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Abstract

We study the following independent set reconfiguration problem, called TAR-Reachabi-
lity: given two independent sets I and J of a graph G, both of size at least k, is it possible
to transform I into J by adding and removing vertices one-by-one, while maintaining an
independent set of size at least k throughout? This problem is known to be PSPACE-hard
in general. For the case that G is a cograph (i.e. P4-free graph) on n vertices, we show
that it can be solved in time O(n2), and that the length of a shortest reconfiguration
sequence from I to J is bounded by 4n− 2k, if such a sequence exists.

More generally, we show that if G is a graph class for which (i) TAR-Reachability
can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and
which satisfies a certain additional property, then the problem can be solved efficiently
for any graph that can be obtained from a collection of graphs in G using disjoint union
and complete join operations. Chordal graphs are given as an example of such a class G.

1 Introduction

Reconfiguration problems have been studied often in recent years. These arise in settings
where the goal is to transform feasible solutions to a problem in a step-by-step manner, while
maintaining a feasible solution throughout. A reconfiguration problem is obtained by defining
feasible solutions (or configurations) for instances of the problem, and a (symmetric) adjacency
relation between solutions. This defines a solution graph for every instance, which is usually
exponentially large in the input size. Usually, it is assumed that adjacency and being a feasible
solution can be tested in polynomial time. Typical questions that are studied are deciding the
existence of a path between two given solutions (reachability), finding shortest paths between
solutions, deciding whether the solution graph is connected or giving sufficient conditions for
this, and giving bounds on its diameter. For example, the literature contains such results
on the reconfiguration of vertex colorings [4, 6, 7, 8], boolean assignments that satisfy a
given formula [15], independent sets [16, 19, 21, 22], matchings [19], shortest paths [2, 3, 20],
subsets of a (multi-)set of integers [12, 18], etc. Techniques for many different reconfiguration
problems are discussed in [19, 22]. See the recent survey by van den Heuvel [17] for an
overview of and introduction to reconfiguration problems, and a discussion of their various
applications.

One of the most well-studied problems of this kind is the reconfiguration of independent
sets. For a graph G and integer k, the independent sets of size at least/exactly k of G
form the feasible solutions. Independent sets are also called token configurations, where the
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independent set vertices are viewed as tokens. Three types of adjacency relations have been
studied in the literature: in the token jumping (TJ) model [19], a token can be moved from
any vertex to any other vertex. In the token sliding (TS) model, tokens can be moved along
edges of the graph [16]. In the token addition and removel (TAR) model [19], tokens can be
removed and added in arbitrary order, though at least k tokens should remain at any time
(k is the token lower bound). Of course, in all of these cases, an independent set should be
maintained, so tokens can only be moved/added to vertices that are not dominated by the
current token configuration.

The reachability problem has received the most attention in this context: given two inde-
pendent sets I and J of a graph G, and possibly a token lower bound k ≤ min{|I|, |J |}, is there
a path (or reconfiguration sequence) from I to J in the solution graph? We call this problem
TJ-Reachability, TS-Reachability or TAR-Reachability, depending on the adjacency relation
that is used. Kamiński et al [21] showed that the TAR-Reachability problem generalizes the
TJ-Reachability problem (see Section 2 for details). For all three adjacency relations, this
problem is PSPACE-hard, even in perfect graphs [21], and even in planar graphs of maximum
degree 3 [16]. (The latter result is not explicitly stated in [16], but can easily be deduced from
the given reduction. See [4] for more information.) See also [19] for an alternative, simple
PSPACE-hardness proof. In addition, in [21], the problem of deciding whether there exists a
path of length at most l between two solutions is shown to be strongly NP-hard, for all three
adjacency models.

On the positive side, these problems can be solved in polynomial time for various restricted
graph classes. The result on matching reconfiguration by Ito et al [19] implies that for line
graphs, TJ-Reachability and TAR-Reachability can be solved efficiently. In [21], an efficient
algorithm is given for TS-Reachability in cographs, and it is shown that for TJ-Reachability
in even-hole-free graphs, a reconfiguration sequence exists between any pair of independent
sets I and J , and that the shortest reconfiguration sequence always has length |I\J |.

New results and techniques In this paper, we show that TAR-Reachability and TJ-
Reachability can be solved in time O(n2) for cographs, where n is the number of vertices
of the input graph. This answers an open question from [21]. In addition, we show that
for cographs, components of the solution graph have diameter at most 4n − 2k and 2n − k,
under the TAR-model and TJ-model, respectively. Recall that a graph is a cograph iff it has
no induced path on four vertices. Alternatively, cographs can be defined as graphs that can
be obtained from a collection of trivial (one vertex) graphs by repeatedly applying (disjoint)
union and (complete) join operations. The order of these operations can be described using a
rooted cotree. This characterization allows efficient dynamic programming (DP) algorithms
for various NP-hard problems. Our algorithm is also a DP algorithm over the cotree, albeit
more complex than many known DP algorithms on cographs. For both solutions A and B,
certain values are computed, using first a bottom up DP phase, and next a top down DP phase
over the cotree. Using these values, we can conclude whether B is reachable from A. Because
of this method, we in fact obtain a stronger result: TJ- and TAR-Reachability can be decided
efficiently for any graph that can be obtained using join and union operations, when starting
with a collection of base graphs from a graph class G that satisfies the following properties:

• For any graph in G, the TAR-Reachability problem can be decided efficiently, and

• for any graph in G and independent set I, the size of a maximum independent set that
is TAR-reachable from I can be computed efficiently, for all token lower bounds k ≤ |I|.
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In this paper, we show that an example of such a graph class is the class of chordal graphs.
In another paper, we show that the class of claw-free graphs also satisfies these properties [5].
Combining these results yields quite a rich graph class for which this PSPACE-hard problem
can be solved in polynomial time.

Another motivation for this research is that cographs form the base class for various graph
width measures: cographs are exactly the graphs of cliquewidth at most two, and exactly the
graphs of modular-width two [11]. The corresponding graph decompositions (k-expressions
and modular decompositions) have been well-studied in algorithmic graph theory, because of
the fact that many NP-hard problems can be solved efficiently on graphs where the width of
these decompositions is low, using DP algorithms [10, 13]. Another similar, successful and
widely used notion is that of a tree decomposition / the treewidth of a graph [1]. The success
of such approaches for NP-complete problems and NP-optimization problems is unmistakable
in the area of algorithmic graph theory. However, surprisingly, no nontrivial results of this
kind are known for reconfiguration problems, to our knowledge. More precisely: we are not
aware of any reconfiguration problems that are PSPACE-hard in general, but that can be
solved efficiently on graphs of treewidth or cliquewidth at most k, for every constant k. On
the other hand, none of the studied reconfiguration problems have been shown to be PSPACE-
hard on graphs of bounded treewidth/cliquewidth. We expect that positive results of this kind
are certainly possible, but have not yet been obtained due to the lack of DP techniques for
reconfiguration problems. This paper gives a first example of how dynamic programming over
graph decompositions can be used successfully for PSPACE-hard reconfiguration problems.
This is a first step towards solving various reconfiguration problems for graphs of bounded
(modular-, clique-, tree-) width; we expect that similar algorithmic techniques can be used and
are necessary to show that indeed, various reconfiguration problems can be solved efficiently
using DP over graph decompositions. We remark that a DP approach has also been used
to show that the PSPACE-hard Shortest Path Reconfiguration problem can be solved in
polynomial time on planar graphs [2], although a problem-specific layer decomposition of the
graph was used.

Our DP algorithm for the TAR-Reachability problem is presented in Sections 4–6. First,
in Section 3, an example is given, the proof of this statement is outlined, and a detailed
overview of Sections 4–6 is given. In Section 7, examples of graph classes are given for which
this algorithm works; in particular graphs obtained from chordal graphs using union and join
operations (which includes cographs). The bound on the diameter of the solution graph is
given in Section 8. We start in Section 2 with precise definitions, and end in Section 9 with
a discussion.

2 Preliminaries

Token Addition and Removal By α(G) we denote the maximum size of an independent
set in G. In this paper, we use the token addition and removal (TAR) model for independent
set reconfiguration. For a graph G and integer k, the vertex set of the graph TARk(G) is
the set of all independent sets of size at least k in G. Two distinct independent sets I and
J are adjacent in TARk(G) if there exists a vertex v ∈ V (G) such that I ∪ {v} = J or
I = J ∪ {v}. Vertices from independent sets will also be called tokens, and we will also say
that J is obtained from I by adding one token on v resp. removing one token from v, or that
J is obtained from I using one TAR-step.
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For an integer k and two independent sets I and J of G with |I| ≥ k and |J | ≥ k, we
write I ↔G

k J if TARk(G) contains a path from I to J . Observe that I ↔G
0 J always holds,

and that the relation ↔G
k is an equivalence relation, for all G and k. The superscript G is

omitted if the graph in question is clear. If G and k are clear from the context, we will also
simply say that J is reachable from I. A sequence I0, . . . , Ik is called a k-TAR-sequence for
G from I0 to Ik if

• for every i, Ii is an independent set of G,

• for every i, |Ii| ≥ k, and

• for every i, Ii+1 can be obtained from Ii using at most one TAR-step.

Observe that I ↔G
k J if and only if there exists a k-TAR-sequence in G from I to J . Note

that we allow that Ii = Ii+1, in order to avoid discussing trivial cases in our proofs.
Our results also apply to the token jumping (TJ) model: for a graph G and integer k, the

vertex set of the graph TJk(G) is the set of all independent sets of size exactly k in G. Two
distinct independent sets I and J are adjacent in TJk(G) if there exist vertices u ∈ I and
v ∈ J such that I\{u} = J\{v}. We say that J is obtained from I by jumping a token from
u to v. Analogously to before, this defines TJ-sequences from I to J , and we write I ↔G

TJ J
if a TJ-sequence from I to J exists. Kamiński et al showed that the TAR-model generalizes
the TJ-model, in the following way:

Lemma 1 ([21]) Let A and B be two independent sets of a graph G, with |A| = |B| = `.
Then for any k ∈ N, there exists an (`− 1)-TAR-sequence from A to B of length at most 2k
if and only if there exists a TJ-sequence from A to B of length at most k.

We remark that the TAR-model as defined in [21] is a little more restricted: for our algorithms,
it is essential to consider the case where the token lower bound k is equal to the size of the
initial independent sets A and B, whereas in [21], only the case where k < min{|A|, |B|} is
considered.

Cographs and cotree decompositions For an illustration of the following definitions,
see Figure 1. A generalized cotree is a binary tree T with root r, together with

• a partition of the nonleaf vertices into union nodes and join nodes, and

• a graph Gu for every leaf u of T , such that for any two leaves u and v, the graphs Gu
and Gv are vertex and edge disjoint.

Vertices of T are called nodes. For every nonleaf node u, the two children are ordered; they
are called the left child and right child of u. With every node u ∈ V (T ) we associate a graph
Gu in the following way: for leaves u, Gu is as given. Otherwise, u has two child nodes; denote
these by v and w. If u is a union node, then Gu is the disjoint union of Gv and Gw. If u is
a join node, then Gu is obtained by taking the complete join of Gv and Gw. This operation
is defined as follows: start with the disjoint union of Gv and Gw, and add edges yz for every
combination of y ∈ V (Gv) and z ∈ V (Gw). For a node u ∈ V (T ), we denote Vu = V (Gu). A
generalized cotree T is called a cotree if for every leaf v ∈ V (T ), the graph Gv consists of a
single vertex. Such a leaf is called a trivial leaf.
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Figure 1: (a) A cograph G with components Gv, Gw and Gx, and (b) a cotree T of G. Leaves
of T are labeled with the corresponding vertex number of G.

Gw:

Gx:

Gv :

A: B: C:

Figure 2: A cograph G, with independent sets A, B and C indicated by the white vertices.
Any 5-TAR-sequence from A to B must visit C, use all vertices of G, and has length at least
24.

Let T be a (generalized) cotree, with root r. For a graph G, we say that T is a (generalized)
cotree for G if Gr = G. A graph G is called a cograph if there exists a cotree for G. Let G be
a graph class. We say that a generalized cotree T for a graph G is a cotree decomposition of
G into G-graphs if for every leaf v ∈ V (T ), the graph Gv ∈ G. For instance, we will consider
cotree decompositions into chordal graphs.

3 Example and Proof Outline

In this section, we will give an example, and use it to introduce the techniques and notions
that will be used in the proofs. We will end with an outline of the algorithm, and overview
of the paper.

Example In Figure 1, a cograph G together with a cotree T of G is shown. The root of T
is r, and V (G) = {1, . . . , 14}. The graph G has three components, which are Gv, Gw and Gx.

In Figure 2, three independent sets A, B and C are shown for the cograph G from Figure 1.
In order to go from A to B in TAR5(G), an independent set must be visited which has no
tokens on the component Gx, and therefore at least five tokens on the other two components.
The only such independent set of G is C. Using similar observations, it can be seen that there
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the shortest 5-TAR-sequence from A (or B) to C is unique up to symmetries, and has length
twelve (six additions and six deletions). Hence the shortest 5-TAR-sequence from A to B has
length 24.

Proof Outline and Definitions For two independent sets A and B of a graph G, both
with size at least k, we will characterize whether A↔G

k B, using a (generalized) cotree for G.
This requires the following notion.

Definition 2 Let T be a generalized cotree for a graph G, I be an independent set of G, and
k ≤ |I|. For v ∈ V (T ), define λIk(v) = min |J ∩ Vv| over all independent sets J of G with
I ↔G

k J .

For instance, in the example from Figure 2, λA5 (x) = 0 = λB5 (x), and this fact is essential
for concluding that A ↔G

5 B in this case. In general, the following theorem characterizes
whether B is reachable from A, using the values from Definition 2.

Theorem 3 Let T be a generalized cotree for a graph G. Let A and B be two independent
sets of G of size at least k. Then A↔G

k B if and only if

1. for all nodes u ∈ V (T ), λAk (u) = λBk (u), and

2. for all leaves u ∈ V (T ), (A ∩ Vu)↔Gu
` (B ∩ Vu), where ` = λAk (u).

The forward direction of the statement is straightforward: if A ↔G
k B, then since ↔G

k

is an equivalence relation, any independent set J is reachable from A if and only if it is
reachable from B. It follows that λAk (v) = λBk (v) for all v ∈ V (T ). The second property
follows by restricting all independent sets in a k-TAR-sequence from A to B to the subgraph
Gv for any leaf v ∈ V (T ). By definition, these all have size at least ` = λAk (v), so this yields
an `-TAR-sequence from A ∩ Vv to B ∩ Vv for Gv. For more details, see Section 6, where
Theorem 3 is proved.

In order to efficiently decide whether A ↔G
k B, it remains to compute the values λIk(v)

for all v ∈ V (T ) and I = A,B. How this can be done is shown in Section 5.4.
In the example from Figure 2, it holds that λA5 (x) = 0. This is because on the subgraph

Gu, which is the disjoint union of components Gv and Gw, it is possible to reconfigure from
the initial independent set A to an independent set with at least five tokens on Gu, while
keeping at least two tokens on Gu throughout. This indicates that in order to compute the
values λIk(v), the following values must be computed, for different values of ` ∈ {0, . . . , k}.

Definition 4 Let T be a cotree for G, and I be an independent set of G. For v ∈ V (T ) and
` ∈ {0, . . . , |I ∩ Vv|}, denote by µI` (v) the maximum of |J | over all independent sets J of Gv
with (I ∩ Vv)↔Gv

` J .

Note that the value µI` (v) depends only on the situation in the subgraph Gv; not on
the entire graph. This is in contrast to the values λIk(v). Observe also that µI0(v) = α(Gv)
(regardless of the choice of I).

It is not obvious how to compute the values µI` (u). For the example from Figure 2,
concluding that µA2 (u) = 5 requires studying the following 2-TAR-sequence for Gu. We start
with one token on both Gv and Gw. One token can be added on Gv. This allows removing
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the token from Gw, and subsequently moving to a better configuration, with two tokens on
Gw. This in turn allows removing all tokens from Gv, and subsequently moving to a better
configuration, with three tokens on Gv. A sequence of this type is called a cascading sequence.
Informally, in such a sequence, we have a join node u with children v and w, and alternatingly
move between on one hand a large independent set on v and a small independent set on w
and on the other hand a large independent set on w and small independent set on v. The
goal is to obtain ever larger independent sets until no more improvements can be made. In
Section 5.2, we will show how to compute the values µI` (v). This is done by characterizing
the outcome of such cascading sequences, using maximum `-stable tuples.

The values µI` (u) for a node u with children v and w can be computed using only the
values µI`′(v) and µI`′(w) for different choices of `′. Hence these values can be computed using
a bottom up dynamic programming algorithm, which starts at the leaves of the cotree. Next,
the rules from Section 5.4 for computing the values λIk(u) can be used. As indicated by their
definitions, computing these values requires considering the entire graph. Therefore this must
be done using a top down dynamic programming algorithm, which starts at the root node of
T . Together with Theorem 3, this yields our algorithm for deciding whether A ↔G

k B. Our
main algorithmic result is summarized in the next theorem, which is proved in Section 6.

Theorem 5 Let T be a generalized cotree for a graph G on n vertices, let k ∈ N and let A
and B be independent sets of G. If for every nontrivial leaf v ∈ V (T ) and relevant integer `,

• the values µA` (v) and µB` (v) are known, and

• it is known whether (A ∩ Vv)↔Gv
` (B ∩ Vv),

then in time O(n2) it can be decided whether A↔G
k B.

In particular, Theorem 5 implies that for any two independent sets A and B for a cograph G,
it can be decided in time O(n2) whether A↔G

k B.
In Section 8, we will give an upper bound for the length of a shortest k-TAR-sequence

between two independent sets A and B. The above example shows that to go from A to B, it
may be necessary to put tokens on vertices that are neither in A nor in B. Nevertheless, we
can show that for a commonly reachable independent set C, there exists a k-TAR-sequence
from A (resp. B) to C that for every vertex v ∈ V (G), adds a token on v at most once. This
shows that there exists a k-TAR-sequence from A to B of length at most 4n− |A| − |B|.

For all of our proofs, an essential fact is that for every node u, the vertex set Vu is a module
of G. We will first give lemmas related to independent set reconfiguration and modules in
Section 4.

4 Module Lemmas

A module of a graph G is a set M ⊆ V (G) such that for every v ∈ V (G)\M , either M ⊆ N(v)
or M ∩N(v) = ∅. In other words: for every pair u, v ∈ M , N(u)\M = N(v)\M . Note that
we will also consider V (G) to be a (trivial) module of G. We will often use the following
simple property of cographs.

Proposition 6 Let T be a cotree of G. Then for any v ∈ V (T ), Vv is a module of G.
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Modules are very useful for independent set reconfiguration, since to some extent, we can
reconfigure within the module and outside of the module independently. The following two
lemmas make this more precise, and present two useful properties for the proofs below. These
two lemma proofs also introduce proof techniques related to TAR-sequences that will be used
often below. Later, we will however not apply them in the same level of detail again.

Lemma 7 Let M be a module of a graph G, let k and y be integers, and let A be an inde-
pendent set of G, with |A ∩M | ≥ max{1, y} and |A| ≥ k. Denote H = G[M ]. If there exists
an independent set B of G with A↔G

k B and |B∩M | ≤ y, and if there exists an independent
set C of H with (A ∩M)↔H

y C, then there exists an independent set D of G with A↔G
k D

and D ∩M = C.

Proof: Denote AM = A ∩ M , and AM = A\M . First consider the case that |AM | = y.
Informally, we can then simply apply the same vertex additions and removals from the y-
TAR-sequence from AM to C to the entire independent set A, and this way maintain an
independent set throughout.

Formally, let I0, . . . , Ip be an y-TAR-sequence for H from AM to C. Define I ′i = Ii ∪AM
for all i. Then I ′0, . . . , I

′
p is the desired k-TAR-sequence from A to an independent set D of

G with D ∩M = C. Indeed,

• for every i, both Ii and AM are independent sets. Since M is a module and |AM | ≥
1, AM contains no vertices that are adjacent to any vertex in M , so I ′i is again an
independent set of G.

• Since |AM | = y, we have |AM | ≥ k − y. By definition, for every i it holds that |Ii| ≥ y,
and thus |I ′i| ≥ y + k − y ≥ k.

• Clearly, every I ′i+1 can be obtained from I ′i using at most one TAR-step.

In the remaining case, we may assume that |AM | ≥ y+ 1. Consider a shortest k-TAR-seq
S = J0, . . . , Jq from A to any independent set B of G with |B ∩M | ≤ y. So for every i with
i < q, |Ji ∩M | ≥ y + 1, and B = Jq is obtained from Jq−1 by removing a vertex from M .
Since M is a module and Jq−1 is an independent set, this implies that no vertex in B\M is
adjacent to any vertex in M . Denote BM = B\M .

Informally, we can now reverse the TAR-sequence S, but ignore every token addition or
removal on V (G)\M . This yields a k-TAR-sequence for G, from B to AM ∪ BM . Since
|BM | ≥ k − y, we can now apply the token additions and removals from the TAR-sequence
from AM to C to this independent set, similar to above, and obtain the desired independent
set D = C ∪ BM . Combining these three k-TAR-sequences shows that there is a k-TAR-
sequence from A to D. We now define this more precisely, and verify that these are indeed
TAR-sequences.

For every i, denote J ′i = (Ji ∩M) ∪ BM . Consider the sequence S′ = J ′q, . . . , J
′
0. The

argue that this is a k-TAR-sequence from B to AM ∪BM :

• As observed above, no vertex in BM is adjacent to any vertex in M . Hence for every i,
J ′i is an independent set.

• Recall that for every i, |Ji ∩M | ≥ y, and |BM | ≥ k − y, so |J ′i | ≥ k.
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• Clearly, consecutive sets in the sequence can be obtained from each other by at most
one TAR-step.

Analog to the first part of the proof, one can show that there exists a k-TAR-sequence S′′ for G
from AM∪BM to C∪BM . Combining the sequences S, S′ and S′′ shows that A↔G

k (C∪BM ),
which proves the statement. �

Using similar techniques, we can prove the next lemma. This applies to the case where
one module M can be partitioned into two sets M1 and M2, with no edges between them,
which therefore are also modules.

Lemma 8 Let M be a module of a graph G, such that M can be partitioned into two sets
M1 and M2 with no edges between M1 and M2. Let A be an independent set of G, let B1 be
an independent set of G with A ↔G

k B1, that maximizes |B1 ∩M1| among all such sets, and
let B2 be an independent set of G with A↔G

k B2.
Then there exists an independent set C of G with A ↔G

k C and C ∩Mi = Bi ∩Mi, for
i ∈ {1, 2}.

Proof: If B1 ∩M1 = ∅, then by definition of B1, it also holds that B2 ∩M1 = ∅, and therefore
chosing C = B2 proves the statement. So now suppose that B1 ∩M1 6= ∅.

Since the relation ↔G
k is an equivalence relation, we conclude that there exists a k-TAR-

sequence S = I0, . . . , Ip from B1 to B2. We will use S to show that there exists an independent
set C of G with B1 ↔G

k C and C∩Mi = Bi∩Mi, for i ∈ {1, 2}. Combining this with A↔G
k B1

shows that also A↔G
k C, which proves the statement.

First suppose that S contains an independent set that contains no vertices of M . Then
let Ii be the first such independent set, so i ≥ 1 and Ii is obtained from Ii−1 by removing a
token from M . Since M is a module and Ii−1 is an independent set, Ii therefore contains no
vertex that is adjacent to any vertex in M . We can then simply add the vertices in B1 ∩M1

and B2∩M2 to Ii in any order, to obtain the desired independent set C (recall that there are
no edges between M1 and M2). Combining the TAR-sequences from A to B1, from B1 to Ii,
and from Ii to C shows that A↔G

k C.
So now we may assume that every independent set Ii in the sequence S contains at least

one vertex of M . Then we modify S as follows: we ignore all token additions and removals
on M1. We argue that this is a k-TAR-sequence from B1 to C = (B1 ∩M1)∪ (B2\M1). More
precisely, for every i define I ′i = (B1∩M1)∪(Ii\M1), and consider the sequence S′ = I ′0, . . . , I

′
p.

We argue that S′ is a k-TAR-sequence for G:

• Suppose to the contrary that there exists an i such that I ′i is not an independent set.
Let i be the minimum index with this property. Then Ii is obtained from Ii−1 by
adding a vertex y that is adjacent to some vertex in B1. Because vertices in M2 are not
adjacent to vertices in M1, it follows that y 6∈ M . Since M is a module, y is adjacent
to every vertex in M . But Ii contains at least one vertex of M , contradicting that it is
an independent set. We conclude that every I ′i is an independent set.

• Let y = |B1 ∩M1|. Since every independent set Ii is also reachable from A, from the
definition of B1 it follows that |Ii∩M1| ≤ y. Therefore, |Ii\M1| ≥ k− y. It follows that
for every i, |I ′i| ≥ y + k − y = k.

• Clearly, consecutive sets in the sequence S′ can be obtained from each other using at
most one TAR-step.
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Gw:Gv :

Figure 3: A cograph Gu with components Gv and Gw, and independent set I consisting of
the white vertices.

We conclude that B1 ↔G
k C. Combined with A↔G

k B1, it follows that A↔G
k C. �

5 Dynamic Programming Rules

5.1 Cascading Sequences

In Section 5.2 below we will give dynamic programming rules for computing the values µI` (u)
for all nodes u ∈ V (T ). Recall that µI` (u) = max |J | where the maximum is taken over all
independent sets J of Gu with (I ∩ Vu) ↔Gu

` J . For trivial leaves and join nodes, the rules
are straightforward. As discussed in Section 3, the computation for union nodes is more
complicated, and requires studying the outcome of certain `-TAR-sequences in Gu, which we
will informally call cascading sequences.

We first introduce these informally, using the example shown in Figure 3. This figure
depicts a cograph Gu which is obtained by taking the disjoint union of two cographs Gv and
Gw. In this figure, a bold line between two encircled sets V1 and V2 of vertices means that
edges xy are present between every x ∈ V1 and y ∈ V2. This corresponds to a complete join
of G[V1] and G[V2]. Let I be the independent set of Gu consisting of the white vertices. In
Table 1, the values µI` (v) and µI` (w) are given for every ` ∈ {0, . . . , 3}. (These values can
easily be verified. See also Figure 4 for examples of maximum independent sets that are
reachable from I ∩ Vx in TAR`(Gx) for various values of `, and x ∈ {v, w}.)

Let the type of an independent set J of Gu be (|J ∩ Vv|, |J ∩ Vw|). If it is required to
keep at least ` = 6 tokens on Gu throughout, then from the initial independent set I, which
is of type (3, 3), we can go to an independent set of type (µI3(v), µI3(w)) = (4, 3). This
holds by definition of µI3(v) and µI3(w), and because we can reconfigure in both components
independently, as long as at least three tokens remain on both sides. From this, we could
go to a independent set of type (4, 2), but this does not enable further improvements. So
we conclude that µI6(u) = 4 + 3 = 7. If ` = 5, then observe that we can go from the
initial independent set of type (3, 3) to one of type (2, 3), and subsequently to one of type
(µI2(v), 3) = (5, 3). Next, we can visit independent sets of types (5, 0) and (5, µI0(w)) = (5, 4).
We could then go to one of type (1, 4), but since µI1(v) = 5, this yields no improvement. We
conclude that µI5(u) = 5 + 4 = 9. Finally, if ` ≤ 4, then we can visit independent sets of
types (3, 3), (4, 3), (4, 0), (4, 4), (0, 4), (6, 4), in this order, using similar arguments. Since
6 + 4 = 10 = α(Gu), no further improvements are possible, so µI` (u) = 10 for all ` ≤ 4. This
yields the values µI` (u) shown in Table 1. Note that we can deduce these values using only
the previous two columns of the table; without considering other details about the graph.
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` : µI` (v) : µI` (w) : µI` (u) :

0 6 4 10
1 5 3 10
2 5 3 10
3 4 3 10
4 10
5 9
6 7

Table 1: The values µI` (x) for x ∈ {u, v, w} and ` ∈ {0, . . . , |I ∩ Vx|}.

Below we will prove that the values computed this way are correct. However, we will
not formalize cascading sequences, but instead characterize their outcome. We will define
maximum `-stable tuples (x, y) for each ` ∈ {0, . . . , |I ∩ Vu|}, and show that x = min |J ∩ Vv|
and y = min |J ∩ Vw|, where in both cases the minimum is taken over all independent sets
J of Gu with (I ∩ Vu) ↔Gu

` J . So for the example above and ` = 6, 5, 4, these tuples can
be verified to be (3, 2), (1, 0) and (0, 0) respectively. (As indicated by the above cascading
sequences.) Next, we will show that µI` (u) = µIx(v) + µIy(w), where (x, y) is the maximum
`-stable tuple. The maximum `-stable tuple can easily be computed from its definition, given
below.

5.2 Bottom Up Dynamic Programming Rules

Throughout this section, T denotes a generalized cotree of G and I denotes an independent
set of G. The following property follows easily from the definition of µI` (u), and will often be
used in this section.

Proposition 9 Let u ∈ V (T ). For any two integers x, y with 0 ≤ x ≤ y ≤ |I ∩ Vu|, it holds
that µIx(u) ≥ µIy(u).

For trivial leaf nodes, the computation of these values is easy:

Proposition 10 Let u ∈ V (T ) be a trivial leaf node. Then µI` (u) = 1 for all `.

For join nodes, the computation of µI` (u) is still relatively straightforward. Note that for
any join node u and independent set I, u has a child w with Vw ∩ I = ∅.

Proposition 11 Let u ∈ V (T ) be a join node. Let w be a child of u with I ∩V (Gv) = ∅, and
let v be the other child of u.

• µI` (u) = µI` (v) for all ` ≥ 1, and

• µI0(u) = max{µI0(v), µI0(w)}.

Proof: Because all edges are present between Gv and Gw, a maximum independent set of Gu is
either a maximum independent set of Gv or of Gw, so µI0(u) = α(Gu) = max{α(Gv), α(Gw)} =
max{µI0(v), µI0(w)}. Now consider the case ` ≥ 1, and thus |I ∩ Vu| ≥ 1. Then initially all
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tokens of I are on the child Gv. As long as there is at least one token on Gv, no tokens can
be added to Gw. So essentially, Gw can be ignored, and thus µI` (u) = µI` (v). �

For union nodes u, we will show that the value of µI` (u) can be characterized using maxi-
mum stable tuples, which are defined as follows.

Definition 12 For a union node u with left child v and right child w, independent set I ⊆
V (G) and integer ` ≤ |I ∩Vu|, call a tuple (x, y) of integers with x ≤ |I ∩Vv| and y ≤ |I ∩Vw|
`-stable if

x = max{0, `− µIy(w)} and y = max{0, `− µIx(v)}.

Call an `-stable tuple (x, y) maximum if there is no `-stable tuple (x′, y′) with x′ ≥ x, y′ ≥ y
and (x, y) 6= (x′, y′).

In the remainder of this section, we will first prove that for every `, there exists a unique
maximum `-stable tuple (x, y), and characterize this tuple (Lemma 13 below). Using this
characterization, we can show that for a union node u with children v and w and any `,
µI` (u) = µIx(v)+µIy(w), where (x, y) is the unique maximum `-stable tuple (Lemma 19 below).

Lemma 13 Let u ∈ V (T ) be a union node, with left child v and right child w. For ` ∈
{0, . . . , |I ∩ Vu|}, let x = min |J ∩ Vv| and y = min |J ∩ Vw|, where in both cases the minimum
is taken over all independent sets J of Gu with (I ∩ Vu) ↔Gu

` J . Then (x, y) is the unique
maximum `-stable tuple for I and u.

Before we can prove Lemma 13, we first need to prove a number of other statements.
These statements will refer to notations I, u, v, w, x, y, ` as defined in Lemma 13. In
addition, we will denote Iu = I ∩ Vu.

Proposition 14 Consider a TAR-sequence S = J0, . . . , Jp in TAR`(Gu) with J0 = Iu. Let
x∗ = mini |Ji ∩ Vv| and y∗ = mini |Ji ∩ Vw|. Then µIx∗(v) ≥ |Jp ∩ Vv| and µIy∗(w) ≥ |Jp ∩ Vw|.

Proof: Consider the sequence S′ = J ′0, . . . , J
′
p with J ′i = Ji ∩ Vw for all i. This is a y∗-TAR-

sequence for Gw that ends with J ′p. So by definition, µIy∗(w) ≥ |J ′p|. The proof of the other
statement is analog. �

Since x and y (as defined in Lemma 13) provide lower bounds for x∗ and y∗ respectively
(as defined in Proposition 14), we conclude:

Corollary 15 For every J with Iu ↔Gu
` J , it holds that µIx(v) ≥ |J∩Vv| and µIy(w) ≥ |J∩Vw|.

Using Proposition 14, we can draw the following two conclusions.

Proposition 16 x ≥ `− µIy(w) and y ≥ `− µIx(v).

Proof: Consider an `-TAR-sequence J0, . . . , Jp for Gu from Iu to an independent set Jp with
|Jp ∩ Vv| = x. Let y∗ = mini |Ji ∩ Vw|, so y∗ ≥ y. By Proposition 14, µIy∗(w) ≥ |Jp ∩ Vw| ≥
`− |Jp ∩ Vv| = `− x. Using Proposition 9 and y∗ ≥ y, it follows that µIy(w) ≥ `− x holds as
well. The other inequality is proved analogously. �

Lemma 17 For any `-stable tuple (x′, y′), it holds that x ≥ x′ and y ≥ y′.
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Proof: Suppose to the contrary that there exists an `-TAR-sequence for Gu from Iu to some
independent set J with |J ∩ Vv| < x′ or |J ∩ Vw| < y′. Consider a shortest `-TAR-sequence
S = J0, . . . , Jp of this kind, and assume w.l.o.g. this ends with Jp with |Jp ∩ Vv| = x′ − 1.
This implies that x′ ≥ 1, and therefore x′ = `−µIy′(w) (since (x′, y′) is stable). It follows that

|Jp ∩ Vw| ≥ `− |Jp ∩ Vv| = `− x′ + 1 = µIy′(w) + 1, so

|Jp ∩ Vw| ≥ µIy′(w) + 1. (1)

Combining this with the trivial lower bounds µIy′(w) ≥ |I ∩ Vw| ≥ y′ we obtain

|Jp ∩ Vw| ≥ y′ + 1.

Let y∗ = mini |Ji ∩ Vw|, and choose i accordingly such that |Ji ∩ Vw| = y∗. Combining
Proposition 14 with (1) yields

µIy∗(w) ≥ |Jp ∩ Vw| ≥ µIy′(w) + 1.

It follows that y∗ < y′ (Proposition 9). So |Jp ∩ Vw| ≥ y′ + 1 > y∗ + 1 = |Ji ∩ Vw| + 1, and
thus i < p. But then the subsequence of S that ends with Ji satisfies |Ji ∩Vw| = y∗ < y′, and
this is a strictly shorter sequence than S, a contradiction with the choice of S. �

Proposition 18 There exists an independent set J1 of Gu with |J1∩Vv| = µIx(v) and Iu ↔Gu
`

J1, and there exists an independent set J2 of Gu with |J2 ∩ Vw| = µIy(w) and Iu ↔Gu
` J2.

Proof: We prove the second statement. The proof of the first statement is analog. If Iu∩Vw =
∅, then we can simply add vertices from a maximum independent set C of Gw to Iu, one by
one. Recall that |C| = α(Gw) = µI0(w). Since Gu is the disjoint union of Gv and Gw, this
yields a TAR-sequence in Gu, from Iu to a independent set J2 with |J2∩Vw| = µI0(w) = µIy(w).

So we may now assume that |Iu ∩ Vw| ≥ 1, and we can apply (module) Lemma 7, with Iu
in the role of A, Vw in the role of the module M and Gu in the role of the entire graph G.
By definition of y, there exists an independent set B of Gu with Iu ↔Gu

` B and |B ∩Vw| = y.
By definition of µIy(w), there exists an independent set C of Gw with (Iu ∩ Vw) ↔Gw

y C

and |C| = µIy(w). Now Lemma 7 shows that there exists an independent set J2 of Gu with

A↔Gu
` J2 and |J2 ∩ Vw| = |C| = µIy(w). �

Now we are ready to prove Lemma 13.

Proof of Lemma 13: Consider J2 as in Proposition 18. We can remove all but max{0, `−
µIy(w)} tokens from Gv, and still have at least ` tokens in total on Gu. This shows that

x ≤ max{0, ` − µIy(w)}. Analogously, y ≤ max{0, ` − µIx(v)} follows. Combining these
inequalities with Proposition 16 and the obvious inequalities x ≥ 0, y ≥ 0 shows that x =
max{0, `−µIy(w)} and y = max{0, `−µIx(v)}, hence the tuple (x, y) is `-stable. Furthermore,
Lemma 17 shows that (x, y) is a maximum `-stable tuple, and in fact the only maximum
`-stable tuple. �

Lemma 13 implies in particular that there exists a unique maximum `-stable tuple for any
choice of `. From now on we will now use this fact implicitly, for instance in the following
lemma statement. Now we are ready to state and prove Lemma 19, which shows how the
values µI` (u) can be computed for a join node u.
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Lemma 19 Let u ∈ V (T ) be a union node, with left child v and right child w. For ` ∈
{0, . . . , |I ∩ Vu|}, let (x, y) be the unique maximum `-stable tuple for I and u. Then µI` (u) =
µIx(v) + µIy(w).

Proof: Lemma 13 shows that x = min |J ∩ Vv| and y = min |J ∩ Vw|, where in both cases the
minimum is taken over all independent sets J of Gu with (I ∩ Vu) ↔Gu

` J , so we may apply
the above statements that were proved for this choice of x and y.

For any independent set J∗ of Gu with Iu ↔Gu
` J∗, Corollary 15 shows that |J∗| =

|J∗ ∩ Vv|+ |J∗ ∩ Vw| ≤ µIx(v) + µIy(w), so

µI` (u) ≤ µIx(v) + µIy(w). (2)

Now it suffices to prove that
µI` (u) ≥ µIx(v) + µIy(w). (3)

To this end, we will show that (module) Lemma 8 can be applied, with Gu in the role of the
entire graph G, Vu in the role of the module M , and Vv and Vw in the roles of the modules M1

and M2, respectively (recall that {M1,M2} should be a partition of M with no edges between
M1 and M2). We choose Iu in the role of A. By Proposition 18, there exists an independent
set J1 of Gu with |J1 ∩ Vv| = µIx(v) and Iu ↔Gu

` J1. Corollary 15 shows that J1 maximizes
the number of vertices on Vv among all reachable sets. Analogously, these two propositions
show that there exists an independent set J2 of Gu with |J2 ∩ Vv| = µIy(w) and Iu ↔Gu

` J2,
that maximizes the number of vertices on Vw among all reachable independent sets. When
using J1 and J2 in the roles of B1 and B2, Lemma 8 shows that there exists an independent
set C of G with Iu ↔Gu

` C, C ∩ Vv = J1 ∩ Vv and C ∩ Vw = J2 ∩ Vw. Inequality (3) follows
since |J1 ∩ Vv| = µIx(v) and |J2 ∩ Vw| = µIy(w). �

5.3 Computing the Values Efficiently

Let u be a union node with children v and w such that for every relevant integer `, the
values µI` (v) and µI` (w) are known. Then Lemma 19 shows that for every relevant value `,
the value µI` (u) can be computed in polynomial time: try all relevant combinations (x, y),
verify whether they are stable, and subsequently identify the unique maximum stable tuple.
However, this is not very efficient. In this section we present a more efficient method for
computing the values µI` (u) for union nodes u. The method is shown in Algorithm 1.

To prove that Algorithm 1 is correct, we need the following invariant.

Proposition 20 At any time during the computation of Algorithm 1, for the variables a, b
and ` the following property holds: For any `′ ∈ {0, . . . , `} and `′-stable tuple (x, y): a ≥ x
and b ≥ y.

Proof: Consider the initial choices a = |I∩Vv|, b = |I∩Vw| and ` = a+b, and any `′-stable tuple
(x, y) for `′ ≤ `. If x = 0, then obviously a ≥ x. Otherwise, x = `′−µIy(w) ≤ `−|I ∩Vw| = a.
Analogously, b ≥ y follows.

Now suppose that the claim holds for (a′, b′), and that (a, b) is obtained from this tuple
as shown in the algorithm. More precisely, (x, y) is an `′-stable tuple for `′ ≤ `, and we
have a′ ≥ x, b′ ≥ y, a = max{0, ` − µIb′(w)} and b = max{0, ` − µIa′(v)}. We prove that
b ≥ y. The case y = 0 is trivial, so now assume y ≥ 1, and therefore by `′-stability of
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Algorithm 1 Efficiently computing all values µI` (u) for a union node u.

Input: For a union node u with children v and w: The values |I∩Vz| and µI` (z) for z ∈ {v, w}
and ` ∈ {0, . . . , |I ∩ Vz|}.
Output: Values µI` (u) for all ` ∈ {0, . . . , |I ∩ Vu|}.

1: a := |I ∩ Vv|
2: b := |I ∩ Vw|
3: ` := a+ b
4: while ` ≥ 0 do
5: repeat
6: a′ := a
7: b′ := b
8: a := max{0, `− µIb′(w)}
9: b := max{0, `− µIa′(v)}
10: until a = a′ and b = b′

11: µI` (u) := µIa(v) + µIb(w)
12: ` := `− 1
13:endwhile

(x, y), y = `′ − µIx(v). Since a′ ≥ x, Proposition 9 yields µIa′(v) ≤ µIx(v). We conclude that
b ≥ `− µIa′(v) ≥ `′ − µIx(v) = y. The inequality a ≥ x follows analogously. It follows that the
assignments in Lines 8 and 9 maintain the invariant. Finally, decreasing ` by one (Line 12)
also obviously maintains the invariant. �

Lemma 21 Algorithm 1 correctly computes the values µI` (u) for all ` ∈ {0, . . . , |I ∩ Vu|}.

Proof: The repeat-until loop terminates when a = max{0, ` − µIb(w)} and b = max{0, ` −
µIa(v)}, so when (a, b) is `-stable for I and u. By Proposition 20, for any `-stable tuple (x, y)
it holds that a ≥ x and b ≥ y, so (a, b) is a maximum `-stable tuple. Then Lemma 19 shows
that the assignment µI` (u) = µIa(v) + µIb(w) is correct. �

To bound the complexity of Algorithm 1, we need the following invariant.

Proposition 22 At any time during the computation of Algorithm 1, for the variables a, b
and ` the following property holds: a ≥ `− µIb(w) and b ≥ `− µIa(v).

Proof: For the initial choices of a, b and `, the claim holds, since ` = a+b, µIb(w) ≥ |I∩Vw| = b
and µIa(v) ≥ |I ∩ Vv| = a. Now suppose that the claim holds for (a′, b′), and that (a, b) is
obtained from this tuple as shown in the algorithm. More precisely, we have a′ ≥ `− µIb′(w),
b′ ≥ ` − µIa′(v), a = max{0, ` − µIb′(w)} and b = max{0, ` − µIa′(v)}. We first argue that
a ≤ a′. If a = 0, the statement is clear (using the obvious invariant that these values remain
nonnegative). Otherwise, we can write a = `− µIb′(w) ≤ a′. By Proposition 9, it follows that
µIa(v) ≥ µIa′(v), and therefore b ≥ `− µIa′(v) ≥ `− µIa(v). Analogously, a ≥ `− µIb(w) follows.
This shows that the assignments in Lines 8 and 9 maintain the invariant. Clearly, decreasing
` by one (Line 12) maintains the invariant as well. �
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Lemma 23 Algorithm 1 terminates in time O(|I ∩ Vu|).

Proof: Denote n = |I ∩ Vu|. All lines take constant time (we may assume that the quantities
|I ∩ Vv| and |I ∩ Vw| are known). Therefore it suffices to show that in total, the variables a
and b are reassigned at most 2n times (in Lines 8 and 9). Proposition 22 shows that whenever
a new tuple (a, b) is obtained from a previous tuple (a′, b′), that a′ ≥ a and b′ ≥ b. (If a = 0,
the statement is clear, and otherwise a = ` − µIb′(w) ≤ a′ holds. b ≤ b′ follows similarly.) If
a′ = a and b′ = b, then ` is subsequently decreased (Line 12), which is done n times in total.
Otherwise, a′ + b′ > a + b, and since both values remain nonnegative throughout, this can
occur at most n times as well. Hence no line of the algorithm is visited more than 2n times.

�

Theorem 24 Let T be a generalized cotree of a graph G on n vertices, and let I be an
independent set of G. If the values µI` (v) are known for all nontrivial leaves v ∈ V (T ) and
all relevant integers `, then there is an algorithm that computes

• the values µI` (u) for all u ∈ V (T ) and ` ∈ {0, . . . , |I ∩ Vu|}, and

• the maximum `-stable tuples for all union nodes u ∈ V (T ) and ` ∈ {0, . . . , |I ∩ Vu|},

with time complexity O(M) ⊆ O(n2), where M =
∑

u∈V (T ) |I ∩ Vu|.

Proof: The Lemmas 21 and 23 show that for a union node u, Algorithm 1 computes the
values µI` (u) for all ` ∈ {0, . . . , |I ∩ Vu|} in time O(|I ∩ Vu|), given that the corresponding
values for all child nodes are known. For the case that u is a trivial leaf or join node, the
same claim follows easily from Propositions 10 and 11. So, using a straightforward bottom up
computation, all values µI` (u) can be computed correctly in time O(M). That is, in constant
time on average per entry. It remains to bound M in terms of n.

For a node u ∈ V (T ), define f(u) =
∑

v |Vv|, where the sum is over all descendants v of u
in T , including u itself. By induction over T , we show that f(u) ≤ |Vu|2. The induction base
is trivial. For the induction step, consider a node u with children v and w, and write a = |Vv|
and b = |Vw|. Then using the induction hypothesis, we can write

f(u) = |Vu|+ f(v) + f(w) ≤ (a+ b) + a2 + b2 ≤ 2ab+ a2 + b2 = (a+ b)2 = |Vu|2.

(We used a ≥ 1 and b ≥ 1.) Let r be the root of T . Using

M =
∑

u∈V (T )

|I ∩ Vu| ≤
∑

u∈V (T )

|Vu| = f(r) ≤ n2,

the statement follows. �

5.4 Top Down Dynamic Programming Rules

Throughout this section, T denotes again a generalized cotree of G and I denotes an inde-
pendent set of G. In this section, we will show how the values λIk(v) can be computed for all
nodes v ∈ V (T ). For the case that v is a union node, this requires knowledge of a maximum
`-stable tuple (characterized in Lemma 13). For the root node of T , the value is trivial.
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Proposition 25 Let r be the root node of the cotree T . Then λIk(r) = k.

Proposition 26 Let u ∈ V (T ) be a join node, with children v and w such that I ∩ Vw = ∅.
Then λIk(v) = λIk(u) and λIk(w) = 0.

Proof: Considering I itself, λIk(w) = 0 follows immediately. The inequality λIk(v) ≤ λIk(u)
follows since Vv ⊆ Vu. It remains to prove that λIk(v) ≥ λIk(u).

Consider a shortest k-TAR-sequence I0, . . . , Ip in G from I to any independent set Ip with
|Ip∩Vv| = λIk(v). If p = 0, then λIk(u) ≤ |I∩Vu| = |I∩Vv| = λIk(v), so now assume p ≥ 1. Then
Ip is obtained from Ip−1 by removing a vertex from Vv. Since Gu is the complete join of Gv
and Gw and Ip−1 is an independent set, Ip−1∩Vw = ∅. So λIk(u) ≤ |Ip∩Vu| = |Ip∩Vv| = λIk(v).

�

Lemma 27 Let u ∈ V (T ) be a union node, with left child v and right child w. Let ` = λIk(u),
and let (x, y) be the maximum `-stable tuple for I and u. Then λIk(v) = x and λIk(w) = y.

Proof: Denote again Iu = I ∩ V (Gu). By Lemma 13, for the maximum `-stable tuple (x, y)
for I and u it holds that

x = min |J ∩ Vv| and y = min |J ∩ Vw|, (4)

where in both cases the minimum is taken over all independent sets J of Gu with Iu ↔Gu
` J .

We first use this to show that λIk(v) ≥ x and λIk(w) ≥ y. Consider a k-TAR-sequence
I0, . . . , Ip for G with I0 = I and |Ip ∩ Vv| = λIk(v). For every i, denote I ′i = Ii ∩ Vu, and
consider the sequence I ′0, . . . , I

′
p. By definition of ` = λIk(u), for every i it holds that |I ′i| ≥ `,

so this is an `-TAR-sequence for Gu, and thus Iu ↔Gu
` I ′p. Using (4) it then follows that

λIk(v) = |Ip ∩ Vv| ≥ x. Analogously, λIk(w) ≥ y follows.

We will now prove that λIk(v) ≤ x and λIk(w) ≤ y. By (4), there exist independent sets J1
and J2 of Gu with Iu ↔Gu

` J1, Iu ↔Gu
` J2, |J1 ∩ Vv| = x and |J2 ∩ Vw| = y. By the definition

of ` = λIk(u), there exists an independent set B of G with I ↔G
k B and |B ∩ Vu| = `. We can

now apply (module) Lemma 7 twice, with Vu in the role of module M , Iu in the role of A,
and J1 or J2 respectively in the role of C to conclude that there exist independent sets D1

and D2 of G with I ↔G
k D1, I ↔G

k D2, |D1 ∩ Vv| = x and |D2 ∩ Vw| = y. Thus λIk(v) ≤ x and
λIk(w) ≤ y. �

6 Algorithm Summary and Main Theorems

In this section, we prove the two main theorems, and summarize how the previous facts and
dynamic programming rules can be used to decide efficiently whether A ↔G

k B for any two
given independent sets A and B of a G, for any graph that satisfies the properties stated
in Theorem 5. First, we prove the theorem that characterizes whether A ↔G

k B, using the
previously defined values.

Theorem 3 Let T be a generalized cotree for a graph G. Let A and B be two independent
sets of G of size at least k. Then A↔G

k B if and only if
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1. for all nodes u ∈ V (T ), λAk (u) = λBk (u), and

2. for all leaves u ∈ V (T ), (A ∩ Vu)↔Gu
` (B ∩ Vu), where ` = λAk (u).

Proof: We first prove the forward direction. Suppose that A ↔G
k B. Then clearly, for any

independent set J of G, A ↔G
k J holds if and only if B ↔G

k J . So λAk (u) = λBk (u) holds for
every node u ∈ V (T ) (Definition 2), which proves the first property.

For any u ∈ V (T ), we may now denote λk(u) = λAk (u) = λBk (u). Consider a k-TAR-
sequence I0, . . . , Ip for G from A to B. For any node u ∈ V (T ) and any i ∈ {0, . . . , p},
it holds that |Ii ∩ Vu| ≥ λk(u) (Definition 2). So I ′0, . . . , I

′
p with I ′i = Ii ∩ Vu for all i is a

λk(u)-TAR-sequence for Gu. This shows that (A ∩ Vu)↔Gu

λk(u)
(B ∩ Vu), and thus proves the

second property.

Now we prove the other direction. Assume that the two properties hold. So we may
denote λk(u) = λAk (u) = λBk (u) for all nodes u. We prove the following claim by induction
over T :

Claim A: For all nodes u ∈ V (T ): (A ∩ Vu)↔Gu

λk(u)
(B ∩ Vu).

Induction base: For leaf nodes u ∈ V (T ), the statement follows immediately from the
second property.

Induction step: First consider a join node u ∈ V (T ) with children v and w. Suppose
that λk(v) ≥ 1. This implies A ∩ Vv 6= ∅ and B ∩ Vv 6= ∅. Therefore, since u is a join
node, A ∩ Vu = A ∩ Vv and B ∩ Vu = B ∩ Vv. In addition, λk(u) = λk(v) (Proposition 26).
From these facts, and the induction assumption (A ∩ Vv) ↔Gv

λk(v)
(B ∩ Vv), we conclude that

(A∩Vu)↔Gu

λk(u)
(B∩Vu). The case λk(w) ≥ 1 is analog. Now suppose that λk(v) = λk(w) = 0.

Then λk(u) = 0 (Proposition 26). The desired claim follows since (A ∩ Vu) ↔Gu
0 (B ∩ Vu)

trivially holds.

Next, consider the case that u ∈ V (T ) is a union node with left child v and right child
w. Denote ` = λk(u), x = λk(v) and y = λk(w). By Lemma 27, (x, y) is the maximum
`-stable tuple for u, for both A and B. We define Cv to be an independent set of Gv with
(A∩Vv)↔Gv

x Cv, with maximum size among all such sets, and define Cw to be an independent
set of Gw with (A ∩ Vw) ↔Gw

y Cw, with maximum size among all such sets. By induction,

(A∩Vv)↔Gv
x (B∩Vv), so it also holds that (B∩Vv)↔Gv

x Cv, and that Cv has maximum size
among all such reachable sets. Analogously, (B ∩ Vw) ↔Gw

y Cw, and Cw has maximum size
among all such reachable sets. Define Cu = Cv ∪Cw. We will now show that Cu is reachable
from both A ∩ Vu and B ∩ Vu, which proves Claim A for node u.

Lemma 13 shows that there exists an independent set J of Gu with (A ∩ Vu) ↔Gu
` J

and |J ∩ Vv| = x. Using this, we argue that there exists an independent set J1 of Gu with
(A ∩ Vu) ↔Gu

` J1 and J1 ∩ Vv = Cv. If A ∩ Vu = ∅, then this claim is trivial. Otherwise, we
can apply (module) Lemma 7 to draw this conclusion (using Vv, Gu, J and Cv in the roles of
the module M , entire graph G, and independent sets B and C, respectively). Analogously,
we may conclude that there exists an independent set J2 of Gu with (A ∩ Vu) ↔Gu

` J2 and
J2 ∩ Vw = Cw. Since Cu = Cv ∪ Cw, we can now apply (module) Lemma 8 (with Gu in the
role of the entire graph, Vv and Vw in the roles of disjoint modules M1 and M2, and J1 and
J2 in the roles of B1 and B2), to conclude that A↔Gu

` Cu. For this, we require the fact that
Cv has maximum size among all independent sets of Gv that are reachable from A ∩ Vv.
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The argument from the previous paragraph also holds when replacing A by B, since Cv
and Cw are also maximum reachable independent sets from B ∩ Vv and B ∩ Vw. Thus we
may also conclude that B ↔Gu

` Cu. Using the fact that ↔Gu
` is an equivalence relation, we

conclude that A↔Gu
` B, which proves the desired claim for u.

This concludes the induction proof of Claim A. Applying Claim A to the root node r of T
shows that A↔G

k B, since λk(r) = k (Proposition 25), and G = Gr, and therefore concludes
the proof of the theorem. �

Next, we prove our main algorithmic result. In the next section, we give examples of
graph classes for which this theorem yields efficient algorithms.

Theorem 5 Let T be a generalized cotree for a graph G on n vertices, let k ∈ N and let A
and B be independent sets of G. If for every nontrivial leaf v ∈ V (T ) and relevant integer `,

• the values µA` (v) and µB` (v) are known, and

• it is known whether (A ∩ Vv)↔Gv
` (B ∩ Vv),

then in time O(n2) it can be decided whether A↔G
k B.

Proof: We may assume that |A| ≥ k and |B| ≥ k, otherwise we can immediately answer NO.
First we use a bottom up dynamic programming algorithm, to compute the values µA` (u) and
µB` (u) for every node u and relevant integer `. Theorem 24 shows that this can be done in
time O(n2), and that at the same time the maximum `-stable tuples can be computed for A,
B, all union nodes u and relevant integers `. (Recall that this uses the dynamic programming
rules for trivial leaves, join nodes and union nodes given in Proposition 10, Proposition 11
and Lemma 19, respectively, and the fast computation of maximum `-stable tuples given in
Section 5.3.)

Next, we start the top down phase of the dynamic programming algorithm, where we
compute the values λAk (u) and λBk (u) for every node u. For the root node r of T , we can
initialize these values to k (Proposition 25). Next, for every node u for which these two
values are known, we can compute these two values for the two children v and w, by applying
Proposition 26 for join nodes and Lemma 27 for union nodes. Note that applying Lemma 27 to
a union node u requires the previously computed maximum `-stable tuple (x, y) for I = A,B,
with ` = λIk(u). This is why the bottom up phase is required.

Finally, we return YES if

• for all nodes v ∈ V (T ), λAk (v) = λBk (v), and

• for all leaves v ∈ V (T ), (A ∩ Vv)↔Gv
` (B ∩ Vv), where ` = λAk (v).

This is correct by Theorem 3. (Note that for trivial leaves v ∈ V (T ), (A ∩ Vv)↔Gv
` (B ∩ Vv)

always holds, and for nontrivial leaves, we assume that this information is given.) Considering
the dynamic programming rules, every value that is assigned in the top down phase can be
computed in constant time per value. Hence the top down phase takes timeO(|V (T )|) = O(n),
and the total complexity of the algorithm becomes O(n2) (which is dominated by the bottom
up phase). �
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7 Graph Classes

In this section, we discuss graph classes to which Theorem 5 applies. Firstly, Theorem 5
easily implies that the TAR-Reachability problem can be decided efficiently on cographs.

Theorem 28 Let G be a cograph on n vertices, let k ∈ N and let A and B be independent
sets of G. In time O(n2) it can be decided whether A↔G

k B.

Proof: A cotree T for G can be constructed in linear time [9]. We can easily guarantee that this
is a binary tree. Since a cotree only has trivial leaves, Theorem 5 can now be applied. Indeed,
for a trivial leaf u: Proposition 10 shows that µI` (u) = 1 holds for all relevant ` ∈ {0, 1}.
Secondly, it can be seen that (A ∩ Vv)↔Gv

` (B ∩ Vv) always holds for all relevant ` ∈ {0, 1}.
So the conditions of Theorem 5 are satisfied. �

Combining this theorem with Lemma 1 shows that we can efficiently decide whether
A↔G

TJ B in the case that G is a cograph, which answers an open question from [21]:

Corollary 29 Let G be a cograph on n vertices, and let A and B be independent sets of G.
In time O(n2) it can be decided whether A↔G

TJ B.

Theorem 5 is however much stronger, and implies that TAR-Reachability can be decided
efficiently for much richer graph classes. We will now give an example of such a graph class,
namely the class of all graphs that admit a cotree decomposition into chordal graphs. Along
the way, we will introduce some tools that allow proving the same for other graph classes
that can be obtained by taking unions and joins of graphs from a graph class G, for which
the values/properties from Theorem 5 can efficiently be computed/decided.

A graph G is chordal if it contains no cycles of length four or more as induced subgraphs (in
other words: if every cycle of length at least four contains a chord). The only two properties
of chordal graphs that we will use are the following. Firstly:

Theorem 30 ([14]) Let G be a chordal graph. Then α(G) can be computed in polynomial
time.

This statement is well-known, and relatively easy to prove using the concept of simplicial
vertices. For the more general class of perfect graphs, α(G) can in fact also be computed in
polynomial time. See [23, Section 66.3] for more background. Secondly, we use the fact that
chordal graphs are obviously even-hole-free. A graph G is even-hole-free if it contains no even
cycles as induced subgraphs. To our knowledge, no polynomial time algorithm for computing
α(G) for even-hole-free graphs is known; otherwise, the result from this section could be
generalized to even-hole-free graphs. See also [24, 21]. We will also apply the following result,
which was proved in [21].

Theorem 31 ([21]) Let A and B be two independent sets of an even-hole-free graph G with
|A| = |B|. Then A↔G

TJ B.

Using Lemma 1, this theorem can be applied to the TAR model to conclude:

Lemma 32 Let A and B be two distinct independent sets of an even-hole-free graph G. Then
A↔G

k B if and only if neither A nor B is a dominating set of size k.

20



Proof: If A is a dominating set of size k, then no token can be added to A, and no token
can be removed from A. So A has no neighbors in TARk(G). Since A and B are distinct, it
follows that A 6↔G

k B. This follows similarly if B is a dominating set of size k.
Now suppose that neither A nor B is a dominating set of size k. Then we show that

A↔G
k B. We can easily construct an independent set A′ with A↔G

k A
′ and |A′| = k + 1:

• If |A| = k then add an arbitrary vertex v which has no neighbors in A (which exists
since A is not dominating).

• If |A| ≥ k + 1 then remove arbitrary vertices from A until an independent set of size
k + 1 is obtained.

Similarly, we can easily construct an independent set B′ with B ↔G
k B′ and |B′| = k + 1.

By Theorem 31, A′ ↔G
TJ B

′. Next, Lemma 1 shows that A′ ↔G
k B′. Combining this with

A↔G
k A

′ and B ↔G
k B

′ shows that A↔G
k B. �

The above lemma easily yields the following statement.

Corollary 33 Let I be an independent set of an even-hole-free graph G, and let J be an
independent set of G with I ↔k J that maximizes |J | among all such sets. Then

• |J | = |I| if I is a dominating set of size k, and

• |J | = α(G) otherwise.

This in turn gives us immediately an easy way to compute the values µI` (u) for the case
that Gu is even-hole-free:

Corollary 34 Let T be a cotree decomposition of a graph G into even-hole-free graphs, and
let I be an independent set of G. Then for every leaf u ∈ V (T ), and every relevant value `:

• µI` (u) = |I| if I ∩ Vu is a dominating set of Gu of size `, and

• µI` (u) = α(Gu) otherwise.

Combining Theorem 30, Lemma 32 and Corollary 34 shows that if we have a cotree
decomposition of a graphG into chordal graphs, then the conditions of Theorem 5 are satisfied,
so we can compute in polynomial time whether A↔k B. However, it remains to discuss how
in general, a cotree decomposition into chordal graphs can be found. Recall that for a graph
G, by G the complement of G is denoted, which is the graph G = (V (G), {uv | uv 6∈ E(G)}).

Definition 35 A graph H is indecomposable if both H and H are connected. A maximal
cotree decomposition of a graph G is a generalized cotree decomposition T such that for every
leaf u ∈ V (T ), Gu is indecomposable.

Proposition 36 For any graph G, a maximal cotree decomposition of G can be computed in
polynomial time.

21



Proof: A polynomial time algorithm for testing whether a given graph is indecomposable
follows immediately from the definition (quadratic time in fact). Now consider the following
algorithm for constructing a maximal cotree decomposition of G: start with a trivial gener-
alized cotree decomposition T , consisting of one (root) node r with Gr = G. As long as the
current generalized cotree decomposition T contains a leaf u ∈ V (T ) such that Gu is decom-
posable, partition the vertices of Gu into new sets Vv and Vw such that Gu is the disjoint
union or complete join of G[Vv] and G[Vw] (this can be trivially done in the case where Gu
is disconnected, respectively in the case where Gu is disconnected). Now add corresponding
new leaf nodes v and w as children of u, and make u into a union or join node, respectively.
This way, a generalized cotree decomposition of G is maintained. The algorithm terminates
after at most |V (G)| steps (which all take polynomial time), since in every step, the number
of leaves of T increases by one, and a generalized cotree decomposition has at most |V (G)|
leaves. When the algorithm terminates, the resulting generalized cotree decomposition is
clearly maximal. �

A graph class G is called hereditary if for every G ∈ G and every induced subgraph H of
G, H ∈ G holds. Clearly, chordal graphs are hereditary.

Lemma 37 Let G be a hereditary graph class, and let G be a graph that admits a cotree
decomposition into G-graphs. Then every maximal cotree decomposition of G is a cotree
decomposition into G-graphs.

Proof: Let T ∗ be a maximal cotree decomposition of G, and let TC be a cotree decomposition
of G into G-graphs. Denote by G∗u and GCu the subgraphs of G that correspond to nodes
u ∈ V (T ∗) and u ∈ V (TC), respectively. Similarly, denote their vertex sets by V ∗u and V C

u .
Consider a leaf u ∈ V (T ∗). We will prove that G∗u is also part of the graph class G. If

there is a leaf node v ∈ V (TC) such that V ∗u ⊆ V C
v , then G∗u is an induced subgraph of GCv ,

so since G is hereditary, G∗u ∈ G holds.
Now assume that there is no such leaf node in TC . Then observe that we may consider

a node w ∈ V (TC) with V ∗u ⊆ V C
w , which has no child nodes that satisfy this property. (In

other words: w is a lowest common ancestor of all nodes x with V C
x ∩ V ∗u 6= ∅.) Let x and y

be the two child nodes of w. So by choice of w, V ∗u can be partitioned into two nonempty sets
S = V ∗u ∩ V C

x and T = V ∗u ∩ V C
y . If w is a join node, then G∗u can be written as the complete

join of G[S] and G[T ], so G∗ is disconnected, contradicting the fact that it is indecomposable.
Similarly, if w is a union node, then G∗u can be written as the disjoin union of G[S] and G[T ],
so it is disconnected, contradicting the fact that it is indecomposable. This concludes the
proof that for every u ∈ V (T ∗), Gu ∈ G holds. �

We now summarize how the previous statements yield a polynomial time algorithm for
testing A ↔G

k B, whenever G is a graph that admits a cotree decomposition into chordal
graphs.

Theorem 38 Let G be a graph that admits a cotree decomposition into chordal graphs, and
let A and B be independent sets of G, both of size at least k. Then in polynomial time, we
can decide whether A↔G

k B.

Proof: We first construct a maximal cotree decomposition T of G in polynomial time (Propo-
sition 36). By Lemma 37, T is then a cotree decomposition into chordal graphs (since chordal
graphs are hereditary). So by Theorem 30, we can compute α(Gu) for every leaf u ∈ V (T ).
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Combining this with Corollary 34, and the fact that chordal graphs are even-hole-free, shows
that we can compute the values µA` (u) and µB` (u) for every leaf u ∈ V (T ) and relevant `.
Finally, Lemma 32 gives an easy way to decide in polynomial time whether A ↔Gu

` B for
any leaf u ∈ V (T ) and relevant value `. So the conditions of Theorem 5 are satisfied for
the generalized cotree decomposition T of G, and thus we can compute in polynomial time
whether A↔G

k B. �

8 A Linear Bound on the Diameter of the Solution Graph

Using the previous lemmas, we can efficiently decide whether there exists a k-TAR-sequence
from A to B in a cograph G. However, from these lemmas, one cannot easily deduce a
polynomial upper bound for the length of such a sequence. This requires studying the afore-
mentioned cascading sequences in more detail, which is what we will do in this section. We
will show that if A↔G

k B, then there exists a k-TAR-sequence from A to B of length at most
4n− |A| − |B|, where n = |V (G)|.

The main idea is as follows. Given independent sets A and B of G with A ↔G
k B, we

choose an appropriate subgraph G′ of G such that there exist maximum independent sets A′

and B′ of G and short k-TAR-sequences from A to A′ and from B to B′. These sequences are
short in the sense that for every vertex v ∈ V (G), no token is added on v after the first token
is removed from v. So in total, there are at most 2n − |A| − |A′| token additions/removals
used in the sequence from A to A′, and a similar statement holds for B and B′. Finally,
we show that k-TAR-sequence from A′ to B′ exists, of length at most |A∆B|. (Recall that
A∆B = (A\B) ∪ (B\A) denotes the symmetric difference of A and B.) Combining these
three k-TAR-sequences yields a k-TAR-sequence from A to B of length at most 4n−|A|− |B|
in the subgraph G′, and therefore also in G.

We now define the type of TAR-sequences that we will consider. For a node u ∈ V (T )
and every value of ` ∈ {0, . . . , |I ∩ Vu|}, a subsequence of the next sequence outlines an `-
TAR-sequence for Gu from I ∩ Vu to an independent set J with |J | = µI` (u) (Properties 1
and 4). In addition it is short in the sense that every vertex of Gu is used for at most one
token addition (Property 3). This motivates the name short universal sequence. Examples of
these sequences are given in Figure 4 for the graphs Gv and Gw from Figure 3.

Definition 39 Let T be a cotree of a graph G, and let I be an independent set of G. A short
universal sequence or SU-sequence for a node u ∈ V (T ), based on I, is a sequence C0, . . . , Cp
of independent sets of Gu that satisfy the following properties:

1. C0 = I ∩ Vu.

2. For all i ∈ {0, . . . , p− 1}: |Ci+1| > |Ci|.

3. For all i, j ∈ {0, . . . , p− 1} with i ≤ j: (Cj+1\Cj) ∩ Ci = ∅.

4. For all ` ∈ {0, . . . , |I ∩ Vu|} and i ∈ {0, . . . , p}: if |Ci| < µI` (u) then i < p and there
exists an `-TAR-sequence in Gu from Ci to Ci+1 that only adds tokens on Ci+1\Ci

Below we will show by induction over T that for every node u ∈ V (T ), an SU-sequence
exists. But first, we will prove two properties that indicate why these sequences are useful
for finding short `-TAR-sequences from I ∩ Vu to an independent set J with |J | = µI` (u), for
any value of `.
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Figure 4: SU-sequences Cv0 , . . . , C
v
3 and Cw0 , C

w
1 for the graphs Gv and Gw from Figure 3, and

a resulting SU-sequence Cu0 , . . . , C
u
4 for their disjoint union Gu.

Proposition 40 Let T be a cotree of a graph G, and let I be an independent set of G. Let
C0, . . . , Cp be an SU-sequence for a node u ∈ V (T ), based on I. Then |Cp| = α(Gu).

Proof: For all i ∈ {0, . . . , p}, since Ci is an independent set of Gu, |Ci| ≤ α(Gu). If the
inequality is strict, then |Cui | < α(Gu) = µI0(u), so Property 4 of Definition 39 shows that
i < p. �

Lemma 41 Let T be a cotree of a graph G, and let I be an independent set of G. Let
C0, . . . , Cp be an SU-sequence for a node u ∈ V (T ), based on I. For any ` ∈ {0, . . . , |I ∩ Vu|}
and i ∈ {0, . . . , p− 1} with |Ci| < µI` (u), there exists an `-TAR-sequence from I ∩ Vu to Ci+1

in Gu of length 2(|
⋃i+1
j=0Cj |)− |C0| − |Ci+1|. Therefore, µI` (u) ≥ |Ci+1|.

Proof: For any `, we prove the statement by induction over i. We will assume that |Ci| <
µI` (u), otherwise there is nothing to prove.

For i = 0, Property 4 shows that there is an `-TAR-sequence in Gu from C0 to C1 that
only adds tokens on C1\C0. It follows that this TAR-sequence uses exactly |C1\C0| token
additions, and |C0\C1| token removals. We can write

|C1\C0|+ |C0\C1| = (|C0 ∪ C1| − |C0|) + (|C0 ∪ C1| − |C1|),

which proves the statement.
Now suppose i ≥ 1. Since |Ci| < µI` (u), Property 2 shows that |Ci−1| < µI` (u) holds

as well. So by induction, there exists an `-TAR-sequence in Gu from C0 to Ci of length
2(|
⋃i
j=0Cj |)−|C0|− |Ci|. By Property 4, there also exists an `-TAR-sequence in Gu from Ci

to Ci+1, of length |Ci\Ci+1|+ |Ci+1\Ci| (using an argument similar to above). These can be
combined into an `-TAR-sequence in Gu from C0 to Ci+1. The total length of this sequence
is therefore:

2

∣∣∣∣ i⋃
j=0

Cj

∣∣∣∣− |C0| − |Ci|+ |Ci\Ci+1|+ |Ci+1\Ci| =
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2

∣∣∣∣ i⋃
j=0

Cj

∣∣∣∣− |C0| − |Ci|+ 2|Ci ∪ Ci+1| − |Ci| − |Ci+1| =

2

∣∣∣∣ i⋃
j=0

Cj

∣∣∣∣+ 2|Ci+1\Ci| − |C0| − |Ci+1|
(Property 3)

=

2

∣∣∣∣ i⋃
j=0

Cj

∣∣∣∣+ 2

∣∣∣∣Ci+1\
( i⋃
j=0

Cj

)∣∣∣∣− |C0| − |Ci+1| =

2

∣∣∣∣ i+1⋃
j=0

Cj

∣∣∣∣− |C0| − |Ci+1|.

This concludes the induction proof, so we conclude that for any i with |Ci| < µI` (u), there

exists an `-TAR-sequence from I ∩ Vu to Ci+1 in Gu of length 2(|
⋃i+1
j=0Cj |) − |C0| − |Ci+1|.

From this, it follows immediately that µI` (u) ≥ |Ci+1|. �

We will now prove that SU-sequences exist for every u ∈ V (T ).

Proposition 42 Let T be a cotree of a graph G, and let I be an independent set of G. For
every leaf node u ∈ V (T ), there exists an SU-sequence based on I.

Proof: We define C0 = I ∩ Vu and Cp = {u}. Choose p = 0 if these two sets are the same,
and p = 1 otherwise. One can easily verify that the four properties from Definition 39 hold
for this sequence. (Recall that by Proposition 10, µI` (u) = 1 for all `.) �

Lemma 43 Let T be a cotree of a graph G, and let I be an independent set of G. Let
u ∈ V (T ) be a join node with children v and w. If there exist SU-sequences for v and w, then
there exists an SU-sequence for u (all based on I).

Proof: Suppose u is a join node, with children v and w. We will construct an SU-sequence
Cu0 , . . . , C

u
pu for u.

If I ∩Vu = ∅, then we choose pu = 1, Cu0 = ∅ and Cu1 to be a maximum independent set of
Gu. This choice satisfies the four properties of Definition 39. So now we may assume w.l.o.g.
that I ∩ Vv 6= ∅ and I ∩ Vw = ∅. By induction, for v there exists an SU-sequence Cv0 , . . . , C

v
pv

based on I. For all i ∈ {0, . . . , pv}, we choose Cui = Cvi . If Cvi is also a maximum independent
set of Gu then this is the entire sequence for u (so we choose pu = pv), and it satisfies the
four properties again (recall that in this case, µI` (u) = µI` (v) for all `, by Proposition 11).
Otherwise, since u is a join node, any set J ⊆ Vu is a maximum independent set for Gu if
and only if it is a maximum independent set for Gv. Therefore we can choose pu = pv + 1,
and choose Cupu to be any maximum independent set of Gv. Clearly, there exists a 0-TAR-

sequence from Cupu−1 = Cvpv to Cupu that only adds tokens on Cupu\Cupu−1. Since µI0(u) = |Cupu |
and µI` (u) = µI` (v) for all ` ≥ 1 (Proposition 11), this shows that Property 4 again holds
for the new sequence. For all i < pu, Cui ⊆ Vv, so Cupu ∩ Cui = ∅, and thus Property 3 is
again satisfied for this new sequence. Property 1 holds since Cu0 = |I ∩ Vv| = |I ∩ Vu| (using
induction, and that u is a join node with I ∩ Vv 6= ∅, respectively). �

The proof of the following lemma is also illustrated in Figure 4. Given SU-sequences for
children v and w of a union node u, we obtain an SU-sequence for u by letting every set in
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the new sequence be the union of one set from the SU-sequence for v and one set from the
SU-sequence for w.

Lemma 44 Let T be a cotree of a graph G, and let I be an independent set of G. Let
u ∈ V (T ) be a union node with children v and w. If there exist SU-sequences for v and w,
then there exists an SU-sequence for u (all based on I).

Proof: Let Cv0 , . . . , C
v
pv and Cw0 , . . . , C

w
pw be SU-sequences based on I for v and w, respectively.

We will construct a SU-sequence Cu0 , . . . , C
u
pu for u from these. These sets will be constructed

such that for every index a, there exist indices b and c with

Cua = Cvb ∪ Cwc .

First we choose Cu0 = Cv0 ∪Cw0 , which guarantees that Cu0 = I ∩Vu, so Property 1 is satisfied.
Next, for every choice of indices a, b, c such that we assigned Cua = Cvb ∪ Cwc , continue the
construction of the sequence according to the following method. For notational convenience,
we define µIi (v) = µI0(v) and µIi (w) = µI0(w) for all i < 0.

(a) Denote q = |Cvb | and r = |Cwc |.

(b) If q = α(Gv) and r = α(Gw) then assign pu := a (so the SU-sequence for u ends here).
Otherwise, choose Cua+1 as follows:

(c) Choose ` to be the maximum value in {0, . . . , |I∩Vu|} such that µI`−r(v) > q or µI`−q(w) >
r.

(d) If µI`−r(v) > q then choose Cua+1 = Cvb+1 ∪Cwc , and otherwise (when µI`−q(w) > r) choose
Cua+1 = Cvb ∪ Cwc+1.

We first argue that a value ` can always be chosen as in (c): If q = |Cvb | < α(Gv), then by
Property 4, µI0(v) > q. So choosing any ` ∈ {0, . . . , |I ∩ Vu|} with ` ≤ r suffices. Otherwise,
by (b), r < α(Gw), and any ` with ` ≤ q suffices by an analog argument. The above
construction defines the sequence Cu0 , . . . , C

u
pu . We will now prove that it is an SU-sequence.

As observed above, Cu0 = Cv0 ∪Cw0 = (I∩Vv)∪ (I∩Vw) = I∩Vu, so Property 1 is satisfied.
Since |Cb+1| > |Cb| and |Cc+1| > |Cc| holds for any b and c (Property 2), it follows that
|Ca+1| > |Ca| holds for any a < pu, which proves Property 2 for the new sequence.

Now we prove Property 3. Consider a′ ≤ a with Cua = Cvb ∪ Cwc and Cua′ = Cvb′ ∪ Cwc′ . So
b′ ≤ b and c′ ≤ c. Assume w.l.o.g. that Cua+1 = Cvb+1 ∪ Cwc . Then we can write

(Cua+1\Cua ) ∩ Cua′ ⊆ (Cvb+1\Cvb ) ∩ (Cvb′ ∪ Cwc′ ) = ∅.

For the last equality, we used

• Property 3 for v to conclude that (Cvb+1\Cvb ) ∩ Cvb′ = ∅, and

• the observations that Cvb+1 ⊆ Vv, C
w
c′ ⊆ Vw, and Vv ∩ Vw = ∅ to conclude that

(Cvb+1\Cvb ) ∩ Cwc′ = ∅.

It remains to prove Property 4 for the new sequence. First note that µI0(u) = α(Gu) =
α(Gv) + α(Gw), so we may end the sequence when q = α(Gv) and r = α(Gw). Now consider
any index a < pu, such that we constructed Cua+1 from Cua = Cvb ∪ Cwc using the above
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method. We will prove for all `′ ∈ {0, . . . , |I ∩ Vu|} with |Ca| < µI`′(u) that there exists an
`′-TAR-sequence in Gu from Ca to Ca+1 that only adds tokens on Ca+1\Ca.

First, we show that |Cua | < µI`′(u) implies that µI`′−r(v) > q or µI`′−q(w) > r. Consider an

`′-TAR-sequence I0, . . . , Iq from I ∩ Vu to an independent set J of Gu with |J | = µI`′(u) >
|Cua | = q+ r. Let j be the first index such that |Ij ∩ Vv| ≥ q+ 1 or |Ij ∩ Vw| ≥ r+ 1. Clearly,
such an index j exists, and j ≥ 1 holds since |Cua | ≥ |Cu0 | by Property 2. W.l.o.g. assume
that |Ij ∩ Vv| ≥ q + 1. Then define I ′i = Ii ∩ Vv for all i ∈ {0, . . . , j}. By choice of i, for all
i ∈ {0, . . . , j} it holds that |Ii ∩Vw| ≤ r, and therefore |I ′i| ≥ `′− r. So the sequence I ′0, . . . , I

′
j

is an (`′ − r)-TAR-sequence for Gv from I ∩ Vv to an independent set I ′j with |I ′j | ≥ q + 1,

and thus µI`′−r(v) ≥ q + 1.

From this fact we conclude that for any `′ ∈ {0, . . . , |I ∩ Vu|} with |Ca| < µI`′(u), it holds
that `′ ≤ `, where ` is the value chosen in (c). We conclude the proof of Property 4 by
showing that there exists an `-TAR-sequence in Gu from Cua to Cua+1 that only adds tokens
on Cua+1\Cua (which is then obviously also an `′-TAR-sequence).

Consider the case that we have chosen Cua+1 = Cvb+1 ∪ Cwc . Then µI`−r(v) > |Cvb |, so
by using Property 4 for the SU-sequence for v, there exists an (` − r)-TAR-sequence in Gv
from Cvb to Cvb+1 that only adds tokens on Cvb+1\Cvb . If we apply the same token additions
to Cua = Cvb ∪ Cwc , then this yields the desired `-TAR-sequence from Cua to Cua+1, since
any independent set in this sequence contains r vertices of Vw. If Cua+1 = Cvb ∪ Cwc+1, then
µI`−q(w) > |Cwc |, and the proof is analog.

Summarizing, we have now shown that for the constructed sequence Cu0 , . . . , C
u
pu , all

properties from Definition 39 hold, and therefore it is an SU-sequence for u, based on I,
which concludes the proof of the lemma. �

A straightforward induction proof based on Proposition 42, Lemma 43 and Lemma 44
now yields the following statement.

Theorem 45 Let T be a cotree of a graph G, and let I be an independent set of G. For every
node u ∈ V (T ), there exists an SU-sequence based on I.

Combined with Proposition 40 and Lemma 41, this shows that for any value of k such
that there exists a k-TAR-sequence in G from I to some maximum independent set of G,
then there exists a short k-TAR-sequence of this type.

Theorem 46 Let G be a graph on n vertices, let T be a cotree of G with root r, let I be
an independent set of G, and let k be an integer such that µIk(r) = α(G). Then there exists
a k-TAR-sequence from I to some maximum independent set J of G with length at most
2n− |I| − α(G).

Proof: By Theorem 45, there exists an SU-sequence C0, . . . , Cp for the root node r. Since
µIk(r) = α(G) = |Cp| (Proposition 40), Lemma 41 shows that there exists a k-TAR-sequence
from I to Cp of length 2(|

⋃p
j=0Cj |)− |C0| − |Cp| ≤ 2n− |I| − α(G). �

Theorem 46 can be used to prove the existence of a linear length TAR-sequence between
any two independent sets A and B with A ↔G

k B, by reconfiguring both to a common
reachable maximum independent set. There are however two problems with this approach:
first, even though A ↔G

k B holds, it may be that A and B cannot reach any maximum
independent set of G. This is remedied by considering an appropriate subgraph G′ of G,
such that A ↔G′

k B holds, and both A and B can reach a maximum independent set of
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G′. Lemma 48 below indicates how this graph G′ can be chosen – it suffices to simply
omit all vertices that are not in any independent set that can be reached from A or B.
Secondly, even if both A and B can both reach a maximum independent set of a graph G
(i.e. µAk (r) = α(G) = µBk (r)), it may be that G has multiple maximum independent sets, and
Theorem 46 does not specify which one is reachable. In fact, from the construction of the
SU-sequences it can be seen that different choices of A and B may lead to different maximum
independent sets. Therefore, to conclude the proof, we also need to demonstrate that short
TAR-sequences exist between any pair of maximum independent sets that can reach each
other. This is done in the next lemma.

Lemma 47 Let A and B be two maximum independent sets of a cograph G. If A ↔G
k B,

then there exists a k-TAR-sequence from A to B of length |A∆B|.

Proof: We prove the statement by induction over |A∆B|. Let T be a cotree of G. If A = B
then there is nothing to prove, so assume now that |A∆B| ≥ 1. Define a difference node to
be a node u ∈ V (T ) with A ∩ Vu = ∅ and B ∩ Vu 6= ∅ or with A ∩ Vu 6= ∅ and B ∩ Vu = ∅.

Consider a join node u with children v and w such that u is not a difference node, but v
and w are. We first argue that such a node exists. Since A\B 6= ∅, there exists at least one
difference node (a leaf of T ). Considering the root r, there exists also at least one node that
is not a difference node. So we may consider a difference node v for which the parent u is
not a difference node. W.l.o.g. assume that A ∩ Vv 6= ∅ and B ∩ Vv = ∅. Since u is not a
difference node, B∩Vw 6= ∅, where w is the other child of u. If u is a union node, then we can
add A ∩ Vv to B, such that the result is a larger independent set (since Vu is a module with
Vu ∩ B 6= ∅, and vertices in A ∩ Vv are not adjacent to vertices in B ∩ Vw), a contradiction
with the maximality of B. So v is a join node. Since A is an independent set, it follows that
A ∩ Vw = ∅, and therefore w is also a difference node, which proves that a node u with the
stated properties exists.

Next, we prove that |A\Vu| ≥ k and |B\Vu| ≥ k. Consider a k-TAR-sequence I0, . . . , Ip
from A to B. By choice of u, this sequence contains an independent set that contains no
vertices of Vu. Let Ii be the first such independent set in the sequence. So i ≥ 1 and
Ii−1 = Ii ∪ {x} for some x ∈ Vu. Because Ii−1 is an independent set and Vu is a module, Ii
contains no vertices that are adjacent to any vertex in Vu. So (A∩ Vu)∪ Ii is an independent
set, which implies that |A| = α(G) ≥ |A ∩ Vu| + |Ii| ≥ |A ∩ Vu| + k, and thus |A\Vu| ≥ k.
Analogously, |B\Vu| ≥ k follows.

Since Vu is a module of G, it follows that (A\Vu) ∪ (B ∩ Vu) and (B\Vu) ∪ (A ∩ Vu)
are also independent sets. In fact, since their cardinalities sum to 2α(G), and neither set
can be larger than α(G), it follows that both are maximum independent sets of G. Denote
A′ = (A\Vu) ∪ (B ∩ Vu).

Since |A\Vu| ≥ k, a k-TAR-sequence from A to A′ can be obtained by first removing
all tokens from A ∩ Vu, and next adding tokens on all of B ∩ Vu. This sequence has length
|A∆A′|. By induction, there is a k-TAR-sequence from A′ to B of length |A′∆B|. Because
|A∆A′|+ |A′∆B| = |A∆B|, this proves the statement. �

Lemma 48 Let T be a cotree for G, and let I be an independent set of G such that for all
v ∈ V (G), there exists an independent set J with I ↔G

k J and v ∈ J . Then µIk = α(G).
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Proof: Let I∗ be a maximum independent set of G. By induction over the cotree T , we will
prove that Claim A below holds for every node u ∈ V (T ). Applying Claim A for to the root
node of T proves the lemma statement.

Claim A: There exists an independent set J of G with I∗ ∩ Vu ⊆ J ∩ Vu and I ↔G
k J .

Suppose u ∈ V (T ) is a (trivial) leaf node. Then Claim A follows immediately from the
assumption.

Suppose u is a join node, with children v and w. We may assume w.l.o.g. that I∗∩Vw = ∅.
By induction, there exists an independent set J with I ↔G

k J and I∗∩Vv ⊆ J∩Vv. Therefore,
I∗ ∩ Vu = I∗ ∩ Vv ⊆ J ∩ Vv ⊆ J ∩ Vu, which proves Claim A for u.

Finally, suppose u is a union node, with children v and w. If I∗ ∩ Vu = ∅ then Claim A
follows trivially for u, so assume this is not the case. Since I∗ is now a maximum independent
set of G with I∗ ∩ Vu 6= ∅, and Vu is a module of G that is the disjoint union of Vv and Vw, it
follows that I∗ ∩ Vv and I∗ ∩ Vw are maximum independent sets for Gv and Gw, respectively.
Indeed, if this would not be the case, then the size of I∗ can be increased by replacing I∗∩Vv or
I∗∩Vw by arbitrary maximum independent sets of Gv and Gw respectively, while maintaining
an independent set, a contradiction.

By induction, there exists an independent set Jv with I ↔G
k Jv and I∗ ∩ Vv ⊆ Jv ∩ Vv,

and there exists an independent set Jw with I ↔G
k Jw and I∗ ∩ Vw ⊆ Jw ∩ Vw. It follows

that Jv ∩Vv and Jw ∩Vw are maximum independent sets of Gv and Gw respectively. We may
now apply (module) Lemma 8 (with Vu, Vv, Vw, I, Jv and Jw in the roles of M , M1, M2, A,
B1, B2, respectively), to conclude that there exists an independent set J of G with I ↔G

k J ,
J ∩ Vv = Jv ∩ Vv, and J ∩ Vw = Jw ∩ Vw. So I∗ ∩ Vu = (I∗ ∩ Vv) ∪ (I∗ ∩ Vw) ⊆ J ∩ Vu. This
proves Claim A for u. �

Now we can prove the main theorem from this section.

Theorem 49 Let G be a cograph on n vertices, with independent sets A and B such that
A↔G

k B. Then there exists a k-TAR-sequence from A to B of length at most 4n− |A| − |B|.

Proof: For an independent set I of G, call a vertex v ∈ V (G) k-accessible from I if there exists
an independent set J with I ↔G

k J and v ∈ J . Since A ↔G
k B, and ↔G

k is an equivalence
relation, it follows that for every vertex v ∈ V (G), v is k-accessible from A if and only if it
is k-accessible from B. So we may consider the subgraph G′ induced by all vertices that are
k-accessible from A. For any independent set J of G it now holds that A ↔G

k J if and only
if J ⊆ V (G′) and A↔G′

k J , and the same statement holds if we replace A by B.
Since G′ is an induced subgraph of G, it is again a cograph, so we may choose T to be

a cotree of G′, with root r. Denote n′ = |V (G′)|. By definition, G′ satisfies the conditions
of Lemma 48, for both I = A and I = B, so µAk (r) = α(G′) = µBk (r). Theorem 46 then
shows that there exist k-TAR-sequences from A and B to maximum independent sets A′ and
B′ of G′ respectively, of length at most 2n′ − |A| − |A′| and 2n′ − |B| − |B′|. Lemma 47
shows that there exists a k-TAR-sequence from A′ to B′ of length |A′∆B′|. Combining
these three k-TAR-sequences gives a k-TAR-sequence from A to B in G′ of length at most
4n′ − |A| − |B| − |A′| − |B′| + |A′∆B′| ≤ 4n′ − |A| − |B| ≤ 4n − |A| − |B|. Since G′ is an
induced subgraph of G, this is also a k-TAR-sequence for G. �

This immediately yields:
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Corollary 50 For any cograph G on n vertices and integer k, components of TARk(G) have
diameter at most 4n− 2k.

Combining the previous corollary with Lemma 1 yields:

Corollary 51 For any cograph G on n vertices and integer k, components of TJk(G) have
diameter at most 2n− k.

9 Discussion

In this paper, we showed that the TAR-Reachability problem (and thus the TJ-Reachability
problem) can be solved efficiently for any graph that admits a cograph decomposition into
graphs that satisfy certain properties (Theorem 5) – call this a good graph class. Chordal
graphs are given as an example of a good graph class. In fact, this might be generalized to
even-hole-free graphs, provided that the following question can be answered affirmatively: can
α(G) be computed in polynomial time if G is an even-hole-free graph? This is a well-known
open question [24], and also a negative answer (i.e. NP-hardness proof) would be interesting
(see [21]).

Another good graph class is the class of claw-free graphs, which will be shown in another
paper [5]. Finally, Theorem 5 easily applies to any graph class such that graphs on n vertices
admit a cograph decomposition into O(log n) sized graphs: in this case, a trivial (exponential
time) exhaustive search procedure can be applied to the base graphs, such that the total
complexity is still polynomial in n.

Together, this shows that the TAR-Reachability problem can be solved efficiently for quite
a rich graph class. Considering the fact that TAR-Reachability is PSPACE-hard for perfect
graphs [21], the boundary between hard and easy graph classes for this problem starts to
become clear.

Recall that cographs are exactly the graphs of cliquewidth two, and of modular width
two [11]. Generalizing our result to an efficient algorithm for graphs of bounded cliquewidth
may be too challenging; a more reasonable goal is to first consider graphs of bounded modular
width. The modular width of a graph is the largest number of vertices of a prime graph ap-
pearing at some node of its unique modular decomposition tree [11, 13]. Is there a polynomial
time algorithm for TAR-Reachability for all graphs of modular width at most k, for every
constant k?

The following two questions related to independent set reconfiguration in cographs are
still open: first, what is the complexity of deciding whether there exists a k-TAR-sequence
of length at most ` between two independent sets of a cograph? (Recall that for general
graphs, this is strongly NP-hard [21].) Secondly, what is the complexity of deciding whether
TARk(G) is connected, if G is a cograph? We expect that a variant of our DP algorithm can
be used to show that this problem can be decided in polynomial time.
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