unitary $u \in U(C(SU(2) \otimes M_2(C)))$. Element *u* can be regarded as the natural map $SU(2) \rightarrow M_2(\mathbb{C})$ and $sp(u) = \{z \in \mathbb{C} \mid |z| = 1\}$. Denote by $A = C(SU(2)) \otimes M_2(\mathbb{C})$. Let ϕ be a 2th - root of identity map, and $v = \phi(u)$. There is an extension $A \to A\{v\}$. Both *A* and $A\{v\}$ are continuous trace algebras. The \mathbb{Z}_2 group acts on *A*{*v*} such that action of nontrivial element *g* $\in \mathbb{Z}_2$ is given by

$$
gv=-v.
$$

Let $\rho: A\{v\} \to B(H)$ be a irreducible representation. Then $V = \rho(v)$ is a 2 × 2 unitary matrix. Suppose that ρ is such that by

$$
\rho(v) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

We have

$$
\rho_g(v) = \rho(gv)\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

Above matrices are unitary equivalent, i. e.

$$
\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}
$$

So the representation ρ is unitary equivalent to the ρ_g and action of *g* is not strictly outer, extension $f : A \to A\{v\}$ does not satisfy definition [2.9,](#page-4-2) i.e. $f : A \to A\{v\}$ is not a noncommutative covering projection. Algebra *A* does not have nontrivial noncommutative covering projections because

- 1. *A* is a continuous trace algebra,
- 2. $\hat{A} \approx S^3$,

.

3. $\pi_1(S^3) = 0$, i.e. S^3 does not have nontrivial covering projections.

Remark 3.11. This construction supplies a covering projection if $x \in K_1(X)$ belongs to image of $\pi_1(X) \to K_1(X)$.

3.4 Torsion special case

Example 3.12. Universal covering from example [1.2](#page-1-2) can be constructed algebraically. Let $f: S^1 \to S^1$ be a *n* listed covering projection of the circle, C_f is the (topological) mapping cone of *f*. $C(f) : C(S^1) \to C(S^1)$ is a corresponding *- homomorphism of *C**-algebras $(u \mapsto u^n)$, where $u \in U(C(S^1))$ is such that $[u] \in K_1(C(S^1))$ is a generator. Algebraic mapping cone [\[1\]](#page-14-3) $C_{C(f)}$ of $C(f)$ corresponds to the topological space C_f . $C_{C(f)}$ is an algebra of continuous maps $f[0,1) \rightarrow U(\mathbb{C})$ such that

$$
f(0) = \sum_{k \in \mathbb{Z}} a_k u^{kn}, \ a_k \in \mathbb{C}.
$$

A map $v = (x \mapsto u)$ ($\forall x \in [0, 1]$) is such that $v^i \notin M(C(C_f))$ $(i = 1, ..., n-1)$, $v^n \in$ $M(C_{C(f)})$. Homomorphism $C_{C(f)} \rightarrow C_{C(f)}\{v\}$ corresponds to a *n-*listed covering projection from the example [1.2.](#page-1-2)

3.13. *General construction*. Above construction can be generalized. Let *A* be a *C* ∗ - algebra such that $K^1(A) = G \oplus \mathbb{Z}_n$, where G is an abelian group. From [\(30\)](#page-11-1) it follows that $K_0(A) \approx$ $G' \oplus \mathbb{Z}_n$. Let $Q^s(A) = M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ be the stable multiplier algebra of C^* - algebra *A*. Then from [\[1\]](#page-14-3) it follows that $K_1(Q^s(A)) = K_0(A)$. Let $u \in U(Q^s(A))$ be such that $K_1(Q^s(A)) = G' \oplus \mathbb{Z}_n[u]$. Let ϕ be a n^{th} root of identity map such that $\phi(u^n) = u$. Let p : $M(A \otimes K) \to M(A \otimes K)/(A \otimes K)$ be a natural surjective *- homomorphism. It is known [\[1\]](#page-14-3) that unitary element $v \in U(Q^s)$ can be lifted to an unitary element $v' \in U(M(A \otimes K))$ (i.e. $v = p(v')$) if and only if $[v] = 0 \in K^1(Q^s(A))$. From $n[u] = [u^n] = 0$ it follows that there is an unitary $w \in U(M(A \otimes K))$ such that $p(w) = u^n$. Let $M(A \otimes K) \to B(H)$ be a faithful representation, then $\phi(w) \in U(B(H))$. If $\phi(w) \in M(A \otimes K)$) then $p(\phi(w)) =$ *u*, however it is impossible because $[u] \neq 0 \in K^1(Q^s(A))$. So $\phi(w) \notin M(A \otimes \mathcal{K})$ and similarly $\phi(w)^i \notin M(A \otimes \mathcal{K})$ (*i* = 1, ..., *n* − 1). So we have a generated by $\phi(w)$ extension $A \otimes \mathcal{K} \rightarrow (A \otimes \mathcal{K}) \{ \phi(w) \}$ which can be a noncommutative covering projection. Example [3.12](#page-13-1) is a particular case of this general construction.

Example 3.14. Let O_n be a Cuntz algebra [\[1\]](#page-14-3), $K_0(O_n) = \mathbb{Z}_{n-1}$. Construction [3.13](#page-13-2) supplies a \mathbb{Z}_{n-1} - Galois extension *f* : $O_n \otimes K$ → O_n . However it is not known is *f* strictly outer.

3.5 A noncommutative generalization of $K_{11}(X)$.

Above construction can generalize $K_{11}(X)$ group. Suppose that $K_1(X)$ is group generated by $x_1, ..., x_n$. Let $x \in \{x_1, ..., x_n\}$ be a generator. Construction of [3.8,](#page-12-2) [3.13](#page-13-2) supplies extension of *A* which is associated with *x*. The element *x* is said to be *proper* if the extension is a noncommutative covering projection. Generalization of $K_{11}(X)$ is a generated by proper elements subgroup of $K^1(A)$.

4 Conclusion

The presented here theory supplies algebraic construction of covering projections. These projections are well known for commutative case. Example [3.9](#page-12-3) is principally new application of the theory. It is interesting to find other nontrivial examples of this theory.

References

- [1] B. Blackadar. *K-theory for Operator Algebras*, Second edition. Cambridge University Press 1998.
- [2] N. Bourbaki, *General Topology*, Chapters 1-4, Springer, Sep 18, 1998.
- [3] S. Caenepeel, S. Crivei, A. Marcus, M. Takeuchi. *Morita equivalences induced by bimodules over Hopf-Galois extensions*, arXiv:math/0608572, 2007.
- [4] Jacques Dixmier. *Les C*-algèbres et leurs représentations* 2e éd. Gauthier-Villars in Paris 1969.
- [5] J.Dixmier. *Traces sur les C*[∗] *-algebras*. Ann. Inst. Fourier, 13, 1(1963), 219-262, 1963
- [6] David J. Gross. *Gauge Theory-Past, Present, and Future?* Joseph Henry Luborutoties, Ainceton University, Princeton, NJ 08544, USA. (Received November 3,1992).
- [7] Y. Miyashita. *Finite outer Galois theory of non-commutative rings*, J. Fac. Sci. Hokkaido Univ. (I) 19 (1966), 114-134.
- [8] *Lecture notes on noncommutative geometry and quantum groups*, Edited by Piotr M. Hajac.
- [9] G.J. Murhpy. C^{*}-Algebras and Operator Theory. Academic Press 1990.
- [10] Pedersen G.K. C^{*}-algebras and their automorphism groups. London ; New York : Academic Press, 1979.
- [11] Marc A. Reiffel, *Actions of Finite Groups on C*[∗] *- Algebras*. Department of Mathematics University of California Berkeley. Cal. 94720 U.S.A. 1980.
- [12] E.H. Spanier. *Algebraic Topology.* McGraw-Hill. New York 1966.
- [13] J.C. Várilly. *An Introduction to Noncommutative Geometry*. EMS 2006.